WO2019120967A1 - Temperierte zentrifuge - Google Patents

Temperierte zentrifuge Download PDF

Info

Publication number
WO2019120967A1
WO2019120967A1 PCT/EP2018/083335 EP2018083335W WO2019120967A1 WO 2019120967 A1 WO2019120967 A1 WO 2019120967A1 EP 2018083335 W EP2018083335 W EP 2018083335W WO 2019120967 A1 WO2019120967 A1 WO 2019120967A1
Authority
WO
WIPO (PCT)
Prior art keywords
centrifuge
protective gas
rotor
tempering
container
Prior art date
Application number
PCT/EP2018/083335
Other languages
English (en)
French (fr)
Inventor
Heiko Müller
Original Assignee
Eppendorf Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eppendorf Ag filed Critical Eppendorf Ag
Priority to CN201880082482.6A priority Critical patent/CN111655380B/zh
Priority to JP2020534478A priority patent/JP7196180B2/ja
Priority to US16/955,310 priority patent/US11577257B2/en
Priority to EP18815977.6A priority patent/EP3727701B1/de
Publication of WO2019120967A1 publication Critical patent/WO2019120967A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B7/00Elements of centrifuges
    • B04B7/02Casings; Lids
    • B04B7/06Safety devices ; Regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B15/00Other accessories for centrifuges
    • B04B15/02Other accessories for centrifuges for cooling, heating, or heat insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B7/00Elements of centrifuges
    • B04B7/02Casings; Lids
    • B04B7/06Safety devices ; Regulating
    • B04B2007/065Devices and measures in the event of rotor fracturing, e.g. lines of weakness, stress regions

Definitions

  • the present invention relates to a centrifuge according to the preamble of claim 1.
  • Centrifuge rotors are used in centrifuges, especially laboratory centrifuges, to separate the components of samples centrifuged therein, utilizing inertia. In this case, ever higher rotational speeds are used to achieve high Entmischungsra.
  • Laboratory centrifuges are centrifuges whose rotors operate at preferably at least 3,000, preferably at least 10,000, in particular at least 15,000 revolutions per minute and are usually placed on tables. In order to be able to place them on a work table, they have, in particular, a form factor of less than 1 m ⁇ 1 m ⁇ 1 m, so their installation space is limited.
  • the depth of the device is limited to max. 70 cm.
  • centrifuges are used in the fields of medicine, pharmacy, biology and chemistry. Like.
  • the samples to be centrifuged are stored in sample containers and these sample containers are rotationally driven by means of a centrifuge rotor.
  • the centrifuge rotors are usually rotated by means of a vertical drive shaft, which is driven by an electric motor in rotation.
  • the sample containers can contain the samples directly or in the sample containers own sample containers are used, which contain the sample, so that in a sample container, a plurality of samples can be centrifuged simultaneously.
  • Very generally centrifuge rotors in the form of Festwinkelro gates and swing-bucket rotors are known. In most cases it is provided that the samples are centrifuged at certain temperatures.
  • samples containing egg whites and the like may not be overheated so that the upper limit for tempering such samples is in the range of + 40 ° C by default.
  • certain samples are by default cooled to + 4 ° C (the anomaly of the water starts at 3.98 ° C).
  • predetermined maximum temperatures of, for example, about + 40 ° C and standard examination temperatures such as + 4 ° C and other standard examination temperatures are provided, such as at + 11 ° C to check at this temperature, whether the refrigeration system of the centrifuge runs controlled below room temperature .
  • predetermined maximum temperatures for example, about + 40 ° C and standard examination temperatures such as + 4 ° C and other standard examination temperatures are provided, such as at + 11 ° C to check at this temperature, whether the refrigeration system of the centrifuge runs controlled below room temperature .
  • active and passive systems can be used for tempering.
  • Passive systems are based on air-assisted ventilation. This air is passed directly past the centrifuge rotor, whereby a temperature control takes place. The air is sucked through openings in the centrifuge tank and through further openings, the heated air is discharged again at another point of the centrifuge genkessels, wherein the suction and removal takes place automatically by the rotation of the centrifuge rotor.
  • active cooling systems have a refrigerant circuit which tempers the centrifuge container, thereby indirectly cooling the centrifuge rotor and the sample containers received therein.
  • cold or Tempera tion mediums many different media are used. Since in principle not only cooling, so heat reductions, but also heat increases targeted during centrifugation may be desired, is spoken within the present invention of temperature control and Temper michsmedien.
  • temperature control media commonly used for centrifuges, such as chlorine difluoromethane, tetrafluoroethane, pentafluoroethane or difluoromethane and many others, there are also flammable temperature control agents, such as butane or propane or a variety of synthetic mixtures.
  • Ignition of the temperature control can be done.
  • crash fragments of the centrifuge rotor can act at high speed and thus very high energy within the centrifuge and thereby destroy the United steamer and lines that lead the temperature control.
  • the effluent combustible temperature control medium can then be easily ignited by the energy released during the crash and by electrical or electronic components inside the centrifuge or in its environment, which can be very great damage, especially personal injury may be connected.
  • this object can be achieved in a surprising manner in a particularly simple manner if, in the event of a crash of the centrifuge rotor, a protective gas is released so that the oxygen-tempering medium mixture is not ignitable. More specifically, the released inert gas forms a flow which displaces the oxygen, distributes the leaking temperature control medium and fundamentally changes the instantaneous ratio of the concentration of oxygen to tempering medium so that ignition can not take place both inside and outside the centrifuge.
  • the centrifuge according to the invention in particular laboratory centrifuge, therefore, has a centrifuge container in which a centrifuge rotor is receivable, a motor for driving the centrifuge rotor, temperature control means for tempering the Zentrifu genrotors and a housing in which received the centrifuge container, the centrifuge rotor, the temperature control means and the motor are, wherein the Tempe r michsstoff have a combustible tempering medium, which is guided in a Temper michsmedientechnisch, and are characterized in that the centrifuge has a protective gas and is adapted to release the protective gas in the event of a crash of the centrifuge rotor.
  • the protective gas is an inert gas, which preferably comprises at least one gas from the group argon, helium, carbon dioxide, krypton, neon, nitrogen and xenon. Such gases are particularly effective protective gases.
  • the protective gas is guided in a protective gas line which extends at least one, preferably with several turns around the centrifuge container. Then the shielding gas is passed as possible to the centrifuge container, so that in the centrifuge container Centrifuge rotor located in the event of a crash always directly the protective gas line destroyed and thus releases the inert gas automatically.
  • the protective gas line is connected to a protective gas source, which preferably contains the protective gas under an overpressure.
  • a protective gas source which preferably contains the protective gas under an overpressure.
  • inert gas line and inert gas source in particular fixed throttle element is angeord net.
  • At least two sections preferably more, in particular each winding of the protective line, are connected in parallel with the protective gas source.
  • the protective gas can be released in sufficient quantity, regardless of which part of the protective gas line is opened by the crash.
  • the protective gas line is arranged at least in regions with respect to the centrifuge container next to and / or below the Temper michsmedientechnisch. Then always the protective gas line is opened first or at least simultaneously with the Temper michsmedientechnisch.
  • the inert gas line forms an additional crash absorber, so that possibly opening of the Temper michsmedientechnisch can be prevented.
  • the protective gas line and the Temper istsmedien admirably, preferably at least over a quarter, most preferably at least over a third, in particular at least over half of their respective winding length externally verbun together, preferably are soldered. This favors a particularly good one
  • solder joint is preferably less resistant to tearing than the Temper michsmedientechnisch, it is ensured that the Schutzgaslei device is opened rather than the Temper michsmedientechnisch.
  • the protective gas line at least partially has a smaller wall thickness than the Tempera tion medium line. This ensures that the protective gas is released primarily in front of the temperature control medium.
  • the protective gas line and / or the Temper michsmedien are arranged directly on the centrifuge container or at least partially, at least part of the wall of the centrifuge container.
  • the heat transfer is also particularly effective and the space can possibly be kept smaller.
  • a multi-channel system is to the effect that a channel for the inert gas and a channel for the Tempe r michsmedium exist.
  • the heat transfer is also particularly effective and the space can possibly be kept smaller.
  • monitoring means exist with regard to the state of the protective gas, preferably the pressure and / or the protective gas quantity, which are adapted to the rotational speed of the respectively used
  • the state of the protective gas preferably the pressure and / or the protective gas quantity, which are adapted to the rotational speed of the respectively used
  • the centrifuge which is designed in particular as a laboratory centrifuge, a centrifuge container in which a centrifuge rotor is receivable, a motor for driving the Centrifugal rotor, tempering means for tempering the centrifuge rotor and a housing in which the centrifuge container, the centrifuge rotor, the temperature control means and the motor are accommodated, wherein the temperature control means comprise a combustible tempering medium, which is guided in a Temper michsmedientechnisch, and thereby characterized that protective gas is released in the event of a crash of Zentri fugerotors.
  • the centrifuge invention is verwen det.
  • FIG. 1 shows the centrifuge according to the invention in a perspective view
  • FIG. 3 shows the centrifuge according to the invention according to Figure 1 in a second partial sectional view from the left and
  • FIG. 4 shows a detail view of Fig.2.
  • FIGS. 1 to 4 the centrifuge 10 according to the invention is shown purely schematically in different views.
  • the centrifuge 10 is designed as a laboratory centrifuge, which has a housing 12 with a cover 14 and an operating front 15.
  • a centrifuge rotor 20 is arranged, which is designed as a swing rotor with centrifuge cups 22.
  • the two ends 28, 30 of the protective gas line 26 are brought together and thereby connected in parallel with the supply line 32 of a protective gas container 34 containing a large amount (for example, 1000 g) of carbon dioxide as a protective gas under pressure, for example, liquefied.
  • a protective gas container 34 containing a large amount (for example, 1000 g) of carbon dioxide as a protective gas under pressure, for example, liquefied.
  • the individual windings 36 are connected to one another by a transverse connection (not shown).
  • a pressure switch 38 is arranged, which is connected via a plug 40 with the controller (not shown) of the centrifuge 10.
  • the Temperianssmedientechnisch 24 is connected in a conventional manner with a compressor 42 (behind the vents 43 of the housing 12) and with a filter drier 44.
  • the centrifuge 10 has, in addition to a base plate 46, a protective sleeve 48 which is intended to prevent its parts from escaping from the centrifuge 10 in the event of a crash of the centrifuge rotor 20 '.
  • This protective cover 48 is thus dimensioned and designed in such a way that sufficient crash energy can be absorbed.
  • a thermal insulation 49 is arranged between the protective sleeve 48 and the centrifuge container 16.
  • the windings of the Temperianssmedientechnisch 24, especially the winding parts 50, 52 form the evaporator.
  • the winding member 50 is located on the Wick ment 36 of the protective gas line 26 and the winding member 52 is disposed adjacent to the winding 36 of the protective gas 26.
  • the jacket surfaces of the windings 36 of the protective gas line 26 are externally connected to the overlying winding parts 50 of the Temper michsmedientechnisch 24 by a solder joint 54 (see Fig.4) and the protective gas 26 and arranged next to the protective gas 26 windings 52 of the Temperie tion medium line 24 are with the Zentrifugen effecter 16 selectively soldered (not shown), whereby the Temper michsmedientechnisch 24 in all areas of their windings 50, 52 has sufficient heat conduction to the centrifuge container 16 out and thereby a sufficient active indirect temperature control of the centrifuge rotor 20 'and the samples received therein (not shown) disturbge is.
  • the solder joint is in its strength formed so that the connection to the Temper michsmedientechnisch 24 tears in the region of the winding parts 50 before the Temper michsmedientechnisch 24 tears itself here.
  • Temper michsmedientechnisch 24 and inert gas 26 pipes in the form of elongated hollow body made of any material, preferably of copper or aluminum, used, the length of which is usually much larger than the diameter of its cross section.
  • the protective gas line 26 and the Tempera tion medium line 24 have a different diameter and / or different Liche wall thicknesses. By a smaller wall thickness ensures that the protective gas line 26 ruptures rather than the Temper michsmedientechnisch 24. By a smaller diameter, the protective gas line 26 could be arranged in the free space between the centrifuge container 16 and the turns 50 of the Temperie approximately medium line 24.
  • windings 36, 50 of shielding gas conduit 26 and tempering medium line 24 could also run side by side in parallel, for example as a multi-channel solution (not shown), such that the temperature control media conduit 24 would be located directly on the centrifuge vessel 16.
  • Temperianssmedientechnisch 24 and / or the inert gas 26 at least partially form the centrifuge container 16 (not shown), whereby the necessary space could be reduced.
  • this embodiment of the centrifuge 10 effectively prevents ignition of the combustible tempering medium even in the event of a crash of the centrifuge rotor 20, since in the event of such a crash, components of the centrifuge rotor 20 will damage the protective gas conduit 26 after the centrifuge container 16 has blown through, causing the protective gas to escape ,
  • the protective gas Since the protective gas is under pressure, it will flow into the entire interior of the centrifuge 10 and displace there the atmospheric oxygen and also the possibly diluting tempering agents. Due to the generated flow from the centrifuge 10, the exiting mixture is additionally swirled in the ambient air and further diluted. This prevents the formation of an ignitable mixture.
  • the pressure monitor 38 which continuously monitors the amount and / or pressure of the protective gas in the protective gas container 34 during operation of the centrifuge 10. If the pressure switch 38 detects a state of the shielding gas, which is below predetermined and adapted to the specific centrifuge 10 values, he intervenes in the control (not shown) of the centrifuge 10, either that the centrifuge 10 is not the genrotor genzucroter 20th , 20 'starts and possibly outputs an error message or that the Zentrifu genrotor 20, 20' can only be operated up to a non-critical maximum speed at which a crash can not release any energy that damages the Temper Wegsmedien Koch 24. This maximum speed is previously determined in test series.
  • the Ausströmzeit is specifically adapted so that the surrounding ambient air and thus the atmospheric oxygen displaced for a longer period of time and exiting Temper michsmedium is mixed with the leaking protective gas and scattered.
  • a centrifuge 10 is provided, with which also combustible tempering can be used within the scope of a temperature without security concerns. Unless otherwise indicated, all features of the present invention may be freely combined. The features described in the description of the figures can, unless stated otherwise, be freely combined with the other features as features of the invention. Objective features of the centrifuge can also be used as part of a process to formulated to process features use and reformulated process characteristics in the context of the centrifuge to characteristics of the centrifuge.

Landscapes

  • Centrifugal Separators (AREA)

Abstract

Mit der vorliegenden Erfindung werden eine Zentrifuge (10) und Verfahren zur Verhinderung einer Zündung von brennbaren Temperierungsmedien in Zentrifugen (10) nach einem Crash des Zentrifugenrotors bereitgestellt. Dabei wird eine Zündung dadurch verhindert, dass im Falle eines Crashs ein Schutzgas freigesetzt wird. Genauer gesagt bildet das freigesetzte Schutzgas eine Strömung, die den Sauerstoff verdrängt, das austretende Temperierungsmedium verteilt und das momentane Verhältnis der Konzentration Sauerstoff zu Temperierungsmedium grundlegend so verändert, dass sowohl innerhalb auch als außerhalb der Zentrifuge (10) keine Zündung erfolgen kann. Dadurch können ohne Sicherheitsbedenken auch brennbare Temperierungsmedien im Rahmen einer Temperierung von Zentrifugen (10) eingesetzt werden.

Description

Temperierte Zentrifuge
Die vorliegende Erfindung betrifft eine Zentrifuge nach dem Oberbegriff von An spruch 1 und ein Verfahren zur Verhinderung einer Zündung von brennbaren Temperierungsmedien nach dem Oberbegriff von Anspruch 14.
Zentrifugenrotoren werden in Zentrifugen, insbesondere Laborzentrifugen, dazu eingesetzt, um die Bestandteile von darin zentrifugierten Proben unter Ausnutzung der Massenträgheit zu trennen. Dabei werden zur Erzielung hoher Entmischungsra ten immer höhere Rotationsgeschwindigkeiten eingesetzt. Laborzentrifugen sind dabei Zentrifugen, deren Rotoren bei vorzugsweise mindestens 3.000, bevorzugt mindestens 10.000, insbesondere mindestens 15.000 Umdrehungen pro Minute arbeiten und zumeist auf Tischen platziert werden. Um sie auf einem Arbeitstisch platzieren zu können, weisen sie insbesondere einen Formfaktor von weniger als 1 m x 1 m x 1 m auf, ihr Bauraum ist also beschränkt. Vorzugsweise ist dabei die Gerätetiefe auf max.70 cm beschränkt.
Solche Zentrifugen werden auf Gebieten der Medizin, der Pharmazie, der Biologie und Chemie dgl. eingesetzt.
Die zu zentrifugierenden Proben werden in Probenbehältern gelagert und diese Probenbehälter mittels eines Zentrifugenrotors rotatorisch angetrieben. Dabei werden die Zentrifugenrotoren üblicherweise mittels einer senkrechten Antriebs welle, die von einem elektrischen Motor angetrieben wird, in Rotation versetzt. Es gibt verschiedene Zentrifugenrotoren, die je nach Anwendungszweck eingesetzt werden. Dabei können die Probenbehälter die Proben direkt enthalten oder in den Probenbehältern sind eigene Probenbehältnisse eingesetzt, die die Probe enthalten, so dass in einem Probenbehälter eine Vielzahl von Proben gleichzeitig zentrifugiert werden können. Ganz allgemein sind Zentrifugenrotoren in Form von Festwinkelro toren und Ausschwingrotoren bekannt. Zumeist ist vorgesehen, dass die Proben bei bestimmten Temperaturen zentrifugiert werden. Beispielsweise dürfen Proben, die Eiweiße und dgl. organische Substanzen enthalten, nicht überhitzt werden, so dass die Obergrenze für die Temperierung solcher Proben standardmäßig im Bereich von +40°C liegt. Andererseits werden bestimmte Proben standardmäßig im Bereich +4°C (die Anomalie des Wassers beginnt bei 3,98°C) gekühlt.
Neben solchen vorbestimmten Höchsttemperaturen von beispielsweise ca. +40°C und Standarduntersuchungstemperaturen wie beispielsweise +4°C sind auch weitere Standarduntersuchungstemperaturen vorgesehen, wie beispielsweise bei +11°C, um bei dieser Temperatur zu prüfen, ob die Kälteanlage der Zentrifuge unterhalb Raumtemperatur geregelt läuft. Andererseits ist es aus Arbeitsschutzgründen notwendig, ein Anfassen von Elementen zu verhindern, die eine Temperatur von größer gleich +60°C aufweisen.
Zur Temperierung können grundsätzlich aktive und passive Systeme verwendet werden. Passive Systeme basieren auf einer Luft unterstützten Belüftung. Diese Luft wird direkt an dem Zentrifugenrotor vorbei geführt, wodurch eine Temperierung erfolgt. Die Luft wird dabei durch Öffnungen in den Zentrifugenkessel gesaugt und durch weitere Öffnungen wird die aufgewärmte Luft an anderer Stelle des Zentrifu genkessels wieder abgeführt, wobei das Ansaugen und Abführen selbständig durch die Drehung des Zentrifugenrotors erfolgt.
Aktive Kühlungssysteme besitzen dagegen einen Kältemittelkreislauf, der den Zentrifugenbehälter temperiert, wodurch indirekt der Zentrifugenrotor und die darin aufgenommenen Probenbehälter gekühlt werden. Als Kälte- bzw. Temperie rungsmedien kommen viele verschiedene Medien zum Einsatz. Da prinzipiell nicht nur Kühlungen, also Wärmereduzierungen, sondern auch Wärmeerhöhungen gezielt während der Zentrifugation gewünscht sein können, wird im Rahmen der vorliegen den Erfindung von Temperierung und Temperierungsmedien gesprochen. Neben den für Zentrifugen üblicherweise verwendeten Temperierungsmedien, wie Chlor- difluormethan, Tetrafluorethan, Pentafluorethan oder Difluormethan und vielen weiteren gibt es auch brennbare Temperierungsmittel, wie Butan oder Propan oder auch verschiedenste synthetische Gemische.
Diese brennbaren Temperierungsmedien besitzen zwar sehr gute Wärmeübertra gungseigenschaften, sie werden aber aus Sicherheitsgründen zumeist nicht einge setzt, da im Rahmen eines Crashes des Zentrifugenrotors ein Austreten und
Entzünden des Temperierungsmittels erfolgen kann. Bei einem solchen Crash können Bruchstücke des Zentrifugenrotors mit hoher Geschwindigkeit und damit sehr hoher Energie innerhalb der Zentrifuge wirken und dadurch auch den Ver dampfer und Leitungen zerstören, die das Temperierungsmedium führen. Das ausströmende brennbare Temperierungsmedium kann dann durch die beim Crash freiwerdende Energie und durch elektrische bzw. elektronische Komponenten im Inneren der Zentrifuge oder in deren Umgebung leicht gezündet werden, womit sehr große Schäden, insbesondere auch Personenschäden verbunden sein können.
Um zu verhindern, dass ein Crash des Zentrifugenrotors zu Schäden außerhalb der Zentrifuge führt, wurden schon Versteifungs- und Verstärkungsmittel im Inneren der Zentrifuge vorgeschlagen. Allerdings würde dies nicht einen Austritt von Tempe rierungsmedien verhindern, weil die Leitungen des Temperierungsmittels, die den Verdampfer bilden, um den Zentrifugenbehälter verlaufen und zwar in Bezug auf diese Verstärkungsmittel zwischen Zentrifugenrotor und Verstärkungsmittel.
Es ist daher Aufgabe der vorliegenden Erfindung, eine Zentrifuge vorzuschlagen, mit der auch brennbare Temperierungsmedien eingesetzt werden können, ohne dass diese ein Sicherheitsrisiko im Fall eines Crashs des Zentrifugenrotors darstellen.
Diese Aufgabe wird gelöst mit der erfindungsgemäßen Zentrifuge nach Anspruch 1 und dem erfindungsgemäßen Verfahren zur Verhinderung einer Zündung von brennbaren Temperierungsmedien nach Anspruch 14. Vorteilhafte Weiterbildungen sind in den Unteransprüchen und in der nachfolgenden Beschreibung zusammen mit den Figuren angegeben.
Erfinderseits wurde erkannt, dass diese Aufgabe in überraschender Art und Weise dadurch besonders einfach gelöst werden kann, wenn im Fall eines Crashs des Zentrifugenrotors ein Schutzgas freigesetzt wird, so dass das Sauerstoff- Temperierungsmedium-Gemisch nicht zündfähig ist. Genauer gesagt bildet das freigesetzte Schutzgas eine Strömung, die den Sauerstoff verdrängt, das austreten de Temperierungsmedium verteilt und das momentane Verhältnis der Konzentrati on Sauerstoff zu Temperierungsmedium grundlegend so verändert, dass sowohl innerhalb auch als außerhalb der Zentrifuge keine Zündung erfolgen kann.
Die erfindungsgemäße Zentrifuge, insbesondere Laborzentrifuge, weist daher einen Zentrifugenbehälter, in dem ein Zentrifugenrotor aufnehmbar ist, einen Motor zum Antrieb des Zentrifugenrotors, Temperierungsmittel zum Temperieren des Zentrifu genrotors und ein Gehäuse, in dem der Zentrifugenbehälter, der Zentrifugenrotor, die Temperierungsmittel und der Motor aufgenommen sind, auf, wobei die Tempe rierungsmittel ein brennbares Temperierungsmedium aufweisen, das in einer Temperierungsmedienleitung geführt ist, und zeichnen sich dadurch aus, dass die Zentrifuge ein Schutzgas aufweist und angepasst ist, das Schutzgas im Falle eines Crashs des Zentrifugenrotors freizusetzen.
In einer vorteilhaften Weiterbildung ist vorgesehen, dass das Schutzgas ein Inertgas ist, das bevorzugt zumindest ein Gas aus der Gruppe Argon, Helium, Kohlendioxid, Krypton, Neon, Stickstoff und Xenon umfasst. Solche Gase sind besonders wirksame Schutzgase.
In einer vorteilhaften Weiterbildung ist vorgesehen, dass das Schutzgas in einer Schutzgasleitung geführt ist, die sich zumindest mit einer, bevorzugt mit mehreren Windungen um den Zentrifugenbehälter erstreckt. Dann wird das Schutzgas nächstmöglich zum Zentrifugenbehälter geführt, so dass der im Zentrifugenbehälter befindliche Zentrifugenrotor im Falle eines Crashs stets unmittelbar die Schutzgas leitung zerstört und damit das Schutzgas selbsttätig freisetzt.
In einer vorteilhaften Weiterbildung ist vorgesehen, dass die Schutzgasleitung mit einer Schutzgasquelle, die bevorzugt das Schutzgas unter einem Überdruck beinhal tet, verbunden ist. Dadurch kann eine große Menge Schutzgas im Falle eines Crashs des Zentrifugenrotors kontinuierlich freigesetzt werden. Wenn Überdruck besteht, dann ist die sich ausbildende Strömung des Schutzgasses fremdenergieunabhängig und es wird nicht nur der Luftsauerstoff im Inneren der Zentrifuge verdrängt, sonders es entsteht eine Luftströmung aus der Zentrifuge heraus, die in der Umge bung eine bewegte Atmosphäre und damit eine weitere Verdünnung des Gemisch erzeugt, die eine Zündung verhindert.
In einer vorteilhaften Weiterbildung ist vorgesehen, dass zwischen Schutzgasleitung und Schutzgasquelle ein, insbesondere fest eingestelltes Drosselelement angeord net ist. Dadurch wird eine plötzliche Expansion verhindert und die Ausströmzeit des Schutzgases verlängert, so dass die Umgebungsluft für längere Zeit verdrängt und austretendes Temperierungsmedium mit dem austretenden Schutzgas vermischt und verstreut wird.
In einer vorteilhaften Weiterbildung ist vorgesehen, dass zumindest zwei Abschnit te, bevorzugt mehr, insbesondere jede Wicklung der Schutzleitung mit der Schutz gasquelle parallel verbunden sind. Dadurch kann das Schutzgas in ausreichender Menge freigesetzt werden, unabhängig davon welcher Teil der Schutzgasleitung durch den Crash geöffnet wird.
In einer vorteilhaften Weiterbildung ist vorgesehen, dass die Schutzgasleitung zumindest bereichsweise in Bezug auf den Zentrifugenbehälter neben und/oder unter der Temperierungsmedienleitung angeordnet ist. Dann wird stets die Schutz gasleitung zuerst oder zumindest gleichzeitig mit der Temperierungsmedienleitung geöffnet. Außerdem bildet die Schutzgasleitung einen zusätzlichen Crashabsorber, so dass möglicherweise eine Öffnung der Temperierungsmedienleitung verhindert werden kann.
In einer vorteilhaften Weiterbildung ist vorgesehen, dass die Schutzgasleitung und die Temperierungsmedienleitung zumindest bereichsweise, bevorzugt zumindest über ein Viertel, höchst bevorzugt zumindest über ein Drittel, insbesondere zumin dest über die Hälfte ihrer jeweiligen Wicklungslänge äußerlich miteinander verbun den, vorzugsweise verlötet sind. Das begünstigt einen besonders guten
Wärmeübergang. Wenn die Lötverbindung bevorzugt weniger reißfest ausgebildet ist, als die Temperierungsmedienleitung, wird dafür gesorgt, dass die Schutzgaslei tung eher geöffnet wird als die Temperierungsmedienleitung.
In einer vorteilhaften Weiterbildung ist vorgesehen, dass die Schutzgasleitung zumindest bereichsweise eine geringere Wandstärke aufweist als die Temperie rungsmedienleitung. Damit ist sichergestellt, dass das Schutzgas vorrangig vor dem Temperierungsmedium freigesetzt wird.
In einer vorteilhaften Weiterbildung ist vorgesehen, dass die Schutzgasleitung und/oder die Temperierungsmedienleitung direkt auf dem Zentrifugenbehälter angeordnet sind oder zumindest bereichsweise zumindest Bestandteil der Wandung des Zentrifugenbehälters sind. Dadurch ist der Wärmeübergang ebenfalls besonders wirksam und der Bauraum kann ggf. kleiner gehalten werden.
In einer vorteilhaften Weiterbildung ist vorgesehen, dass ein Mehrkanalsystem dahingehend besteht, dass ein Kanal für das Schutzgas und ein Kanal für das Tempe rierungsmedium bestehen. Dadurch ist der Wärmeübergang ebenfalls besonders wirksam und der Bauraum kann ggf. kleiner gehalten werden.
In einer vorteilhaften Weiterbildung ist vorgesehen, dass Überwachungsmittel hinsichtlich des Zustands des Schutzgases, bevorzugt des Druckes und/oder der Schutzgasmenge bestehen, die angepasst sind, die Drehzahl des jeweils eingesetz- ten Zentrifugenrotors auf eine für einen Crash des Zentrifugenrotors unkritische Größe zu begrenzen, wenn vorgegebene Werte zum Zustand des Schutzgases nicht erreicht werden, beispielsweise vorgegebene Werte zu Druck und Menge unter schritten werden. Dadurch wird sichergestellt, dass ein riskanter Rotorbetrieb nur möglich ist, wenn ausreichend Schutzgas zu Verfügung gestellt werden kann.
In einer vorteilhaften Weiterbildung ist vorgesehen, dass ein Lüfter besteht, der im Betrieb der Zentrifuge ständig Luft aus dem Gehäuseinneren in die Umgebung der Zentrifuge leitet. Dadurch wird die Konzentration von brennbarem Medium im Inneren der Zentrifuge herabgesetzt, wodurch die Risiken der Bildung zündfähiger Gemische reduziert werden.
Unabhängiger Schutz wird beansprucht für das erfindungsgemäße Verfahren zur Verhinderung einer Zündung von brennbaren Temperierungsmedien in Zentrifugen nach einem Crash des Zentrifugenrotors, wobei die Zentrifuge, die insbesondere als Laborzentrifuge ausgebildet ist, einen Zentrifugenbehälter, in dem ein Zentrifugen rotor aufnehmbar ist, einen Motor zum Antrieb des Zentrifugenrotors, Temperie rungsmittel zum Temperieren des Zentrifugenrotors und ein Gehäuse, in dem der Zentrifugenbehälter, der Zentrifugenrotor, die Temperierungsmittel und der Motor aufgenommen sind, wobei die Temperierungsmittel ein brennbares Temperie rungsmedium aufweisen, das in einer Temperierungsmedienleitung geführt wird, und das sich dadurch auszeichnet, dass Schutzgas im Falle eines Crashs des Zentri fugenrotors freigesetzt wird.
In einer vorteilhaften Weiterbildung wird die erfindungsgemäße Zentrifuge verwen det.
Die Merkmale und weitere Vorteile der vorliegenden Erfindung werden im Folgen den anhand der Beschreibung eines bevorzugten Ausführungsbeispiels im Zusam menhang mit den Figuren deutlich werden. Dabei zeigen rein schematisch:
Fig.1 die erfindungsgemäße Zentrifuge in einer perspektivischen Ansicht, Fig.2 die erfindungsgemäße Zentrifuge nach Fig.1 in einer ersten teilweisen Schnittansicht von rechts,
Fig.3 die erfindungsgemäße Zentrifuge nach Fig.1 in einer zweiten teilweisen Schnittansicht von links und
Fig.4 eine Detailansicht der Fig.2.
In den Fig.1 bis 4 ist die erfindungsgemäße Zentrifuge 10 rein schematisch in verschiedenen Ansichten dargestellt.
Es ist zu erkennen, dass die Zentrifuge 10 als Laborzentrifuge ausgebildet ist, die ein Gehäuse 12 mit einem Deckel 14 und einer Bedienungsfront 15 aufweist. In dem Zentrifugenbehälter 16 der Zentrifuge 10 ist auf einer Antriebswelle (nicht gezeigt) eines Zentrifugenmotors 18 ein Zentrifugenrotor 20 angeordnet, der als Aus schwingrotor mit Zentrifugenbechern 22 ausgebildet ist.
In Fig.2 ist zu erkennen, dass der Zentrifugenbehälter 16 von Wicklungen einer Temperierungsmedienleitung 24 und Wicklungen einer Schutzgasleitung 26 umge ben ist. (In Fig.2 ist der Zentrifugenrotor 20' als Festwinkelrotor dargestellt, um zu zeigen, dass die vorliegende Erfindung unabhängig vom genauen Typ des Zentrifu genrotors 20, 20' ist.)
Die beiden Enden 28, 30 der Schutzgasleitung 26 sind zusammengeführt und dadurch parallel mit der Zuleitung 32 eines Schutzgasbehälters 34 verbunden, der eine große Menge (beispielsweise 1000 g) Kohlendioxid als Schutzgas unter Über druck, beispielsweise verflüssigt, enthält.
Um die Leitungslänge von dem Schutzgasbehälter 34 zu allen möglichen Punkten der Schutzgasleitung 26 kurz zu halten, kann alternativ vorgesehen sein, dass die einzelnen Wicklungen 36 untereinander durch eine Querverbindung (nicht gezeigt) verbunden sind. An dem Schutzgasbehälter 34 ist ein Druckwächter 38 angeordnet, der über einen Stecker 40 mit der Steuerung (nicht gezeigt) der Zentrifuge 10 verbunden ist.
Die Temperierungsmedienleitung 24 ist in üblicher Weise mit einem Kompressor 42 (hinter den Lüftungsschlitzen 43 des Gehäuses 12) und mit einem Filtertrockner 44 verbunden.
In Fig.2 ist außerdem zu erkennen, dass die Zentrifuge 10 neben einer Bodenplatte 46 eine Schutzhülle 48 aufweist, die verhindern soll, dass im Falle eines Crashs des Zentrifugenrotors 20' dessen Teile aus der Zentrifuge 10 austreten können. Diese Schutzhülle 48 ist also so dimensioniert und materialmäßig ausgebildet, dass ausreichend viel Crashenergie absorbiert werden kann. Zwischen der Schutzhülle 48 und dem Zentrifugenbehälter 16 ist eine Wärmeisolierung 49 angeordnet.
Die Wicklungen der Temperierungsmedienleitung 24, speziell die Wicklungsteile 50, 52 bilden den Verdampfer. Der Wicklungsteil 50 befindet sich dabei auf der Wick lung 36 der Schutzgasleitung 26 und der Wicklungsteil 52 ist neben der Wicklung 36 der Schutzgasleitung 26 angeordnet.
Die Mantelfächen der Wicklungen 36 der Schutzgasleitung 26 sind mit den darüber angeordneten Wicklungsteilen 50 der Temperierungsmedienleitung 24 durch eine Lötverbindung 54 äußerlich verbunden (vgl. Fig.4) und die Schutzgasleitung 26 und die neben der Schutzgasleitung 26 angeordneten Wicklungen 52 der Temperie rungsmedienleitung 24 sind mit dem Zentrifugenbehälter 16 punktuell verlötet (nicht gezeigt), wodurch die Temperierungsmedienleitung 24 in allen Bereichen ihrer Wicklungen 50, 52 eine ausreichende Wärmeleitung zum Zentrifugenbehälter 16 hin aufweist und dadurch eine ausreichende aktive indirekte Temperierung des Zentrifugenrotors 20' und der darin aufgenommen Proben (nicht gezeigt) sicherge stellt ist. Die Lötverbindung ist dabei in ihrer Festigkeit so ausgebildet, dass die Verbindung zur Temperierungsmedienleitung 24 im Bereich der Wicklungsteile 50 aufreißt, bevor die Temperierungsmedienleitung 24 hier selbst reißt. Als Temperierungsmedienleitung 24 und Schutzgasleitung 26 werden Rohre in der Form länglicher Hohlkörper aus beliebigem Material, bevorzugt aus Kupfer oder Aluminium, verwendet, deren Länge in der Regel wesentlich größer ist als der Durchmesser ihres Querschnitts.
Dabei könnte vorgesehen sein, dass die Schutzgasleitung 26 und die Temperie rungsmedienleitung 24 einen unterschiedlichen Durchmesser und/oder unterschied liche Wandstärken aufweisen. Durch eine geringere Wandstärke ist sichergestellt, dass die Schutzgasleitung 26 eher reißt als die Temperierungsmedienleitung 24. Durch einen geringeren Durchmesser könnte die Schutzgasleitung 26 in den Frei raum zwischen dem Zentrifugenbehälter 16 und den Windungen 50 der Temperie rungsmedienleitung 24 angeordnet werden.
Alternativ könnten die Wicklungen 36, 50 von Schutzgasleitung 26 und Temperie rungsmedienleitung 24 auch parallel nebeneinander, beispielsweise als eine Mehr kanallösung (nicht gezeigt) verlaufen, so dass die Temperierungsmedienleitung 24 direkt auf dem Zentrifugenbehälter 16 angeordnet wäre.
Außerdem könnte auch vorgesehen sein, dass die Temperierungsmedienleitung 24 und/oder die Schutzgasleitung 26 zumindest teilweise den Zentrifugenbehälter 16 bilden (nicht gezeigt), wodurch der notwendige Bauraum reduziert werden könnte.
Im Betrieb wird durch diese Ausgestaltung der Zentrifuge 10 auch im Fall eines Crash des Zentrifugenrotors 20 ein Zünden des brennbaren Temperierungsmediums wirksam verhindert, da im Falle eines solchen Crashs Bestandteile des Zentrifugen rotors 20 nach Durchschlagen des Zentrifugenbehälters 16 die Schutzgasleitung 26 beschädigen, wodurch das Schutzgas austritt.
Da das Schutzgas unter Überdruck steht, wird es in den gesamten Innenraum der Zentrifuge 10 strömen und dort den Luftsauerstoff verdrängen und außerdem das möglicherweise austretende Temperierungsmittel verdünnen. Durch die erzeugte Strömung aus der Zentrifuge 10 heraus wird zusätzlich das austretende Gemisch in der Umgebungsluft verwirbelt und weiter verdünnt. Dadurch wird die Entstehung eines zündfähigen Gemischs verhindert.
Zur Überwachung dieser Sicherheitsfunktion besteht der Druckwächter 38, der im Betrieb der Zentrifuge 10 kontinuierlich Menge und/oder Druck des Schutzgases im Schutzgasbehälter 34 überwacht. Falls der Druckwächter 38 einen Zustand des Schutzgases erkennt, der unter vorab festgelegten und auf die konkrete Zentrifuge 10 angepassten Werten liegt, greift er so in die Steuerung (nicht gezeigt) der Zentrifuge 10 ein, dass entweder die Zentrifuge 10 überhaupt nicht den Zentrifu genrotor 20, 20' startet und ggf. eine Fehlermeldung ausgibt oder dass der Zentrifu genrotor 20, 20' nur bis zu einer unkritischen Maximaldrehzahl betreibbar ist, bei der ein Crash keine Energien freisetzen kann, die die Temperierungsmedienleitung 24 beschädigt. Diese Maximaldrehzahl wird vorher in Versuchsreihen bestimmt.
Durch ein Drosselelement (nicht gezeigt) zwischen Schutzgasbehälter 34 und Schutzgasleitung 26 wird die Ausströmzeit gezielt angepasst, so dass die Umge bungsluft und damit der Luftsauerstoff für einen längeren Zeitraum verdrängt und austretendes Temperierungsmedium mit dem austretenden Schutzgas vermischt und verstreut wird.
Durch Vorsehung eines im Betrieb der Zentrifuge 10 in Anlehnung an die DIN EN 378 ständig laufenden Ventilators (nicht gezeigt) werden innerhalb des Gehäuses 12 Risiken der Bildung eines zündfähigen Gemisches aus der Entstehung einer Leckage in der Temperierungsmedienleitung 24 zusätzlich vermieden.
Aus der vorstehenden Darstellung ist deutlich geworden, dass mit der vorliegenden Erfindung eine Zentrifuge 10 bereitgestellt wird, mit der ohne Sicherheitsbedenken auch brennbare Temperierungsmedien im Rahmen einer Temperierung eingesetzt werden können. Soweit nichts anderes angegeben ist, können sämtliche Merkmale der vorliegenden Erfindung frei miteinander kombiniert werden. Auch die in der Figurenbeschreibung beschriebenen Merkmale können, soweit nichts anderes angegeben ist, als Merkma- le der Erfindung frei mit den übrigen Merkmalen kombiniert werden. Dabei können gegenständliche Merkmale der Zentrifuge auch im Rahmen eines Verfahrens um formuliert zu Verfahrensmerkmalen Verwendung finden und Verfahrensmerkmale im Rahmen der Zentrifuge umformuliert zu Merkmalen der Zentrifuge.
Bezugszeichenliste
10 erfindungsgemäße Zentrifuge, Laborzentrifuge
12 Gehäuse
14 Deckel
15 Bedienungsfront
16 Zentrifugenbehälter
18 Zentrifugenmotor
20 Zentrifugenrotor, Ausschwingrotor
20' Zentrifugenrotor, Festwinkelrotor
22 Zentrifugenbecher
24 Temperierungsmedienleitung
26 Schutzgasleitung
28, 30 Enden der Schutzgasleitung 26
32 Zuleitung des Schutzgasbehälters 34
34 Schutzgasbehälter
36 Wicklungen der Schutzgasleitung 26
38 Druckwächter
40 Stecker
42 Kompressor
44 Filtertrockner
46 Bodenplatte
48 Schutzhülle
49 Wärmeisolierung
50 Wicklungen der Temperierungsmedienleitung 24, die sich über Wicklungen 36 der Schutzgasleitung 26 befinden
52 neben der Schutzgasleitung 26 angeordnete Wicklungen 52 der Temperie rungsmedienleitung 24
54 Lötverbindung zwischen den Wicklunge 36 der Schutzgasleitung 26 und den Wicklungen 50 der Temperierungsmedienleitung 24

Claims

Patentansprüche
1. Zentrifuge (10), insbesondere Laborzentrifuge, mit einem Zentrifugenbehäl ter (16), in dem ein Zentrifugenrotor (20, 20') aufnehmbar ist, einem Motor (18) zum Antrieb des Zentrifugenrotors (20, 20'), Temperierungsmittel (24, 42, 44) zum Temperieren des Zentrifugenrotors (20, 20') und einem Gehäuse (12), in dem der Zentrifugenbehälter (16), der Zentrifugenrotor (20, 20'), die Temperierungsmittel (24, 42, 44) und der Motor (18) aufgenommen sind, wobei die Temperierungsmittel (24, 42, 44) ein brennbares Temperierungsmedium aufweisen, das in einer Tempe rierungsmedienleitung (24) geführt ist, dadurch gekennzeichnet, dass die Zentrifuge (10) ein Schutzgas aufweist und angepasst ist, das Schutzgas im Falle eines Crashs des Zentrifugenrotors (20, 20') freizusetzen.
2. Zentrifuge (10) nach Anspruch 1, dadurch gekennzeichnet, dass das Schutzgas ein Inertgas ist, das bevorzugt zumindest ein Gas aus der Gruppe Argon, Helium, Kohlendioxid, Krypton, Neon, Stickstoff und Xenon umfasst.
3. Zentrifuge (10) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Schutzgas in einer Schutzgasleitung (26) geführt ist, die sich zumindest mit einer, bevorzugt mit mehreren Wicklungen (36) um den Zentrifugenbehälter (16) er streckt.
4. Zentrifuge (10) nach Anspruch 3, dadurch gekennzeichnet, dass die Schutz gasleitung (26) mit einer Schutzgasquelle (34), die bevorzugt das Schutzgas unter einem Überdruck beinhaltet, verbunden ist.
5. Zentrifuge (10) nach Anspruch 4, dadurch gekennzeichnet, dass zwischen Schutzgasleitung (26) und Schutzgasquelle (34) ein, insbesondere fest eingestelltes Drosselelement angeordnet ist.
6. Zentrifuge (10) nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass zumindest zwei Abschnitte (28, 30), bevorzugt mehr, insbesondere jede Wicklung der Schutzleitung (26) mit der Schutzgasquelle (34) parallel verbunden sind.
7. Zentrifuge (10) nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass die Schutzgasleitung (26) zumindest bereichsweise (36) in Bezug auf den Zentrifugenbehälter (16) neben und/oder unter der Temperierungsmedienleitung (50) angeordnet ist.
8. Zentrifuge (10) nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, dass die Schutzgasleitung (26) und die Temperierungsmedienleitung (24) zumindest bereichsweise, bevorzugt zumindest über ein Viertel, höchst bevorzugt zumindest über ein Drittel, insbesondere zumindest über die Hälfte ihrer jeweiligen Wicklungs länge miteinander verbunden, vorzugsweise verlötet sind.
9. Zentrifuge (10) nach einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, dass die Schutzgasleitung (26) zumindest bereichsweise eine geringere Wandstärke aufweist als die Temperierungsmedienleitung (24).
10. Zentrifuge (10) nach einem der Ansprüche 3 bis 9, dadurch gekennzeichnet, dass die Schutzgasleitung (26) und/oder die Temperierungsmedienleitung (24) direkt auf dem Zentrifugenbehälter (16) angeordnet sind oder zumindest bereichs weise zumindest Bestandteil der Wandung des Zentrifugenbehälters (16) sind.
11. Zentrifuge nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass ein Mehrkanalsystem dahingehend besteht, dass ein Kanal für das Schutzgas und ein Kanal für das Temperierungsmedium bestehen.
12. Zentrifuge (10) nach einem der vorherigen Ansprüche, dadurch gekennzeich net, dass Überwachungsmittel (38) hinsichtlich des Zustands des Schutzgases, bevorzugt des Druckes und/oder der Schutzgasmenge bestehen, die angepasst sind, die Drehzahl des Zentrifugenrotors (20, 20') auf eine für einen Crash des Zentrifu genrotors (20, 20') unkritische Größe zu begrenzen, wenn vorgegebene Werte zum Zustand des Schutzgases nicht erreicht werden.
13. Zentrifuge (10) nach einem der vorherigen Ansprüche, dadurch gekennzeich net, dass ein Lüfter besteht, der im Betrieb der Zentrifuge (10) ständig Luft aus dem Gehäuseinneren in die Umgebung der Zentrifuge (10) leitet.
14. Verfahren zur Verhinderung einer Zündung von brennbaren Temperierungs medien in Zentrifugen (10) nach einem Crash des Zentrifugenrotors (20, 20'), wobei die Zentrifuge (10), die insbesondere als Laborzentrifuge ausgebildet ist, einen Zentrifugenbehälter (16), in dem ein Zentrifugenrotor (20, 20') aufnehmbar ist, einen Motor (18) zum Antrieb des Zentrifugenrotors (20, 20'), Temperierungsmittel (24, 42, 44) zum Temperieren des Zentrifugenrotors (20, 20') und ein Gehäuse (12), in dem der Zentrifugenbehälter (16), der Zentrifugenrotor (20, 20'), die Temperie rungsmittel (24, 42, 44) und der Motor (18) aufgenommen sind, wobei die Tempe rierungsmittel (24, 42, 44) ein brennbares Temperierungsmedium aufweisen, das in einer Temperierungsmedienleitung (24) geführt wird, dadurch gekennzeichnet, dass Schutzgas im Falle eines Crashs des Zentrifugenrotors (20, 20') freigesetzt wird.
15. Verfahren nach Anspruch 14, dadurch gekennzeichnet dass, die Zentrifuge (10) nach einem der Ansprüche 1 bis 13 verwendet wird.
PCT/EP2018/083335 2017-12-20 2018-12-03 Temperierte zentrifuge WO2019120967A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880082482.6A CN111655380B (zh) 2017-12-20 2018-12-03 温度可控型离心机
JP2020534478A JP7196180B2 (ja) 2017-12-20 2018-12-03 温度制御遠心分離機
US16/955,310 US11577257B2 (en) 2017-12-20 2018-12-03 Temperature-controlled centrifuge with protective gas release in case of rotor crash
EP18815977.6A EP3727701B1 (de) 2017-12-20 2018-12-03 Temperierte zentrifuge

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017130785.0 2017-12-20
DE102017130785.0A DE102017130785A1 (de) 2017-12-20 2017-12-20 Temperierte Zentrifuge

Publications (1)

Publication Number Publication Date
WO2019120967A1 true WO2019120967A1 (de) 2019-06-27

Family

ID=64664248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/083335 WO2019120967A1 (de) 2017-12-20 2018-12-03 Temperierte zentrifuge

Country Status (6)

Country Link
US (1) US11577257B2 (de)
EP (1) EP3727701B1 (de)
JP (1) JP7196180B2 (de)
CN (1) CN111655380B (de)
DE (1) DE102017130785A1 (de)
WO (1) WO2019120967A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014110467A1 (de) * 2014-07-24 2016-01-28 Andreas Hettich Gmbh & Co. Kg Zentrifuge
DE102017130785A1 (de) * 2017-12-20 2019-06-27 Eppendorf Ag Temperierte Zentrifuge
USD1028276S1 (en) * 2021-12-20 2024-05-21 Thermo Electron Led Gmbh Centrifuge housing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2854189A (en) * 1956-05-25 1958-09-30 Gilbert J Garrett Centrifuge heating attachment
JP2001321699A (ja) * 2000-05-19 2001-11-20 Hitachi Koki Co Ltd 遠心機
JP2015104701A (ja) * 2013-11-29 2015-06-08 日立工機株式会社 遠心機、及び遠心機におけるロータ室の開放方法

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3600900A (en) 1969-11-03 1971-08-24 North American Rockwell Temperature controlled centrifuge
GB1357010A (en) * 1971-05-03 1974-06-19 Chubb Fire Security Ltd Fire-extinguishing apparatus
JPS49103260A (de) 1973-02-02 1974-09-30
GB2011808B (en) * 1977-04-22 1982-01-20 Marl Associates Ltd Centrifuges
EP0094192B1 (de) * 1982-05-12 1986-08-27 Chubb Fire Limited Feuerlöschgerät
KR890002660B1 (ko) * 1986-06-14 1989-07-22 남철우 복합가스터어빈 엔진 시스템
US4693702A (en) * 1986-08-04 1987-09-15 E.I. Du Pont De Nemours And Company Rotor having frangible projections thereon
US5137604A (en) * 1990-07-06 1992-08-11 Savant Instruments, Inc. Apparatus for drying biological specimens
WO1993016808A1 (en) * 1992-02-24 1993-09-02 Richter Gedeon Vegyészeti Gyár Rt. Method of and apparatus for making inerted closed spaces
DE69323230D1 (de) 1992-04-15 1999-03-11 Cobe Lab Temperaturkontrollierte Zentrifuge
US5334130A (en) * 1992-05-13 1994-08-02 Savant Instruments, Inc. Centrifugal vacuum concentration with holder assembly
US5551241A (en) 1994-03-02 1996-09-03 Boeckel; John W. Thermoelectric cooling centrifuge
US6540966B1 (en) * 1998-06-29 2003-04-01 Hadronic Press Inc. Apparatus and method for recycling contaminated liquids
DE19932721C1 (de) * 1999-07-16 2001-01-18 Eppendorf Geraetebau Netheler Laborzentrifuge mit Kühlaggregat
SE0102219D0 (sv) 2001-06-21 2001-06-21 Alphahelix Ab Thermocycling device and rotor means therefor
JP2006207928A (ja) 2005-01-28 2006-08-10 Mitsubishi Electric Corp 冷凍空調システム
CN101941554B (zh) * 2008-12-22 2014-08-06 埃佩多夫股份公司 用于间接冷却物品的容器和设备以及制造该容器的方法
US20110160030A1 (en) * 2009-12-17 2011-06-30 Andreas Heilmann Laboratory centrifuge with compressor cooling
CN201823608U (zh) * 2010-09-20 2011-05-11 浙江诚信医化设备有限公司 离心机防爆保护装置
EP2541666B1 (de) * 2011-07-01 2014-08-20 Autoliv Development AB Batteriesicherheitsanordnung für ein Kraftfahrzeug
DE102012002593A1 (de) * 2012-02-13 2013-08-14 Eppendorf Ag Zentrifuge mit Kompressorkühleinrichtung und Verfahren zur Steuerung einer Kompressorkühleinrichtung einer Zentrifuge
DE102013101961A1 (de) * 2013-02-27 2014-08-28 Gea Mechanical Equipment Gmbh Verfahren zur Verarbeitung brennbarer Produkte mit einer Separatoranordnung
JP6105361B2 (ja) * 2013-04-09 2017-03-29 本田技研工業株式会社 汎用内燃機関の制御装置
DE102014107294B4 (de) * 2014-05-23 2017-02-09 Andreas Hettich Gmbh & Co. Kg Zentrifuge
DE102014110467A1 (de) * 2014-07-24 2016-01-28 Andreas Hettich Gmbh & Co. Kg Zentrifuge
EP3015791A1 (de) * 2014-10-29 2016-05-04 Eppendorf Ag Zentrifuge mit einem Kompressorkühlkreislauf und Verfahren zum Betrieb einer Zentrifuge mit einem Kompressorkühlkreislauf
DE102015202192A1 (de) * 2015-02-06 2016-08-11 Andreas Hettich Gmbh & Co. Kg Gehäuse einer Zentrifuge
WO2016151641A1 (ja) 2015-03-26 2016-09-29 三菱電機株式会社 空気調和機の室内機
CN104785382B (zh) * 2015-03-30 2018-03-16 绿水股份有限公司 卧式螺旋卸料沉降离心机密闭防爆结构
CN106140491A (zh) * 2016-08-05 2016-11-23 蚌埠精工制药机械有限公司 一种平板式内置气缸密封离心机
CN206082855U (zh) * 2016-08-05 2017-04-12 蚌埠精工制药机械有限公司 一种卧式离心机
CN206046279U (zh) * 2016-08-26 2017-03-29 江苏创英医疗器械有限公司 一种离心机的防护外壳及其离心机
CN206701515U (zh) * 2017-05-09 2017-12-05 铜仁学院 离心机清饼装置及离心机
CN106964501A (zh) * 2017-05-27 2017-07-21 湖北华丹医药科技股份有限公司 一种平板离心机加氮防爆装置
CN107470039A (zh) * 2017-08-01 2017-12-15 鲁南制药集团股份有限公司 一种醇沉罐、卧螺离心机组合系统
DE102017130785A1 (de) * 2017-12-20 2019-06-27 Eppendorf Ag Temperierte Zentrifuge
DE102018114450A1 (de) * 2018-06-15 2019-12-19 Eppendorf Ag Temperierte Zentrifuge mit Crashschutz

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2854189A (en) * 1956-05-25 1958-09-30 Gilbert J Garrett Centrifuge heating attachment
JP2001321699A (ja) * 2000-05-19 2001-11-20 Hitachi Koki Co Ltd 遠心機
JP2015104701A (ja) * 2013-11-29 2015-06-08 日立工機株式会社 遠心機、及び遠心機におけるロータ室の開放方法

Also Published As

Publication number Publication date
CN111655380A (zh) 2020-09-11
CN111655380B (zh) 2022-04-15
EP3727701A1 (de) 2020-10-28
JP2021506582A (ja) 2021-02-22
JP7196180B2 (ja) 2022-12-26
DE102017130785A1 (de) 2019-06-27
EP3727701B1 (de) 2022-03-09
US11577257B2 (en) 2023-02-14
US20210001352A1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
WO2019120967A1 (de) Temperierte zentrifuge
EP1673609B1 (de) Vorrichtung und verfahren zur handhabung einer kryoprobe
EP2818454A1 (de) Glasbearbeitungsvorrichtung und Bodenmaschine hierfür zum Herstellen von Glasbehältern
AT515312B1 (de) Batteriemodul
DE102006016557A1 (de) Kühlfahrzeug mit externem Kühlmodul und Kühlverfahren
EP3282024B1 (de) Chargenofen für glühgut und verfahren zur wärmebehandlung
EP3171982B1 (de) Zentrifuge
DE102018114450A1 (de) Temperierte Zentrifuge mit Crashschutz
EP3469281A1 (de) Drehrohrkühler und verfahren zum betreiben eines drehrohrkühlers
DE102015108748A1 (de) Servicegerät
DE2139488A1 (de) Regenerierender Raumerhitzer
DE102008043784A1 (de) Batteriemodul
DE10327078A1 (de) Rotationswärmeaustauscher und Verfahren zur Abdichtung eines solchen
EP2600978A1 (de) Zentrifuge mit kompressorkühlung
DE10233672A1 (de) Belüftungsvorrichtung für mit Kühlcontainern zu beladende Laderäume
EP1767660A1 (de) Einkammer-Vakuumofen mit Wasserstoffabschreckung
EP3497250B1 (de) Kühlvorrichtung und verfahren zum kühlen durchlaufender elemente
DE202007017074U1 (de) Kühl-Lagersystem
EP3766809A1 (de) Fördern eines förderguts
DE102021131796B3 (de) Ofensystem zur Erwärmung von Verbundglasscheiben
DE102014103846A1 (de) Zentrifuge
DE19946427C2 (de) Verfahren und Vorrichtung zum definierten gleichzeitigen Wärmebehandeln von mehreren Probenbehältern
DE2753459B2 (de) Elektrische Maschine mit Kryogenkühlung
DE102008053893B4 (de) Vorrichtung und Verfahren zum Kühlen wenigstens eines Gussbauteils
WO2011060819A1 (de) Batteriemodul

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18815977

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020534478

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018815977

Country of ref document: EP

Effective date: 20200720