EP3713671B1 - Intelligente, selbst-adaptive steuerungsvorrichtung zur automatisierten optimierung und steuerung der vermahlungslinie eines walzensystems und entsprechendes verfahren - Google Patents

Intelligente, selbst-adaptive steuerungsvorrichtung zur automatisierten optimierung und steuerung der vermahlungslinie eines walzensystems und entsprechendes verfahren Download PDF

Info

Publication number
EP3713671B1
EP3713671B1 EP18815541.0A EP18815541A EP3713671B1 EP 3713671 B1 EP3713671 B1 EP 3713671B1 EP 18815541 A EP18815541 A EP 18815541A EP 3713671 B1 EP3713671 B1 EP 3713671B1
Authority
EP
European Patent Office
Prior art keywords
parameters
regulating
operative process
grinding
operative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18815541.0A
Other languages
English (en)
French (fr)
Other versions
EP3713671A1 (de
Inventor
Matthias Gräber
Christian HEINIGER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Buehler AG
Original Assignee
Buehler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Buehler AG filed Critical Buehler AG
Publication of EP3713671A1 publication Critical patent/EP3713671A1/de
Application granted granted Critical
Publication of EP3713671B1 publication Critical patent/EP3713671B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C25/00Control arrangements specially adapted for crushing or disintegrating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C9/00Other milling methods or mills specially adapted for grain
    • B02C9/04Systems or sequences of operations; Plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C2210/00Codes relating to different types of disintegrating devices
    • B02C2210/01Indication of wear on beaters, knives, rollers, anvils, linings and the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C4/00Crushing or disintegrating by roller mills
    • B02C4/02Crushing or disintegrating by roller mills with two or more rollers
    • B02C4/06Crushing or disintegrating by roller mills with two or more rollers specially adapted for milling grain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C4/00Crushing or disintegrating by roller mills
    • B02C4/28Details
    • B02C4/32Adjusting, applying pressure to, or controlling the distance between, milling members
    • B02C4/38Adjusting, applying pressure to, or controlling the distance between, milling members in grain mills

Definitions

  • the present invention relates to an intelligent, self-adaptive regulation and control device for the automated regulation and control of grinding and rolling systems, in particular mill systems with a roller frame, but also mill systems and grinding systems in general.
  • the invention relates in particular to control devices for grain mills and other systems for processing and crushing grain, in particular systems for crushing, transporting, fractionating and conditioning grain as well as to regulating and control methods and control devices for self-optimized control and monitoring of such systems.
  • Possible applications of the device according to the invention also relate to grinding and rolling systems with real-time or quasi-real-time measurement and monitoring of operating parameters such as roller temperature, roller gap, roller speed, roller press force and / or energy consumption of one or different roller drives, and / or with real- time or quasi-real-time measurements of ingredients or quality parameters during product preparation and processing in the grain mill systems for the purpose of process monitoring (measurement, monitoring) as well as control and / or regulation of the systems or processes, such as measured variables such as water content, protein content, Starch damage, ash content (minerals) of flours (or intermediate grinding products), residual starch content, grinding fineness etc.
  • operating parameters such as roller temperature, roller gap, roller speed, roller press force and / or energy consumption of one or different roller drives
  • real- time or quasi-real-time measurements of ingredients or quality parameters during product preparation and processing in the grain mill systems for the purpose of process monitoring (measurement, monitoring) as well as control and / or regulation of the systems or processes, such as measured variables such as water content, protein content
  • the invention also relates quite generally to mill systems, for example ball mills or so-called semi-autogenously grinding mills (SAG), which are used for Grinding of coarse-grained M materials, such as ores or cement, etc., are intended.
  • SAG semi-autogenously grinding mills
  • the throughput and the product quality parameters are set by setting various control or reference variables, such as the speed of rotation of the mill drum, energy consumption of the mill drum, supply of the (coarse) granular starting material / input materials, water supply in ore mills and / or the discharge speed of the output ground material, controlled.
  • the grain size distribution of the material to be ground is an important quality feature. In particular, it can influence the yield of the further components connected downstream of the mill system, such as, for example, the flotation.
  • the aim is to achieve the highest possible throughput with high product quality and with low energy consumption and material requirements, ie costs.
  • the present invention thus relates in a preferred application to rolling systems, product processing systems and grinding systems containing rollers or roller pairing, as well as corresponding methods for the optimized operation of such grinding and rolling systems or product processing systems.
  • the systems mentioned relate in particular to complete systems for (i) grain milling, (ii) flour processing for industrial bakeries, (iii) systems for special milling, (iv) production systems for the production of high-quality feed for farm animals and pets, (v) special systems for Production of feed for fish and crustaceans, (vi) premix and concentrate systems for the production of active ingredient mixtures, (vii) oil extraction from oilseeds, (viii) treatment of extraction meal and white flakes, (ix) high-performance systems for processing biomass and production of energy pellets, (x) Systems for ethanol production, (xi) Complete rice processing systems, (xii) Sorting systems for food, seeds and plastics, (xiii) Grain and soy handling, (xiv) Systems for unloading and loading ships, trucks and trains from storage to discharge of grain
  • Milling especially grain milling
  • the influence of the various factors that determine the dynamics of a process is usually well known and in which the relevant processes can therefore be easily parameterized using appropriate equations and formulas or the equipment and devices involved simply activated and regulated accordingly
  • the number of relevant factors that influence the grinding quality and, at the same time, the yield of the processed end product is extremely high in milling. It is therefore often necessary for a miller, as a human expert, to manually adjust and set the entire grinding or milling system after analyzing the starting / raw material based on his intuition and know-how in order to obtain the best possible results in the sense of the expected Quality and yield of the end product (e.g. ash content, yield, baking quality etc.).
  • the expected Quality and yield of the end product e.g. ash content, yield, baking quality etc.
  • the grinding properties of the starting material are fundamental to the grinding process. Since the grinding system typically has to be regulated by the head miller, the head miller also has a decisive influence on and control of the characteristics of the flour produced. It starts with the choice of the wheat class, which can refer to the market class as well as the production location or region of the wheat, in order to influence certain grain attributes, such as a certain protein area.
  • the miller also controls the wheat blend / grists that is put into the grinding plant. The miller can also adjust the mill flow, roll speed, Speed differentials, distribution of fluted rolls, e.g.
  • the miller has further control options in combination with sieving and cleaning and finally in the maelstrom selection for mixing the final flour produced. All of these parameters and control options are used by the miller to consistently produce a flour of a certain quality.
  • grinding rollers in particular such as those used in grain milling, require constant monitoring. Apart from the optimization of production and the characteristics of the end product, it can also happen, for example, that a so-called dry run, build-up in the control system or other operational anomalies occur. If an abnormal condition lasts too long, the temperature of the grinding roller, for example, can rise to a critical level and possibly cause a fire or damage to the rollers.
  • operational anomalies can also influence the optimal operation of the system differently, in particular the quality, yield or energy consumption.
  • grinding plants are at least partially automated in many areas, current systems for automatic control and optimized operation are difficult to automate. In the prior art, mill systems are therefore often still set manually by the operating personnel based on their empirical values.
  • PLC programmable logic controller
  • GUI graphical user interface
  • the result may be reduced for the mill, for example due to a lower yield of light-colored flours or similar attempts to replace the head miller with processor-based control devices, that the complex knowledge and experience of the head miller could not simply be automated by means of rule-controlled devices, in particular not by means of autonomous, self-sufficient control devices that get by without regular routine human intervention.
  • the roller mill In grain and flour mills, the roller mill is by far the most important grinding device. Whether corn, soft wheat, durum wheat, rye, barley or malt are to be processed, the roller mill usually offers the most ideal processing of all types of grain.
  • the process used in a grain mill is a step crushing process.
  • the flour kernel endosperm
  • the flour kernel is gradually crushed by passing through several corrugated or smooth pairs of steel rollers. It is separated from the bran and the seedling in sifters using sieves. In the case of pairs of rollers in a roller frame, one roller typically rotates faster than the other.
  • Beater mills are also known. Impact mills are suitable, for example, for grinding a wide variety of products in grain mills (grain and by-products of the grinding), animal feed factories (animal feed, pulses), breweries (fine meal production for mash filtration), oil mills (extraction meal and crushed oil cake) or even pasta factories (pasta waste).
  • the product is fed to the beater mill or hammer mill from a hopper and picked up by the beater rotor. The particles are crushed until they can pass the openings of a sieve jacket surrounding the rotor.
  • flaking systems are also known in which the flaking roller mill, together with the corresponding steaming device, forms the core.
  • the flaking material is hydrothermally treated before it enters the flaking mill.
  • the system is suitable for processing pearl barley (whole, cleaned and peeled oat kernels) as well as groats (cut oat kernels), maize, soft wheat, barley, buckwheat and rice.
  • groats cut oat kernels
  • the operation of the grinding devices is influenced by a large number of parameters, such as the selection of the type of grain or the grain mixture and the cultivation area, the harvest time, the desired quality criteria, the specific weight and / or the moisture of the individual grain types or the grain mixture proportions, the air temperature, the relative humidity, the technical data of the system elements used in the mill system and / or the desired flour quality as specified process variables and the selection of the distance, the grinding pressure, the temperature and / or the power consumption of the motors of the grinding rollers, the flow rate and / or the achieved moisture of the ground material and / or the quality of the flour with regard to the mixture proportions, which Sufficiently differentiated control of the grinding process in the grain mill systems is difficult.
  • the document WO9741956A1 of the prior art discloses a method for the automated control of the milling process in a mill with a plurality of milling units. A random sample is screened out at the exit of the milling units. The sample is used to compare the percentage of throughput to regrind retained with predefined standard values. If a deviation is measured, the gap between the grinding rollers of the grinding roller pair of the grinding unit concerned is adjusted according to the deviation.
  • DE2413956A1 The prior art also relates to a method of grinding grain into flour using grinding units, followed by sieving.
  • JPH06114282A shows a method for monitoring the particle size distribution in a grinding plant, with the aim of obtaining a constant particle size distribution within the plant. In the process, the flow rate, the distance between the grinding rollers and the spring pressure of the rollers are monitored in order to obtain the desired particle size distribution. The procedure adjusts the control of the grinding system if a deviation of the particle size distribution from the desired particle size distribution is detected.
  • an intelligent, self-adaptive control / regulating device is to be provided for the automated optimization and control of the grinding line of a roller system, with which the grinding and / or grinding can be optimized and carried out automatically, and which increases the operational reliability of a mill and, at the same time, the operation optimized or reacts automatically to occurring anomalies.
  • the control / regulating device should be able to identify long-term trends in production and to recognize abnormalities in operation. It should enable simple automated monitoring and detection of critical production parameters, in particular yield, energy and throughput / machine running time, as well as automated adaptation of the operation while optimizing the relevant parameters or an automated adaptation of the operation in the event of abnormalities or anomalies.
  • the method should allow a fast, automated and stable setting of a mill system during the initial setting.
  • the invention for an intelligent, self-adaptive regulation and control device and / or apparatus for self-optimized control of a mill system and / or a grinding line of a roller system of the mill system in that the grinding line has a plurality of processing units, such as corrugating and / or smooth rollers and / or sieves, etc., which based on operational process parameters can be individually controlled by means of the regulating and control device and individually during their operation can be regulated, whereby a batch control (English.
  • the regulation and control device comprises a pattern recognition module for recognizing operational process recipes with multi-dimensional batch process parameter patterns, with an operational process recipe at least one or more starting materials, a defined sequence of a milling process within the processing units of the milling line, and operational Batch process parameters assigned to the respective processing units of the grinding line includes stored.
  • the regulation and control device comprises a storage device for storing historical operational process recipes with historical batch process parameters, the historical batch process parameters of a process recipe each defining a process-typical, multi-dimensional batch process parameter pattern of an optimized batch process in the normal range.
  • a storage device for storing historical operational process recipes with historical batch process parameters, the historical batch process parameters of a process recipe each defining a process-typical, multi-dimensional batch process parameter pattern of an optimized batch process in the normal range.
  • Process parameters are controlled and regulated accordingly by means of the regulating and control device.
  • the operational process parameters can be continuously monitored by means of the regulating and control device, with a warning signal being transmitted to an alarm unit when an anomaly is detected as a defined deviation of the monitored operational process parameters from the specific operational process parameters of the new operational process recipe.
  • the batch process parameters can for example include at least measurement parameters relating to the currents and / or power consumption of one or more roller mills of the mill system.
  • the one or more roller mills can, for example, comprise at least corrugated rollers (B passage) and / or smooth rollers (C passage).
  • the batch process parameters can in particular include, for example, at least measurement parameters relating to the currents and / or power consumption of all roller mills of the mill system.
  • the invention has the advantage, among other things, that a technically new, intelligent, self-adaptive control / regulating device can be provided for the automated optimization and control of the grinding line of a roller system, with which the grinding and / or grinding can be optimized and carried out completely automatically , and which increases the operational safety of a mill and at the same time optimizes the operation or reacts automatically to occurring anomalies.
  • the inventive control / regulating device is able to identify long-term trends in production and to recognize abnormalities in operation.
  • the process-typical batch process parameters of an optimized batch process can be used to determine defined quality parameters of the end product and specific flour yield as a function of the starting products in the normal range.
  • the defined quality parameters can include, for example, at least particle size distribution and / or starch damage and / or protein quality and / or water content.
  • the monitored batch process parameters can include, for example, at least yield and / or energy consumption / energy consumption and / or throughput / machine running time.
  • continuous long-term changes in the monitored batch process parameters are determined by the control and the monitoring of the anomaly during the grinding process Control device detected, the defined deviation of the monitored operative process parameters from the generated operative process parameters of the new operative process recipe being determined as a function of the measured continuous long-term changes.
  • the monitored batch process parameters are transmitted from a large number of regulating and control devices via a network to a central monitoring unit, the large number of regulating and control devices being monitored and regulated centrally.
  • the defined deviation of the monitored operational process parameters from the generated operational process parameters of the new operational process recipe is determined as a function of the natural fluctuations within definable ⁇ 2 standard deviations.
  • the present invention relates not only to the apparatus according to the invention but also to a method for realizing the device according to the invention.
  • product is understood to mean a bulk material or a mass.
  • bulk material is understood to mean a product in powder, granulate or pellet form, which is used in the bulk material processing industry, i. H.
  • grain milling products and end grain products from milling (especially milling of soft wheat, durum, rye, maize and / or barley) or special milling (especially husks and / or milling of soy, buckwheat, barley, spelled, millet / sorghum, pseudocereals and / or legumes), the production of feed for farm animals and pets, fish and crustaceans, the processing of oilseeds, the processing of biomass and the production of energy pellets, industrial malting and milling plants; the processing of cocoa beans, nuts and coffee beans, the production of fertilizers, in the pharmaceutical industry or in solid chemistry.
  • mass is understood to mean a food mass, such as a chocolate mass or a sugar mass, or a printing ink, a coating, an electronic material or a chemical, in particular a fine chemical.
  • “Processing of a product” is understood in the context of the present invention: (i) the grinding, comminution and / or flaking of debris, in particular grain, grain milling products and grain end products from milling or special milling as set out above, for which the roller pairings for example those below pairings of grinding rollers or flaking rollers described in more detail can be used; (ii) the refinement of masses, in particular of food masses such as chocolate masses or sugar masses, for which, for example, pairings of fine rollers can be used; and (iii) the wet grinding and / or dispersing, in particular of printing inks, coatings, electronic materials or chemicals, in particular fine chemicals.
  • Grinding rollers in the context of the present invention are designed to grind granular material to be ground, which is usually guided between a pair of grinding rollers of two grinding rollers. Grinding rollers, especially the Grinding rollers of the grinding roller pairs according to the invention usually have an essentially inelastic surface (in particular on their circumferential surface), which for this purpose can for example contain or consist of metal, such as steel, in particular stainless steel. Between the grinding rollers of the grinding roller pairing there is usually a relatively fixed and often hydraulically controlled grinding gap. In many grinding plants, the material to be ground is guided essentially vertically downwards through such a grinding gap.
  • the ground material is fed to the grinding rollers of a pair of grinding rollers by means of its gravity, and this supply can optionally be supported pneumatically.
  • the grist is usually granular and moves as a fluid stream through the grinding gap.
  • At least one roller, in particular two rollers of a grinding roller pairing, of a grinding system can be designed, for example, as a smooth roller or as a corrugated roller or as a basic roller body with plates screwed on. Smooth rollers can be cylindrical or cambered. Corrugated rollers can have different corrugated geometries, such as roof-shaped or trapezoidal corrugated geometries, and / or have segments placed on the circumferential surface. At least one roller, in particular both rollers of the grinding roller pairing, in particular at least one grinding roller, in particular both grinding rollers of the grinding roller pairing, can have a length in the range 500 mm to 2000 mm and a diameter in the range 250 mm to 300 mm.
  • the circumferential surface of the roller is preferably inextricably connected to the roller body and, in particular, is formed in one piece with it. This allows simple production and reliable and robust processing, in particular grinding, of the product.
  • the rollers can be designed with at least one sensor for recording measured values which characterize a state of at least one of the rollers, in particular both rollers of the roller pairing. In particular, this can be a state of a circumferential surface of at least one of the rollers, in particular of both rollers of the roller pairing.
  • the state can, for example, be a temperature, a pressure, a force (force component (s) in one or more directions), wear, a vibration, a deformation (expansion and / or deflection path), a Rotational speed, a rotational acceleration, an ambient humidity, a position or an orientation of at least one of the rollers, in particular both rollers of the roller pairing.
  • the sensors can be designed, for example, as MEMS sensors (MEMS: Micro-Electro-Mechanical System).
  • the sensor is preferably in data connection with at least one data sensor, the data transmitter being designed for contactless transmission of the measured values of the at least one sensor to a data receiver.
  • the measured values can be transmitted without contact to a data receiver that is not part of the roller.
  • the grinding system can comprise further sensors and measuring units for recording process, product or operating parameters, in particular measuring devices for measuring the current / power consumption of one or more rollers.
  • the sensors (i) can have at least one temperature sensor, but preferably several temperature sensors for measuring the roll temperature or a temperature profile along a roll; (ii) one or more pressure sensors; (iii) one or more force sensors (to determine the force component (s) in one or more directions); one or more wear sensors; (iv) one or more vibration sensors, in particular for determining winding, that is, adhesion of the processed product to the circumferential surface of the roller, which hinders processing, in particular grinding, at this position; (v) one or more deformation sensors (for determining an expansion and / or a deflection path); (vi) one or more rotational speed sensors, in particular for determining a standstill of the roller; (vii) one or more rotational acceleration sensors; (viii) one or more sensors for determining an ambient humidity, which is preferably arranged on an end face of the roller; (ix) one or more gyroscopic sensors for determining the position and / or the orientation of the roller, in particular for determining the position
  • a roller can contain several temperature sensors and deformation sensors.
  • all sensors are of the same type, for example as Measuring units are designed for measuring the power consumption of one or more rollers.
  • wear is understood to mean the mechanical wear and tear of the circumferential surface of the roller, in particular of the grinding roller.
  • wear can be determined, for example, by means of a change in resistance that occurs as a result of material being removed from the circumferential surface.
  • wear can be determined via a changed pressure and / or via a changed path length and / or via a changed electrical capacitance.
  • this unit can comprise at least one multiplexer which is arranged and designed for the alternating transmission of the measured values recorded by the sensors to the data transmitter.
  • the contactless transmission can take place, for example, by infrared radiation, by light pulses, by radio frequency signals, by inductive coupling or by any combination thereof.
  • the contactless transmission of the measured values here and in the following always also includes the transmission of data which are obtained through appropriate processing of the measured values and which are therefore based on the measured values.
  • a unit with sensors can contain at least one signal converter, in particular at least one A / D converter, for converting the measured values recorded by the at least one sensor. At least one signal converter, which converts the measured values recorded by this sensor, can be assigned to each sensor. The converted signals can then be fed to a multiplexer as already described above. If the signal converter is an A / D converter, the multiplexer can be a digital multiplexer.
  • the signal converter can also be arranged between a multiplexer as described above and the data transmitter.
  • the multiplexer can be an analog multiplexer.
  • a unit with sensors can comprise at least one circuit board (in particular a MEMS circuit board) on which one or more of its sensors and / or at least one multiplexer and / or at least one signal converter and / or the at least one data transmitter and / or at least one energy receiver and / or at least one energy generator are arranged.
  • the circuit board can contain measuring lines via which the sensors are connected to the multiplexer.
  • Such a circuit board has the advantage that the components mentioned can be arranged very compactly thereon and that the Printed circuit board manufactured as a separate assembly and, at least in some exemplary embodiments, can be exchanged again if necessary.
  • the sensors can also be connected to the data transmitter and / or the multiplexer via a cable harness.
  • One or more of the rollers of the grinding system can contain at least one data memory, in particular an RFID chip.
  • this data memory for example, an in particular individual identification of the roller can be stored or can be stored.
  • at least one property of the roller can be stored or storable in the data memory, such as at least one of its dimensions and / or its crowning.
  • the data stored in the data memory are preferably also transmitted without contact.
  • the roller can have a data transmitter.
  • the data of the data memory are transmitted by means of the same data transmitter by means of which the measured values of the at least one sensor are transmitted according to the invention.
  • Measuring devices with sensors can also contain a data processor integrated therein, in particular a microprocessor, an FPGA, a PLC processor or a RISC processor.
  • This data processor can, for example, further process the measured values recorded by the at least one sensor and then optionally transmit them to the data transmitter.
  • the data processor can take over the function of the multiplexer described above and / or the signal converter described above in whole or in part.
  • the microprocessor can be part of the circuit board also described above.
  • the microprocessor can also take on at least one of the following functions: communication with at least one data bus system (in particular administration of IP addresses); Board memory management; Control of in particular energy management systems as described below; Management and / or storage of identification features of the roll (s), such as, for example, geometric data and roll history; Management of interface protocols; wireless functionalities.
  • the measuring device in particular the printed circuit board, can have an energy management system which can carry out one, several or all of the following functions: (i) regular, in particular periodic, transmission of the measured values from the data transmitter; (ii) Transmission of the measured values from the data transmitter only when a specified condition is present, in particular when a warning criterion described below is met; (iii) regular, in particular periodic, charging and discharging of a capacitor or a Energy storage.
  • a grinding / product processing system for processing a product in particular the grinding system for grinding ground material, contains at least one roller or pair of rollers, in particular a pair of grinding rollers. A gap is formed between the rollers of the roller pairing.
  • a grinding gap is formed between the grinding rollers of a pair of grinding rollers.
  • the material to be ground can be guided essentially vertically downwards through such a grinding gap.
  • this material to be ground is preferably fed to the grinding rollers by means of its gravity, and this can optionally be supported pneumatically.
  • the product, in particular the debris, in particular the ground material can be granular and move as a fluid flow through the grinding gap.
  • this mass can alternatively also be passed from bottom to top through the gap formed between the rollers.
  • the invention relates, for example, to product processing systems, in particular grinding systems for grinding regrind.
  • the product processing system contains at least one roller or pair of rollers.
  • the product processing system can have at least one data receiver, in particular at rest, for receiving the measured values transmitted by the data transmitter from at least one of the rollers or roller pairs.
  • the grinding system can be, for example, a single roller frame of a grain mill or a whole grain mill with at least one roller frame, at least one roller frame containing at least one grinding roller as described above.
  • the product processing system can, however, also be designed as (i) a flaking mill for flaking bulk material, in particular grain, grain milling products and end products of grain from milling or specialty milling as detailed above, (ii) a roller mill or a rolling mill for the production of chocolate, in particular a roughing mill with, for example, two or five rollers, in particular two or five fine rollers, or a final fine roller mill, (iii) a roller mill for wet grinding and / or dispersing, for example of printing inks, coatings, electronic materials or chemicals, in particular fine chemicals, in particular a three-roller mill.
  • the invention relates in particular to a method for operating a product processing plant as described above, in particular a grinding plant as described above.
  • the method includes a Step in which the data receiver of the product processing system receives at least one of the rollers or roller pairing transmitted measured values from a data transmitter.
  • the data received in this way are then processed further.
  • they can be fed to a control unit of the product processing system, in particular the grinding system, from where they can be passed on to an optional higher-level control system.
  • the entire product processing system in particular the entire grinding system, or a part of it, can be controlled and / or regulated.
  • the control unit can output a warning message or generate an electrical alarm signal, for example, if a predefined warning criterion is met.
  • the warning criterion can consist, for example, in the fact that the measured value of at least one of the sensors exceeds a limit value specified for this sensor. In another variant, the warning criterion can consist in the fact that the difference between the largest measured value and the smallest measured value, which are measured by a predetermined number of sensors, exceeds a predetermined limit value. If the warning criterion is met, a warning signal can be output (for example optically and / or acoustically) and / or the product processing system can be brought to a standstill (for example by the control unit).
  • the control unit can visualize the measured values recorded by the at least one sensor or the data obtained therefrom.
  • the product processing system can contain a device for measuring particle sizes and their distributions downstream of a pair of rollers in the product flow. In this way, the measurement of the particle sizes and their distributions can be combined, for example, with a measurement of the state of wear and / or the roller contact pressure. This is particularly advantageous when the roller, in particular the grinding roller, is a corrugated roller.
  • a device for NIR measurement of the product flow, in particular the millbase flow can also be arranged downstream of a roller, in particular a grinding roller, of the product flow. This is particularly advantageous when the rollers, in particular the grinding rollers, are smooth rollers. Both variants allow early maintenance planning due to the detection of the state of wear.
  • the product processing system it is possible to objectively monitor the power consumption of grinding rollers (individually or as a pair) continuously during the grinding process, for example a product batch. Additional parameters can be measured and monitored. For example, the roller temperature or the interior temperature of the housing of the roller frame and / or the room temperature, i.e. the exterior temperature, can also be included in the monitoring, since these temperature values influence the temperature of the grinding rollers, etc.
  • the higher the contact pressure the greater the energy requirement , i.e. the kilowatt consumption. With a higher contact pressure, more shredding energy is generated, some of which is given off as heat to the product to be shredded and also to the roller material.
  • the temperature in the interior of the roller mill or a similar machine also increases. If the product veil is uniform, the temperature that is set on the surface of the roller and recorded by temperature sensors can be used to optimize the grinding work by changing an optimal temperature assigned to the product to be processed with the help of the contact pressure and / or the grinding gap adjustment . This change can take place both manually and fully automatically with the aid of a computer and / or a control, for example a PLC control (self-programmable control) or a PLC control (programable logic control) (regulating device).
  • the other monitored parameters can be assigned physical, technological or process-related limits as boundary conditions to be complied with. The additional monitoring of such boundary conditions can lead to an improvement in the control behavior and to a better product quality of the end products.
  • the grinding system 1 is regulated by an intelligent, self-adaptive regulation and control device 4 with self-optimized control of the mill system 1 and the grinding line of a roller system of the mill system 1.
  • the grinding line comprises a plurality of processing units 2 (B) / 3 (C) which, based on operational process parameters 4111,.
  • a batch control with a defined processing sequence in the processing units 2 (B) / 3 (C) can be regulated by means of an operative process recipe 411, whereby by means of the operative process recipe 411 from one or several starting materials 5 with the measurement parameters 51 a defined amount of an end product 6 with the measurement parameters 61 (611, ..., 61x) and the yield 62 is generated.
  • the processing units 2 (B) / 3 (C) are controlled based on operational batch process parameters specifically assigned to the operational process recipe.
  • the regulation and control device 4 comprises a pattern recognition module for recognizing operational process recipes 41 with multi-dimensional batch process parameter patterns 4111, ..., 411x, with an operational process recipe 41 defining at least one or more starting materials 5 Sequence of a grinding process within the processing units 2 (B) / 3 (C) of the grinding line, and operational batch process parameters 4111, ..., 411x associated with the respective processing units of the grinding line.
  • the regulation and control device 4 comprises a storage device 43 for storing historical operational process recipes 431 with historical batch process parameters 4311, ..., 431x, the historical batch process parameters 4311, ..., 431x of a process recipe 431 each being a process-typical one , define multi-dimensional batch process parameter pattern 4321, ..., 432x of an optimized batch process in the standard range.
  • the pattern recognition module can in particular comprise a machine-based neural network structure.
  • the patterns are then identified and recognized, for example, as part of network training.
  • a training based on a neural network can, for example, only be based on historical patterns 432.
  • the regulation of the regulation parameters 411 of the mill system 1 can take place on the basis of the updated neural network structure and in particular optimization oriented towards at least one predefinable target variable.
  • new batch process parameter patterns with new batch process parameters 4111, (B) / 3 (C) based on the generated operational process recipes with the assigned batch process parameters are activated and regulated accordingly by means of the regulating and control device 4.
  • the operative process parameters are continuously monitored by means of the regulating and control device 4, with the detection of an anomaly as a defined deviation of the monitored operative process parameters 4111,..., 411x from the determined operative process parameters 4111,. .., 411 x of the new operative process recipe 411 a warning signal is transmitted to an alarm unit.
  • the batch process parameters can include, for example, at least the flows of one or more roller mills 2 (B) / 3 (C) of the mill system 1.
  • the one or more roller mills can, for example, comprise at least corrugated rollers (B passage) and / or smooth rollers (C passage).
  • the batch process parameters can include, for example, at least the flows of all roller mills 2 (B) / 3 (C) of the mill system 1.
  • defined quality parameters 61 (611, ..., 61x) of the end product 6 and specific flour yield 62 can be determined as a function of the starting products 5 and / or its measurement parameters 51 .
  • the defined quality parameters 61 can include, for example, at least particle size distribution 611 and / or starch damage 612 and / or protein quality 613 and / or water content 614.
  • the monitored batch process parameters 4111 During the grinding process, for example, when anomaly is detected, continuous long-term changes in the monitored batch process parameters can be recorded by the regulation and control device, with the defined deviation of the monitored operational process parameters from the generated operational process parameters of the new operational process recipe depending on the measured continuous long-term changes is determined.
  • the monitored batch process parameters can be transmitted, for example, from a large number of regulating and control devices 4 according to the invention to a central monitoring unit via a network, the large number of regulating and control devices 4 being centrally monitored and regulated.
  • the invention has the advantage that it enables the identification of long-term trends in production, the automated detection of abnormalities, the Automated 24/7 (remote) monitoring and detection of production parameters for (i) yield, (ii) energy, and (iii) throughput / machine running time etc. allowed.
  • the flows of all roller mills 2 (B) / 3 (C) can be considered, for example divided into B passage (corrugated rollers) and C passage (smooth rollers).
  • B passage corrugated rollers
  • C passage smooth rollers
  • a change in the pattern 421 of the currents is automatically detected as an anomaly by the system 4 and a warning message is generated.

Description

    Gebiet der Erfindung
  • Die vorliegende Erfindung betrifft eine intelligente, selbst-adaptive Regel- und Steuerungsvorrichtungen zur automatisierten Regelung und Steuerung von Mahl- und Walzsystemen, insbesondere Mühlenanlagen mit einem Walzenstuhl, aber auch Mühlensysteme und Mahlanalagen im Allgemeinen. Die Erfindung bezieht sich insbesondere auf Regelungsvorrichtungen für Getreidemühlen und andere Anlagen zur Verarbeitung und Zerkleinern von Getreide, insbesondere Anlagen zum Zerkleinern, Transportieren, Fraktionieren und Konditionieren von Getreide sowie auf Regel- und Steuerverfahren und Regelvorrichtungen zum selbst-optimierten Steuern und Überwachen solchen Anlage. Mögliche Anwendungen der erfindungsgemässen Vorrichtung betreffen zudem Mahl- und Walzsystemen mit real-time oder quasi-real-time Messung und Überwachung von Betriebsparametern, wie Walzentemperatur, Walzenspalt, Walzendrehzahl, Walzenpresskraft und/oder Energieaufnahme eines oder verschiedener Walzenantriebe, und/oder mit real-time oder quasi-real-time Messungen von Inhaltsstoffen oder Qualitätsparametern während der Produktaufbereitung und - Verarbeitung in den Getreidemühlenanlagen zum Zweck der Prozessüberwachung (Messen, Monitoring) sowie Steuerung und/oder Regelung der Anlagen bzw. Prozesse, wie z.B. Messgrössen wie Wassergehalt, Proteingehalt, Stärkebeschädigung, Aschegehalt (Mineralstoffe) von Mehlen (oder Mahlzwischenprodukten), Reststärkegehalt, Mahlfeinheit etc. Die Erfindung bezieht sich jedoch wie erwähnt auch ganz allgemein auf Mühlensysteme, beispielsweise Kugelmühlen (ball mill) oder sogenannte Semi-Autogenously Grinding Mühlen (SAG), die zum Zermahlen von grob körnigen Materialien, wie z.B. Erzen oder Zement usw., bestimmt sind. Auch bei solchen Mühlen wird der Durchsatz und die Produktequalitätsparameter mittels Einstellens verschiedener Stell- oder Führungsgrößen, wie z.B. Rotationsgeschwindigkeit der Mühlentrommel, Energieaufnahme der Mühlentrommel, Zufuhr des (grob-)körnigen Ausgangsmaterials/Eingangsstoffe, Wasserzufuhr bei Erzmühlen und/oder Austragsgeschwindigkeit des am Ausgang vorliegenden gemahlenen Materials, gesteuert. Auch bei diesen Mühlen ist die Korngrößenverteilung des zermahlenden Materials ein wichtiges Qualitätsmerkmal. Sie kann insbesondere die Ausbeute der dem Mühlensystem nachgeschalteten weiteren Komponenten, wie z.B. der Flotation, beeinflussen. Es wird ein möglichst hoher Durchsatz bei hoher Produktqualität und bei niedrigem Energieverbrauch und Materialbedarf, d.h. Kosten, angestrebt.
  • Die vorliegende Erfindung betrifft somit in bevorzugter Anwendung Walzsystemen, Produktverarbeitungsanlagen und Mahlanlagen enthaltend Walzen oder Walzenpaarung, sowie entsprechende Verfahren zum optimierten Betreiben derartiger Mahl- und Walzsystemen bzw. Produktverarbeitungsanlagen. Die genannten Anlagen betreffen insbesondere komplette Anlagen für (i) die Getreidemüllerei, (ii) Mehlaufbereitung für industrielle Bäckereien, (iii) Anlagen für die Spezialmüllerei, (iv) Produktionsanlagen zur Herstellung von hochwertigem Futter für Nutz- und Haustiere, (v) Spezialanlagen zur Herstellung von Futter für Fische und Krustentiere, (vi) Premix- und Konzentratenanlagen zur Herstellung von Wirkstoffmischungen, (vii) Ölgewinnung aus Ölsaaten, (viii) Behandlung von Extraktionsschroten und White Flakes, (ix) Hochleistungsanlagen zur Verarbeitung von Biomasse und Herstellung von Energiepellets, (x) Anlagen für die Ethanol-Herstellung, (xi) Komplette Reisprozessanlagen, (xii) Sortieranlagen für Lebensmittel, Saatgut und Kunststoffe, (xiii) Getreide- und Sojahandling, (xiv) Anlagen für das Entladen und Beladen von Schiffen, LKW und Bahn über die Lagerung bis zum Austrag von Getreide, Ölsaaten und Derivaten, (xv) Siloausrüstungen für vertikale Stahl- und Betonsilos sowie Flachlager, (xvi) Mechanische und pneumatische Schiffsentlader und Schiffsbeiader, (xvii) Förderkomponenten, (xviii) industrielle Mälzerei- und Schroterei-Anlagen, (xix) Maschinen und Anlagen zur Verarbeitung von Kakaobohnen, Nüssen und Kaffeebohnen, (xx) Maschinen und Anlagen zur Herstellung von Schokolade sowie Füll- und Überzugsmassen, (xxi) Maschinen und Anlagen zur Einformung von Schokoladeartikeln, (xxii) Gesamtkonzepte für Produktionslinien zur Herstellung von Langwaren, Kurzwaren, Nidi, Lasagne, Couscous und Spezialitäten-Teigwaren, (xxiii) Systeme und Anlagen zum Extrudieren (Kochen und Formen) von Frühstücks-Cerealien, Food- und Feed-Ingredients, Petfood, Aquafeed und Pharmaprodukten, (xxiv) Anlagen zur Herstellung von Farben, Lacken und Dispersionen, (xxv) Planung von Nassmahltechnik-Gesamtlösungen und Fertigung von Maschinen und Prozess-Ausrüstungen zur Her-stellung von Druckfarben, Coatings und Partikeldispersionen für die Kosmetik-, Elektronik- und Chemische Industrie, (xxvi) Wärmebehandlung von Polymeren (PET), (xxvii) Anlagen für die Herstellung von Flaschen-PET, (xxviii) SSP und Konditionierungsanlagen für die Behandlung von PET und anderen Kunststoffen, (xxix) Anlagen für bottle-to-bottle Recycling, (xxx) Herstellung von gebrauchsfertige Nanopartikel-Dispersionen, (xxxi) Schlüsselfertige Verarbeitungsprozesse für Nanopartikel in der Flüssigphase, (xxxii) Industrielösungen für Trocknung und weitere thermische Prozesse, (xxxii) Isolation und Charakterisierung von Aleuron aus Weizenkleie, Reisfortifizierung etc.
  • Hintergrund der Erfindung
  • Die Müllerei, insbesondere die Getreidemüllerei, wird auch als eine Kunst bezeichnet. Anders als in anderen Gebieten der Industrie, in welchen der Einfluss der verschiedenen Faktoren meist gut bekannt ist, die die Dynamik eines Prozesses bestimmen, und in welchen sich die relevanten Prozesse deshalb durch entsprechende Gleichungen und Formeln einfach parametrisieren lassen bzw. die beteiligten Apparaturen und Vorrichtung einfach entsprechend ansteuern und regeln lassen, ist die Anzahl der relevanten Faktoren, die Mahlqualität und gleicherweise die Ausbeute des verarbeiteten Endproduktes beeinflussen, in der Müllerei ausserordentlich hoch. Es bedarf deshalb oft, dass ein Müller, als Human Expert, nach der Analyse des Ausgangs-/Rohmaterials die gesamte Mahl- oder Mühlenanlage manuell anpassen und einstellen muss basierend auf seiner Intuition und Knowhow, um best-mögliche Resultate zu erhalten im Sinne der erwarteten Qualität und Ausbeute des Endproduktes (z.B. Ash Content, Yield, Baking Quality etc.). Das alles zudem unter Minimierung der Kosten, d.h. insbesondere der Energieeffizienz. Ebenfalls zu berücksichtigen ist, dass die Mahleigenschaften des Ausgangsmaterials, z.B. des gewählten Weizens oder Getreides, fundamental sind für den Mahlprozess. Da die Mahlanlage typischerweise vom Obermüller geregelt werden muss, hat der Obermüller auch entscheidenden Einfluss auf und Kontrolle bei den Charakteristiken des produzierten Mehls. Das beginnt bei der Wahl der Weizenklasse, was sich sowohl auf die Marktklasse als auch auf den Produktionsortes oder -region des Weizens beziehen kann, um bestimmte Kornattribute, wie z.B. ein bestimmter Proteinbereich, zu beeinflussen. Der Müller kontrolliert auch die Weizenzusammensetzung (wheat blend/grists), welches in die Mahlanlage gegeben wird. Der Müller kann ebenfalls den Mahlfluss (mill flow), Walzendrehzahl (roll speed), Geschwindigkeitsunterschiede (speed differentials), Verteilung der geriffelten Walzen (fluted rolls) z.B. sharp-to-sharp, und Walzendruck bei Glattwalzen (smooth rolls). Weitere Regelmöglichkeiten hat der Müller in Kombination mit dem Sieben und dem Reinigen und schliesslich in der Mahlstromauswahl zum Vermengen des produzierten Endmehls. All diese Parameter und Regelmöglichkeiten werden vom Müller benutzt, um konsistent ein Mehl mit einer bestimmten Qualität zu erzeugen.
  • Wie das diskutierte Beispiel zeigt, bedürfen besonders Mahlwalzen, wie sie beispielsweise in der Getreidemüllerei verwendet werden, einer ständigen Überwachung. Abgesehen von der Optimierung der Produktion und der Charakteristiken des Endproduktes, kann es beispielsweise auch passieren, dass ein sogenannter Trockenlauf, Aufschaukeln in der Regelsteuerung oder andere operative Anomalien auftreten. Dauert ein anormaler Zustand zu lange an, so kann z.B. die Temperatur der Mahlwalze in einen kritischen Bereich steigen und möglicherweise einen Brand oder Schäden an den Walzen verursachen. Operative Anomalien können den optimalen Betrieb der Anlage aber auch anders beeinflussen, insbesondere die Qualität, Ausbeute oder Energieverbrauch. Obwohl Mahlanlagen in vielen Bereich mindestens teilweise automatisiert sind, können derzeitige Systeme betreffend die automatische Steuerung und optimierten Betriebs nur schwer automatisiert werden. Im Stand der Technik werden Mühlensysteme deshalb oft noch manuell vom Bedienpersonal nach dessen empirischen Erfahrungswerten eingestellt. Automatisierte Steuerung oder Reglung des Betriebs beschränkt sich dabei häufig auf die Signalübertragung und Übertragung der Steuerbefehle, z.B. mittels SPS-Steuerung und angeschlossenem Inputvorrichtungen mit graphischem User Interface (GUI). SPS bezeichnet dabei eine speicherprogrammierbare Steuerung (auch: Programmable Logic Controller (PLC)), welche als Vorrichtung zur Steuerung oder Regelung einer Maschine oder Anlage eingesetzt und auf digitaler Basis programmiert werden kann. Ändert sich die Qualität des zugeführten Materials, vergeht typischerweise eine bestimmte Zeit, bis wieder ein hoher Durchsatz bei guter Produktqualität erreicht werden kann. Oft steht dem Operator ausserdem auch nur eine indirekte Qualitätskontrolle, die sich beispielsweise anhand eines Ausbeuterückgangs in einer der nachgeschalteten Komponenten ergibt, zur Verfügung. Dies erschwert zusätzlich eine gute Einstellung des Mühlensystems oder etwa das rechtzeitige Eingreifen beim Auftreten von Anomalien im Mahlprozess. Besteht in der Regelung und Steuerung eines Mahlwalzensystems aus einer Bedienungsperson (Obermüller) ist jedoch eine vollständige Beherrschung des gesamten Produktionsablaufes unbedingt erforderlich, um eine solche Steuerung "von Hand" überhaupt durchführen zu können. Das Ergebnis der Steuerung ist dabei wesentlich abhängig von dem jeweiligen fachlichen Können und der Erfahrung der Bedienungsperson, d.h. den betreuenden Obermüller. Wird weniger qualifiziertes Personal für die Bedienung eingesetzt, z. B. während spezieller Zeiten (Ferien, Nachtarbeit usw.), so kann sich unter Umständen eine Ergebnisschmälerung für die Mühle einstellen, etwa durch eine geringere Ausbeute an hellen Mehlen o.ä. Versuche, den Obermüller, durch prozessor-gestützte Regelvorrichtungen zu ersetzen, dass sich das komplexe Wissen und Erfahrung des Obermüllers nicht einfach über regelgesteuerte Vorrichtungen automatisierten lies, insbesondere nicht durch selbständig, autark funktionierende Regeleinrichtungen, die ohne regelmässige Routineeingriffe des Menschen auskommen.
  • Was die Mahl- und Verkleinerungssysteme betrifft, sind im Stand der Technik unterschiedliche Mahl- und Verkleinerungssysteme bekannt. Bei Getreide und Getreidemühlen ist der Walzenstuhl bei weitem die wichtigste Vermahlungsvorrichtung. Ob Mais, Weichweizen, Hartweizen, Roggen, Gerste oder Malz zu verarbeiten sind, meist bietet der Walzenstuhl die idealste Verarbeitung aller Getreidesorten. Der in einer Getreidemühle eingesetzte Prozess ist eine Stufenzerkleinerung. Der Mehlkern (Endosperm) wird schrittweise zerkleinert, indem er mehrere geriffelte oder glatte Stahlwalzenpaare passiert. Er wird in Sichtern durch Siebe von der Kleie und dem Keimling getrennt. Bei Walzenpaaren eines Walzenstuhls rotiert typischerweise eine Walze schneller als die andere. Durch die gegenläufige Rotation der beiden Walzen wird das Gut in den Walzenspalt hineingezogen. Form, Tiefe und Drall der Riffelung bestimmen zusammen mit dem Drehzahldifferential die Intensität des Vermahlens in jedem Schritt. Ebenfalls bekannt sind Schlagmühlen. Schlagmühlen eignen sich z.B. für das Vermahlen verschiedenster Produkte in Getreidemühlen (Getreide und Nebenprodukte der Vermahlung), Futtermittelwerken (Futtermittel, Hülsenfrüchte), Brauereien (Feinschrotherstellung für die Maischefiltration), Ölmühlen (Extraktionsschrote und geschrotete Ölkuchen) oder sogar Teigwarenfabriken (Teigwarenabfälle). Das Produkt wird der Schlagmühle oder Hammermühle aus einem Vorbehälter zugeführt und durch den Schlägerrotor erfasst. Die Teilchen werden so lange zerkleinert, bis sie die Öffnungen eines den Rotor umgebenden Siebmantels passieren können. Schliesslich sind auch Flockieranlagen bekannt, bei welchen das Flockierwalzwerk zusammen mit dem entsprechenden Dämpfapparat das Herzstück bildet. Im vorgeschalteten Dämpfapparat wird das Flockiergut hydrothermisch behandelt, bevor es in das Flockierwalzwerk gelangt. Die Anlage eignet sich für die Verarbeitung von Graupen (ganze, gereinigte und geschälte Haferkerne) sowie Grütze (geschnittene Haferkerne), Mais, Weichweizen, Gerste, Buchweizen und Reis. Anzumerken ist, dass sich auf Grund der spezifischen Probleme und Anforderungen in der Herstellung von Mehl und Griess aus Getreide und ähnlichen Produkten eine selbständige Gattung von Walzwerken, der sogenannte Müllerei-Walzenstuhl entwickelt hat, der im Unterschied etwa zur Mahltechnik von Gesteinen, der Herstellung von Flocken aus pflanzlichen Rohstoffen usw. eine ganz eigenartige Mahltechnik beinhaltet.
  • Unbesehen der spezifischen Eigenschaften der Getreidemühlen, ist bei allen der diskutierten Vermahlungssysteme des Standes der Technik bekannt (siehe z.B. DE-OS 27 30 166 ), dass es immer wieder Störeinflüsse gibt und geben kann, die idealisiert Vermahlungsbedingungen nicht zulassen. Zu diesen Störeinflüssen zählen unter anderem ungleichmäßige Walzentemperaturen, Veränderung der Federcharakteristik eines Walzenpaares, Veränderung des Mahlspaltes oder Mahldruckes etc. Die Erfindung bezieht sich insbesondere auf eine Steuer- und Regeleinrichtung zur stabilen, adaptiven Steuerung und Regelung von den beschriebenen Vermahlungssystemen zur Vermahlung von Getreide und zur Beeinflussung von Prozesselementen (Mahlgut und Anlageelemente) und diesen zuordenbaren operativen Prozessparametern der Getreidemühlenanlagen unter rechtzeitiger Erkennung von Störeinflüssen oder anderen operativen Anomalien. Bekannt ist, dass die Bereitstellung und Automatisierung derartiger Steuer- und Regelsystemen komplex ist, da eine Vielzahl von mindestens teilweise gegenseitig abhängigen, d.h. korrelierten, Parameter berücksichtigt werden müssen (z.B. EP0013023B1 , DE2730166A1 ). So wird der Betrieb der Vermahlungsvorrichtungen durch eine Vielzahl von Parametern beeinflusst, wie z.B. durch die Auswahl der Getreideart oder der Getreidemischung und des Anbaugebietes, der Erntezeit, der gewünschten Qualitätskriterien, des spezifischen Gewichtes und/oder der Feuchtigkeit der einzelnen Getreidesorten bzw. der Getreidemischungsanteile, der Lufttemperatur, der relativen Luftfeuchtigkeit, der technischen Daten der in der Mühlenanlage verwendeten Anlageelemente und/oder der gewünschten Mehlqualität als vorgegebene Prozessgrössen und der Auswahl des Abstandes, des Mahldruckes, der Temperatur und/oder der Leistungsaufnahme der Motoren der Mahlwalzen, der Durchflussmenge und/oder der erzielten Feuchtigkeit des Mahlgutes und/oder der Qualität des Mehles bezüglich der Mischungsanteile, welche ausreichend differenzierte Steuerung des Vermahlungsprozesses in den Getreidemühlenanlagen erschwert. Häufig genügt es schon, dass einige wenige dieser Prozessgrössen und operativen Prozessparameter ausserhalb ihrer Toleranz rutschen, um den Betrieb der Mühle massiv zu beeinflussen. Dieser Komplexität des Prozesses ist es zu verdanken, dass trotz allen Bemühungen einer Automatisierung der Anlangen, der Obermüller immer noch aktuell ist, da er, als "human expert", darüber entscheiden muss, ob eine Änderung der den Eingangssignalgrössen jeweils zugeordneten Steuersignale wünschenswert erscheint oder nicht. Der Obermüller wird dabei stets die Zielgrössen berücksichtigen. Hat er eine optimale Zuordnung zwischen den genannten Eingangssignalgrössen und den Steuersignalgrössen gefunden, so wird diese Zuordnung typischerweise durch entsprechende Speicherbelegung und -adressierung innerhalb der Getreidemühlenanlage gewährleistet.
  • Das Dokument WO9741956A1 des Standes der Technik offenbart ein Verfahren für die automatisierte Kontrolle des Vermahlprozesses in einer Mühle mit einer Vielzahl von Vermahleinheiten. Dabei wird beim Ausgang der Vermahleinheiten eine Stichprobe ausgesiebt. Bei der Stichprobe wird der Prozentsatz von Durchsatz zu zurückbehaltenen Mahlgut verglichen mit vordefinierten Standardwerten. Wird eine Abweichung gemessen, wird der Spalt zwischen den Mahlwalzen der Mahlwalzenpaarung der betroffenen Vermahleinheit entsprechend der Abweichung angepasst. DE2413956A1 des Standes der Technik betrifft ebenfalls ein Verfahren zum Vermahlen von Getreide zu Mehl unter Verwendung von Mahleinheiten, sowie nachfolgendem Sieben. Beim Mahlen des Getreide wird das Mahlgut, wie bekannt, durch eine Anzahl aufeinanderfolgender Walzenmühlen geleitet, wobei das austretende Material gesiebt wird, um das Material abzutrennen, das auf die erforderliche Größe gemahlen ist, während das übrigbleibende Material zu der nachfolgenden der hintereinander angeordneten Mahleinheiten geführt wird. Mittels einer Überwachungseinheit werden die Mahleinheiten überwacht. Das Verhalten der Vermahleinheiten wird basierend auf einem vordefinierten Schema während des Vermahlprozesses gesteuert, so dass es mit dem vordefinierten Schema zusammenpasst. Schliesslich zeigt JPH06114282A ein Verfahren zur Überwachung der Partikelgrössenverteilung in einer Mahlanlage, mit dem Ziel innerhalb der Anlage ein stetig gleich Partikelgrössenverteilung zu erhalten. Bei dem Verfahren werden die Fördermenge, der Abstand zwischen den Mahlwalzen und der Federdruck der Walzen überwacht, um die gewünschte Partikelgrössenverteilung zu erhalten. Das Verfahren passt die Regelung der Mahlanlage an, falls eine Abweichung der Partikelgrössenverteilung zur gewünschten Partikelgrössenverteilung detektiert wird.
  • Zusammenfassung der Erfindung
  • Es ist eine Aufgabe der vorliegenden Erfindung, die aus dem Stand der Technik bekannten Nachteile und technischen Probleme zu lösen. Insbesondere soll eine intelligente, selbst-adaptive Steuerungs-/Regelvorrichtung zur automatisierten Optimierung und Steuerung der Vermahlungslinie eines Walzensystems bereitgestellt werden, mit dem die Vermahlung und/oder Schrotung optimiert und automatisiert durchgeführt werden kann, und welches die Betriebssicherheit einer Mühle erhöht und gleichzeitig den Betrieb optimiert bzw. automatisch auf auftretende Anomalien reagiert. Die Steuerungs-/Regelvorrichtung soll dabei in der Lage sein, langfrist-Trends in der Produktion zu Identifizieren und Auffälligkeiten im Betrieb zu erkennen. Sie soll eine einfache automatisierte Überwachung und Erkennung kritischer Produktionsparameter, insbesondere Ausbeute, Energie und Durchsatz/Maschinenlaufzeit ermöglichen, sowie eine automatisierte Anpassung des Betriebs unter Optimierung der relevanten Parameter bzw. eine automatisierte Anpassung des Betriebs bei Auffälligkeiten oder Anomalien erlauben. Schliesslich soll das Verfahren beim initialen Einstellen ein schnelles, automatisiertes und stabiles Einstellen eines Mühlensystems erlauben.
  • Gemäss der vorliegenden Erfindung werden diese Ziele durch das Verfahren gemäß Anspruch 1 und die Vorrichtung gemäß Anspruch 11 erreicht. Weitere vorteilhafte Ausführungsformen gehen ausserdem aus den abhängigen Ansprüchen, den Zeichnungen und der Beschreibung hervor.
  • Insbesondere werden diese Ziele durch die Erfindung für ein intelligentes, selbst-adaptives Regel- und Steuerungsvorrichtung und/oder -apparatus zur selbst-optimierten Steuerung einer Mühlenanlage und/oder einer Vermahlungslinie eines Walzensystems der Mühlenanlage dadurch erreicht, dass die Vermahlungslinie eine Mehrzahl von Verarbeitungseinheiten, wie z.B. Riffel- und/oder Glattwalzen und/oder Siebe etc., umfasst, welche basierend auf operativen Prozessparametern jeweils einzeln mittels der Regel- und Steuerungsvorrichtung ansteuerbar und im ihrem Betrieb einzeln regelbar sind, wobei mittels einem operativen Prozessrezept eine Chargen-Steuerung (engl. Batch) mit einer definierten Verarbeitungsfolge in den Verarbeitungseinheiten regelbar ist, wobei mittels dem operativen Prozessrezept aus einem oder mehreren Ausgangsstoffen eine definierte Menge eines Endproduktes erzeugbar ist, und wobei die Verarbeitungseinheiten basierend auf spezifisch, dem operativen Prozessrezept zugeordneten operativen Chargen-Prozessparametern gesteuert werden. Die Regel- und Steuerungsvorrichtung umfasst ein Pattern-Recognition-Module zum Erkennen von operativen Prozessrezepten mit multi-dimensionalen Chargen-Prozessparameter-Pattern, wobei ein operatives Prozessrezept mindestens ein oder mehrere Ausgangsstoffe, eine definierte Abfolge eines Vermahlungsprozesses innerhalb der Verarbeitungseinheiten der Vermahlungslinie, und operative Chargen-Prozessparameter zu den jeweiligen Verarbeitungseinheiten der Vermahlungslinie zugeordnet abgespeichert umfasst. Die Regel- und Steuerungsvorrichtung umfasst eine Speichervorrichtung zum Speichern historischer operativen Prozessrezepten mit historischen Chargen-Prozessparameter, wobei die historischen Chargen-Prozessparameter eines Prozessrezeptes jeweils ein prozess-typisches, multi-dimensionales Chargen-Prozessparameter-Pattern eines optimierten Chargen-Prozesses im Normbereich definieren. Bei Eingabe von Endprodukteparametern und/oder Eingangsprodukteparametern eines neuen operativen Prozessrezeptes werden mittels Pattern-Recognition des Pattern-Recognition-Modules eines oder mehrere der abgespeicherten historischen operativen Prozessrezepten basierend auf den zugeordneten multi-dimensionalen Chargen-Prozessparameter-Pattern als nächstliegende Chargen-Prozessparameter-Pattern getriggert und/oder selektiert. Mittels der Regel- und Steuerungsvorrichtung werden basierend auf den getriggerten nächstliegenden Chargen-Prozessparameter-Pattern neue Chargen-Prozessparameter-Pattern mit neuen Chargen-Prozessparameter für das eingegebene neue operative Prozessrezept generiert, wobei die Verarbeitungseinheiten basierend auf den generierten operativen Prozessrezepten mit den zugeordneten Chargen-Prozessparameter mittels der Regel- und Steuerungsvorrichtung entsprechend angesteuert und geregelt werden. Während des Vermahlungsprozesses des neuen operativen Prozessrezeptes sind die operativen Prozessparameter mittels der Regel- und Steuerungsvorrichtung kontinuierlich überwachbar, wobei bei der Detektion einer Anomalie als definierte Abweichung der überwachten operativen Prozessparameter vom den bestimmten operativen Prozessparametern des neuen operativen Prozessrezeptes ein Warnsignal auf eine Alarmeinheit übertragen wird. Die Chargen-Prozessparameter können z.B. mindestens Messparameter betreffend der Ströme und/oder Leistungsaufnahme eines oder mehrerer Walzenstühle der Mühlenanlage umfassen. Die ein oder mehreren Walzenstühle können z.B. mindestens Riffelwalzen (B Passage) und/oder Glattwalzen (C Passage) umfassen. Die Chargen-Prozessparameter können insbesondere z.B. mindestens Messparameter betreffend der Ströme und/oder Leistungsaufnahme aller Walzenstühle der Mühlenanlage umfasst. Die Erfindung hat unter anderem den Vorteil, dass eine technisch neuartige, intelligente, selbst-adaptive Steuerungs-/Regelvorrichtung zur automatisierten Optimierung und Steuerung der Vermahlungslinie eines Walzensystems bereitgestellt werden kann, mit dem die Vermahlung und/oder Schrotung optimiert und vollständig automatisiert durchgeführt werden kann, und welches die Betriebssicherheit einer Mühle erhöht und gleichzeitig den Betrieb optimiert bzw. automatisch auf auftretende Anomalien reagiert. Die erfinderische Steuerungs-/Regelvorrichtung ist dabei in der Lage, langfrist-Trends in der Produktion zu Identifizieren und Auffälligkeiten im Betrieb zu erkennen. Sie erlaubt eine neuartige, einfache und automatisierte Überwachung und Erkennung kritischer Produktionsparameter, insbesondere Ausbeute, Energie und Durchsatz/Maschinenlaufzeit, und ermöglicht eine automatisierte Anpassung des Betriebs während des Betriebs zur Optimierung dieser Parameter bzw. eine automatisierte Anpassung des Betriebs bei detektierten Auffälligkeiten oder Anomalien während des Betriebs. Wird das erfinderische System und Verfahren schliesslich beim initialen Einstellen angewendet, erlaubt es das eine schnelle und stabile Einstellung eines Mühlensystems basierend auf historischen, optimierten Parametersets.
  • In einer Ausführungsvariante sind mittels der prozess-typischen Chargen-Prozessparameter eines optimierten Chargen-Prozesses im Normbereich definierte Qualitätsparameter des Endproduktes und spezifische Mehlausbeute in Abhängigkeit vom den Ausgangsprodukten bestimmbar. Die definierten Qualitätsparameter können z.B. mindestens Partikelgrössenverteilung und/oder Stärkebeschädigung und/oder Proteinqualität und/oder Wassergehalt umfassen. Die überwachten Chargen-Prozessparameter können z.B. mindestens Ausbeute und/oder Energieaufnahme/- verbrach und/oder Durchsatz/Maschinenlaufzeit umfassen.
  • In einer weiteren Ausführungsvariante werden während des Vermahlungsprozesses bei der Detektion von Anomalie kontinuierliche Langzeit-Veränderungen bei den überwachten Chargen-Prozessparametern von der Regel- und Steuerungsvorrichtung erfasst, wobei die definierte Abweichung der überwachten operativen Prozessparametern vom den generierten operativen Prozessparametern des neuen operativen Prozessrezeptes in Abhängigkeit der gemessenen kontinuierlichen Langzeit-Veränderungen bestimmt wird.
  • In einer anderen Ausführungsvariante werden die überwachten Chargen-Prozessparametern von einer Vielzahl von Regel- und Steuerungsvorrichtungen über ein Netzwerk an eine zentrale Überwachungseinheit übermittelt, wobei die Vielzahl von Regel- und Steuerungsvorrichtungen zentral überwacht und geregelt werden.
  • In einer wieder anderen Ausführungsvariante wird die definierte Abweichung der überwachten operativen Prozessparametern von den generierten operativen Prozessparametern des neuen operativen Prozessrezeptes in Abhängigkeit der natürlichen Schwankungen innerhalb definierbarer χ 2-Standordabweichungen bestimmt.
  • An dieser Stelle soll festgehalten werden, dass sich die vorliegende Erfindung neben der erfindungsgemässen Vorrichtung (engl. apparatus) auch auf ein Verfahren zur Realisierung der erfindungsgemässen Vorrichtung bezieht.
  • Detaillierte Beschreibung der Erfindung
  • Nachfolgend werden Ausführungsvarianten der vorliegenden Erfindung anhand von Beispielen beschrieben. Die Beispiele der Ausführungen werden durch folgende beigelegten Figuren illustriert:
    • Figur 1 illustriert schematisch eine Darstellung einer erfindungsgemässen Ausführungsvariante, bei welcher die Ströme von allen Walzenstühlen (B(2: 21,...,23)/C(3: 31,...,33)) betrachtet werden, unterteilt in B Passage (hier: Riffelwalzen 21,...,23) und C Passage (hier: Glattwalzen 31,...,33). Für jedes Rezept und Vorrichtungseinstellung/-charakteristiken ergibt sich ein typisches Pattern, das in Abhängigkeit vom Rohmaterial und den vorhergehenden Prozessschritten die Qualität 61 des Endproduktes bestimmt (wie z.B. Partikelgrössenverteilung 611, Stärkebeschädigung 612, Proteinqualität 613, Wassergehalt 614) sowie die spezifische Mehlausbeute 62. Das typische Pattern kann auch durch eine spezifische, typisches Farbe dargestellt werden. Eine Veränderung des Patterns oder des Farbmusters der Ströme wird als Anomalie detektiert und ein entsprechendes elektronisches Signal zur Erzeugung einer Warnmeldung oder der Aktivierung weiterer Vorrichtungen oder Apparati erzeugt.
    • Figur 2 illustriert schematisch eine Darstellung eines typischen Patterns (Muster) des Stroms eines Walzwerkes (roller mill), d.h. einer typischen Signatur eines Rezeptes. Der Mittelwert des Stroms für ungefähr 6 Monate Betrieb für die 4 produzierten Rezepte.
    • Figur 3 zeigt schematisch eine Darstellung eines ähnlichen Musters für die Fluktuationen. Die Standard-Abweichung des Stroms für die gleiche Periode und die gleichen Rezepte.
    • Die Figuren 4 und 5 zeigen schematisch eine Darstellung von lang-zeit Trends der Signaturen. Die Pattern verändern sich über die Zeit wegen Abnutzung, saisonal oder anders bedingte Faktoren. Fig. 4/5 zeigen die Fluktuationen in den Monaten März (Fig. 4) und Juni (Fig. 5).
    • Figur 6/7 zeigen schematisch eine Darstellung von Ausreissern (Outliers/Batches) mit anormalem Verhalten, wobei solch anormales Verhalten basierend auf ihrer unterschiedlichen Signatur detektiert werden kann. Gute/Normale Batches können von einer selbst-lernenden/maschinen-lernenden Einheit oder Operatoren als "gut" gekennzeichnet werden, so dass die Definition des als "normal" zu erwartenden Verhaltens dynamisch wird und lang-zeit Trends berücksichtigt werden können.
    • Figur 8-11 zeigen schematisch weitere Darstellungen der Detektion von Auffälligkeiten in Abhängigkeit von Prozessgrössen (Fig. 8-9), sowie deren Prozessanalytik (Fig. 10) und Rezeptübersicht (Fig. 11).
    • Figur 12 zeigt schematisch eine Mühlenanlage 1, bei welcher Sensordaten während des Prozesses z.B. alle 3 Minuten gemessen und erfasst werden. Insbesondere zeigt sie das Messes von Messparameter 51 des Eingangsproduktes 5, wie den Feuchtegehalts des Eingangsproduktes 5, sowie das Messen der Mehleigenschaften 61 und der Ausbeute 62 des Endproduktes 6.
  • Unter "Produkt" wird im Sinne der vorliegenden Erfindung ein Schuttgut oder eine Masse verstanden. Unter "Schuttgut" wird im Sinne der vorliegenden Erfindung ein pulver-, granulat- oder pelletförmiges Produkt verstanden, welches bei der Schuttgut verarbeitenden Industrie, d. h. bei der Verarbeitung von Getreide, Getreidevermahlungsprodukten und Getreideendprodukten der Müllerei (insbesondere Vermahlen von Weichweizen, Durum, Roggen, Mais und/oder Gerste) oder Spezialmüllerei (insbesondere Schalen und/oder Vermahlen von Soja, Buchweizen, Gerste, Dinkel, Hirse/Sorghum, Pseudocerealien und/oder Hülsenfruchten), der Herstellung von Futter für Nutz- und Haustiere, Fische und Krustentiere, der Verarbeitung von Ölsaaten, der Verarbeitung von Biomasse und Herstellung von Energiepellets, industriellen Mälzerei und Schroterei-Anlagen; der Verarbeitung von Kakaobohnen, Nüssen und Kaffeebohnen, der Herstellung von Düngemitteln, in der Pharmaindustrie oder in der Feststoffchemie Einsatz findet. Unter "Masse" wird im Sinne der vorliegenden Erfindung eine Lebensmittelmasse, wie etwa eine Schokoladenmasse oder eine Zuckermasse, oder eine Druckfarbe, eine Beschichtung, ein Elektronikmaterial oder eine Chemikalie, insbesondere eine Feinchemikalie verstanden. Unter "Verarbeitung eines Produktes" wird im Sinne der vorliegenden Erfindung Folgendes verstanden: (i) das Mahlen, Zerkleinern und/oder Flockieren von Schuttgut, insbesondere Getreide, Getreidevermahlungsprodukten und Getreideendprodukten der Müllerei oder Spezialmüllerei wie oben ausgeführt, wofür als Walzenpaarungen beispielsweise die weiter unten noch detaillierter beschriebenen Paarungen von Mahlwalzen oder Flockierwalzen eingesetzt werden können; (ii) die Verfeinerung von Massen, insbesondere von Lebensmittelmassen wie etwa Schokoladenmassen oder Zuckermassen, wofür beispielsweise Paarungen von Feinwalzen eingesetzt werden können; und (iii) das Nassmahlen und/oder Dispergieren, insbesondere von Druckfarben, Beschichtungen, Elektronikmaterialien oder Chemikalien, insbesondere Feinchemikalien.
  • Mahlwalzen im Sinne der vorliegenden Erfindung sind dafür ausgelegt, körniges Mahlgut zu vermahlen, welches üblicherweise zwischen einer Mahlwalzenpaarung von zwei Mahlwalzen geführt wird. Mahlwalzen, insbesondere die Mahlwalzen der erfindungsgemässen Mahlwalzenpaarungen, verfugen üblicherweise über eine im Wesentlichen unelastische Oberfläche (insbesondere an ihrer Umfangsfläche), die zu diesem Zweck beispielsweise Metall enthalten kann oder daraus bestehen kann, wie etwa Stahl, insbesondere Edelstahl. Zwischen den Mahlwalzen der Mahlwalzenpaarung besteht üblicherweise ein relativ fester und häufig hydraulisch geregelter Mahlspalt. In vielen Mahlanlagen wird das Mahlgut im Wesentlichen vertikal abwärts durch einen solchen Mahlspalt geführt. Zudem wird das Mahlgut in vielen Mahlanlagen den Mahlwalzen einer Mahlwalzenpaarung mittels seiner Schwerkraft zugeführt, wobei diese Zuführung optional pneumatisch unterstutzt werden kann. Das Mahlgut ist üblicherweise körnig und bewegt sich als Fluidstrom durch den Mahlspalt. Durch diese Eigenschaften unterscheiden sich eine Mahlwalze und eine mindestens eine solche Mahlwalze enthaltende Mahlanlage beispielsweise von anderen in der Technik verwendeten Walzen, welche z.B. zum Transport von Papier verwendet werden.
  • Mindestens eine Walze, insbesondere zwei Walzen einer Mahlwalzenpaarung, einer Vermahlungsanlage können beispielsweise als Glattwalze oder als Riffelwalze oder als Walzengrundkörper mit aufgeschraubten Platten ausgebildet sein. Glattwalzen können zylindrisch oder bombiert sein. Riffelwalzen können verschiedene Riffelgeometrien, wie z.B. dachförmigen oder trapezförmigen Riffelgeometrien, aufweisen und/oder an der Umfangsfläche aufgesetzte Segmente aufweisen. Mindestens eine Walze, insbesondere beide Walzen der Mahlwalzenpaarung, insbesondere mindestens eine Mahlwalze, insbesondere beide Mahlwalzen der Mahlwalzenpaarung, kann bzw. können eine Lange im Bereich 500 mm bis 2000 mm und einen Durchmesser im Bereich von 250 mm bis 300 mm aufweisen. Die Umfangsfläche der Walze, insbesondere der Mahlwalze, ist bevorzugt unlösbar mit dem Walzenkörper verbunden und insbesondere einstückig damit ausgebildet. Dies erlaubt eine einfache Herstellung und eine zuverlässige und robuste Verarbeitung, insbesondere Vermahlung, des Produktes. Die Walzen können mit mindestens einem Sensor zur Erfassung von Messwerten ausgebildet sein, die einen Zustand mindestens einer der Walzen, insbesondere beider Walzen der Walzenpaarung charakterisieren. Insbesondere kann es sich dabei um einen Zustand einer Umfangsfläche mindestens einer der Walzen, insbesondere beider Walzen der Walzenpaarung handeln. Der Zustand kann beispielsweise eine Temperatur, ein Druck, eine Kraft (Kraftkomponente(n) in einer oder mehreren Richtungen), ein Verschleiss, eine Vibration, eine Deformation (Ausdehnung und/oder Auslenkweg), eine Drehgeschwindigkeit, eine Drehbeschleunigung, eine Umgebungsfeuchtigkeit, eine Position oder eine Orientierung mindestens einer der Walzen, insbesondere beider Walzen der Walzenpaarung sein. Die Sensoren können beispielsweise als MEMS-Sensor ausgebildet sein (MEMS: Micro-Electro-Mechanical System). Bevorzugt steht der Sensor in Datenverbindung mit mindestens einem Datensensor, wobei der Datensender zur berührungslosen Übertragung der Messwerte des mindestens einen Sensors an einen Datenempfänger ausgebildet ist. Die Messwerte können mit Hilfe des mindestens einen Datensenders berührungslos an einen Datenempfänger übertragen werden, der nicht Bestandteil der Walze ist. Die Mahlanlage kann weitere Sensoren und Messeinheiten umfassen zum Erfassen von Prozess- oder Produkte- oder Betriebsparametern, insbesondere Messvorrichtungen zum Messen der Strom-/Leistungsaufnahmen einer oder mehreren Walzen. Unter anderem können die Sensoren (i) mindestens ein Temperatursensor, bevorzugt aber mehrere Temperatursensoren zum Messen der Walzentemperatur oder eines Temperaturprofil entlang einer Walze; (ii) ein oder mehrere Drucksensoren; (iii) ein oder mehrere Kraftsensoren (zur Bestimmung der Kraftkomponente(n) in einer oder mehreren Richtungen); ein oder mehrere Verschleisssensoren; (iv) ein oder mehrere Vibrationssensoren, insbesondere zum Ermitteln eines Wickelns, also einer Anhaftung des verarbeiteten Produktes an der Umfangsfläche der Walze, was Verarbeiten, insbesondere Vermahlen, an dieser Position behindert; (v) ein oder mehrere Deformationssensoren (zur Bestimmung einer Ausdehnung und/oder eines Auslenkwegs); (vi) ein oder mehrere Drehgeschwindigkeitssensoren, insbesondere zum Ermitteln eines Stillstandes der Walze; (vii) ein oder mehrere Drehbeschleunigungssensoren; (viii) ein oder mehrere Sensoren zum Ermitteln einer Umgebungsfeuchtigkeit, der bevorzugt an einer Stirnseite der Walze angeordnet ist; (ix) ein oder mehrere gyroskopischer Sensoren zum Ermitteln der Position und/oder der Orientierung der Walze, insbesondere zum Ermitteln der von der Position und/oder der Orientierung abhängigen Breite eines Spaltes zwischen den beiden Walzen der Walzenpaarung sowie der Parallelität der Walzen; und/oder (x) ein oder mehrere Sensoren zum Ermitteln der Breite eines Spaltes zwischen den beiden Walzen der Walzenpaarung, insbesondere eines Mahlspaltes zwischen den beiden Mahlwalzen der Mahlwalzenpaarung, beispielsweise ein in einer Stirnseite der Walze angeordneter Sensors, insbesondere ein MEMS-Sensor. Beliebige Kombinationen davon sind ebenfalls möglich. Beispielsweise kann eine Walze mehrere Temperatursensoren und Deformationssensoren enthalten. Zudem ist es möglich und liegt im Rahmen der Erfindung, dass alle Sensoren vom gleichen Typ sind, also beispielsweise als Messeinheiten zum Messen der Leistungsaufnahme einer oder mehreren Walzen ausgebildet sind.
  • Unter einem Verschleiss wird dabei hier und im Folgenden die mechanische Abnutzung der Umfangsfläche der Walze, insbesondere der Mahlwalze, verstanden. Ein solcher Verschleiss kann im Stand der Technik beispielsweise über eine Widerstandsänderung bestimmt werden, die durch einen Materialabtrag an der Umfangsfläche entsteht. Alternativ oder zusätzlich kann ein Verschleiss über einen veränderten Druck und/oder über eine veränderte Weglänge und/oder über eine veränderte elektrische Kapazität bestimmt werden. Wenn eine Einheit nur einen einzigen Datensender enthält, so kann diese Einheit mindestens einen Multiplexer umfassen, der zur abwechselnden Übermittlung der von den Sensoren erfassten Messwerte an den Datensender angeordnet und ausgebildet ist. Die berührungslose Übertragung kann beispielsweise durch Infrarotstrahlung, durch Lichtpulse, durch Radiofrequenzsignale, durch induktive Kopplung oder durch eine beliebige Kombination davon erfolgen. Die berührungslose Übertragung der Messwerte umfasst hier und im Folgenden stets auch die Übertragung von Daten, welche durch eine entsprechende Verarbeitung der Messwerte gewonnen werden und die somit auf den Messwerten beruhen. Beispielsweise kann eine Einheit mit Sensoren mindestens einen Signalwandler, insbesondere mindestens einen A/D-Wandler, zur Umwandlung der von dem mindestens einen Sensor erfassten Messwerte enthalten. Jedem Sensor kann mindestens ein Signalwandler zugeordnet sein, der die von diesem Sensor erfassten Messwerte umwandelt. Anschliessend können die umgewandelten Signale einem wie bereits oben beschriebenen Multiplexer zugeführt werden. Handelt es sich bei den Signalwandlern um einen A/D-Wandler, so kann der Multiplexer ein digitaler Multiplexer sein. In einer zweiten möglichen Variante kann der Signalwandler auch zwischen einem wie oben beschriebenen Multiplexer und dem Datensender angeordnet sein. In diesem Falle kann der Multiplexer ein analoger Multiplexer sein. Eine Einheit mit Sensoren kann mindestens eine Leiterplatte (insbesondere eine MEMS-Leiterplatte) umfassen, auf welcher einer oder mehrere ihrer Sensoren und/oder mindestens ein Multiplexer und/oder mindestens ein Signalwandler und/oder der mindestens eine Datensender und/oder mindestens ein Energieempfänger und/oder mindestens ein Energieerzeuger angeordnet sind. Die Leiterplatte kann Messleitungen enthalten, über die die Sensoren mit dem Multiplexer verbunden sind. Eine solche Leiterplatte hat den Vorteil, dass die genannten Bauteile hierauf sehr kompakt angeordnet werden können und dass die Leiterplatte als separate Baugruppe gefertigt und zumindest in einigen Ausführungsbeispielen bei Bedarf wieder ausgetauscht werden kann. Alternativ zu einer Leiterplatte können die Sensoren aber auch über einen Kabelbaum mit dem Datensender und/oder dem Multiplexer verbunden sein. Eine oder mehrere der Walzen der Vermahlungsanlage können mindestens einen Datenspeicher enthalten, insbesondere einen RFID-Chip. In diesem Datenspeicher kann beispielsweise eine insbesondere individuelle Identifikation der Walze gespeichert oder speicherbar sein. Alternativ oder zusätzlich kann im Datenspeicher mindestens eine Eigenschaft der Walze gespeichert oder speicherbar sein, wie etwa mindestens eine ihrer Dimensionen und/oder ihre Bombierung. Die im Datenspeicher gespeicherten Daten werden bevorzugt ebenfalls berührungslos übertragen. Hierzu kann die Walze einen Datensender aufweisen. Dabei ist es denkbar, dass die Daten des Datenspeichers mittels des gleichen Datensenders übertragen werden, mittels dem erfindungsgemäss die Messwerte des mindestens einen Sensors übertragen werden. Messvorrichtungen mit Sensoren können auch einen darin integrierten Datenprozessor enthalten, insbesondere einen Mikroprozessor, einen FPGA, einen PLC-Prozessor oder einen RISC-Prozessor. Dieser Datenprozessor kann beispielsweise die von dem mindestens einen Sensor erfassten Messwerte weiterverarbeiten und dann optional an den Datensender übertragen. Insbesondere kann der Datenprozessor die Funktion des oben beschriebenen Multiplexers und/oder des oben beschriebenen Signalwandlers ganz oder teilweise übernehmen. Der Mikroprozessor kann Bestandteil der ebenfalls oben beschriebenen Leiterplatte sein. Der Mikroprozessor kann alternativ oder zusätzlich auch mindestens eine der folgenden Funktionen übernehmen: Kommunikation mit mindestens einem Datenbussystem (insbesondere Verwaltung von IP-Adressen); Leiterplattenspeicherverwaltung; Steuerung von insbesondere wie unten beschriebenen Energiemanagementsystemen; Verwaltung und/oder Speicherung von Identifikationsmerkmalen der Walze(n), wie beispielsweise geometrischen Daten und Walzengeschichte; Verwaltung von Schnittstellenprotokollen; drahtlose Funktionalitäten. Ferner kann die Messeinrichtung, insbesondere die Leiterplatte, über ein Energiemanagementsystem verfügen, welches eine, mehrere oder sämtliche der folgenden Funktionen durchfuhren kann: (i) regelmassige, insbesondere periodische, Übertragung der Messwerte vom Datensender; (ii) Übertragung der Messwerte vom Datensender nur bei Vorliegen einer vorgegebenen Bedingung, insbesondere bei Erfüllung eines weiter unten noch beschriebenen Warnkriteriums; (iii) regelmassige, insbesondere periodische Ladung und Entladung eines Kondensators oder eines Energiespeichers. Eine Vermahlungs-/Produktverarbeitungsanlage für die Verarbeitung eines Produktes, insbesondere die Mahlanlage für das Vermahlen von Mahlgut, enthält mindestens eine Walze oder Walzenpaarung, insbesondere eine Mahlwalzenpaarung. Zwischen den Walzen der Walzenpaarung ist ein Spalt gebildet. Insbesondere ist zwischen den Mahlwalzen einer Mahlwalzenpaarung ein Mahlspalt gebildet. Insbesondere beim Vermahlen von Mahlgut kann das Mahlgut im Wesentlichen vertikal abwärts durch einen solchen Mahlspalt geführt werden. Zudem wird insbesondere beim Vermahlen von Mahlgut dieses Mahlgut den Mahlwalzen bevorzugt mittels seiner Schwerkraft zugeführt, wobei dies optional pneumatisch unterstützt werden kann. Das Produkt, insbesondere das Schuttgut, insbesondere das Mahlgut, kann körnig sein und sich als Fluidstrom durch den Mahlspalt bewegen. Insbesondere bei der Verfeinerung von Massen wie etwa Schokoladenmassen oder Zuckermassen, kann diese Masse alternativ auch von unten nach oben durch den zwischen den Walzen gebildeten Spalt geführt.
  • Die Erfindung betrifft z.B. Produktverarbeitungsanlagen, insbesondere Mahlanlagen für das Vermahlen von Mahlgut. Die Produktverarbeitungsanlage enthält mindestens eine Walze oder Walzenpaarung. Zusätzlich kann die Produktverarbeitungsanlage mindestens einen insbesondere ruhenden Datenempfänger zum Empfangen der vom Datensender mindestens einer der Walzen oder Walzenpaarungen übertragenen Messwerte aufweisen. Bei der Mahlanlage kann es sich beispielsweise um einen einzelnen Walzenstuhl einer Getreidemühle oder auch um eine ganze Getreidemühle mit mindestens einem Walzenstuhl handeln, wobei mindestens ein Walzenstuhl mindestens eine wie oben beschriebene Mahlwalze enthalt. Die Produktverarbeitungsanlage kann aber auch ausgebildet sein als (i) ein Flockierwalzwerk für das Flockieren von Schuttgut, insbesondere Getreide, Getreidevermahlungsprodukten und Getreideendprodukten der Müllerei oder Spezialmüllerei wie oben ausgeführt, (ii) eine Walzenmühle oder ein Walzwerk für die Herstellung von Schokolade, insbesondere ein Vorwalzwerk mit beispielsweise zwei oder fünf Walzen, insbesondere zwei oder fünf Feinwalzen, oder ein End-Feinwalzwerk, (iii) ein Walzwerk für das Nassmahlen und/oder Dispergieren, beispielsweise von Druckfarben, Beschichtungen, Elektronikmaterialien oder Chemikalien, insbesondere Feinchemikalien, insbesondere ein Dreiwalzwerk. Die Erfindung betrifft insbesondere ein Verfahren zum Betreiben einer wie oben beschriebenen Produktverarbeitungsanlage, insbesondere einer oben beschriebenen wie Mahlanlage. Das Verfahren umfasst einen Schritt, in dem mit dem Datenempfänger der Produktverarbeitungsanlage von einem Datensender mindestens einer der Walzen oder Walzenpaarung übertragene Messwerte empfangen werden. Die somit empfangenen Daten werden anschliessend weiterverarbeitet. Zu diesem Zweck können sie einer Steuereinheit der Produktverarbeitungsanlage, insbesondere der Mahlanlage, zugeführt werden, von wo aus sie noch weiter an ein optionales übergeordnetes Leitsystem weitergegeben werden können. Mit Hilfe der Steuereinheit und/oder des Leitsystem kann die gesamte Produktverarbeitungsanlage, insbesondere die gesamte Mahlanlage, oder ein Teil davon gesteuert und/oder geregelt werden.
  • Von der Steuereinheit kann z.B. eine Warnmeldung ausgegeben oder ein elektrisches Alarmsignal erzeugt werden, falls ein vorgegebenes Warnkriterium erfüllt ist. Das Warnkriterium kann beispielsweise darin bestehen, dass der Messwert mindestens eines der Sensoren einen für diesen Sensor vorgegebenen Grenzwert überschreitet. In einer anderen Variante kann das Warnkriterium darin bestehen, dass die Differenz zwischen dem grössten Messwert und dem kleinsten Messwert, die von einer vorgegebenen Menge von Sensoren gemessen werden, einen vorgegebenen Grenzwert übersteigt. Falls das Warnkriterium erfüllt ist, kann ein Warnsignal ausgegeben werden (beispielsweise optisch und/oder akustisch) und/oder die Produktverarbeitungsanlage kann zum Stillstand gebracht werden (beispielsweise durch die Steuereinheit). Ausserdem kann die Steuereinheit die von dem mindestens einen Sensor erfassten Messwerte oder daraus gewonnene Daten visualisieren. Die Produktverarbeitungsanlage kann produktstrom-abwärts von einer Walzenpaarung eine Vorrichtung zur Messung von Partikelgrössen und deren Verteilungen enthalten. Hierdurch kann die Messung der Partikelgrössen und deren Verteilungen beispielsweise mit einer Messung des Verschleisszustandes und/oder des Walzenanpressdrucks kombiniert werden. Dies ist insbesondere dann von Vorteil, wenn die Walze, insbesondere die Mahlwalze, eine Riffelwalze ist. Alternativ oder zusätzlich kann produktstrom-abwärts von einer Walze, insbesondere einer Mahlwalze, auch eine Vorrichtung zur NIR-Messung des Produktstromes, insbesondere des Mahlgutstromes, angeordnet sein. Dies ist besonders dann vorteilhaft, wenn es sich bei Walzen, insbesondere den Mahlwalzen, um Glattwalzen handelt. Beide Varianten ermöglichen aufgrund der Erkennung des Verschleisszustandes eine frühzeitige Planung der Wartung.
  • Mit der erfindungsgemässen Produktverarbeitungsanlage ist es möglich, objektiv die Leistungsaufnahme von Mahlwalzen (einzeln oder als Paarung) kontinuierlich während des Mahlvorganges beispielsweise einer Produktcharge zu überwachen. Dabei können weitere Parameter gemessen und überwacht werden. Zum Beispiel kann in die Überwachung zusätzlich die Walzentemperatur oder die Innenraumtemperatur des Gehäuses des Walzenstuhles und/ oder die Raumtemperatur, also die Außentemperatur eingehen, da diese Temperaturwerte Einflüsse auf die Temperatur der Mahlwalzen haben etc. Je höher der Anpressdruck ist, umso größer ist der Energiebedarf, also der Kilowatt-Verbrauch. Bei einem höheren Anpressdruck wird mehr Zerkleinerungsenergie erzeugt, welche zum Teil als Wärme an das zu zerkleinernde Produkt und auch an das Walzenmaterial abgegeben wird. Das bedeutet, dass sich auch die Temperatur im Innenraum des Walzenstuhles oder einer ähnlichen Maschine erhöht. Ist der Produktschleier gleichmäßig, kann man mit Hilfe der Temperatur, die sich auf der Oberfläche der Walze einstellt und mit Temperaturfühlern erfasst wird, die Mahlarbeit optimieren, indem man eine dem zu bearbeitenden Produkt zugeordnete optimale Temperatur mit Hilfe des Anpressdruckes und/oder der Mahlspaltverstellung verändert. Diese Veränderung kann sowohl manuell als auch vollautomatisch mit Hilfe eines Computers und/oder einer Steuerung, beispielsweise einer SPS-Steuerung (Selbst Programmierbare Steuerung) oder auch PLC-Steuerung (Programable Logic Control) (Regelvorrichtung), erfolgen. Die weiteren überwachten Parameter können als notwendig einzuhaltende Randbedingungen zugeordnet physikalische, technologische oder prozessbedingte Grenzen vorgegeben. Die zusätzliche Überwachung derartiger Randbedingungen kann zu einer Verbesserung des Regelungsverhaltens und zu einer besseren Produktqualität der Endprodukte führen.
  • Erfindungsgemäss wird die Vermahlungsanlage 1 durch eine intelligente, selbst-adaptive Regel- und Steuerungsvorrichtung 4 mit selbst-optimierter Steuerung der Mühlenanlage 1 und der Vermahlungslinie eines Walzensystems der Mühlenanlage 1 geregelt. Die Vermahlungslinie umfasst eine Mehrzahl von Verarbeitungseinheiten 2(B)/3(C), welche basierend auf operativen Prozessparametern 4111,...,411x jeweils einzeln mittels der Regel- und Steuerungsvorrichtung 4 ansteuerbar und im ihrem Betrieb einzeln regelbar sind. Mittels eines operativen Prozessrezept 411 ist eine Chargen-Steuerung mit einer definierten Verarbeitungsfolge in den Verarbeitungseinheiten 2(B)/3(C) regelbar, wobei mittels des operativen Prozessrezept 411 aus einem oder mehreren Ausgangsstoffen 5 mit den Messparameter 51 eine definierte Menge eines Endproduktes 6 mit den Messparametern 61 (611,...,61x) und der Ausbeute 62 erzeugt wird. Die Verarbeitungseinheiten 2(B)/3(C) werden basierend auf spezifisch, dem operativen Prozessrezept zugeordneten operativen Chargen-Prozessparametern gesteuert. Die Regel- und Steuerungsvorrichtung 4 umfasst ein Pattern-Recognition-Module zum Erkennen von operativen Prozessrezepten 41 mit multi-dimensionalen Chargen-Prozessparameter-Pattern 4111,...,411x, wobei ein operatives Prozessrezept 41 mindestens ein oder mehrere Ausgangsstoffe 5, eine definierte Abfolge eines Vermahlungsprozesses innerhalb der Verarbeitungseinheiten 2(B)/3(C) der Vermahlungslinie, und operative Chargen-Prozessparameter 4111,...,411x zu den jeweiligen Verarbeitungseinheiten der Vermahlungslinie zugeordnet abgespeichert umfasst. Die Regel- und Steuerungsvorrichtung 4 umfasst eine Speichervorrichtung 43 zum Speichern historischer operativen Prozessrezepten 431 mit historischen Chargen-Prozessparameter 4311,...,431x, wobei die historischen Chargen-Prozessparameter 4311,...,431x eines Prozessrezeptes 431 jeweils ein prozess-typisches, multi-dimensionales Chargen-Prozessparameter-Pattern 4321,...,432x eines optimierten Chargen-Prozesses im Normbereich definieren.
  • Bei Eingabe von Endprodukteparameter und/oder Eingangsprodukteparameter eines neuen operativen Prozessrezeptes 411 werden mittels Pattern-Recognition des Pattern-Recognition-Modules eines oder mehrere der abgespeicherten historischen operativen Prozessrezepten 432 basierend auf den zugeordneten multi-dimensionalen Chargen-Prozessparameter-Pattern 4321,...,432x als nächstliegende Chargen-Prozessparameter-Pattern 432i getriggert und/oder selektiert. Das Pattern-Recognition-Modul kann insbesondere eine maschinen-basierte neuronale Netzstruktur umfassen. Die Identifizierung und Recognition der Pattern findet dann z.B. im Rahmen des Netztrainings statt. Ein auf einem neuronalen Netz basierendes Training kann z.B. nur beruhend auf historischen Pattern 432 aufgebaut sein. Die Regelung der Regelungsparameter 411 des Mühlensystems 1 kann auf Basis der aktualisierten neuronalen Netzstruktur und insbesondere auf mindestens eine vorgebbare Zielgröße ausgerichtete Optimierung erfolgen. Mittels der Regel- und Steuerungsvorrichtung 4 werden basierend auf den getriggerten nächstliegende Chargen-Prozessparameter-Pattern 432i neue Chargen-Prozessparameter-Pattern mit neuen Chargen-Prozessparameter 4111,...,411x für das eingegebene neue operative Prozessrezept 411 generiert, wobei die Verarbeitungseinheiten 2(B)/3(C) basierend auf den generierten operativen Prozessrezepten mit den zugeordneten Chargen-Prozessparameter mittels der Regel- und Steuerungsvorrichtung 4 entsprechend angesteuert und geregelt werden. Während des Vermahlungsprozesses des neuen operativen Prozessrezeptes 411 werden die operativen Prozessparameter mittels der Regel- und Steuerungsvorrichtung 4 kontinuierlich überwacht, wobei bei der Detektion einer Anomalie als definierte Abweichung der überwachten operativen Prozessparameter 4111,...,411x vom den bestimmten operativen Prozessparametern 4111,...,411 x des neuen operativen Prozessrezeptes 411 ein Warnsignal auf eine Alarmeinheit übertragen wird. Die Chargen-Prozessparameter können z.B. mindestens die Ströme eines oder mehrerer Walzenstühle 2(B)/3(C) der Mühlenanlage 1 umfassen. Die ein oder mehreren Walzenstühle können z.B. mindestens Riffelwalzen (B Passage) und/oder Glattwalzen (C Passage) umfassen. Die Chargen-Prozessparameter können z.B. mindestens die Ströme aller Walzenstühle 2(B)/3(C) der Mühlenanlage 1 umfassen. Mittels der prozess-typischen Chargen-Prozessparameter eines optimierten Chargen-Prozesses im Normbereich können z.B. definierte Qualitätsparameter 61 (611,...,61x) des Endproduktes 6 und spezifische Mehlausbeute 62 in Abhängigkeit vom den Ausgangsprodukten 5 und/oder dessen Messparameter 51 bestimmt werden. Die definierten Qualitätsparameter 61 können z.B. mindestens Partikelgrössenverteilung 611 und/oder Stärkebeschädigung 612 und/oder Proteinqualität 613 und/oder Wassergehalt 614 umfassen. Die überwachten Chargen-Prozessparametern 4111,...,411x können z.B. mindestens Ausbeute 62 und/oder Energieaufnahme/- verbrach und/oder Durchsatz/Maschinenlaufzeit umfassen. Während des Vermahlungsprozesses können z.B. bei der Detektion von Anomalie kontinuierliche Langzeit-Veränderungen bei den überwachten Chargen-Prozessparametern von der Regel- und Steuerungsvorrichtung erfasst werden, wobei die definierte Abweichung der überwachten operativen Prozessparametern vom den generierten operativen Prozessparametern des neuen operativen Prozessrezeptes in Abhängigkeit der gemessenen kontinuierlichen Langzeit-Veränderungen bestimmt wird. Die überwachten Chargen-Prozessparametern können z.B. von einer Vielzahl von erfindungsgemässen Regel- und Steuerungsvorrichtungen 4 über ein Netzwerk an eine zentrale Überwachungseinheit übermittelt werden, wobei die Vielzahl von Regel- und Steuerungsvorrichtungen 4 zentral überwacht und geregelt werden. U.a. hat die Erfindung den Vorteil, dass sie auf eine technisch neue Art die Identifikation von langfrist-Trends in der Produktion, das automatisierte Erkennen von Auffälligkeiten, die automatisierte 24/7 (Fern) Überwachung und Erkennung der Produktionsparameter für (i) Ausbeute, (ii) Energie, und (iii) Durchsatz / Maschinenlaufzeit etc. erlaubt.
  • In einer Ausführungsvariante können die Ströme aller Walzenstühle 2(B)/3(C) betrachtet werden, z.B. unterteilt in B Passage (Riffelwalzen) und C Passage (Glattwalzen). Für jedes Rezept ergibt sich ein typisches Pattern 421, das in Abhängigkeit vom Rohmaterial 5 und den vorhergehenden Prozessschritten die Qualität 61 des Endproduktes 6 bestimmt (Partikelgrössenverteilung 611, Stärkebeschädigung 612, Proteinqualität 613, Wassergehalt 614) sowie die spezifische Mehlausbeute 62. Eine Veränderung des Patterns 421 der Ströme wird als Anomalie vom System 4 automatisch detektiert und eine Warnmeldung erzeugt.
  • Referenzliste
    1. 1 Mühlenanlage
    2. 2 Verarbeitungseinheiten (B)
      • 21,...,23 Riffelwalzen
    3. 3 Verarbeitungseinheiten (C)
      • 31,...,33 Glattwalzen
    4. 4 Regel- und Steuerungsvorrichtung
      • 41 Input Parameter
        • 411 Operatives Prozessrezept
          4111,...,411x Operative Prozessparameter
        • 421 Pattern
          4121,...,412x Chargen(Batch)-Parameter-Pattern
      • 42 Pattern-Recognition-Module
      • 43 Speichervorrichtung
        • 431 Historische operative Prozessrezepte
          • 4311,...,431x Historische operative Prozessparameter
          • 431i Getriggerte nächstliegende Prozessparameter
        • 432 Historische Pattern
          • 4321,...,432x Chargen-Parameter-Pattern
          • 432i Getriggertes nächstliegendes Pattern
    5. 5 Eingangsprodukte
      • 51 Messparameter Eingangsstoffe
    6. 6 Endprodukte
      • 61 Messparameter Endprodukte
        • 611 Partikelgrössenverteilung
        • 612 Stärkebeschädigung
        • 613 Proteinqualität
        • 614 Wassergehalt
      • 62 Spezifische Ausbeute

Claims (11)

  1. Selbst-adaptives Regel- und Steuerungsverfahren für eine Regel- und Steuerungsvorrichtung (4) zur selbst-optimierten Steuerung einer Mühlenanlage (1) und einer Vermahlungslinie eines Walzensystems der Mühlenanlage (1), wobei die Vermahlungslinie eine Mehrzahl von Verarbeitungseinheiten (2(B)/3(C)) umfasst, welche basierend auf operativen Prozessparametern (4111,...,411x) jeweils einzeln mittels der Regel- und Steuerungsvorrichtung (4) ansteuerbar und in ihrem Betrieb einzeln regelbar sind, wobei mittels einem operativen Prozessrezept (41/411) eine Chargen-Steuerung mit einer definierten Verarbeitungsfolge in den Verarbeitungseinheiten (2(B)/3(C)) regelbar ist, wobei mittels dem operativen Prozessrezept (411) aus einem oder mehreren Eingangsstoffen (5) eine definierte Menge eines Endproduktes (6) erzeugbar ist, und wobei die Verarbeitungseinheiten (21,...,23,31,...,33) basierend auf spezifisch, dem operativen Prozessrezept (41) zugeordneten operativen Chargen-Parametern (4111,...,411x) gesteuert werden, dadurch gekennzeichnet,
    dass die Regel- und Steuerungsvorrichtung (4) ein Pattern-Recognition-Module zum Erkennen von operativen Prozessrezepten (411) mit multi-dimensionalen Chargen-Parameter-Pattern (4121,...,412x) umfasst, wobei ein operatives Prozessrezept (411) mindestens ein oder mehrere Eingangsprodukteparameter (51) und/oder Endprodukteparameter (61), eine definierte Abfolge eines Vermahlungsprozesses innerhalb der Verarbeitungseinheiten (2/3) der Vermahlungslinie, und operative Prozessparameter (4121,...,412x) zu den jeweiligen Verarbeitungseinheiten (21,...,23/31,...,33) der Vermahlungslinie zugeordnet abgespeichert umfasst,
    dass die Regel- und Steuerungsvorrichtung (4) eine Speichervorrichtung (43) zum Speichern historischer operativen Prozessrezepten (431) mit historischen Chargen-Prozessparameter (4311,...,431x) umfasst, wobei die historischen Chargen-Prozessparameter (4311,...,431x) eines Prozessrezeptes (431) jeweils ein prozess-typisches, multi-dimensionales Chargen-Prozessparameter-Pattern (4321,...,432x) eines optimierten Chargen-Prozesses im Normbereich definieren,
    dass bei Eingabe von Endprodukteparametern (61) und/oder Eingangsprodukteparametern (51) eines neuen operativen Prozessrezeptes (41) mittels Pattern-Recognition des Pattern-Recognition-Modules (42) eines oder mehrere der abgespeicherten historischen operativen Prozessrezepten (431) basierend auf den zugeordneten multi-dimensionalen Chargen-Parameter-Pattern (4321,...,432x) als einem neuen Chargen-Parameter-Pattern (4121,...,412x) nächstliegende Chargen-Prozessparameter-Pattern (432i) getriggert und/oder selektiert werden,
    dass mittels der Regel- und Steuerungsvorrichtung (4) basierend auf den getriggerten nächstliegende Chargen-Prozessparameter-Pattern (432i) neue operative Prozessparameter (4111,...,411x) für das eingegebene neue operative Prozessrezept (41) generiert werden, wobei die Verarbeitungseinheiten basierend auf dem generierten operativen Prozessrezept (41) mit den zugeordneten neuen operativen Prozessparametern (4111,...,411x) mittels der Regel- und Steuerungsvorrichtung (4) entsprechend angesteuert und geregelt werden, und
    dass während des Vermahlungsprozesses des neuen operativen Prozessrezeptes (41) die operativen Prozessparameter (4111,...,411x) mittels der Regel- und Steuerungsvorrichtung (4) kontinuierlich überwachbar sind, wobei bei der Detektion einer Anomalie als definierte Abweichung der überwachten operativen Prozessparameter vom den bestimmten operativen Prozessparametern (4111,...,411x) des neuen operativen Prozessrezeptes (41) ein Warnsignal auf eine Alarmeinheit übertragen wird.
  2. Regel- und Steuerungsverfahren zur selbst-optimierten Steuerung einer Mühlenanlage (1) und einer Vermahlungslinie eines Walzensystems einer Mühle (1) nach Anspruch 1, dadurch gekennzeichnet, dass die operative Prozessparameter (4111,...,411x) mindestens Messparameter betreffend der Ströme und/oder Leistungsaufnahme eines oder mehrerer Walzenstühle der Mühlenanlage (1) und/oder Ausbeute und/oder Durchsatz/Maschinenlaufzeit umfasst.
  3. Regel- und Steuerungsverfahren zur selbst-optimierten Steuerung einer Mühlenanlage (1) und einer Vermahlungslinie eines Walzensystems einer Mühle nach Anspruch 2, dadurch gekennzeichnet, dass die ein oder mehreren Walzenstühle (21,...,23/31,...,33) mindestens Riffelwalzen (B Passage/21,...,23) und/oder Glattwalzen (C Passage/31,...,33) umfassen.
  4. Regel- und Steuerungsverfahren zur selbst-optimierten Steuerung einer Mühlenanlage (1) und einer Vermahlungslinie eines Walzensystems einer Mühle (1) nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, dass die operativen Prozessparameter (4111,...,411x) mindestens Messparameter betreffend der Ströme und/oder Leistungsaufnahme aller Walzenstühle der Mühlenanlage (1) umfasst.
  5. Regel- und Steuerungsverfahren zur selbst-optimierten Steuerung einer Mühlenanlage (1) und einer Vermahlungslinie eines Walzensystems einer Mühle (1) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass mittels der prozess-typischen operativen Prozessparameter (4111,...,411x) eines optimierten Chargen-Prozesses im Normbereich definierte Qualitätsparameter des Endproduktes (6) und spezifische Mehlausbeute in Abhängigkeit vom den Eingangsprodukten (5) bestimmbar sind.
  6. Regel- und Steuerungsverfahren zur selbst-optimierten Steuerung einer Mühlenanlage (1) und einer Vermahlungslinie eines Walzensystems einer Mühle (1) nach Anspruch 5, dadurch gekennzeichnet, dass die definierten Qualitätsparameter (61) mindestens Partikelgrössenverteilung (611) und/oder Stärkebeschädigung (612) und/oder Proteinqualität (613) und/oder Wassergehalt (614) umfassen.
  7. Regel- und Steuerungsverfahren zur selbst-optimierten Steuerung einer Mühlenanlage (1) und einer Vermahlungslinie eines Walzensystems einer Mühle (1) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die überwachten operativen Prozessparameter (4111,...,411x) mindestens Ausbeute (62) und/oder Energieaufnahme/-verbrauch und/oder Durchsatz/Maschinenlaufzeit umfassen.
  8. Regel- und Steuerungsverfahren zur selbst-optimierten Steuerung einer Mühlenanlage (1) und einer Vermahlungslinie eines Walzensystems einer Mühle (1) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass während des Vermahlungsprozesses bei der Detektion von Anomalie kontinuierliche Langzeit-Veränderungen bei den überwachten operativen Prozessparameter (4111,...,411x) von der Regel- und Steuerungsvorrichtung (4) erfasst werden, wobei die definierte Abweichung der überwachten operativen Prozessparameter (4111,...,411x) vom den generierten operativen Prozessparametern (4111,...,411x) des neuen operativen Prozessrezeptes (41) in Abhängigkeit der gemessenen kontinuierlichen Langzeit-Veränderungen bestimmt wird.
  9. Regel- und Steuerungsverfahren zur selbst-optimierten Steuerung einer Mühlenanlage (1) und einer Vermahlungslinie eines Walzensystems einer Mühle (1) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die überwachten operativen Prozessparametern (4111,...,411x) von einer Vielzahl von Regel- und Steuerungsvorrichtungen (4) über ein Netzwerk an eine zentrale Überwachungseinheit übermittelt werden, wobei die Vielzahl von Regel- und Steuerungsvorrichtungen (4) zentral überwacht und geregelt werden.
  10. Regel- und Steuerungsverfahren zur selbst-optimierten Steuerung einer Mühlenanlage (1) und einer Vermahlungslinie eines Walzensystems einer Mühle (1) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die definierte Abweichung der überwachten operativen Prozessparameter (4111,...,411x) vom den generierten operativen Prozessparametern (4111,...,411x) des neuen operativen Prozessrezeptes (41) in Abhängigkeit der natürlichen Schwankungen innerhalb definierbarer χ 2-Standardabweichungen bestimmt wird.
  11. Selbst-adaptive Regel- und Steuerungsvorrichtung (4) zur automatisierten Steuerung und Selbst-Optimierung einer Mühlenanlage (1) oder einer Vermahlungslinie eines Walzensystems, wobei die Vermahlungslinie eine Mehrzahl von Verarbeitungseinheiten (2(B)/3(C)) umfasst, welche basierend auf operativen Prozessparametern (41) jeweils einzeln mittels der Regel- und Steuerungsvorrichtung (4) ansteuerbar und im ihrem Betrieb einzeln regelbar sind, wobei mittels einer Chargen-Steuerung eine definierte Menge eines Endproduktes (6), welche aus einem oder mehreren Eingangsprodukten (5) nach einer definierten Reihenfolge der Verarbeitungseinheiten (2(B)/3(C)) basierend auf spezifisch zugeordneten operativen Prozessparametern (4111,...,411x) erzeugbar ist, dadurch gekennzeichnet,
    dass die Regel- und Steuerungsvorrichtung (4) ein Pattern-Recognition-Module zum Erkennen von operativen Prozessrezepten (41) umfassend multi-dimensionalen Chargen-Parameter-Pattern (4121,...,412x) umfasst, wobei ein operatives Prozessrezept (41) mindestens ein oder mehrere Eingangsprodukteparameter (51) und/oder Endprodukteparameter (61), eine definierte Abfolge eines Vermahlungsprozesses innerhalb der Verarbeitungseinheiten (2/3) der Vermahlungslinie, und operative Prozessparameter (4121,...,412x) zu den jeweiligen Verarbeitungseinheiten (21,...,23/31,...,33) der Vermahlungslinie zugeordnet abgespeichert umfasst,
    dass die Regel- und Steuerungsvorrichtung (4) eine Speichervorrichtung (43) zum Speichern historischer operativen Prozessrezepten (431) mit historischen operativen Prozessparametern (4311,...,431x) umfasst, wobei die historischen operativen Prozessparametern (4311,...,431x) eines operativen Prozessrezeptes (41) jeweils ein prozess-typisches, multi-dimensionales Chargen-Parameter-Pattern (4321,...,432x) eines optimierten Chargen-Prozesses im Normbereich definieren,
    dass bei Eingabe von Endprodukteparametern (61) und/oder Eingangsprodukteparametern (51) eines neuen operativen Prozessrezeptes (41) mittels Pattern-Recognition des Pattern-Recognition-Modules eines oder mehrere der abgespeicherten historischen operativen Prozessrezepten (431) basierend auf den zugeordneten multi-dimensionalen Chargen-Parameter-Pattern (4321,...,432x) als einem neuen Chargen-Parameter-Pattern (4121,...,412x) nächstliegende Chargen-Parameter-Pattern (432i) selektierbar und/oder triggerbar ist,
    dass mittels der Regel- und Steuerungsvorrichtung (4) basierend auf den getriggerten nächstliegende Chargen-Parameter-Pattern (432i) neue operative Prozessparameter (4111,...,411x) für das eingegebene neue operative Prozessrezept (41) bestimmbar sind, wobei die Verarbeitungseinheiten (2/3) basierend auf dem bestimmten operativen Prozessrezept (41) und den operativen Prozessparametern (432i) mittels der Regel- und Steuerungsvorrichtung (4) entsprechend angesteuert und geregelt werden, und
    dass während des Vermahlungsprozesses die operativen Prozessparameter mittels der Regel- und Steuerungsvorrichtung (4111,...,411x) kontinuierlich überwachbar sind, wobei bei der Detektion einer Anomalie als definierte Abweichung der überwachten operativen Prozessparametern (4111,...,411x) von den bestimmten operativen Prozessparametern (4111,...,411x) des neuen operativen Prozessrezeptes (41) ein Warnsignal auf eine Alarmeinheit übertragen wird.
EP18815541.0A 2017-11-23 2018-11-23 Intelligente, selbst-adaptive steuerungsvorrichtung zur automatisierten optimierung und steuerung der vermahlungslinie eines walzensystems und entsprechendes verfahren Active EP3713671B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17203422 2017-11-23
PCT/EP2018/082448 WO2019101968A1 (de) 2017-11-23 2018-11-23 Intelligente, selbst-adaptive steuerungsvorrichtung zur automatisierten optimierung und steuerung der vermahlungslinie eines walzensystems und entsprechendes verfahren

Publications (2)

Publication Number Publication Date
EP3713671A1 EP3713671A1 (de) 2020-09-30
EP3713671B1 true EP3713671B1 (de) 2021-11-17

Family

ID=60452500

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18815541.0A Active EP3713671B1 (de) 2017-11-23 2018-11-23 Intelligente, selbst-adaptive steuerungsvorrichtung zur automatisierten optimierung und steuerung der vermahlungslinie eines walzensystems und entsprechendes verfahren

Country Status (7)

Country Link
US (1) US11278912B2 (de)
EP (1) EP3713671B1 (de)
JP (1) JP7000571B2 (de)
CN (1) CN111565851B (de)
ES (1) ES2907086T3 (de)
UA (1) UA126415C2 (de)
WO (1) WO2019101968A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10807098B1 (en) 2017-07-26 2020-10-20 Pearson Incorporated Systems and methods for step grinding
DE102019117819A1 (de) * 2019-07-02 2021-01-07 ZIEMANN HOLVRIEKA GmbH Verfahren zum Einstellen oder Verändern eines Zerkleinerungsflächenabstandes einer Zerkleinerungsvorrichtung und/oder zur Bestimmung des Zustandes der Zerkleinerungsfläche einer Zerkleinerungsvorrichtung, Steuervorrichtung zur Durchführung des Verfahrens und entsprechende Verwendungen
US10757860B1 (en) 2019-10-31 2020-09-01 Hemp Processing Solutions, LLC Stripper apparatus crop harvesting system
US10933424B1 (en) 2019-12-11 2021-03-02 Pearson Incorporated Grinding roll improvements
DE102020114835B4 (de) * 2020-06-04 2024-02-15 Maschinenfabrik Köppern Gmbh & Co. Kg Verfahren zur Überwachung einer Hochdruck-Walzenpresse
DE102020129795A1 (de) 2020-08-25 2022-03-03 Deere & Company Feldhäcksler mit Konditionierwalzen und Verschleißsensor
JP2022100163A (ja) * 2020-12-23 2022-07-05 トヨタ自動車株式会社 音源推定サーバ、音源推定システム、音源推定装置、音源推定方法
US20220297135A1 (en) * 2021-03-18 2022-09-22 Roy Olson System for grinding material incorporating machine learning
CN114326629B (zh) * 2021-12-30 2022-11-11 贵阳博亚机械制造有限公司 一种应用于航空零件精细加工的组合工具和加工方法
CN117055455A (zh) * 2023-08-02 2023-11-14 山东春光磁电科技有限公司 一种软磁铁氧体自动配料控制系统

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1415604A (en) * 1973-03-23 1975-11-26 Simon Ltd Henry Cereal milling
DE2730166C2 (de) 1976-07-16 1994-05-11 Gebrüder Bühler AG, Uzwil Walzenstuhl für die Vermahlung und Schrotung von Getreide
CH619157A5 (de) * 1976-07-16 1980-09-15 Buehler Ag Geb
DE2855715C3 (de) 1978-12-22 1982-05-19 Gebrüder Bühler AG, 9240 Uzwil Getreidemühlenanlage zur Herstellung von Mehl
JPH0696122B2 (ja) * 1988-11-02 1994-11-30 三菱マテリアル株式会社 竪型ミルの制御方法及びその装置
JP2525107B2 (ja) * 1992-04-24 1996-08-14 日本碍子株式会社 破砕機の粒径分布制御方法
JPH07175515A (ja) * 1993-12-17 1995-07-14 Kobe Steel Ltd 機械設備及びローラミルの異常検出方法,安定度算出方法及び運転制御方法
JP3689453B2 (ja) * 1995-06-14 2005-08-31 バブコック日立株式会社 粉砕機の状態推定装置
IT1288157B1 (it) * 1996-05-03 1998-09-11 Golfetto Spa Procedimento per effettuare il controllo automatico della macinazione in un impianto molitorio ed impianto per effettuare il procedimento.
WO2010000811A2 (de) * 2008-07-02 2010-01-07 Bühler AG Vorrichtung und verfahren zur herstellung von mehl und/oder griess
US8606379B2 (en) 2008-09-29 2013-12-10 Fisher-Rosemount Systems, Inc. Method of generating a product recipe for execution in batch processing
DE102010012620A1 (de) * 2010-03-24 2011-09-29 Siemens Aktiengesellschaft Verfahren zum Betrieb einer Mühle
EP2412246A1 (de) * 2010-07-28 2012-02-01 Bühler AG Mahlen von Kaffeebohnen
DE102013200578A1 (de) * 2013-01-16 2014-07-17 Siemens Aktiengesellschaft Verfahren zur Antriebsregelung
CN104008179B (zh) * 2014-06-09 2017-08-25 北京阿贝斯努信息技术有限公司 一种基于动态区域组合的多维数据表达方法
US10168691B2 (en) 2014-10-06 2019-01-01 Fisher-Rosemount Systems, Inc. Data pipeline for process control system analytics
JP6681048B2 (ja) * 2016-07-22 2020-04-15 株式会社サタケ 穀物処理施設の運転補助システム、および、サテライト施設の自動運転制御方法
CN206652542U (zh) * 2017-02-16 2017-11-21 中食兆业(北京)食品发展有限公司 一种基于热量利用的节能型食品处理系统
CN206631658U (zh) * 2017-03-03 2017-11-14 襄阳市龙贡粮油有限公司 一种面粉加工用磨粉机
CN107309018A (zh) * 2017-08-08 2017-11-03 王国萍 一种可调节间距的双棍破碎机
CN107350062A (zh) * 2017-08-21 2017-11-17 天津水泥工业设计研究院有限公司 一种采用非金属研磨介质的选粉机外置式立磨联合粉磨系统
CN107362577A (zh) * 2017-08-31 2017-11-21 向英 带给料机和制炭成型机的对转辊筒式石杉碱甲浸取装置

Also Published As

Publication number Publication date
CN111565851B (zh) 2021-10-08
US11278912B2 (en) 2022-03-22
EP3713671A1 (de) 2020-09-30
WO2019101968A1 (de) 2019-05-31
UA126415C2 (uk) 2022-09-28
CN111565851A (zh) 2020-08-21
US20200368755A1 (en) 2020-11-26
JP7000571B2 (ja) 2022-01-19
JP2021523819A (ja) 2021-09-09
ES2907086T3 (es) 2022-04-21

Similar Documents

Publication Publication Date Title
EP3713671B1 (de) Intelligente, selbst-adaptive steuerungsvorrichtung zur automatisierten optimierung und steuerung der vermahlungslinie eines walzensystems und entsprechendes verfahren
EP3801909B1 (de) Getreidemühle und walzenstuhl mit mehreren mahlpassagen zum optimierten mahlen von mahlgut, sowie entsprechendes verfahren
EP2313199B1 (de) Vorrichtung und verfahren zur herstellung von mehl und/oder griess
EP3500370B1 (de) Überwachungs- und steuerungsvorrichtung zur automatisierten optimierung der vermahlungslinie eines walzensystems und entsprechendes verfahren
Cappelli et al. Stone milling versus roller milling: A systematic review of the effects on wheat flour quality, dough rheology, and bread characteristics
EP0335925B1 (de) Verfahren zur herstellung von getreidemahlprodukten und getreidemühlenanlage
EP3003563A1 (de) Walzenpaarung, messeinrichtung, produktverarbeitungsanlage und verfahren
WO2011076265A1 (de) Anordnung und verfahren zur messung von schüttfähigen produkten
EP2540396A1 (de) Verfahren und Vorrichtung für die Herstellung von Mehl und/oder Griess
DE10218424A1 (de) Schrotmühle sowie Verfahren zur Zerkleinerung von Mahlgut
DE102009031429B4 (de) Verfahren und Vorrichtung zum Mahlen von körnigem Material
WO2003082029A1 (de) Instantisierte modifizierte mehle
EP1232793B1 (de) Weizenmehle mit erhöhter Wasseraufnahmefähigkeit, sowie Verfahren und Vorrichtung zu deren Herstellung
DANCIU et al. Grinding process of the wheat kernel with a new designed micromill
DD282861A5 (de) Verfahren und Getreidemühle zur Herstellung von Getreidemahlprodukten

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200623

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210727

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018007925

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1447603

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211215

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211117

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2907086

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220317

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220317

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220217

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211123

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018007925

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211123

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20181123

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231215

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231115

Year of fee payment: 6

Ref country code: IT

Payment date: 20231130

Year of fee payment: 6

Ref country code: FR

Payment date: 20231122

Year of fee payment: 6

Ref country code: DE

Payment date: 20231120

Year of fee payment: 6

Ref country code: CH

Payment date: 20231202

Year of fee payment: 6

Ref country code: AT

Payment date: 20231117

Year of fee payment: 6