EP3685420B1 - Mbfex-röhre - Google Patents

Mbfex-röhre Download PDF

Info

Publication number
EP3685420B1
EP3685420B1 EP18779196.7A EP18779196A EP3685420B1 EP 3685420 B1 EP3685420 B1 EP 3685420B1 EP 18779196 A EP18779196 A EP 18779196A EP 3685420 B1 EP3685420 B1 EP 3685420B1
Authority
EP
European Patent Office
Prior art keywords
anode
tube
mbfex
cathodes
mbfex tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18779196.7A
Other languages
English (en)
French (fr)
Other versions
EP3685420C0 (de
EP3685420A1 (de
Inventor
Johannes Ringel
Bo Gao
Houman Jafari
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cetteen GmbH
Original Assignee
Cetteen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cetteen GmbH filed Critical Cetteen GmbH
Publication of EP3685420A1 publication Critical patent/EP3685420A1/de
Application granted granted Critical
Publication of EP3685420C0 publication Critical patent/EP3685420C0/de
Publication of EP3685420B1 publication Critical patent/EP3685420B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/12Cooling non-rotary anodes
    • H01J35/13Active cooling, e.g. fluid flow, heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • H01J35/065Field emission, photo emission or secondary emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • H01J35/064Details of the emitter, e.g. material or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/02Electrical arrangements
    • H01J2235/023Connecting of signals or tensions to or through the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/06Cathode assembly
    • H01J2235/062Cold cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/06Cathode assembly
    • H01J2235/068Multi-cathode assembly
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/12Cooling
    • H01J2235/1204Cooling of the anode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/12Cooling
    • H01J2235/1225Cooling characterised by method
    • H01J2235/1262Circulating fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/12Cooling
    • H01J2235/1225Cooling characterised by method
    • H01J2235/1262Circulating fluids
    • H01J2235/1275Circulating fluids characterised by the fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/105Cooling of rotating anodes, e.g. heat emitting layers or structures
    • H01J35/106Active cooling, e.g. fluid flow, heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/14Arrangements for concentrating, focusing, or directing the cathode ray
    • H01J35/147Spot size control

Definitions

  • MBFEX Multibeam Field Emission X-Ray
  • Such X-ray tubes are, for example, from the treatise: Yang Lu, Hengyong Yu, Guohua Cao, Jun Zhao, Ge Wang, Otto Zhou, Medical Physics 2010, Vol. 37, pp. 3773 - 3781 and the U.S. 7,751,528 B2 known, the cathodes containing carbon nanotubes for the field emission of electrons.
  • the MBFEX tubes described there are intended for use in computer tomographs in which, instead of rotating an x-ray emitter, sequential electrical switching of individual fixed x-ray emitters is carried out.
  • MBFEX tubes which in the U.S. 7,751,528 B2 are described, have fixed X-ray emitters, in each of which a cathode is associated with an anode.
  • a cathode is associated with an anode.
  • DE 10 2010 011661 shows a multifocus X-ray tube which has a fixed anode (A) and a plurality of fixed cathodes (KH, KL) in a vacuum vessel, which are connected to the cathode voltage source (KSV) via a plurality of cathode leads.
  • the cathodes can be designed as CNT field emitters, for example, and are aligned with the anode to generate X-ray sources.
  • the high voltage for beam generation can be applied to the anode while the cathodes are grounded.
  • the object of the invention is to provide an MBFEX tube that is simple to manufacture and structurally compact compared to the prior art and to expose the high-voltage bushings and the cathode leads to only a minimum of radiation from secondary electrons or ions.
  • this object is achieved by the proposed MBFEX tube having the features of claim 1 .
  • the object is also achieved by an arrangement made up of a plurality of MBFEX tubes according to claim 24.
  • the MBFEX tube can be manufactured according to claim 25 and can be operated according to claim 27.
  • the proposed MBFEX tube is intended for an X-ray device and has in a vacuum tube an anode which is fixedly arranged therein and is designed as a cold finger and a plurality of cathodes which are fixedly arranged in rows.
  • the vacuum tube has a plurality of cathode leads and no more than two high-voltage feedthroughs.
  • a coolant tube is arranged in a high-voltage bushing, in which another tube, that is to say the coolant inner tube, is arranged.
  • either the outer or the inner tube can function as a coolant supply tube, with the respective other tube being provided as a coolant discharge tube.
  • the coolant supply pipe and the coolant discharge pipe are provided for cooling the anode with a liquid coolant.
  • the cathodes are provided for the field emission of electrons and are each aligned with respect to their main electron emission direction to the common anode for generating X-ray sources.
  • the X-ray sources on the anode emit X-ray beams each having a main X-ray emission direction.
  • the X-ray sources are preferably arranged in rows on the anode.
  • the proposed MBFEX tube is based on the first idea of designing the anode of the proposed MBFEX tube itself as a cooling device in the form of a cold finger to solve the anode cooling problem that exists with MBFEX tubes according to the prior art.
  • the anode in the proposed MBFEX tube, is designed to be hollow, with the cavity being clamshell designed to allow both coolant supply and exhaust. For example, it acts the inner tube around the coolant supply tube and the outer tube concentrically surrounding the inner tube around the coolant discharge tube.
  • the anode including the coolant tubes is closed at one end.
  • the transition between the coolant supply pipe and the coolant discharge pipe is formed at this end of the elongated anode.
  • low-viscosity silicone oils in particular those with a boiling point of more than 450° C., are suitable as liquid coolants.
  • Insulating oils sold under the "Shell Diala” brand name can also be used as coolants to cool the anode.
  • the design of the anode as a cold finger not only corresponds to a particularly advantageous compact design, but also has the advantage that both the coolant discharge pipe and the coolant supply pipe can be connected to one of the two ends of the anode through a passage through the vacuum tube with a coolant Circulation device is connected.
  • the anode contains, for example, molybdenum and/or tungsten and optionally has a coating on the outer surface which is suitable for the emission of X-rays.
  • surface sections of the anode that are positioned at an angle relative to the elongated basic shape are formed by attachments of the anode.
  • the individual attachments have different angles of inclination in relation to the elongated base body of the anode.
  • This result can also be achieved by producing the surface sections mentioned by grinding the anode.
  • a coating of the anode can be located either on its entire surface or only on sections of the surface, namely on the attachments or in the cuts.
  • the anode of the x-ray tube is preferably designed as a non-rotating anode.
  • the anode can in principle also be rotated about its own axis.
  • the manufacture of small passages through a vacuum tube for X-ray devices can be easily accomplished in terms of manufacturing technology with regard to sealing against the outside atmosphere.
  • the cathode leads of the proposed MBFEX tube are provided as connections for the cathodes to an electrical voltage, typically at a level of a few kV, in particular up to 4 kV, and are designed, for example, as wire leads. If, for example, the vacuum tube is made of glass, cathode feed lines in the form of wires can be simply melted into the vacuum tube, with such feedthroughs having a high and long-lasting seal.
  • Focusing electrodes are fixedly arranged in the vacuum tube between the cathodes and the anode and can be connected to an electrical voltage, for example, via electrical leads in the cathode leads.
  • the focusing electrodes are located in the space between extraction grids, which are closely spaced from the cathodes, and the anode.
  • Structures of the extraction grating can be produced particularly precisely by laser processing.
  • a picosecond or femtosecond laser for structuring suitable for extraction grids The precise manufacture of the extraction grid is an essential prerequisite for the electrons emitted from the cathode to reach the anode with a high degree of transmission.
  • the electron source, including the extraction grid is exposed to thermal stress, among other things.
  • a special design of the extraction grid is preferred:
  • the extraction grid basically has a basic shape adapted to the shape of the associated electron source, ie cathode, in particular a rectangular basic shape.
  • the long sides of this rectangle are formed by so-called edge strips of the extraction grid.
  • the two edge strips are integrally connected to one another by grid strips running transversely to them.
  • the transition areas between the grid strips and the edge strips are of particular importance for the absorption of thermally induced deformations.
  • a curved transition between the grid strip and the edge strip has proven to be particularly advantageous. In this case, the curvatures at the two ends of the grid strip are preferably aligned in opposite directions.
  • each grid strip connects to the edge strip at a non-right angle.
  • an elongated S-shape of the grid strip it can also have any other shape suitable for length compensation.
  • arc-shaped, for example semi-circular, curved sections can be integrated into each grid strip, in particular near the transition areas to the edge strips. It is also possible to design sections of the grid strips with simple or Z-shaped bends, preferably in a rounded shape. In all cases, the distance between adjacent grid strips is preferably constant over the entire length of the grid strips.
  • the distance between each point of the extraction grid and the electron emitter is constant to a very good approximation not only when the MBFEX tube is cold, but also at all times during normal operation.
  • components of the focusing device can also be precisely processed with pulsed laser radiation.
  • the extraction grid can be made of steel, for example, in particular stainless steel.
  • the x-ray beams which can be generated at the x-ray sources on the anode, each have a direction with the maximum intensity of the emitted x-ray radiation, which corresponds to the respective main x-ray emission direction.
  • Such a main x-ray emission direction is present in all x-ray sources that are different from a spherical beam source.
  • the geometry of the X-ray beam detected by the X-ray detector depends not only on the focusing of the electron beam but also on the collimation of the X-ray radiation.
  • an X-ray window in the vacuum tube can be designed as a collimator device and/or a collimator device can be attached in front of an X-ray window on the vacuum tube.
  • fan-shaped X-ray beams fan beam
  • conical X-ray beams cone beam
  • Each individual X-ray source formed on the anode can, for example, be approximately in the form of a point, surface or line.
  • the cross-sectional profile of the X-rays in the isocenter of the X-ray system, in particular a tomography system, depends primarily on the collimation of the X-rays, in addition to the shape of the X-ray source.
  • the cathodes are preferably arranged in a fixed row in such a way that, in cooperation with the focusing electrodes on the anode, a likewise row-like arrangement of X-ray sources is produced.
  • the cathodes are intended for sequential electrical activation.
  • the proposed MBFEX tube can be used in a computer tomograph instead of a rotating X-ray source.
  • the high-voltage bushings and the cathode leads are arranged in a row and opposite the anode on the vacuum tube. This means that - viewed in the cross section of the MBFEX tube - the cathode supply lines and high-voltage bushings on the one hand and the anode on the other hand are diametrically opposed. With such an arrangement, the high voltage feedthroughs and cathode leads are exposed to only a minimum of secondary electron or ion radiation. Particularly advantageously, such an arrangement also allows the proposed MBFEX tube to be easily installed in an X-ray device, for example in the gantry of a computer tomograph.
  • the proposed MBFEX tube its cathodes have carbon nanotubes.
  • the very high electrical and thermal conductivity of carbon nanotubes enables a high current carrying capacity without significant heat development on the individual carbon nanotubes themselves.
  • Carbon nanotubes have a low field strength threshold of less than 2 V/m for the field emission of electrons.
  • the field strength threshold value for cathodes for emitting electrons, which have carbon nanotubes can be reduced even further by arranging the carbon nanotubes in the preferred vertical direction on the cathode surface. Since single-wall carbon nanotubes are semiconductors and multi-wall carbon nanotubes are metallic conductors, multi-wall carbon nanotubes are particularly suitable for applications as electron emitters on the cathodes of the proposed MBFEX tube. It is therefore particularly advantageous to operate the proposed MBFEX tube, which has cathodes containing carbon nanotubes, with a relatively low-power power supply.
  • nanorods also known generally as nanosticks
  • field emission cathodes are formed from such nanosticks as cathodes of the x-ray tube.
  • the nanosticks of the cathode are preferably made of a material which, with regard to the quantum mechanical field emission effect, has the lowest possible electron work function for the field emission of electrons.
  • the nanosticks here have a uniform or non-uniform composition and are designed either as hollow bodies, ie tubes, or solid.
  • the cathodes can have nanosticks of the same type or a mixture of different types of nanosticks, the type of nanosticks relating to their material composition and material modification.
  • Suitable materials in pure or doped form for the field emission of electrons are, in addition to single- or multi-walled carbon nanotubes, single- or multi-walled hetero-nitrogen-carbon nanotubes, rare earth borides, in particular lanthanum hexaboride and cerium hexaboride, metal oxides, in particular TiO 2 , MnO, ZnO and Al 2 O 3 , metal sulfides, in particular molybdenum sulfide, nitrides, in particular boron nitride, aluminum nitride, carbon nitride, gallium nitride, carbides, in particular silicon carbide, silicon.
  • Rod-shaped, optionally hollow, elements made of polymeric materials are also suitable as starting products for the production of the nanosticks, which emit electrons when the cathodes are in operation.
  • the nanosticks of the cathodes are optionally made from starting products which only partially, in particular in the form of a coating, have polymer materials.
  • the cathodes have nanosticks on the surface in a preferred vertical direction, ie in the direction of the anode.
  • a preferred vertical direction ie in the direction of the anode.
  • cathodes of the same and different types can be sequentially electrically controlled in any desired manner.
  • there may also be differences in focus. Together with properties such as the surface geometry of the individual cathodes, different electron beams and ultimately different X-ray beams can thus be generated.
  • the nanorods of the cathode have, for example, a length of less than 20 ⁇ m and a diameter of less than 10 nm, with a density of at least 10 6 nanorods per cm 2 being given, based on the area of the cathode.
  • a screen printing process is suitable for producing the cathode containing nanorods.
  • a particularly uniform layer thickness and a relatively smooth surface of the emitter can thus be achieved.
  • a layer designed for the emission of electrons with a thickness of less than 20 ⁇ m and a mean roughness value (Ra) of less than 2.5 ⁇ m is preferably formed by at least one type of cathode.
  • the high quality of the emitter layer, together with a constant distance to the extraction grid, contributes to a high transmission rate of the electron source of the X-ray tube of up to 90% and more.
  • the high transmission rate is also favored by the fact that the nanorods are mainly aligned in the vertical direction, caused by the screen printing process, in relation to the substrate surface on which the emitter layer is located.
  • cathodes with carbon nanotubes and completely different types of cathodes for example cathodes with tungsten tips, which work in a different, fundamentally known manner.
  • Dispenser cathodes can also be used within the MBFEX tube.
  • the complete emitter arrangement preferably has the following layer structure:
  • a flat carrier element in particular in the form of a ceramic circuit board, is provided as the bottom layer of the emitter arrangement.
  • the ceramic circuit board is made of corundum, for example.
  • the emitter layer is on the ceramic circuit board.
  • the ceramic circuit board is covered by a metal intermediate plate, which is also known as a spacer.
  • a grid plate including the extraction grid assigned to the individual emitters.
  • the grid plate in turn is covered by a plate made of electrically insulating material, in particular ceramic, which is generally referred to as the upper insulating layer.
  • upper layer has no connection with the orientation of the electron emitter in space, but simply means that the named layer is arranged closest to the anode of the X-ray tube.
  • the layer structure described is also suitable for other X-ray tubes that are not claimed as a whole.
  • the anode at least partially encloses a designated examination area.
  • the x-ray sources and the main x-ray emission directions also at least partially enclose the examination area.
  • the examination area is provided for positioning an examination object in an X-ray device.
  • the MBFEX tube is curved as a whole, which means that even as a single X-ray tube it partially encloses the examination area.
  • a more extensive enclosing of the examination area can be realized in various ways:
  • the MBFEX tube can extend over a very large angle, in extreme cases up to almost 360°, ie it can have an almost closed ring shape.
  • the individual MBFEX tubes can either be curved or straight. In the latter case, the arrangement of all MBFEX tubes has a polygonal shape. Incomplete polygon shapes or ring shapes, such as L-shapes, U-shapes or semicircular shapes, can also be produced by combining several MBFEX tubes, with not all MBFEX tubes of such arrangements necessarily having the same shape.
  • the focal spot blur can be reduced in a computer tomograph compared to conventional designs and a higher and more constant image resolution can be achieved, especially if the anode is designed as a circular arc. If the anode is in the form of an arc of a circle, then all of the X-rays are aligned equally to an examination object. Among other things, by minimizing the number of high-voltage bushings, the examination object can be X-rayed from practically all circumferential positions using a single MBFEX tube.
  • the proposed MBFEX tube is characterized by a compact and robust design that is particularly easy to produce compared to the prior art and is particularly suitable for computer tomographs to replace a rotating X-ray source.
  • the vacuum tube in which the X-rays are generated is preferably made of metal.
  • successive X-ray pulses of different wavelengths can be generated by the MBFEX tube in a preferred process.
  • different materials within the examination volume can be distinguished from one another with a particularly high degree of reliability and at the same time a short recording time.
  • All the exemplary embodiments of the proposed MBFEX tube 1 explained below are intended for a computer tomograph and have a vacuum tube 20 with an X-ray window 21 .
  • An anode 30 designed as a cold finger is fixedly arranged in the vacuum tube 20 of all exemplary embodiments.
  • the anode 30 contains tungsten.
  • the first two exemplary embodiments of the proposed MBFEX tube show in the vacuum tube 20 a plurality of cathodes 40 of a uniform type arranged in a fixed manner and the exemplary embodiment 21 such cathodes 41 , 42 of two different types, the cathodes 40 , 41 , 42 being provided for the field emission of electrons.
  • the cathodes 40, 41, 42 are each aligned with the common anode 30 for generating X-ray sources Q with respect to the electron main emission direction e of the electron beams E that can be generated.
  • the cathodes 40, 41, 42 are fixed in rows in such a way that on the anode 30 an arrangement of X-ray sources Q can also be produced in rows.
  • the cathodes 40, 41, 42 are provided for sequential electrical control.
  • the x-ray bundles X each have a main x-ray emission direction x .
  • a grating device 43 is aligned with each x-ray source Q in each of the exemplary embodiments.
  • the grid devices 43 are fixedly arranged in the vacuum tube 20 between the cathodes 40, 41, 42 and the anode 30.
  • FIG. Each grating device 43 has an extraction grating.
  • the extraction grids are arranged at a short distance in front of the cathodes 40, 41, 42 and are provided for the extraction of electrons in the form of an electron beam E from the cathodes 40, 41, 42 .
  • the extraction grids are in the Figures 1 to 4 not marked.
  • the vacuum tube 20 of all exemplary embodiments in turn has a plurality of cathode feed lines 50 and two high-voltage bushings 51, 52 .
  • the cathode leads 50 are provided as connections for the cathodes and the grid devices 43 to an electrical voltage of a few kV and are designed as wire leads.
  • the high-voltage bushings 51, 52 are provided for the end connection of the anode to an electrical high voltage of several 10 kV. Typically, the high voltage is in the range of 10 kV to 420 kV. Values in the upper range of this interval are selected, for example, in X-ray systems for examining larger objects in the non-medical field.
  • a coolant discharge pipe 31 with an internal coolant supply pipe 32 is guided through a high-voltage bushing 52 .
  • the coolant discharge pipe 31 and the coolant supply pipe 32 are provided for cooling the anode 30 with a liquid, electrically non-conductive coolant by means of a circulating device.
  • the cathodes 40, 41, 42 in cooperation with the anode 30 can generate X-ray pulses of uniform or alternating energy.
  • An example is in 29 the time course of an emitter current EC, an anode current AC, and the grid-emitter voltage GEV are recorded.
  • the diagram after 29 shows actual measurement data.
  • the high transmittance of approx. 90%, which indicates the ratio of anode current AC to emitter current EC, should be emphasized.
  • the anode current AC 52.2 mA and the emitter current EC 58.2 mA determined from the measured voltage values. This extremely favorable ratio between the anode current AC and the emitter current EC results primarily from the high quality of the emitter arrangement 44 of the x-ray tube 1, which is described in more detail below.
  • the first embodiment of the proposed MBFEX tube 1 is based on the 1 and the 2 explained in more detail.
  • the anode 30 is designed as an arc of a circle.
  • the 1 Figure 12 shows a schematic top view of the anode 30 with the vacuum tube 20, the grid devices 43 and the high voltage feedthroughs 51, 52 not visible.
  • the 1 is not to scale.
  • the anode 30, the cathodes 40 and the grid devices 43 are arranged within the vacuum tube 20.
  • the cathodes 40 are located on a carrier 6 made of metallized ceramic.
  • the anode 30 is fixed in the vacuum tube 20 independently of the cathodes 40 .
  • the x-ray sources Q are arranged in such a way that the x-ray beams X generated are aligned with an examination region U in their respective main x-ray emission directions x .
  • the examination area U is provided for the positioning of an examination object, in particular a patient.
  • the 2 shows the proposed MBFEX tube 1 in its first embodiment in a cross-sectional side view.
  • the coolant supply pipe 32 the cathode leads 50 and the high-voltage bushings 51, 52 are not visible.
  • the cathodes 40 have multi-walled carbon nanotubes on their surface in a preferred vertical direction. In this context, "perpendicular" is to be understood as meaning an orientation directed towards the anode 30 .
  • the second embodiment of the proposed MBFEX tube 1 is based on the 3 and the 4 explained in more detail.
  • the second exemplary embodiment differs from the first exemplary embodiment only in that the anode 30 is linear.
  • the 3 shows a partially sectioned view of the MBFEX tube 1 of the second embodiment.
  • the coolant supply tube 32 the cathodes 40 and the grid devices 43 are not visible.
  • the cathode leads 50 and the high-voltage bushings 51, 52 are arranged in a row on the vacuum tube 20 and the anode 30 opposite.
  • the 4 shows the proposed MBFEX tube 1 in its second embodiment with a sectional view of the anode 30.
  • the cathodes 40 and grid devices 43 are also not visible.
  • Individual features of the high voltage bushing 52 are running out figure 5 out.
  • the grating device 43 includes by definition at least one extraction grid electrode 71, 73, 74 and at least one form of focusing electrodes 72, 75, 76.
  • the extraction grid electrodes 71,73,74 are fixed directly above the cathodes 40,41,42 and are provided for field extraction of electrons from the cathodes 40,41,42 .
  • the focusing electrodes 72, 75, 76 are also fixed directly above each extraction grid electrode 71, 73, 74 , facing the anode 6 and provided for focusing the extracted electrons as an electron beam E onto the respective X-ray source Q to be generated.
  • Extraction grid electrodes 71, 73, 74 are independently grounded from focusing electrodes 72, 75, 76 .
  • the focusing electrodes 72, 75, 76 can be operated as passive or active focusing electrodes.
  • the grid device 43 has an extraction grid electrode 71 common to all cathodes 40 , with each individual cathode 40 being separately associated with an individual focusing electrode 72 .
  • the grid device 43 has an extraction grid electrode 73 of a first form common to the cathodes 41 of the first kind and an extraction grid electrode 74 of a second form common to the cathodes 42 of the second kind, each individual cathode 41 of the first kind separately having a single focusing electrode 75 of a first form and each individual cathode 42 of the second type is separately associated with an individual focusing electrode 76 of a second form.
  • the extraction grid electrodes 71, 73, 74 and the focusing electrodes 72, 75, 76 are shown in FIGS Figures 1 to 4 not marked.
  • a time-constant potential of typically 40 KV is applied to the anode 6 , with a uniformly pulsed electrical direct current of 30 mA flowing between the anode 6 and the respectively connected cathode 40, 41 .
  • a potential of typically 120 kV which is constant over time is present on the relevant anode, with a uniformly pulsed electrical direct current of the order of 0.5 mA flowing between the anode 6 and the respective switched cathode 40, 42 .
  • ECS Electronic Control System
  • CPS Cathode Power Supply
  • APS Anode Power Supply
  • the current regulator, the device control, the electronic control system, the cathode high-voltage source, the anode high-voltage source and the device control are part of an electronic control device.
  • the current regulator, the device control and the electronic control system constitute an electronic control system.
  • the electronic control device has a main electric circuit and a control circuit, the main circuit and the control circuit being integrated in a DC circuit.
  • the main circuit the anode high-voltage source with the anode 6 and the current regulator, the current regulator with the device controller, the device controller with the electronic control system, the electronic control system with the cathode high-voltage source and the cathode high-voltage source in parallel connection with the cathode 40, 41, 42 as well as with the respective grid device 43 electrically connected.
  • the anode high-voltage source is electrically linked to the control system via feedback.
  • control system is provided both for the sequential switching of the cathodes 40, 41, 42, for the regulation of the extraction grid electrodes 71, 73, 74 and the focusing electrodes 72, 76, 56 of the respective grid device 43 and for the regulation of the main circuit current, whereby on The electrical voltage of the cathode high-voltage source can be adapted to the main circuit current specified with the control system.
  • cathodes 41, 42 of the MBFEX tube 1 are outlined as an example. Both the cathodes 41 of the first type and the cathodes 42 of the second type have Carbon nanotubes, but differ in terms of their geometry.
  • the cathodes 41, 42 are arranged in rows and alternately offset in the vacuum tube 20 , the number of cathodes 41 of the first type being equal to the number of cathodes 42 of the second type.
  • a grating device 43 and thus an x-ray source Q can each be assigned a cathode 41 of the first form and a cathode 42 of the second form.
  • the cathodes 41 of the first type or the cathodes 42 of the second type can be sequentially controlled in any way. In this way, dual-dose X-ray images can be taken with the MBFEX tube 1 .
  • MBFEX tubes 1 can be combined to form a rigid, ring-shaped or polygonal arrangement, which replaces a rotating arrangement in a computer tomograph. This applies to any configuration of MBFEX tubes 1 that has already been described and that will be explained below.
  • FIGS Figures 12 to 20 A layered structure of an emitter arrangement 44 of an MBFEX tube 1 is shown in FIGS Figures 12 to 20 illustrated.
  • the emitter arrangement 44 comprises a ceramic circuit board 45 made of corundum as the bottom layer.
  • the cathodes 40 are located on a conductive coating of the ceramic circuit board 45 and are produced with high geometric precision using the screen printing process.
  • Conductor structures 66 can be seen on the back of the ceramic circuit board 45 .
  • a metal intermediate plate 46 is placed on the ceramic circuit board 45 .
  • This intermediate metal plate 46 has rectangular openings 61 for the cathodes 40 .
  • the metal intermediate plate 46 has strip-shaped openings 62 that are narrower and longer than the openings 61 on the longitudinal sides of the openings 61.
  • the strip-shaped openings 62 have a function in degassing the vacuum tube 20. This applies both to the preparation for operation as well as for the ongoing operation of the X-ray tube 1, each in cooperation with the ceramic circuit board 45.
  • the internal openings 64 which are very close to the cathodes 40 , contribute to the fact that during the emission of electrons, gas can also be discharged in an extremely low concentration down to individual particles to the rear of the emitter arrangement 44 . This makes a significant contribution to avoiding flashovers within the vacuum tube 20 .
  • the relatively large strip-shaped openings 65 are required to a greater extent for sucking off gas during the production of the X-ray tube 1, in particular during baking.
  • the metal intermediate plate 46 has, as an integral part, a connection strip 63 as an electrical connection led from the emitter arrangement 44 to the outside.
  • a grid sheet 47 which includes the extraction grid electrodes 71 , each of which corresponds to a cathode with a precisely defined distance of 0.224 mm (in the example according to 12 ) are superior.
  • the extraction grid electrode 71 has a rectangular shape, the long sides of which are formed by completely straight edge strips 78 .
  • the two edge strips are connected to one another by a large number of lattice strips 77 , so that the lattice structure results overall.
  • the grid strips 77 are not completely straight. Rather, a rounded transition area 79 is formed at the two ends of each grid strip 77, ie at the transition to the edge strip 78 .
  • the rounded transition areas 79 ensure that thermally induced deformations do not occur a change in the spacing between the cathode 40 and the extraction grid 71 , but are accommodated within the in-plane extraction grid 71 without affecting the emission characteristics of the emitter assembly 44 .
  • the grid plate 47 is covered by an upper insulating layer 48 in the form of a plate made of a ceramic material, with which the emitter arrangement 44 is completed.
  • the upper insulating layer 48 has, as shown in FIG 12 shows openings 49 , which are adapted to the shape of the cathodes 40 to allow the passage of electrons.
  • Geometric features of the cathode 40 are shown in 28 shown. To a good approximation, the cathode 40 has a cuboid structure. Over the entire electron-emitting surface of the cathode 40 , there are hardly any fluctuations in the distance between the cathode 40 and the 28 not shown extraction grid electrode 71 given. For comparison is in 28 the surface structure of a conventional cathode produced by the process of electrophoretic deposition (EPD) is indicated by dashed lines. There is no question of a smooth surface in this comparison example. Rather, there are pronounced peaks within the surface of the emission cathode, particularly at the edges of the cathode produced using the EPD process.
  • EPD electrophoretic deposition
  • the electrons are mainly emitted at these tips. On the one hand, this limits the service life and, on the other hand, the transmission rate of electrons.
  • the cathode 40 used in the X-ray tube 1 according to the invention emits electrons in every area section of its surface with an almost constant release rate.
  • FIGS Figures 26 and 27 An exemplary embodiment of an anode 30 which cooperates with the emitter arrangement 44 is shown in FIGS Figures 26 and 27 illustrated.
  • Each of these attachments 33 has a surface 34 which is inclined relative to the base body and is coated with tungsten or another material suitable for X-ray sources.
  • the inclinations of the various surfaces 34 differ from one another in such a way that - as in 27 is indicated - the emitted X-ray radiation X is focused in the direction of the isocenter of the X-ray emitter arrangement 10 lying in the examination area U.

Description

  • Die Erfindung betrifft eine MBFEX-Röhre (MBFEX = Multibeam Field Emission X-Ray) für ein Röntgengerät, welche auch als Multi-Fokus-Feldemissionsröntgenröhre bezeichnet wird. Solche Röntgenröhren sind beispielsweise aus der Abhandlung: Yang Lu, Hengyong Yu, Guohua Cao, Jun Zhao, Ge Wang, Otto Zhou, Medical Physics 2010, Band 37, S. 3773 - 3781 und der US 7 751 528 B2 bekannt, wobei die Kathoden Kohlenstoffnanoröhren zur Feldemission von Elektronen enthalten. Die dort beschriebenen MBFEX-Röhren sind für die Verwendung in Computertomographen vorgesehen, bei welchen anstelle einer Rotation eines Röntgenemitters sequentielle elektrische Schaltungen einzelner fest angeordneter Röntgenemitter vorgenommen werden.
  • Im Zusammenhang mit Elektronenemittern, die Nanostäbchen, insbesondere Kohlenstoffnanoröhren, enthalten, wird beispielhaft auch auf die Dokumente WO 2018/086737 A1 und WO 2018/086744 A2 verwiesen.
  • Verschiedene MBFEX-Röhren, welche in der US 7 751 528 B2 beschrieben sind, weisen fest angeordnete Röntgenemitter auf, in welchen jeweils eine Kathode einer Anode zugeordnet ist. Somit sind insgesamt eine Vielzahl von Kathoden und eine entsprechende Vielzahl von Anoden vorhanden. Während die Anoden auf hohes Gleichspannungspotential gelegt sind, sind die Kathoden einzeln anzusteuern.
  • DE 10 2010 011661 zeigt eine Multifokusröntgenröhre welche in einem Vakuumgefäß eine darin fest angeordnete Anode (A) und eine Mehrzahl von fest angeordneten Kathoden (KH, KL) aufweist, die über eine Mehrzahl von Kathoden-Zuleitungen mit der Kathodenspannungsquelle (KSV) verbunden sind. Die Kathoden können z.B. als CNT-Feldemitter ausgeführt sein und sind zur Erzeugung von Röntgenquellen auf die Anode ausgerichtet. Die Hochspannung für die Strahlerzeugung kann an der Anode angelegt werden, während die Kathoden auf Masse liegen.
  • Der Erfindung liegt die Aufgabe zugrunde, eine im Vergleich zum Stand der Technik fertigungstechnisch einfach realisierbare und bautechnisch kompakte MBFEX-Röhre zur Verfügung zu stellen und die Hochspannungsdurchführungen und die Kathoden-Zuleitungen lediglich einem Minimum an Strahlung von Sekundärelektronen oder Ionen auszusetzen.
  • Diese Aufgabe wird erfindungsgemäß durch die vorgeschlagene MBFEX-Röhre mit den Merkmalen des Anspruchs 1 gelöst. Weiter wird die Aufgabe durch eine Anordnung aus mehreren MBFEX-Röhren gemäß Anspruch 24 gelöst. Die MBFEX-Röhre ist gemäß Anspruch 25 herstellbar und gemäß Anspruch 27 betreibbar.
  • Die vorgeschlagene MBFEX-Röhre ist für ein Röntgengerät vorgesehen und weist in einer Vakuumröhre eine darin fest angeordnete und als Kühlfinger ausgebildete Anode sowie eine Mehrzahl von reihenförmig fest angeordneten Kathoden auf. Die Vakuumröhre weist wiederum eine Mehrzahl von Kathoden-Zuleitungen und nicht mehr als zwei Hochspannungsdurchführungen auf. Hierbei ist in einer Hochspannungsdurchführung ein Kühlmittel-Rohr angeordnet, in welchem ein weiteres Rohr, das heißt Kühlmittel-Innenrohr, angeordnet ist. Hierbei kann entweder das außenliegende oder das innenliegende Rohr als Kühlmittel-Zufuhrrohr fungieren, wobei das jeweils andere Rohr als Kühlmittel-Abfuhrrohr vorgesehen ist.
  • Das Kühlmittel-Zufuhrrohr und das Kühlmittel-Abfuhrrohr sind zur Kühlung der Anode mit einem flüssigen Kühlmittel vorgesehen. Die Kathoden sind zur Feldemission von Elektronen vorgesehen und jeweils bezüglich ihrer Elektronen-Hauptemissionsrichtung auf die gemeinsame Anode zur Erzeugung von Röntgenquellen ausgerichtet. Die Röntgenquellen auf der Anode emittieren Röntgenstrahlenbündel, die jeweils eine Röntgen-Hauptemissionsrichtung aufweisen. Die Röntgenquellen sind auf der Anode vorzugsweise reihenförmig angeordnet.
  • Der vorgeschlagenen MBFEX-Röhre liegt der erste Gedanke zugrunde, zur Lösung des Kühlungsproblems der Anode, welches bei MBFEX-Röhren nach dem Stand der Technik gegeben ist, die Anode der vorgeschlagenen MBFEX-Röhre selbst als Kühlvorrichtung in Form eines Kühlfingers auszubilden. In diesem Sinne ist in der vorgeschlagenen MBFEX-Röhre die Anode hohl gestaltet, wobei der Hohlraum zweischalig gestaltet ist, um sowohl die Zuführung als auch die Abführung von Kühlmittel zu ermöglichen. Beispielsweise handelt es sich bei dem inneren Rohr um das Kühlmittel-Zufuhrrohr und bei dem äußeren, das innere Rohr konzentrisch umgebenden Rohr um das Kühlmittel-Abfuhrrohr.
  • Die Anode einschließlich der Kühlmittelrohre ist an einem Ende geschlossen. An diesem Ende der langgestreckten Anode ist der Übergang zwischen dem Kühlmittel-Zufuhrrohr und dem Kühlmittel-Abfuhrrohr gebildet. Als flüssige Kühlmittel sind unter anderem niedrigviskose Siliconöle, insbesondere mit einem Siedepunkt von mehr als 450° C, geeignet. Auch Isolieröle, die unter der Marke "Shell Diala" vertrieben werden, können als Kühlmittel zur Kühlung der Anode verwendet werden.
  • Die Ausgestaltung der Anode als Kühlfinger entspricht nicht nur einer besonders vorteilhaften kompakten Bauform, sondern weist den Vorteil auf, dass sowohl das Kühlmittel-Abfuhrrohr als auch das Kühlmittel-Zufuhrrohr an einem der beiden Enden der Anode durch einen Durchgang durch die Vakuumröhre mit einer Kühlmittel-Umwälzvorrichtung verbindbar ist.
  • Die Anode enthält beispielsweise Molybdän und/oder Wolfram und weist optional eine für die Emission von Röntgenstrahlen geeignete Beschichtung auf der äußeren Oberfläche auf. Gemäß einer vorteilhaften Weiterbildung sind gegenüber der langgestreckten Grundform schräg gestellte Oberflächenabschnitte der Anode durch Aufsätze der Anode gebildet. Hierbei weisen die einzelnen Aufsätze unterschiedliche Schrägstellungswinkel gegenüber dem langgestreckten Grundkörper der Anode auf. Auf diese Weise ist es mit besonders hoher Effizienz möglich, die an den einzelnen Aufsätzen durch auftreffende Elektronen entstehende Röntgenstrahlung in Richtung des Isozentrums der die MBFEX-Röhre umfassenden Röntgenanlage auszurichten. Dieses Ergebnis ist auch erzielbar, indem die genannten Oberflächenabschnitte durch Einschliffe in der Anode hergestellt werden. Eine Beschichtung der Anode kann sich entweder an deren gesamter Oberfläche oder lediglich an Abschnitten der Oberfläche, nämlich an den Aufsätzen beziehungsweise in den Einschliffen, befinden.
  • Die Anode der Röntgenröhre ist vorzugsweise als nicht rotierende Anode ausgebildet. Zum Zweck einer weiter verbesserten Kühlung kann grundsätzlich auch eine Rotation der Anode um ihre eigene Achse vorgesehen sein.
  • Die Fertigung von kleinen Durchführungen durch eine Vakuumröhre für Röntgengeräte ist bezüglich der Abdichtung gegen die Außenatmosphäre fertigungstechnisch einfach bewerkstelligbar. Die Kathoden-Zuleitungen der vorgeschlagenen MBFEX-Röhre sind als Anschlüsse der Kathoden an eine elektrische Spannung, typischerweise in Höhe weniger kV, insbesondere bis zu 4 kV, vorgesehen und sind beispielsweise als Drahtzuleitungen ausgebildet. Ist beispielsweise die Vakuumröhre aus Glas gefertigt, so sind Kathoden-Zuleitungen in Form von Drähten in die Vakuumröhre einfach einschmelzbar, wobei solche Durchführungen eine hohe und langlebige Dichtigkeit aufweisen.
  • Größere Durchführungen, beispielsweise für elektrische Hochspannungsanschlüsse oder für Rohre, in einer Vakuumröhre müssen dagegen aufwändig abgedichtet werden. Daher ist es vorteilhaft, eine größere Anzahl von solchen größeren Durchführungen an einer Vakuumröhre zu vermeiden. Im Sinne eines zweiten Grundgedankens ist dies bei der vorgeschlagenen MBFEX-Röhre dadurch erzielt, dass das Kühlmittel-Abfuhrrohr zusammen mit dem Kühlmittel-Zufuhrrohr durch eine Hochspannungsdurchführung hindurchgeführt ist. Die Hochspannungsdurchführungen sind für den Anschluss der Anode an eine elektrische Hochspannung vorgesehen. Der Anschluss der Anode an eine Hochspannung erfolgt vorzugsweise jeweils endseitig an dieser.
  • Zwischen den Kathoden und der Anode sind Fokussierungselektroden fest in der Vakuumröhre angeordnet, welche beispielsweise über elektrische Zuleitungen in den Kathoden-Zuleitungen an eine elektrische Spannung anschließbar sind. Die Fokussierungselektroden befinden sich in dem Raum zwischen Extraktionsgittern, die gering von den Kathoden beabstandet sind, und der Anode.
  • Strukturen der Extraktionsgitter sind besonders präzise durch Laserbearbeitung herstellbar. Insbesondere ist ein Pikosekunden- oder Femtosekunden-Laser zur Strukturierung der Extraktionsgitter geeignet. Die präzise Fertigung des Extraktionsgitters ist eine wesentliche Voraussetzung dafür, dass von der Kathode flächig emittierte Elektronen mit einem hohen Transmissionsgrad zur Anode gelangen. Während des Betriebs der MBFEX-Röhre ist unter anderem die Elektronenquelle einschließlich des Extraktionsgitters thermischen Belastungen ausgesetzt. Um Verformungen des Extraktionsgitters durch diese Belastungen zu minimieren, ist bevorzugt ein spezielles Design des Extraktionsgitters verwirklicht:
  • Das Extraktionsgitter hat grundsätzlich eine der Form der zugehörigen Elektronenquelle, das heißt Kathode, angepasste Grundform, insbesondere eine rechteckige Grundform. Die Längsseiten dieses Rechtecks sind durch sogenannte Randstreifen des Extraktionsgitters gebildet. Die beiden Randstreifen sind durch quer zu diesen verlaufende Gitterstreifen einstückig miteinander verbunden. Für die Aufnahme thermisch bedingter Verformungen sind die Übergangsbereiche zwischen den Gitterstreifen und den Randstreifen von besonderer Bedeutung. Als besonders vorteilhaft hat sich ein gekrümmter Übergang zwischen Gitterstreifen und Randstreifen herausgestellt. Hierbei sind die Krümmungen an den beiden Enden des Gitterstreifens vorzugsweise in entgegengesetzte Richtungen ausgerichtet. Ist beispielsweise, in Draufsicht auf das Extraktionsgitter, ein Ende des Gitterstreifens an seinem Übergang zum Randstreifen nach oben gekrümmt, so ist das andere Ende des Gitterstreifens am Übergang zum gegenüberliegenden Randstreifen nach unten gekrümmt. Die Gitterstreifen weisen somit jeweils eine langgestreckte S-Form auf, wobei der Abstand zwischen den einzelnen Gitterstreifen über deren gesamte Länge zumindest näherungsweise konstant ist. Jeder Gitterstreifen schließt hierbei in einem nicht rechten Winkel an den Randstreifen an. Statt einer langgestreckten S-Form des Gitterstreifens kann dieser auch eine sonstige für eine Längenkompensation geeignete Form aufweisen. Beispielsweise können in jeden Gitterstreifen, insbesondere nahe der Übergangsbereiche zu den Randstreifen, bogenförmig, beispielsweise halbkreisförmig, gekrümmte Abschnitte integriert sein. Ebenso ist es möglich, Abschnitte der Gitterstreifen mit einfachen oder Z-förmigen Abwinklungen, vorzugsweise in abgerundeter Form, zu gestalten. In allen Fällen ist der Abstand zwischen benachbarten Gitterstreifen vorzugsweise über die gesamte Länge der Gitterstreifen konstant.
  • Der Abstand zwischen jedem Punkt des Extraktionsgitters und dem Elektronenemitter ist nicht nur im kalten Zustand der MBFEX-Röhre, sondern zu jedem Zeitpunkt des bestimmungsgemäßen Betriebs mit sehr guter Näherung konstant. Außer dem Extraktionsgitter sind auch Komponenten der Fokussierungs-vorrichtung präzise mit gepulster Laserstrahlung bearbeitbar. Das Extraktionsgitter kann ebenso wie Fokussierungskomponenten beispielsweise aus Stahl, insbesondere nichtrostendem Stahl, gefertigt sein.
  • Die Röntgenstrahlenbündel, welche an den Röntgenquellen auf der Anode erzeugbar sind, weisen jeweils eine Richtung mit der maximalen Intensität der emittierten Röntgenstrahlung auf, welche der jeweiligen Röntgen-Hauptemissionsrichtung entspricht. Eine solche Röntgen-Hauptemissionsrichtung ist bei allen Röntgenquellen gegeben, welche von einer Kugelstrahlquelle verschieden sind. Die vom Röntgendetektor erfasste Geometrie des Röntgenstrahlenbündels hängt außer von der Fokussierung des Elektronenstrahls auch von der Kollimierung der Röntgenstrahlung ab. Hierbei kann ein Röntgenfenster in der Vakuumröhre als Kollimator-Vorrichtung ausgebildet und/oder vor einem Röntgenfenster an der Vakuumröhre eine Kollimator-Vorrichtung angebracht sein.
  • Mit der MBFEX-Röhre sind beispielsweise fächerförmige Röntgenstrahlenbündel (fan beam) und/oder kegelförmige Röntgenstrahlenbündel (cone beam) erzeugbar. Jede einzelne der auf der Anode gebildeten Röntgenquellen kann beispielsweise näherungsweise punktförmig, flächig oder strichförmig sein. Das Querschnittsprofil der Röntgenstrahlung im Isozentrum der röntgentechnischen Anlage, insbesondere Tomographieanlage, ist außer von der Form der Röntgenquelle vor allem von der Kollimierung der Röntgenstrahlung abhängig.
  • In der vorgeschlagenen MBFEX-Röhre sind die Kathoden vorzugsweise derart reihenförmig fest angeordnet, dass in Zusammenwirkung mit den Fokussierungselektroden auf der Anode eine ebenfalls reihenförmige Anordnung von Röntgenquellen erzeugt wird. Die Kathoden sind für eine sequentielle elektrische Ansteuerung vorgesehen. In einem Computertomographen ist die vorgeschlagene MBFEX-Röhre anstelle einer rotierenden Röntgenquelle einsetzbar.
  • In der erfindungsgemäßen Ausführung der MBFEX-Röhre sind die Hochspannungsdurchführungen und die Kathoden-Zuleitungen in einer Reihe und der Anode gegenüberliegend auf der Vakuumröhre angeordnet. Dies bedeutet, dass sich - im Querschnitt der MBFEX-Röhre betrachtet - die Kathoden-Zuleitungen und Hochspannungsdurchführungen einerseits und die Anode andererseits diametral gegenüber liegen. Mit einer solchen Anordnung sind die Hochspannungsdurchführungen und die Kathoden-Zuleitungen lediglich einem Minimum an Strahlung von Sekundärelektronen oder Ionen ausgesetzt. Besonders vorteilhaft gestattet eine solche Anordnung auch einen einfach bewerkstelligbaren Einbau der vorgeschlagenen MBFEX-Röhre in ein Röntgengerät, beispielsweise in die Gantry eines Computertomographen.
  • Nachfolgend wird auf einzelne vorteilhafte Weiterbildungen der vorgeschlagenen MBFEX-Röhre eingegangen.
  • In bevorzugter Gestaltung der vorgeschlagenen MBFEX-Röhre weisen deren Kathoden Kohlenstoffnanoröhren auf. Die sehr hohe elektrische und thermische Leitfähigkeit von Kohlenstoffnanoröhren ermöglicht eine hohe Stromtragfähigkeit ohne nennenswerte Hitzeentwicklung auf die einzelnen Kohlenstoffnanoröhren selbst. Kohlenstoffnanoröhren weisen einen niedrigen Feldstärke-Schwellenwert von weniger als 2 V /m für die Feldemission von Elektronen auf. Der Feldstärke-Schwellenwert bei Kathoden zur Emission von Elektronen, welche Kohlenstoffnanoröhren aufweisen, ist noch weiter absenkbar, indem die Kohlenstoffnanoröhren in senkrechter Vorzugsrichtung auf der Kathodenoberfläche angeordnet sind. Da einwandige Kohlenstoffnanoröhren Halbleiter und mehrwandige Kohlenstoffnanoröhren metallische Leiter darstellen, sind mehrwandige Kohlenstoffnanoröhren für Anwendungen als Elektronenemitter auf den Kathoden der vorgeschlagenen MBFEX-Röhre besonders geeignet. Besonders vorteilhaft ist daher der Betrieb der vorgeschlagenen MBFEX-Röhre, welche Kohlenstoffnanoröhren enthaltende Kathoden aufweist, mit einer Stromversorgung von verhältnismäßig geringer Leistungsstärke bewerkstelligbar.
  • Außer Kohlenstoffnanoröhren sich auch Nanostäbchen anderer Art, allgemein auch als Nanosticks bezeichnet, für die Emission von Elektronen innerhalb der MBFEX-Röhre geeignet. In bevorzugter Ausgestaltung sind aus solchen Nanosticks Feldemissionskathoden als Kathoden der Röntgenröhre gebildet.
  • Die Nanosticks der Kathode sind vorzugsweise aus einem Material beschaffen, welches bezüglich des quantenmechanischen Feldemissionseffektes eine möglichst niedrige Elektronenaustrittsarbeit zur Feldemission von Elektronen aufweist. Die Nanosticks weisen hierbei eine in sich einheitliche oder uneinheitliche Zusammensetzung auf und sind entweder als Hohlkörper, das heißt Röhren, oder massiv ausgebildet. Die Kathoden können hierbei Nanosticks gleicher Art oder einen Mischung verschiedener Arten von Nanosticks aufweisen, wobei sich die Art der Nanosticks auf deren Stoffzusammensetzung und Stoffmodifikation bezieht.
  • Geeignete Materialien in reiner oder dotierter Form für die Feldemission von Elektronen sind neben ein- oder mehrwandige Kohlenstoffnanoröhren auch ein- oder mehrwandige Hetero-Stickstoff-Kohlenstoffnanoröhren, Boride der seltenen Erden, insbesondere Lanthanhexaborid und Cerhexaborid, Metalloxide, insbesondere TiO2, MnO, ZnO und Al2O3, Metallsulfide, insbesondere Molybdänsulfid, Nitride, insbesondere Bornitrid, Aluminiumnitrid, Kohlenstoffnitrid, Galliumnitrid, Carbide, insbesondere Siliciumcarbid, Silicium. Als Ausgangsprodukte zur Herstellung der Nanosticks, welche beim Betrieb der Kathoden Elektronen emittieren, sind auch stabförmige, optional hohle, Elemente aus polymeren Materialien geeignet. Die Nanosticks der Kathoden sind optional aus Ausgangsprodukten, welche lediglich partiell, insbesondere in Form einer Beschichtung, Polymermaterialen aufweisen, gefertigt.
  • In einer besonders bevorzugten Ausbildung weisen die Kathoden auf der Oberfläche Nanosticks in einer vertikalen Vorzugsrichtung, das heißt in Richtung zu der Anode, auf. Beim Betrieb des Röntgenemitters und bei hinreichendem Abstand untereinander sind an den Spitzen der Nanosticks sehr starke elektrische Felder erzeugbar, wodurch die Emission von Elektronen wesentlich vereinfacht ist.
  • In einer möglichen Ausführungsform der vorgeschlagenen MBFEX-Röhre ist in der Vakuumröhre mehr als eine Sorte von Kathoden angeordnet, wobei sich der Begriff "Sorte" sowohl auf die Geometrie als auch auf sonstige Eigenschaften der Kathoden, beispielsweise auf die Werkstoffe, beziehen kann. Kathoden gleicher und unterschiedlicher Sorte sind grundsätzlich in beliebiger Weise sequentiell elektrisch ansteuerbar. Neben den Kathoden selbst können auch Unterschiede hinsichtlich der Fokussierung gegeben sein. Zusammen mit Eigenschaften wie der Flächengeometrie der einzelnen Kathoden sind damit unterschiedliche Elektronenstrahlenbündel und letztlich unterschiedliche Röntgenstrahlenbündel erzeugbar.
  • Die Nanostäbchen der Kathode weisen zum Beispiel eine Länge von weniger als 20 µm und einen Durchmesser von weniger als 10 nm auf, wobei eine auf die Fläche der Kathode bezogene Dichte von mindestens 106 Nanostäbchen pro cm2 gegeben ist.
  • Zur Herstellung der Nanostäbchen enthaltenden Kathode ist ein Siebdruckverfahren geeignet. Damit ist im Vergleich zu herkömmlichen Verfahren, insbesondere zum Verfahren der elektrophoretischen Abscheidung (EPD), eine besonders gleichmäßige Schichtdicke sowie eine relativ glatte Oberfläche des Emitters erzielbar. Vorzugsweise ist zumindest durch eine Sorte von Kathoden eine zur Emission von Elektronen ausgebildete Schicht mit einer Dicke von weniger als 20 µm und einem Mittenrauwert (Ra) von weniger als 2,5 µm gebildet. Die hohe Qualität der Emitterschicht trägt zusammen mit einem konstanten Abstand zum Extraktionsgitter zu einer hohen Transmissionsrate der Elektronenquelle der Röntgenröhre von bis zu 90% und mehr bei. Die hohe Transmissionsrate wird auch begünstigt durch die mittels des Siebdruckverfahrens bewirkte hauptsächliche Ausrichtung der Nanostäbchen in vertikale Richtung, bezogen auf die Substratoberfläche, auf welcher sich die Emitterschicht befindet.
  • Es ist auch möglich, innerhalb ein und derselben MBFEX-Röhre sowohl Kathoden mit Kohlenstoffnanoröhren als auch völlig andersartige Kathoden, beispielsweise Kathoden mit Spitzen aus Wolfram, welche auf andere, grundsätzlich bekannte Art arbeiten, zu verwenden. Ebenso können innerhalb der MBFEX-Röhre Dispenserkathoden zum Einsatz kommen. In diesem Zusammenhang wird auf die Dokumente DE 10 2011 076 912 B4 und DE 10 2010 043 561 A1 verwiesen.
  • Soweit die Kathoden als Feldemissionskathoden ausgebildet sind, weist die komplette Emitteranordnung vorzugsweise folgenden Schichtaufbau auf:
    Als unterste Schicht der Emitteranordnung ist ein flächiges Trägerelement, insbesondere in Form einer Keramikplatine, vorgesehen. Die Keramikplatine ist beispielsweise aus Korund gefertigt. Die Emitterschicht befindet sich auf der Keramikplatine. In Bereichen neben den flächigen Emittern ist die Keramikplatine durch eine Metall-Zwischenplatte, welche auch als Spacer bezeichnet wird, abgedeckt. Auf der Metall-Zwischenplatte, welche an ein definiertes elektrisches Potential gelegt wird, befindet sich ein sogenanntes Gitterblech einschließlich der den einzelnen Emittern zugeordneten Extraktionsgitter. Das Gitterblech wiederum ist abgedeckt durch eine Platte aus elektrisch isolierendem Material, insbesondere Keramik, welche allgemein als obere Isolierlage bezeichnet. Die Bezeichnung "obere" Lage hat hierbei keinen Zusammenhang mit der Ausrichtung des Elektronenemitters im Raum, sondern bedeutet lediglich, dass die genannte Lage am nächsten zur Anode der Röntgenröhre angeordnet ist. Der beschriebene Schichtaufbau ist auch für sonstige, nicht als Ganzes beanspruchte Röntgenröhren geeignet.
  • In einer besonders bevorzugten Weiterbildung der vorgeschlagenen MBFEX-Röhre umschließt die Anode einen vorgesehenen Untersuchungsbereich mindestens teilweise. Hierbei umschließen die Röntgenquellen und die Röntgen-Hauptemissionsrichtungen den Untersuchungsbereich ebenfalls mindestens teilweise. Der Untersuchungsbereich ist für die Positionierung eines Untersuchungsobjektes in einem Röntgengerät vorgesehen.
  • Beispielsweise ist die MBFEX-Röhre als Ganzes gekrümmt, womit sie bereits als einzelne Röntgenröhre den Untersuchungsbereich teilweise umschließt. Ein weitergehendes Umschließen des Untersuchungsbereiches ist auf verschiedene Arten realisierbar: Beispielsweise kann sich die MBFEX-Röhre über einen sehr großen Winkel, im Extremfall bis annähernd 360°, erstrecken, das heißt eine annähernd geschlossene Ringform aufweisen. Alternativ ist es möglich, eine Ringform aus einzelnen MBFEX-Röhren zusammenzusetzen. Die einzelnen MBFEX-Röhren können hierbei jeweils entweder gekrümmt oder in sich gerade sein. Im letztgenannten Fall ergibt sich eine Polygonform der Anordnung aus sämtlichen MBFEX-Röhren. Auch unvollständige Polygonformen oder Ringformen, etwa L-Formen, U-Formen oder Halbkreisformen, sind durch Kombination mehrerer MBFEX-Röhren herstellbar, wobei nicht notwendigerweise sämtliche MBFEX-Röhren solcher Anordnungen gleichartig geformt sind.
  • Durch eine bogenförmig ausgebildete konkav um den Untersuchungsbereich angeordnete Anode der MBFEX-Röhre ist in einem Computertomographen im Vergleich zu herkömmlichen Gestaltungen die Brennfleckunschärfe reduzierbar und eine höhere als auch gleichbleibende Bildauflösung erzielbar, insbesondere, wenn die Anode als Kreisbogen ausgebildet ist. Ist die Anode als Kreisbogen ausgebildet, so sind sämtliche Röntgenstrahlen gleichermaßen auf ein Untersuchungsobjekt ausgerichtet. Unter anderem durch die Minimierung der Anzahl der Hochspannungsdurchführungen ist das Untersuchungsobjekt praktisch von sämtlichen Umfangspositionen aus mittels einer einzigen MBFEX-Röhre durchleuchtbar.
  • Die vorgeschlagene MBFEX-Röhre zeichnet sich durch eine im Vergleich zum Stand der Technik fertigungstechnisch besonders einfach realisierbare kompakte und robuste Bauweise aus und ist insbesondere für Computertomographen zum Ersatz einer rotierenden Röntgenquelle geeignet. Die Vakuumröhre, in welcher die Röntgenstrahlung erzeugt wird, ist vorzugsweise aus Metall gefertigt.
  • Mit Hilfe von Kathoden unterschiedlicher Sorte, die in ein und derselben MBFEX-Röhre angeordnet sind, sind auf einfache Weise verschiedene Röntgenaufnahmen, welche sich hinsichtlich der Dosis voneinander unterscheiden, generierbar. Damit ist eine einfache Möglichkeit einer Dosis-Modulation gegeben. Die Anzahl der in einer röntgentechnischen Anlage vorhandenen MBFEX-Röhren unterliegt ebenso wie die Form der einzelnen MBFEX-Röhren sowie die geometrische Anordnung der MBFEX-Röhren in Relation zueinander grundsätzlich keinen Beschränkungen. Ebenso ist die MBFEX-Röhre oder eine Mehrzahl an MBFEX-Röhren innerhalb einer röntgentechnischen Anlage mit Röntgenröhren anderer Bauart kombinierbar. Allgemein sind Röntgenstrahlen verschiedener Wellenlängen, wie sie für Multi-Energy- oder Dual-Energy-Aufnahmen vorgesehen sind, durch verschiedene Einstellungen der Anodenspannung erzeugbar.
  • Unabhängig von der Gestaltung der Kathoden sind durch die MBFEX-Röhre in bevorzugter Verfahrensführung aufeinander folgende Röntgenpulse unterschiedlicher Wellenlänge generierbar. Damit sind mit besonders hoher Zuverlässigkeit und gleichzeitig kurzer Aufnahmedauer unterschiedliche Materialien innerhalb des Untersuchungsvolumens voneinander unterscheidbar.
  • Im Sinne einer geringen Störungsanfälligkeit sowie einer Schadensvermeidung, zumindest einer Schadensminimierung, im Fall eventueller Störungen hat es sich als besonders vorteilhaft herausgestellt, verschiedene, auf das Potential Null zu legende Komponenten der MBFEX-Röhre auf unterschiedliche Weise zu erden. Dies betrifft im Einzelnen Fokussierungselektroden sowie das den Elektronenemittern, welche Kohlenstoffnanoröhren oder sonstige Nanosticks enthalten, unmittelbar vorgesetzte Extraktionsgitter:
    Während passive Fokussierungselektroden in bevorzugter Ausgestaltung über ein Gehäuse geerdet sind, erfolgt die Erdung des Extraktionsgitters unabhängig von dem genannten Gehäuse, zum Beispiel über eine gesonderte Erdungsleitung, welche einer Einheit zur Ansteuerung der Elektronenemitter zugeordnet sein kann.
  • Der Vorteil der separaten Erdung von Fokussierungselektroden und Extraktionsgitter kommt zum Tragen, falls durch einen Überschlag das Potential der Fokussierungselektroden - trotz vorhandener Erdung - aufgrund des sehr hohen Potentials, auf welchem sich die Anode befindet, kurzzeitig angehoben wird. Wäre in diesem Moment das Extraktionsgitter zusammen mit den Fokussierungselektroden geerdet, so hätte dies ein entsprechend erhöhtes Potential des Extraktionsgitter und damit eine erhöhte Spannungsdifferenz zwischen den Kohlenstoffnanoröhren und dem Extraktionsgitter zur Folge. Aufgrund der gegebenen, stark ausgeprägten Spannungsabhängigkeit der Elektronenemission der Kohlenstoffnanoröhren würde in der Folge die Elektronenemission extrem ansteigen, was die Gefahr einer Beschädigung der Röntgenröhre mit sich brächte. Eine solche Beschädigungsgefahr wird durch die gesonderte Erdung von Fokussierungselektroden einerseits und Extraktionsgitter andererseits vermieden.
  • Nachfolgend wird die vorgeschlagene MBFEX-Röhre anhand einer Zeichnung näher erläutert, in welcher verschiedene Ausführungsbeispiele zusammengefasst sind. Hierin zeigen, in teilweise grob vereinfachter Darstellung:
  • Fig. 1
    ein erstes Ausführungsbeispiel einer MBFEX-Röhre 1 in schematischer Aufsicht auf eine als Kreisbogen ausgebildet Anode 30,
    Fig. 2
    das erste Ausführungsbeispiel einer MBFEX-Röhre 1 in schematisierter Seitenansicht,
    Fig. 3
    ein zweites Ausführungsbeispiel einer MBFEX-Röhre 1 mit einer geraden, linienförmig ausgebildeten Anode 30,
    Fig. 4
    das zweite Ausführungsbeispiel einer MBFEX-Röhre 1 mit geschnittener Ansicht der Anode 30,
    Fig. 5
    eine Hochspannungsdurchführung 52 der MBFEX-Röhre 1 nach Fig. 3,
    Fig. 6, 7
    Teilansichten einer Gittervorrichtung 43 der MBFEX-Röhre 1 des ersten Ausführungsbeispiels eines Computertomographen,
    Fig. 8, 9
    Teilansichten der Gittervorrichtung 43 der MBFEX-Röhre 1 des zweiten Ausführungsbeispiels eines Computertomographen,
    Fig. 10, 11
    Teilansichten einer alternativen Ausgestaltung einer Gittervorrichtung 43 einer MBFEX-Röhre 1,
    Fig. 12
    eine Emitteranordnung 33 einer MBFEX-Röhre 1 in Explosionsdarstellung,
    Fig. 13
    eine obere Isolierlage 48 der Emitteranordnung 44 nach Fig. 12,
    Fig. 14
    ein Gitterblech 47 der Emitteranordnung 44 nach Fig. 12,
    Fig. 15
    eine Extraktionsgitterelektrode 71 des Gitterblechs 47 nach Fig. 14,
    Fig. 16
    ein Metall-Zwischenblech 46 der Emitteranordnung 44 nach Fig. 12,
    Fig. 17, 18
    die Vorderseite einer Keramikplatine 45 der Emitteranordnung 44 nach Fig. 12,
    Fig. 19
    die Rückseite der Keramikplatine 45 der Emitteranordnung 44 nach Fig. 12,
    Fig. 20
    ein Detail der Keramikplatine 45,
    Fig. 21
    ein Detail einer MBFEX-Röhre 1 mit zwei unterschiedlichen Sorten von Kathoden 41, 42,
    Fig. 22, 23
    ein Beispiel einer insgesamt ringförmigen Anordnung mehrerer MBFEX-Röhren 1 in zwei verschiedenen Ansichten,
    Fig. 24, 25
    ein Beispiel einer insgesamt polygonförmigen Anordnung mehrerer MBFEX-Röhren 1 in zwei Ansichten analog Fig. 22 und 23,
    Fig. 26, 27
    ein mehrere, jeweils als Röntgenquelle fungierende Aufsätze 33 aufweisende Anode 30 einer MBFEX-Röhre 1,
    Fig. 28
    in dreidimensionaler Darstellung die Form einer Kathode 40 einer MBFEX-Röhre 1 sowie zum Vergleich eine herkömmliche Kathodenform,
    Fig. 29
    in einem Diagramm Strom- und Spannungspulse beim Betrieb der MBFEX-Röhre 1.
  • Alle nachfolgend erläuterten Ausführungsbeispiele der vorgeschlagenen MBFEX-Röhre 1 sind für einen Computertomographen vorgesehen und weisen eine Vakuumröhre 20 mit einem Röntgenfenster 21 auf. In der Vakuumröhre 20 aller Ausführungsbeispiele ist eine als Kühlfinger ausgebildete Anode 30 fest angeordnet. Die Anode 30 enthält Wolfram.
  • Die ersten beiden Ausführungsbeispiele der vorgeschlagenen MBFEX-Röhre weisen in der Vakuumröhre 20 eine Mehrzahl von reihenförmig fest angeordneten Kathoden 40 einer einheitlichen Sorte und das Ausführungsbeispiel nach Fig. 21 solche Kathoden 41, 42 zweier verschiedener Sorten auf, wobei die Kathoden 40, 41, 42 für die Feldemission von Elektronen vorgesehen sind. Die Kathoden 40, 41, 42 sind jeweils bezüglich der Elektronen-Hauptemissionsrichtung e der erzeugbaren Elektronenstrahlenbündel E auf die gemeinsame Anode 30 zur Erzeugung von Röntgenquellen Q ausgerichtet. Die Kathoden 40, 41, 42 sind in der Weise reihenförmig fest angeordnet, dass auf der Anode 30 eine ebenfalls reihenförmige Anordnung von Röntgenquellen Q erzeugbar ist. Die Kathoden 40, 41, 42 sind für eine sequentielle elektrische Ansteuerung vorgesehen. Die Röntgenstrahlenbündel X weisen jeweils eine Röntgen-Hauptemissionsrichtung x auf.
  • In allen Ausführungsbeispielen ist auf jede Röntgenquelle Q jeweils eine Gittervorrichtung 43 ausgerichtet. Die Gittervorrichtungen 43 sind zwischen den Kathoden 40, 41, 42 und der Anode 30 fest in der Vakuumröhre 20 angeordnet. Jede Gittervorrichtung 43 weist ein Extraktionsgitter auf. Die Extraktionsgitter sind mit geringem Abstand vor den Kathoden 40, 41, 42 angeordnet und zur Extraktion von Elektronen in Form eines Elektronenstrahlbündels E aus den Kathoden 40, 41, 42 vorgesehen. Die Extraktionsgitter sind in den Figuren 1 bis 4 nicht eingezeichnet.
  • Die Vakuumröhre 20 aller Ausführungsbeispiele weist wiederum eine Mehrzahl von Kathoden-Zuleitungen 50 und zwei Hochspannungsdurchführungen 51, 52 auf. Die Kathoden-Zuleitungen 50 sind als Anschlüsse der Kathoden und der Gittervorrichtungen 43 an eine elektrische Spannung von wenigen kV vorgesehen und als Drahtzuleitungen ausgebildet. Die Hochspannungsdurchführungen 51, 52 sind für den jeweils endseitigen Anschluss der Anode an eine elektrische Hochspannung von mehreren 10 kV vorgesehen. Typischerweise liegt die Hochspannung im Bereich von 10 kV bis 420 kV. Werte im oberen Bereich dieses Intervalls werden zum Beispiel bei röntgentechnischen Anlagen zur Untersuchung größerer Gegenstände im nicht medizinischen Bereich gewählt.
  • In einer Hochspannungsdurchführung 52 ist ein Kühlmittel-Abfuhrrohr 31 mit einem innenliegenden Kühlmittel-Zufuhrrohr 32 hindurchgeführt. Das Kühlmittel-Abfuhrrohr 31 und das Kühlmittel-Zufuhrrohr 32 sind zur Kühlung der Anode 30 mit einem flüssigen, elektrisch nicht leitenden Kühlmittel mittels einer Umwälzvorrichtung vorgesehen.
  • In allen Ausführungsbeispielen der vorgeschlagenen MBFEX-Röhre 1 sind durch die Kathoden 40, 41, 42 in Zusammenwirkung mit der Anode 30 Röntgenpulse einheitlicher oder alternierend wechselnder Energie erzeugbar. Beispielhaft ist in Fig. 29 der zeitliche Verlauf eines Emitterstroms EC, eines Anodenstroms AC, sowie der Gitter-Emitter-Spannung GEV aufgezeichnet. Das Diagramm nach Fig. 29 zeigt tatsächliche Messdaten. Hervorzuheben ist der hohe Transmissionsgrad von ca. 90%, welcher das Verhältnis von Anodenstroms AC zu Emitterstroms EC angibt. Im vorliegenden Fall der sich aus den gemessenen Spannungswerten ermittelte Anodenstroms AC 52,2 mA und der Emitterstroms EC 58,2 mA. Dieses extrem günstige Verhältnis zwischen Anodenstroms AC und Emitterstroms EC resultiert maßgeblich aus der hohen Qualität der im Folgenden noch näher beschriebenen Emitteranordnung 44 der Röntgenröhre 1.
  • Das erste Ausführungsbeispiel der vorgeschlagenen MBFEX-Röhre 1 wird nachfolgend anhand der Fig. 1 und der Fig. 2 näher erläutert. In dem ersten Ausführungsbeispiel ist die Anode 30 als Kreisbogen ausgebildet.
  • Die Fig. 1 zeigt eine schematische Aufsicht auf die Anode 30, wobei die Vakuumröhre 20, die Gittervorrichtungen 43 und die Hochspannungsdurchführungen 51, 52 nicht sichtbar sind. Die Fig. 1 ist nicht maßstabsgetreu. Die Anode 30, die Kathoden 40 und die Gittervorrichtungen 43 sind innerhalb der Vakuumröhre 20 angeordnet. Hierbei befinden sich die Kathoden 40 auf einem Träger 6 aus metallisierter Keramik. Die Anode 30 ist unabhängig von den Kathoden 40 in der Vakuumröhre 20 befestigt. Die Röntgenquellen Q sind so angeordnet, dass die erzeugten Röntgenstrahlenbündel X in ihren jeweiligen Röntgen-Hauptemissionsrichtungen x auf einen Untersuchungsbereich U ausgerichtet sind.
  • Der Untersuchungsbereich U ist für die Positionierung eines Untersuchungsobjektes, insbesondere eines Patienten, vorgesehen.
  • Die Fig. 2 zeigt die vorgeschlagene MBFEX-Röhre 1 in ihrem ersten Ausführungsbeispiel in einer Seitenansicht im Querschnitt. In der Fig. 2 sind das Kühlmittel-Zufuhrrohr 32, die Kathoden-Zuleitungen 50 und die Hochspannungsdurchführungen 51, 52 nicht sichtbar. Die Kathoden 40 weisen auf ihrer Oberfläche mehrwandige Kohlenstoffnanoröhren in einer senkrechten Vorzugsrichtung auf. Unter "senkrecht" ist in diesem Zusammenhang eine auf die Anode 30 zu gerichtete Orientierung zu verstehen.
  • Das zweite Ausführungsbeispiel der vorgeschlagenen MBFEX-Röhre 1 wird nachfolgend anhand der Fig. 3 und der Fig. 4 näher erläutert. Das zweite Ausführungsbeispiel unterscheidet sich von dem ersten Ausführungsbeispiel lediglich darin, dass die Anode 30 linienförmig ausgebildet ist.
  • Die Fig. 3 zeigt eine teilweise geschnittene Ansicht auf die MBFEX-Röhre 1 des zweiten Ausführungsbeispiels. In der Fig. 3 sind das Kühlmittel-Zufuhrrohr 32, die Kathoden 40 und die Gittervorrichtungen 43 nicht sichtbar. Wie in dem ersten Ausführungsbeispiel der MBFEX-Röhre 1 sind Kathoden-Zuleitungen 50 und die Hochspannungsdurchführungen 51, 52 in einer Reihe und der Anode 30 gegenüberliegend auf der Vakuumröhre 20 angeordnet.
  • Die Fig. 4 zeigt die vorgeschlagene MBFEX-Röhre 1 in ihrem zweiten Ausführungsbeispiel mit geschnittener Ansicht der Anode 30. In der Fig. 3 sind die Kathoden 40 und die Gittervorrichtungen 43 ebenfalls nicht sichtbar. Einzelne Merkmale der Hochspannungsdurchführung 52 gehen aus Fig. 5 hervor.
  • Eine in allen Ausführungsbeispielen vorhandene Gittervorrichtung 43, welche im Detail in unterschiedlichen Varianten in den Figuren 5 bis 11 dargestellt ist, ist auf die Anode 6 ausgerichtet, das heißt zwischen den Kathoden 40, 41, 42 und der Anode 6 in der Vakuumröhre 20 angeordnet. Die Gittervorrichtung 43 umfasst definitionsgemäß mindestens eine Extraktionsgitterelektrode 71, 73, 74 und mindestens eine Form von Fokussierungselektroden 72, 75, 76.
  • Die Extraktionsgitterelektroden 71, 73, 74 sind direkt über den Kathoden 40, 41, 42 fest angeordnet und zur Feldextraktion von Elektronen aus den Kathoden 40, 41, 42 vorgesehen. Die Fokussierungselektroden 72, 75, 76 sind direkt über jeder Extraktionsgitterelektrode 71, 73, 74 ebenfalls fest angeordnet, der Anode 6 zugewandt und für die Fokussierung der extrahierten Elektronen als ein Elektronenstrahlbündel E auf die jeweilige zu erzeugende Röntgenstrahlungsquelle Q vorgesehen. Die Extraktionsgitterelektroden 71, 73, 74 sind unabhängig von Fokussierungselektroden 72, 75, 76 geerdet. Die Fokussierungselektroden 72, 75, 76 können als passive oder aktive Fokussierungselektroden betrieben werden.
  • In dem ersten Ausführungsbeispiel weist die Gittervorrichtung 43 eine allen Kathoden 40 gemeinsame Extraktionsgitterelektrode 71 auf, wobei jeder einzelnen Kathode 40 separat eine einzelne Fokussierungselektrode 72 zugeordnet ist. In dem zweiten Ausführungsbeispiel weist die Gittervorrichtung 43 eine den Kathoden 41 der ersten Sorte gemeinsame Extraktionsgitterelektrode 73 einer ersten Form und eine den Kathoden 42 der zweiten Sorte gemeinsame Extraktionsgitterelektrode 74 einer zweiten Form auf, wobei jeweils jeder einzelnen Kathode 41 der ersten Sorte separat eine einzelne Fokussierungselektrode 75 einer ersten Form und jeweils jeden einzelnen Kathode 42 der zweiten Sorte separat eine einzelne Fokussierungselektrode 76 einer zweiten Form zugeordnet ist. Die Extraktionsgitterelektroden 71, 73, 74 und die Fokussierungselektroden 72, 75, 76 sind in den Figuren 1 bis 4 nicht eingezeichnet.
  • Für eine computergestützte Röntgenbildgebung mittels Tomosynthese liegt auf Anode 6 ein zeitlich konstantes Potential von typischerweise 40 KV an, wobei zwischen der Anode 6 und der jeweils geschalteten Kathode 40, 41 ein gleichförmig gepulster elektrischer Gleichstrom von 30 mA fließt. Für eine computergestützte Röntgenbildgebung mittels HPEC-Tomosynthese dagegen liegt auf der betreffenden Anode ein zeitlich konstantes Potential von typischerweise 120 kV an, wobei zwischen der Anode 6 und der jeweils geschalteten Kathode 40, 42 ein gleichförmig gepulster elektrischer Gleichstrom in der Größenordnung von 0,5 mA fließt.
  • In allen Ausführungsbeispielen weist der vorgeschlagene Computertomograph einen Stromregler, eine Gerätesteuerung, ein elektronisches Steuersystem (ECS = Electronic Control System), eine Kathoden-Hochspannungsquelle (CPS = Cathode Power Supply), eine Anoden-Hochspannungsquelle (APS = Anode Power Supply) und eine Gerätesteuerung auf. Der Stromregler, die Gerätesteuerung, das elektronische Kontrollsystem, die Kathoden-Hochspannungsquelle, die Anoden-Hochspannungsquelle und die Gerätesteuerung sind Bestandteil einer elektronischen Regelungsvorrichtung. Der Stromregler, die Gerätesteuerung und das elektronische Steuersystem stellen ein elektronisches Leitsystem dar.
  • Die elektronische Regelungsvorrichtung weist einen elektrischen Hauptkreis und einen Regelkreis auf, wobei der Hauptkreis und der Regelkreis in einem Gleichstromkreis integriert sind. In dem Hauptkreis sind die Anoden-Hochspannungsquelle mit der Anode 6 und dem Stromregler, der Stromregler mit der Gerätesteuerung, die Gerätesteuerung mit dem elektronischen Steuersystem, das elektronische Steuersystem mit der Kathoden-Hochspannungsquelle und die Kathoden-Hochspannungsquelle in paralleler Schaltung mit den Kathoden 40, 41, 42 als auch mit der jeweiligen Gittervorrichtung 43 elektrisch verbunden. In dem Regelkreis ist die Anoden-Hochspannungsquelle über eine Rückführung mit dem Leitsystem elektrisch verknüpft. Hierbei ist das Leitsystem sowohl für die sequentiellen Schaltungen der Kathoden 40, 41, 42, für die Regelung der Extraktionsgitterelektroden 71, 73, 74 und der Fokussierungselektroden 72, 76, 56 der jeweiligen Gittervorrichtung 43 als auch für die Regelung des Hauptkreisstroms vorgesehen, wobei auf den mit dem Leitsystem vorgegeben Hauptkreisstrom die elektrische Spannung der Kathoden-Hochspannungsquelle anpassbar ist.
  • In Fig. 21 sind exemplarisch acht Kathoden 41, 42 der MBFEX-Röhre 1 skizziert. Sowohl die Kathoden 41 der ersten Sorte als auch die Kathoden 42 der zweiten Sorte weisen Kohlenstoffnanoröhren auf, unterscheiden sich jedoch hinsichtlich ihrer Geometrie. Die Kathoden 41, 42 sind in der Vakuumröhre 20 reihenförmig und alternierend versetzt angeordnet, wobei die Anzahl der Kathoden 41 der ersten Sorte gleich der Anzahl der Kathoden 42 der zweiten Sorte ist. Einer Gittervorrichtung 43 und damit einer Röntgenstrahlenquelle Q kann jeweils eine Kathode 41 der ersten Form und jeweils eine Kathode 42 der zweiten Form zugeordnet sein. In der MBFEX-Röhre 1 nach Fig. 21 sind auf beliebige Weise die Kathoden 41 der ersten Sorte oder die Kathoden 42 der zweiten Sorte sequentiell ansteuerbar. Auf diese Weise sind Dual-Dosis-Röntgenbildaufnahmen mit der MBFEX-Röhre 1 realisierbar.
  • Wie aus den Figuren 22 bis 25 hervorgeht, sind mehrere MBFEX-Röhren 1 zu einer starren, ringförmigen oder polygonförmigen Anordnung kombinierbar, welche in einem Computertomographen eine rotierende Anordnung ersetzt. Dies gilt für jegliche, bereits beschriebene sowie im Folgenden noch erläuterte Ausgestaltung von MBFEX-Röhren 1.
  • Ein Schichtaufbau einer Emitteranordnung 44 einer MBFEX-Röhre 1 ist in den Figuren 12 bis 20 illustriert. Die Emitteranordnung 44 umfasst als unterste Lage eine Keramikplatine 45 aus Korund. Die Kathoden 40 befinden sich auf einer leitfähigen Beschichtung der Keramikplatine 45 und sind im Siebdruckverfahren mit hoher geometrischer Präzision hergestellt. Auf der Rückseite der Keramikplatine 45 sind Leiterstrukturen 66 erkennbar.
  • Auf die Keramikplatine 45 ist eine Metall-Zwischenplatte 46 aufgelegt. Diese Metall-Zwischenplatte 46 weist rechteckige Öffnungen 61 für die Kathoden 40 auf. Zusätzlich befinden sich in der Metall-Zwischenplatte 46 streifenförmige, im Vergleich zu den Öffnungen 61 schmalere und längere Öffnungen 62 an den Längsseiten der Öffnungen 61. Die streifenförmigen Öffnungen 62 haben eine Funktion beim Entgasen der Vakuumröhre 20. Dies gilt sowohl für die Vorbereitung des Betriebs als auch für den laufenden Betrieb der Röntgenröhre 1, jeweils in Zusammenwirkung mit der Keramikplatine 45.
  • In der Keramikplatine 45 sind neben den Kathoden 40 verschiedene streifenförmige Öffnungen 64, 65 erkennbar. Hierbei liegen jeweils drei kurze, schmale Öffnungen 64 direkt neben den Längsseiten einer jeden Kathode 40. Zusätzlich sind die Kathoden 40 von etwas weiter entfernt liegenden, ebenfalls streifenförmigen Öffnungen 65 flankiert. Dabei sind jeweils zwei streifenförmige Öffnungen 65 in einer Linie hintereinander angeordnet. Zwei Paare solcher Linien an streifenförmigen Öffnungen 65 beschreiben zusammen mit der dazwischen liegenden Anordnung aus Kathode 40 und insgesamt sechs kleineren streifenförmigen Öffnungen 64 insgesamt eine H-Form. Dies gilt für sämtliche Kathoden 40 auf der Keramikplatine 45 mit Ausnahme der beiden äußersten Kathoden 40, welche nur einseitig von streifenförmigen Öffnungen 65 der längeren Art flankiert sind.
  • Insbesondere die innenliegenden Öffnungen 64, welche sehr nah an den Kathoden 40 liegen, tragen dazu bei, dass während der Emission von Elektronen Gas auch in äußerst geringer Konzentration bis hin zu einzelnen Partikeln zur Rückseite der Emitteranordnung 44 hin abführbar ist. Damit wird ein wesentlicher Beitrag zur Vermeidung von Überschlägen innerhalb der Vakuumröhre 20 geleistet. Zum Absaugen von Gas während der Herstellung der Röntgenröhre 1, insbesondere beim Ausheizen, werden in stärkerem Maße die relativ großen streifenförmigen Öffnungen 65 benötigt.
  • Die Metall-Zwischenplatte 46 weist als integralen Bestandteil einen Anschlussstreifen 63 als von der Emitteranordnung 44 nach außen geführten elektrischen Anschluss auf. Auf der Metall-Zwischenplatte 46 befindet sich ein Gitterblech 47, welches die Extraktionsgitterelektroden 71 umfasst, die jeweils einer Kathode mit exakt definiertem Abstand von 0,224 mm (im Bespiel nach Fig. 12) vorgesetzt sind.
  • Einzelheiten der Extraktionsgitterelektrode 71 gehen aus Fig. 15 hervor. Insgesamt weist die Extraktionsgitterelektrode 71 eine rechteckige Form auf, deren Längsseiten durch komplett gerade Randstreifen 78 gebildet sind. Die beiden Randstreifen sind durch eine Vielzahl an Gitterstreifen 77 miteinander verbunden, so dass sich insgesamt die Gitterstruktur ergibt. Im Unterschied zu den Randstreifen 78 sind die Gitterstreifen 77 jedoch nicht komplett gerade. Vielmehr ist an den beiden Enden eines jeden Gitterstreifens 77, das heißt am Übergang zum Randstreifen 78, ein abgerundeter Übergangsbereich 79 gebildet. Die abgerundeten Übergangsbereiche 79 sorgen maßgeblich dafür, dass thermisch bedingte Verformungen nicht zu einer Veränderung des Abstandes zwischen der Kathode 40 und dem Extraktionsgitter 71 führen, sondern innerhalb des in einer Ebene liegenden Extraktionsgitters 71 ohne Auswirkungen auf die Emissionseigenschaften der Emitteranordnung 44 aufgenommen werden.
  • Das Gitterblech 47 ist durch eine obere Isolierlage 48 in Form einer Platte aus einem keramischen Werkstoff abgedeckt, womit die Emitteranordnung 44 komplettiert ist. Die obere Isolierlage 48 weist, wie aus Fig. 12 hervorgeht, Öffnungen 49 auf, welche der Form der Kathoden 40 angepasst sind, um den Durchtritt von Elektronen zu ermöglichen.
  • Geometrische Merkmale der Kathode 40, wie sie mehrfach in der Emitteranordnung 44 enthalten ist, sind in Fig. 28 dargestellt. Mit guter Näherung ist die Kathode 40 quaderförmig aufgebaut. Über die gesamte Elektronen emittierende Oberfläche der Kathode 40 sind damit kaum Schwankungen des Abstandes zwischen der Kathode 40 und der in Fig. 28 nicht eingezeichneten Extraktionsgitterelektrode 71 gegeben. Zum Vergleich ist in Fig. 28 gestrichelt die Oberflächenstruktur einer herkömmlich, im Verfahren der elektrophoretischen Abscheidung (EPD) hergestellten Kathode angedeutet. Von einer glatten Oberfläche kann bei diesem Vergleichsbeispiel nicht die Rede sein. Vielmehr sind besonders an den Rändern der im EPD-Verfahren hergestellten Kathode ausgeprägte Spitzen innerhalb der Oberfläche der Emissionskathode gegeben. Die Elektronen werden hauptsächlich an diesen Spitzen emittiert. Dies limitiert zum einen die Lebensdauer und zum anderen die Transmissionsrate an Elektronen. Im Unterschied dazu emittiert die Kathode 40, wie sie in der erfindungsgemäßen Röntgenröhre 1 zum Einsatz kommt, in jedem Flächenabschnitt ihrer Oberfläche mit nahezu konstanter Freisetzungsrate Elektronen.
  • Ein Ausführungsbeispiel einer mit der Emitteranordnung 44 zusammenwirkenden Anode 30 ist in den Figuren 26 und 27 illustriert. Auf dem zylindrischen Grundkörper der Anode 30 befinden sich mehrere Aufsatzstücke 33, welche auch als Anodenaufsätze oder kurz als Aufsätze bezeichnet werden. Jeder dieser Aufsätze 33 weist eine gegenüber dem Grundkörper schräg gestellte, mit Wolfram oder einem anderen für Röntgenquellen geeigneten Material beschichtete Fläche 34 auf. Die Schrägstellungen der verschiedenen Flächen 34 unterscheiden sich derart voneinander, dass - wie in Fig. 27 angedeutet ist - die emittierte Röntgenstrahlung X in Richtung des im Untersuchungsbereich U liegenden Isozentrums der Röntgenstrahleranordnung 10 fokussiert ist.
  • Bezugszeichenliste
  • 1
    MBFEX-Röhre
    6
    Träger
    10
    Röntgenstrahleranordnung
    20
    Vakuumröhre
    21
    Röntgenfenster
    30
    Anode
    31
    Kühlmittel-Abfuhrrohr
    32
    Kühlmittel-Zufuhrrohr
    33
    Aufsatzstück
    34
    beschichtete Fläche
    40
    Kathode
    41
    Kathode einer ersten Sorte
    42
    Kathode einer zweiten Sorte
    43
    Gittervorrichtung
    44
    Emitteranordnung
    45
    Keramikplatine
    46
    Metall-Zwischenplatte
    47
    Gitterblech
    48
    obere Isolierlage
    49
    Öffnung in der oberen Isolierlage
    50
    Kathoden-Zuleitung
    51
    Hochspannungsdurchführung
    52
    Hochspannungsdurchführung
    61
    Öffnung in der Metall-Zwischenplatte
    62
    streifenförmige Öffnung in der Metall-Zwischenplatte
    63
    Anschlussstreifen
    64
    schmale streifenförmige Öffnung
    65
    breitere streifenförmige Öffnung
    66
    Leiterstruktur
    71
    Extraktionsgitterelektrode
    72
    Fokussierungselektrode
    73
    Extraktionsgitterelektrode einer ersten Form
    74
    Extraktionsgitterelektrode einer zweiten Form
    75
    Fokussierungselektrode einer ersten Form
    76
    Fokussierungselektrode einer zweiten Form
    77
    Gitterstreifen
    78
    Randstreifen
    79
    abgerundeter Übergangsbereich
    80
    keramischer Träger
    81
    Metallschicht
    AC
    Anodenstrom
    E
    Elektronenstrahlenbündel
    e
    Elektronen-Hauptemissionsrichtung
    EC
    Emitterstrom
    GEV
    Gitter-Emitter-Spannung
    Q
    Röntgenquelle
    X
    Röntgenstrahlenbündel
    x
    Röntgen-Hauptemissionsrichtung
    U
    Untersuchungsbereich

Claims (27)

  1. Multibeam Field Emission X-Ray Röhre, MBFEX-Röhre, (1) für ein Röntgengerät, welche in einer Vakuumröhre (20) eine darin fest angeordnete, als auch als Kühlfinger ausgebildete Anode (30) und eine Mehrzahl von fest angeordneten Kathoden (40,41,42) aufweist, wobei die Vakuumröhre (20) eine Mehrzahl von Kathoden-Zuleitungen (50) und nicht mehr als zwei Hochspannungsdurchführungen (51,52) aufweist, in einer Hochspannungsdurchführung (52) ein Kühlmittel-Rohr (31) mit einem innenliegenden Kühlmittel-Innenrohr (32) hindurchgeführt ist, das Kühlmittel-Rohr (31) und das Kühlmittel-Innenrohr (32) zur Kühlung der Anode (30) mit einem flüssigen Kühlmittel vorgesehen sind, die Kathoden (40,41,42) zur Feldemission von Elektronen vorgesehen und jeweils auf die Anode (30) zur Erzeugung von Röntgenquellen (Q) ausgerichtet sind, wobei die Kathoden-Zuleitungen (50) und Hochspannungsdurchführungen (51,52) in einer Reihe und der Anode (30) gegenüberliegend auf der Vakuumröhre (20) angeordnet sind.
  2. MBFEX-Röhre (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Röntgenquellen (Q.) reihenförmig auf der Anode (30) angeordnet sind.
  3. MBFEX-Röhre (1) nach Anspruch 2, dadurch gekennzeichnet, dass sich die Röntgenquellen (Q.) jeweils auf einem gegenüber der Mittelachse der Anode (30) schräg gestellten Oberflächenabschnitt der Anode (30) befinden.
  4. MBFEX-Röhre (1) nach Anspruch 3, dadurch gekennzeichnet, dass die schräg gestellten Oberflächenabschnitte durch Aufsätze der Anode (30) gebildet sind.
  5. MBFEX-Röhre (1) nach Anspruch 3, dadurch gekennzeichnet, dass die schräg gestellten Oberflächenabschnitte durch Einschliffe in der Anode (30) gebildet sind.
  6. MBFEX-Röhre (1) nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die schräg gestellten Oberflächenabschnitte der Anode (30) beschichtet sind.
  7. MBFEX-Röhre (1) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Kathoden (40,41,42) Nanostäbchen aufweisen.
  8. MBFEX-Röhre (1) nach Anspruch 7, dadurch gekennzeichnet, dass zumindest ein Teil der Nanostäbchen als ein- oder mehrwandige Kohlenstoffnanoröhren oder ein- oder mehrwandige Hetero-Stickstoff-Kohlenstoffnanoröhren ausgebildet ist.
  9. MBFEX-Röhre (1) nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass zumindest ein Teil der Nanostäbchen Boride der seltenen Erden, Metalloxide, Metallsulfide, Nitride, Carbide oder Silicium enthält.
  10. MBFEX-Röhre (1) nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass die Nanostäbchen eine Länge von weniger als 20 µιη und einen Durchmesser von weniger als 10 nm aufweisen, wobei eine auf die Fläche der Kathode (40,41,42) bezogene Dichte von mindestens 106 Nanostäbchen pro cm2 gegeben ist.
  11. MBFEX-Röhre (1) nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass zwischen mindestens einem über den Kathoden (40,41,42) befindlichen Extraktionsgitter (71) und der Anode (30) Fokussierungselektroden (72) angeordnet sind.
  12. MBFEX-Röhre (1) nach Anspruch 11, dadurch gekennzeichnet, dass die Fokussierungselektroden (72) separat von dem Extraktionsgitter (71) geerdet sind.
  13. MBFEX-Röhre (1) nach einem der Ansprüche 11 oder 12, dadurch gekennzeichnet, dass das Extraktionsgitter (71) eine Rechteckform mit zwei zueinander parallelen Randstreifen (78) beschreibt, welche durch Gitterstreifen (77) einstückig miteinander verbunden sind, wobei an den Übergängen zwischen den Gitterstreifen (77) und den Randstreifen (78) abgerundete Übergangsbereiche (79) ausgebildet sind, mit welchen die Gitterstreifen (77) jeweils eine langgestreckte S-Form beschreiben.
  14. MBFEX-Röhre (1) nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Vakuumröhre (20) verschiedene Sorten von Kathoden (40,41,42) aufweist, welche sich hinsichtlich zumindest eines Parameters aus einer Gruppe von Parametern unterscheiden, wobei die Gruppe der Parameter geometrische Parameter und Werkstoffparameter umfasst.
  15. MBFEX-Röhre (1) nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass zumindest durch eine Sorte von Kathoden (40,41,42) eine zur Emission von Elektronen ausgebildete Schicht mit einer Dicke von weniger als 20 µm und einem Mittenrauwert, Ra, von weniger als 2,5 µm gebildet ist.
  16. MBFEX-Röhre (1) nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass eine Mehrzahl an Kathoden (40,41,42) auf einem flächigen Trägerelement (45) angeordnet sind.
  17. MBFEX-Röhre (1) nach Anspruch 16, dadurch gekennzeichnet, dass das flächige Trägerelement streifenförmige Öffnungen (64) erster Art und streifenförmige Öffnungen (65) zweiter Art aufweist, wobei eine Gruppe an streifenförmigen Öffnungen (64) erster Art näher neben einer Kathode (40) angeordnet ist als eine Gruppe an streifenförmige Öffnungen (65) zweiter Art, und wobei die streifenförmigen Öffnungen (64) erster Art schmaler als die streifenförmigen Öffnungen (65) zweiter Art sind.
  18. MBFEX-Röhre (1) nach einem der Ansprüche 16 oder 17, dadurch gekennzeichnet, dass das flächige Trägerelement (45) Teil einer schichtförmig aufgebauten Emitteranordnung (44) ist, welche weiter eine Metall-Zwischenplatte (46), ein Gitterblech (47) einschließlich Extraktionsgitter (71), sowie eine obere Isolierlage (48) umfasst.
  19. MBFEX-Röhre (1) nach Anspruch 18, dadurch gekennzeichnet, dass streifenförmige Öffnungen (64,65) des flächigen Trägerelementes (45) zumindest teilweise mit Öffnungen (62) in der Metall-Zwischenplatte (46) fluchten.
  20. MBFEX-Röhre (1) nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass die Anode (30) zur beidseitigen Zuleitung und Ableitung von Kühlmittel ausgebildet ist, wobei an den beiden Enden der Anode (30) jeweils eine Kühlmittelzuleitung und eine zugeordnete Kühlmittelableitung angeordnet ist.
  21. MBFEX-Röhre (1) nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass die Anode (30) einen Untersuchungsbereich (U) mindestens teilweise umschließt, wobei die Röntgenquellen (Q.) den Untersuchungsbereich (U) ebenfalls mindestens teilweise umschließen.
  22. MBFEX-Röhre (1) nach Anspruch 21, dadurch gekennzeichnet, dass die Anode (30) bogenförmig ausgebildet ist.
  23. MBFEX-Röhre (1) nach einem der Ansprüche 1 bis 21, dadurch gekennzeichnet, dass die Anode (30) als rotierende Anode ausgebildet ist.
  24. Anordnung mehrerer nach einem der Ansprüche 1 bis 23 ausgebildeter MBFEX-Röhren (1), wobei durch die Gesamtheit der MBFEX-Röhren (1) eine den Untersuchungsbereich (U) mindestens teilweise umschließende Ring-, Bogen-, Polygon-, L-, oder U-Form gebildet ist.
  25. Verfahren zur Herstellung einer MBFEX-Röhre (1) nach einem der Ansprüche 1 bis 23, wobei eine
    Vakuumröhre (20), eine in der Vakuumröhre (20) zu platzierende Anode (30) und zur Feldemission von Elektronen ausgebildete, ebenfalls in der Vakuumröhre (20) anzuordnende Kathoden (40,41,42) bereitgestellt werden, und wobei mindestens ein zwischen den Kathoden (40,41,42) und der Anode (30) anzuordnendes Element, welches aus der Gruppe an Elementen ausgewählt ist, die ein Extraktionsgitter (71) und eine Fokussierungselektrode (72) umfasst, durch Laser bearbeitet wird.
  26. Verfahren nach Anspruch 25, dadurch gekennzeichnet, dass die Laserbearbeitung des Elementes (71,72) mit Pikosekunden- oder Femtosekunden Taktung des Lasers erfolgt.
  27. Verfahren zum Betrieb einer MBFEX-Röhre (1) nach einem der Ansprüche 1 bis 23, wobei die Anode (30) zur Emission von aufeinander folgenden Röntgenstrahlpulsen unterschiedlicher Wellenlänge verwendet wird.
EP18779196.7A 2017-09-20 2018-09-20 Mbfex-röhre Active EP3685420B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017008810.1A DE102017008810A1 (de) 2017-09-20 2017-09-20 MBFEX-Röhre
PCT/EP2018/025239 WO2019057338A1 (de) 2017-09-20 2018-09-20 Mbfex-röhre

Publications (3)

Publication Number Publication Date
EP3685420A1 EP3685420A1 (de) 2020-07-29
EP3685420C0 EP3685420C0 (de) 2023-06-28
EP3685420B1 true EP3685420B1 (de) 2023-06-28

Family

ID=63708262

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18779196.7A Active EP3685420B1 (de) 2017-09-20 2018-09-20 Mbfex-röhre

Country Status (7)

Country Link
US (1) US11183357B2 (de)
EP (1) EP3685420B1 (de)
JP (1) JP7015383B2 (de)
CN (1) CN111448637B (de)
DE (1) DE102017008810A1 (de)
ES (1) ES2957611T3 (de)
WO (1) WO2019057338A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019125350A1 (de) 2019-09-20 2021-03-25 DENNEC GmbH Computertomograph
US11404235B2 (en) 2020-02-05 2022-08-02 John Thomas Canazon X-ray tube with distributed filaments
JP2023544103A (ja) 2020-09-19 2023-10-20 エスペン ゲー・エム・ベー・ハー コンピュータトモグラフィ装置およびコンピュータトモグラフィ装置の動作方法
EP4024436A1 (de) * 2020-12-31 2022-07-06 VEC Imaging GmbH & Co. KG Hybride röntgenquelle mit mehreren quellen und abbildungssystem
FR3137812A1 (fr) 2022-07-07 2024-01-12 Thales Antenne d’émission à rayons X comprenant une pluralité de sources de rayons X
EP4312467A1 (de) 2022-07-28 2024-01-31 Siemens Healthcare GmbH Röntgenstrahlergehäuse mit zumindest einem elektrisch leitfähigen gehäuseabschnitt

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2813860A1 (de) * 1978-03-31 1979-10-04 Philips Patentverwaltung Eintank-roentgengenerator
DE8914064U1 (de) * 1989-11-29 1990-02-01 Philips Patentverwaltung Gmbh, 2000 Hamburg, De
JPH06162974A (ja) * 1992-11-18 1994-06-10 Toshiba Corp X線管
DE4432205C1 (de) * 1994-09-09 1996-01-25 Siemens Ag Hochspannungsstecker für eine Röntgenröhre
EP0968516B1 (de) * 1997-11-21 2004-02-18 PANalytical B.V. Röntgenröhre mit einer brennfleck-abgestimmten kühlungsprofile
US6385292B1 (en) * 2000-12-29 2002-05-07 Ge Medical Systems Global Technology Company, Llc Solid-state CT system and method
CA2410892A1 (en) * 2001-02-28 2002-11-29 Mitsubishi Heavy Industries, Ltd. Multi-radiation source x-ray ct apparatus
JP2003234059A (ja) * 2002-02-07 2003-08-22 Matsushita Electric Ind Co Ltd 電界放出冷陰極素子の構造およびその製造方法
KR100499138B1 (ko) * 2002-12-31 2005-07-04 삼성에스디아이 주식회사 전계방출소자
US20080267354A1 (en) * 2003-05-22 2008-10-30 Comet Holding Ag. High-Dose X-Ray Tube
US7462499B2 (en) * 2005-10-28 2008-12-09 Sharp Laboratories Of America, Inc. Carbon nanotube with ZnO asperities
GB2450553B (en) 2007-06-29 2011-12-28 Novar Ed & S Ltd Service outlet box
WO2009012453A1 (en) 2007-07-19 2009-01-22 The University Of North Carolina At Chapel Hill Stationary x-ray digital breast tomosynthesis systems and related methods
FR2926924B1 (fr) * 2008-01-25 2012-10-12 Thales Sa Source radiogene comprenant au moins une source d'electrons associee a un dispositif photoelectrique de commande
DE102010011661B4 (de) * 2010-03-17 2019-06-06 Siemens Healthcare Gmbh Multifokusröhre
DE102010043561B4 (de) 2010-11-08 2020-03-05 Nuray Technology Co., Ltd. Elektronenquelle
JP5110190B2 (ja) * 2011-05-14 2012-12-26 日本電気株式会社 電界放出型冷陰極
DE102011076912B4 (de) 2011-06-03 2015-08-20 Siemens Aktiengesellschaft Röntgengerät umfassend eine Multi-Fokus-Röntgenröhre
JP6317927B2 (ja) 2012-01-09 2018-04-25 ムー・メディカル・デバイスズ・エルエルシーMoe Medical Devices Llc プラズマ補助皮膚処置
WO2013187970A2 (en) * 2012-05-14 2013-12-19 The General Hospital Corporation Method for coded-source phase contrast x-ray imaging
CN104470176B (zh) * 2013-09-18 2017-11-14 同方威视技术股份有限公司 X射线装置以及具有该x射线装置的ct设备
MX363864B (es) * 2014-02-10 2019-04-05 Luxbright Ab Un emisor de electrones para un tubo de rayos x.
DE102014013716B4 (de) 2014-09-11 2022-04-07 Cinogy Gmbh Elektrodenanordnung zur Ausbildung einer dielektrisch behinderten Plasmaentladung
JP6346532B2 (ja) * 2014-09-12 2018-06-20 浜松ホトニクス株式会社 電子源ユニット及び帯電処理ユニット
KR101657895B1 (ko) 2015-05-14 2016-09-19 광운대학교 산학협력단 플라즈마 패드
JP6677420B2 (ja) * 2016-04-01 2020-04-08 キヤノン電子管デバイス株式会社 X線管装置
KR101709167B1 (ko) 2016-05-11 2017-02-22 국방과학연구소 플라즈마 발생장치
EP3263203A1 (de) 2016-07-01 2018-01-03 BWT Aktiengesellschaft Rückspülfilter
DE102016013279A1 (de) 2016-11-08 2018-05-09 H&P Advanced Technology GmbH Verfahren zur Herstellung eines Elektronenemitters mit einer Kohlenstoffnanoröhren enthaltenden Beschichtung
DE102016013533A1 (de) 2016-11-12 2018-05-17 H&P Advanced Technology GmbH Computertomograph

Also Published As

Publication number Publication date
ES2957611T3 (es) 2024-01-23
WO2019057338A1 (de) 2019-03-28
DE102017008810A1 (de) 2019-03-21
EP3685420C0 (de) 2023-06-28
JP7015383B2 (ja) 2022-02-02
US11183357B2 (en) 2021-11-23
JP2020533767A (ja) 2020-11-19
CN111448637B (zh) 2023-07-04
CN111448637A (zh) 2020-07-24
US20200312601A1 (en) 2020-10-01
EP3685420A1 (de) 2020-07-29

Similar Documents

Publication Publication Date Title
EP3685420B1 (de) Mbfex-röhre
DE102010027871B4 (de) Ringkathodensegment mit Nanostruktur als Elektronenemitter
DE112014002318B4 (de) Graphen zur Verwendung als Kathodenröntgenröhre und Röntgenröhre
DE102009003673A1 (de) Elektronenquelle auf der Basis von Feldemittern mit minimierten Strahl-Emittanzwachstum
DE102009003863A1 (de) Schema zum Steuern einer virtuellen Matrix für Mehrfachpunkt-Röntgenquellen
EP0584871B1 (de) Röntgenröhre mit einer Transmissionsanode
DE102010061229A1 (de) Vorrichtung zum Modifizieren des Elektronenstrahl-Aspektverhältnisses zur Röntgenstrahlungserzeugung
DE112009001604B4 (de) Thermionenemitter zur Steuerung des Elektronenstrahlprofils in zwei Dimensionen
DE102011076912B4 (de) Röntgengerät umfassend eine Multi-Fokus-Röntgenröhre
DE102010060484B4 (de) System und Verfahren zum Fokussieren und Regeln/Steuern eines Strahls in einer indirekt geheizten Kathode
DE19820243A1 (de) Drehkolbenstrahler mit Fokusumschaltung
DE102010061584A1 (de) Röntgenstrahlkathode und Verfahren zum Herstellen derselben
DE202013105804U1 (de) Vorrichtungen zum Erzeugen verteilter Röntgenstrahlen
DE102009058266B4 (de) Medizinisches Röntgenaufnahmesystem
DE19513291C2 (de) Röntgenröhre
DE102009025841B4 (de) Vorrichtung für einen kompakten Hochspannungsisolator für eine Röntgen- und Vakuumröhre und Verfahren zur Montage derselben
EP1747570A1 (de) Röntgenröhre für hohe dosisleistungen
DE102005060242B4 (de) Verfahren und Aufbau zur Milderung der elektrischen Beanspruchung an Hochspannungsisolatoren in Röntgenröhren
DE102011075453A1 (de) Röntgenröhre und Verfahren zum Betrieb einer Röntgenröhre
WO2013007484A1 (de) Monochromatische röntgenquelle
DE102017008921A1 (de) C-Bogen-Röntgengerät
WO2005086203A1 (de) Röntgenröhre für hohe dosisleistungen, verfahren zur erzeugung von hohen dosisleistungen mit röntgenröhren sowie ein verfahren zur herstellung entsprechender röntgenvorrichtungen
DE2237855B2 (de) Röntgenröhrendrehanode
DE102022209314B3 (de) Röntgenröhre mit zumindest einem elektrisch leitfähigen Gehäuseabschnitt
DE102010038904B4 (de) Kathode

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230321

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1583492

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018012582

Country of ref document: DE

U01 Request for unitary effect filed

Effective date: 20230628

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: CETTEEN GMBH

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20230714

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: CETTEEN GMBH

U1H Name or address of the proprietor changed [after the registration of the unitary effect]

Owner name: CETTEEN GMBH; DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

U20 Renewal fee paid [unitary effect]

Year of fee payment: 6

Effective date: 20230914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230928

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230921

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231019

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231028

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2957611

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20240123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231028

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628