EP3670924A1 - Vakuumpumpe und verfahren zur herstellung einer solchen - Google Patents

Vakuumpumpe und verfahren zur herstellung einer solchen Download PDF

Info

Publication number
EP3670924A1
EP3670924A1 EP19210020.4A EP19210020A EP3670924A1 EP 3670924 A1 EP3670924 A1 EP 3670924A1 EP 19210020 A EP19210020 A EP 19210020A EP 3670924 A1 EP3670924 A1 EP 3670924A1
Authority
EP
European Patent Office
Prior art keywords
holweck
section
groove
vacuum pump
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19210020.4A
Other languages
English (en)
French (fr)
Other versions
EP3670924B1 (de
Inventor
Uwe Leib
Torsten Gogol
Bernhard Koch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum GmbH
Original Assignee
Pfeiffer Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum GmbH filed Critical Pfeiffer Vacuum GmbH
Priority to EP19210020.4A priority Critical patent/EP3670924B1/de
Publication of EP3670924A1 publication Critical patent/EP3670924A1/de
Priority to JP2020159322A priority patent/JP7032500B2/ja
Application granted granted Critical
Publication of EP3670924B1 publication Critical patent/EP3670924B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/044Holweck-type pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/10Manufacture by removing material

Definitions

  • the present invention relates to a vacuum pump, for example a turbomolecular pump, comprising a Holweck pump stage with a Holweck stator and a Holweck rotor which rotates about a rotor axis during operation of the vacuum pump and which cooperates with the Holweck stator to produce a pumping effect, the Holweck pump stage having at least one thread-like Holweck groove, which of at least one side wall is limited.
  • the invention also relates to a method for producing such a vacuum pump.
  • Holweck grooves are usually formed by butting. It may be desirable to produce a Holweck geometry with narrow but very deep grooves in relation to the width. In the inlet area of a Holweck step in particular, it can make sense to produce comparatively deep grooves. Such deep grooves in the inlet area have proven to be advantageous, for example, if the gas conveyed by a turbomolecular pump stage with a high pumping speed is to be transferred to the Holweck pump stage. Particularly with regard to the production of narrow but deep grooves in the inside diameter of a Holweck component, in particular a Holweck stator sleeve, the widespread method of butting has disadvantages. On the one hand, very filigree tools that are susceptible to wear and failure must be used. On the other hand, only a small infeed can be achieved with each work step of the tool, which causes long production times and high costs.
  • This geometry enables reliable and cost-effective production, in particular of Holweck grooves with great depth and relatively small width.
  • the invention is based on the idea that the side walls of the grooves do not have to be aligned straight or perpendicular to the rotor axis, as is customary in the prior art. Rather, the deviation from the vertical alignment results in considerable advantages in the manufacturing process.
  • the Holweck groove can thus be produced by a cutting process, in particular milled.
  • a cutting tool such as a milling cutter, can be aligned obliquely during machining.
  • the Holwecknut is therefore particularly easy to access.
  • section relates in particular to the rotor axis, that is to say to an axial section, and / or to the screw shape of the Holweck groove.
  • the Holweck groove can basically be designed differently in different sections.
  • the side wall is formed obliquely in at least one section. For example, it can be designed obliquely over its entire length, in particular with an angle that is the same over the length. But it can also have different angles in different sections and / or, for example, also be arranged in at least one section perpendicular to the rotor axis.
  • the relevant cross-section is one in which the rotor axis lies. With regard to the rotor, it is ultimately a longitudinal section, which, however, runs transversely to the side wall.
  • the Holweck groove forms an internal thread.
  • the Holweck stator can have the Holweck groove.
  • the Holweck rotor can have the Holweck groove.
  • respective Holweck grooves on the rotor and stator can also be designed according to the invention.
  • the Holweck groove generally has a groove base. This can in particular be flat in cross section.
  • the groove bottom defines an envelope, which can also be referred to as a basic envelope, in particular over several turns of the groove.
  • the basic envelope is conical at least in a first section of the Holweck groove.
  • the groove base can be formed obliquely in cross section with respect to the rotor axis, at least in a first section of the Holweck groove. In the first section, in particular, the bottom of the groove can be arranged at least substantially perpendicular to the associated region of the side wall.
  • the first section is an inlet section of the Holweck pump stage with respect to a pumping direction.
  • particularly deep grooves in particular with a relatively small width, can be produced in a simple manner in the inlet section.
  • the pump performance in particular the pumping speed, can be improved in a simple manner.
  • the first section can be arranged, for example, at one end of the component which has the holck groove, one end with respect to the rotor axis.
  • the basic envelope can, in principle independently of a first section with a conical basic envelope or oblique groove base, preferably be cylindrical in one, in particular second, section of the Holweck groove.
  • the bottom of the groove can e.g. be formed in a, in particular second, section of the Holweck groove parallel to the rotor axis.
  • The, in particular second, section can be arranged, for example, following an inlet section and / or an outlet section of the Holweck pump stage.
  • the side wall in particular has a radially inner end, which defines an inner envelope, in particular over several turns of the Holweck groove.
  • the inner envelope can preferably be cylindrical in at least one section, in particular in several sections.
  • the inner envelope can preferably be cylindrical both in the first section and in the second section.
  • the side wall is arranged in a first section perpendicularly and / or in a second section obliquely to an adjacent and / or assigned groove base.
  • the side wall is designed obliquely with respect to the rotor axis, ie an angle between the side wall and the rotor axis is less than 90 ° and greater than 0 °. It when the side wall in is particularly advantageous an angle to the rotor axis is arranged which is at least 50 ° and / or at most 80 °. An angle of approximately 70 ° is particularly preferred.
  • the side wall can be formed by a web.
  • a web can in particular be formed between two adjacent Holweck grooves or between two revolutions of the same groove.
  • the web can in particular also form a second side wall of an adjacent one or the Holweck groove, in particular both side walls being formed parallel to one another and / or obliquely to the rotor axis.
  • the Holweck pump stage can have multiple gears, i.e. have several parallel, thread-like Holwecknuten.
  • one, in particular thread-like, web is provided for each aisle.
  • Two gears or Holwecknuten can e.g. be separated from each other by a web.
  • the web can have an inner end, which e.g. is flat and / or is arranged parallel to the rotor axis.
  • the web can generally e.g. have two, in particular parallel, side walls that delimit each groove or one.
  • the side walls can preferably both be arranged obliquely.
  • the object of the invention is also achieved by a method for producing a vacuum pump of the type described above, the Holweck groove being produced in at least a first section by milling.
  • a milling cutter is guided obliquely with respect to a threaded axis of the Holweck groove.
  • the thread axis corresponds in particular to a rotor axis in the assembly of the vacuum pump.
  • the first section can preferably be an inlet section of the Holweck pump stage.
  • the Holweck groove can generally preferably be produced by a different machining process and in particular by butting.
  • milling in the first section and shaping in the second section can thus be advantageously combined.
  • it can be advantageously used in the first section that relatively deep grooves can be introduced in a simple manner by means of milling and relatively filigree webs can be formed.
  • the groove can also be produced in a simple manner in a section downstream of the inlet section, in particular in the pumping direction, which section is difficult to access for a milling cutter.
  • the respective advantages of the machining processes can therefore be used in a targeted manner.
  • the side wall delimiting the Holweck groove in a cross section in which a threaded axis of the Holweck groove lies is formed obliquely to the threaded axis.
  • an end mill and / or a side milling cutter can be used for milling.
  • the vacuum pump can preferably be a turbomolecular pump with a Holweck pump stage.
  • the turbomolecular pump 111 shown comprises a pump inlet 115 surrounded by an inlet flange 113, to which a recipient, not shown, can be connected in a manner known per se.
  • the gas from the recipient can be sucked out of the recipient via the pump inlet 115 and conveyed through the pump to a pump outlet 117 to which a backing pump, such as a rotary vane pump, can be connected.
  • the inlet flange 113 forms in accordance with the orientation of the vacuum pump Fig. 1 the upper end of the housing 119 of the vacuum pump 111.
  • the housing 119 comprises a lower part 121, on which an electronics housing 123 is arranged on the side. Electrical and / or electronic components of the vacuum pump 111 are accommodated in the electronics housing 123, for example for operating an electric motor 125 arranged in the vacuum pump.
  • Several connections 127 for accessories are provided on the electronics housing 123.
  • a data interface 129 for example in accordance with the RS485 standard, and a power supply connection 131 are arranged on the electronics housing 123.
  • a flood inlet 133 in particular in the form of a flood valve, is provided on the housing 119 of the turbomolecular pump 111, via which the vacuum pump 111 can be flooded.
  • a sealing gas connection 135, which is also referred to as a purge gas connection via which purge gas to protect the electric motor 125 (see, for example, FIG Fig. 3 ) can be brought before the gas conveyed by the pump into the engine compartment 137, in which the electric motor 125 is housed in the vacuum pump 111.
  • there are also two coolant connections 139 one of the coolant connections being provided as an inlet and the other coolant connection being provided as an outlet for coolant, which can be fed into the vacuum pump for cooling purposes.
  • the lower side 141 of the vacuum pump can serve as a standing surface, so that the vacuum pump 111 can be operated standing on the underside 141.
  • the vacuum pump 111 can also be attached to a recipient via the inlet flange 113 and can thus be operated to a certain extent in a hanging manner.
  • the vacuum pump 111 may be designed to operate can be taken if it is oriented in a different way than in Fig. 1 is shown.
  • Embodiments of the vacuum pump can also be realized, in which the underside 141 cannot be arranged facing downwards, but turned to the side or directed upwards.
  • various screws 143 are also arranged, by means of which components of the vacuum pump, which are not further specified here, are fastened to one another.
  • a bearing cover 145 is attached to the underside 141.
  • Fastening bores 147 are also arranged on the underside 141, via which the pump 111 can be fastened, for example, to a support surface.
  • a coolant line 148 is shown, in which the coolant introduced and discharged via the coolant connections 139 can circulate.
  • the vacuum pump comprises a plurality of process gas pump stages for conveying the process gas present at the pump inlet 115 to the pump outlet 117.
  • a rotor 149 is arranged in the housing 119 and has a rotor shaft 153 rotatable about an axis of rotation 151.
  • the turbomolecular pump 111 comprises a plurality of turbomolecular pump stages which are connected to one another in a pumping manner with a plurality of radial rotor disks 155 fastened to the rotor shaft 153 and stator disks 157 arranged between the rotor disks 155 and fixed in the housing 119.
  • a rotor disk 155 and an adjacent stator disk 157 each form one turbomolecular pump stage.
  • the stator disks 157 are held at a desired axial distance from one another by spacer rings 159.
  • the vacuum pump also comprises Holweck pump stages which are arranged one inside the other in the radial direction and have a pumping effect and are connected in series with one another.
  • the rotor of the Holweck pump stages comprises a rotor hub 161 arranged on the rotor shaft 153 and two cylindrical jacket-shaped Holweck rotor sleeves 163, 165 fastened to and supported by the rotor hub 161, which are oriented coaxially to the axis of rotation 151 and nested one inside the other in the radial direction.
  • two cylindrical jacket-shaped Holweck stator sleeves 167, 169 are provided, which are also oriented coaxially to the axis of rotation 151 and are nested one inside the other in the radial direction.
  • the pump-active surfaces of the Holweck pump stages are formed by the lateral surfaces, that is to say by the radial inner and / or outer surfaces, of the Holweck rotor sleeves 163, 165 and of the Holweck stator sleeves 167, 169.
  • the radial inner surface of the outer Holweck stator sleeve 167 lies opposite the radial outer surface of the outer Holweck rotor sleeve 163 with the formation of a radial Holweck gap 171 and forms with it the first Holweck pump stage following the turbomolecular pumps.
  • the radial inner surface of the outer Holweck rotor sleeve 163 faces the radial outer surface of the inner Holweck stator sleeve 169 with the formation of a radial Holweck gap 173 and forms a second Holweck pump stage with the latter.
  • the radial inner surface of the inner Holweck stator sleeve 169 lies opposite the radial outer surface of the inner Holweck rotor sleeve 165, forming a radial Holweck gap 175, and forms the third Holweck pump stage with the latter.
  • a radially extending channel can be provided, via which the radially outer Holweck gap 171 is connected to the central Holweck gap 173.
  • a radially extending channel can be provided, via which the central Holweck gap 173 is connected to the radially inner Holweck gap 175. This means that the nested Holweck pump stages are connected in series.
  • a connection channel 179 to the outlet 117 can also be provided.
  • the above-mentioned pump-active surfaces of the Holweck stator sleeves 163, 165 each have a plurality of Holweck grooves running spirally around the axis of rotation 151 in the axial direction, while the opposite lateral surfaces of the Holweck rotor sleeves 163, 165 are smooth and the gas for operating the Drive the vacuum pump 111 in the Holweck grooves.
  • a roller bearing 181 is provided in the area of the pump outlet 117 and a permanent magnet bearing 183 in the area of the pump inlet 115.
  • a conical spray nut 185 is provided on the rotor shaft 153 with an outer diameter increasing toward the roller bearing 181.
  • the spray nut 185 is in sliding contact with at least one scraper of an operating fluid reservoir.
  • the operating medium storage comprises a plurality of absorbent disks 187 stacked one on top of the other, which are provided with an operating medium for the rolling bearing 181, e.g. are soaked with a lubricant.
  • the operating medium is transferred by capillary action from the operating medium storage via the wiper to the rotating spray nut 185 and, as a result of the centrifugal force along the spray nut 185, is conveyed in the direction of the increasing outer diameter of the spray nut 185 to the roller bearing 181, where it is eg fulfills a lubricating function.
  • the roller bearing 181 and the operating fluid storage are enclosed in the vacuum pump by a trough-shaped insert 189 and the bearing cover 145.
  • the permanent magnet bearing 183 comprises a bearing half 191 on the rotor side and a bearing half 193 on the stator side, each of which comprises an annular stack of a plurality of permanent magnetic rings 195, 197 stacked on one another in the axial direction.
  • the ring magnets 195, 197 lie opposite one another to form a radial bearing gap 199, the rotor-side ring magnets 195 being arranged radially on the outside and the stator-side ring magnets 197 being arranged radially on the inside.
  • the magnetic field present in the bearing gap 199 causes magnetic repulsive forces between the ring magnets 195, 197, which cause the rotor shaft 153 to be supported radially.
  • the rotor-side ring magnets 195 are carried by a carrier section 201 of the rotor shaft 153, which surrounds the ring magnets 195 radially on the outside.
  • the stator-side ring magnets 197 are carried by a stator-side support section 203 which extends through the ring magnets 197 and is suspended from radial struts 205 of the housing 119.
  • Parallel to the axis of rotation 151, the rotor-side ring magnets 195 are fixed by a cover element 207 coupled to the carrier section 203.
  • the stator-side ring magnets 197 are fixed parallel to the axis of rotation 151 in one direction by a fastening ring 209 connected to the carrier section 203 and a fastening ring 211 connected to the carrier section 203.
  • a plate spring 213 can also be provided between the fastening ring 211 and the ring magnet 197.
  • An emergency or catch bearing 215 is provided within the magnetic bearing, which runs empty without contact during normal operation of the vacuum pump 111 and only comes into engagement with an excessive radial deflection of the rotor 149 relative to the stator in order to provide a radial stop for the rotor 149 to form, since a collision of the rotor-side structures with the stator-side structures prevented becomes.
  • the catch bearing 215 is designed as an unlubricated roller bearing and forms a radial gap with the rotor 149 and / or the stator, which causes the catch bearing 215 to be disengaged in normal pumping operation.
  • the radial deflection at which the catch bearing 215 engages is dimensioned large enough that the catch bearing 215 does not engage during normal operation of the vacuum pump, and at the same time is small enough so that the rotor-side structures collide with the stator-side structures under all circumstances is prevented.
  • the vacuum pump 111 comprises the electric motor 125 for rotatingly driving the rotor 149.
  • the armature of the electric motor 125 is formed by the rotor 149, the rotor shaft 153 of which extends through the motor stator 217.
  • a permanent magnet arrangement can be arranged radially on the outside or embedded on the section of the rotor shaft 153 which extends through the motor stator 217.
  • an intermediate space 219 is arranged, which comprises a radial motor gap, via which the motor stator 217 and the permanent magnet arrangement for transmitting the drive torque can magnetically influence one another.
  • the motor stator 217 is fixed in the housing within the motor space 137 provided for the electric motor 125.
  • a sealing gas which is also referred to as a purge gas and which can be, for example, air or nitrogen, can enter the engine compartment 137 via the sealing gas connection 135.
  • the electric motor 125 can be protected from process gas, for example from corrosive portions of the process gas, by means of the sealing gas.
  • the engine compartment 137 can also be evacuated via the pump outlet 117, ie in the engine compartment 137 there is at least approximately the vacuum pressure brought about by the forevacuum pump connected to the pump outlet 117.
  • a so-called and known labyrinth seal 223 can also be provided between the rotor hub 161 and a wall 221 delimiting the motor space 137, in particular in order to achieve a better seal of the motor space 217 with respect to the radially outside Holweck pump stages.
  • turbomolecular pump 111 which comprises a Holweck pump stage, serves to illustrate the technical background.
  • the pump 111 can be developed in particular according to the invention.
  • the vacuum pump according to the invention can be further developed particularly advantageously by means of individual or several features of the pump 111 described above.
  • a housing component 10 of a vacuum pump according to the invention is shown in cross section, the sectional plane running along a rotor axis 12 of a Holweck rotor, not shown here.
  • the vacuum pump comprises a Holweck pump stage 14, of which only the stator-side elements are visible, namely at least one thread-like Holweck groove 16 which is formed in the housing component 10.
  • a Holweck rotor sleeve When assembled, a Holweck rotor sleeve preferably rotates in the Holweck pump stage 14, for example as used in connection with the 1 to 5 is described.
  • the Holweck pump stage 14 comprises a plurality of Holweck grooves 16 running in parallel, that is to say it is of multi-start design.
  • side walls 18 are visible, which delimit and separate the respective grooves 16.
  • the side walls 18 are arranged obliquely with respect to the rotor axis 12.
  • an angle 20 between a side wall 18 and the rotor axis 12 or a groove base 22 is indicated. In the embodiment shown, this is approximately 70 ° and can be preferred be at least 50 ° and / or at most 80 °.
  • all side walls 18 are arranged parallel to one another and at an angle 20 at an angle to the rotor axis 12.
  • a respective Holweck groove 16 is delimited in the axial direction by the side walls 18 and in the radial direction by a groove base 22 which extends between the side walls 18.
  • the groove base 22 defines a base envelope along its axial extent and over several gears or turns. This is conical in a first section 24 and cylindrical in a second section 26.
  • the groove base 22 is generally flat, but there is an unevenness on the groove base 22 in a transition region between the first section 24 and the second section 26, which is particularly the result of the transition between the sections 24 and 26.
  • the side walls 18 are formed by webs 28 which separate the Holwecknuten 16 of the different gears.
  • the webs 28 and the side walls 18 have an inner end which defines an inner envelope.
  • the inner envelope is cylindrical in both the first section 24 and the second section 26. At the inner end, the webs 28 are flat and aligned parallel to the rotor axis 12.
  • the Holweck groove 16 is formed deeper in the first section 24 than in the second section 26, in particular the width of the Holweck groove 16 preferably being the same in both sections 24 and 26 or preferably constant over the entire axial length of the Holweck pumping stage.
  • the width is defined in particular by the axial distance between the inner ends of two side walls 18 or webs 28 via a groove 16.
  • the first section 24 preferably forms an inlet section of the Holweck pump stage 14.
  • the great depth or the relatively large volume in this section 24 the groove 16 provides a particularly good pumping speed for the Holweck pump stage 14.
  • a milling cutter 30 is indicated, as can be guided in the first section 24, for example for the production of the Holweck groove 16.
  • the milling cutter 30 is designed here, for example, as an end mill.
  • the milling cutter 30 is aligned with its axis of rotation 32 obliquely with respect to the rotor axis 12 or a threaded axis of the thread-like Holwecknut 16, which corresponds to the rotor axis 12 in the assembly of the vacuum pump.
  • the angle between the axis of rotation 32 and the rotor axis 12 corresponds to that angle 20 of the side walls 18.
  • the Holweck groove 16 in the first section 24 can be produced in a simple manner with the milling cutter 30 without an angular head being necessary for the milling cutter.
  • the Holweck groove 16 can thus be produced in a simple manner.
  • the Holweck groove 16 can preferably be produced by means of butting.
  • the one or more grooves 16 can generally be produced with a milling cutter, for example with an end mill or a disk milling cutter. Further internal machining, for example in the second section 26, may not be possible or difficult with an angular head on the milling machine due to the geometry (for example small diameter).
  • a milling cutter for example as in Fig. 7 shown, are milled from the outside, in particular with the basic envelope, conical first or inlet section 24. This manufacturing method leads to the fact that the webs 28, which here are in particular those of the stator, are inclined between the grooves 16 at the same angle as the milling cutter itself.
  • the grooves 16 can consequently continue to be produced by butting.
  • the butted grooves are also preferably inclined at the same angle as the milled grooves, in particular so that the shaping tool does not damage the webs 28 that are already present after milling.
  • the two manufacturing processes should be synchronized with respect to the angular position of the grooves 16 and the side walls 18.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

Die Erfindung betrifft eine Vakuumpumpe umfassend eine Holweckpumpstufe mit einem Holweckstator und einem im Betrieb der Vakuumpumpe um eine Rotorachse rotierenden Holweckrotor, der mit dem Holweckstator zum Erzeugen einer Pumpwirkung zusammenwirkt, wobei die Holweckpumpstufe zumindest eine gewindeartige Holwecknut aufweist, die von zumindest einer Seitenwand begrenzt ist, wobei die Seitenwand in einem Querschnitt, in dem die Rotorachse liegt, zumindest abschnittsweise schräg in Bezug auf die Rotorachse ausgebildet ist.

Description

  • Die vorliegende Erfindung betrifft eine Vakuumpumpe, beispielsweise eine Turbomolekularpumpe, umfassend eine Holweckpumpstufe mit einem Holweckstator und einem im Betrieb der Vakuumpumpe um eine Rotorachse rotierenden Holweckrotor, der mit dem Holweckstator zum Erzeugen einer Pumpwirkung zusammenwirkt, wobei die Holweckpumpstufe zumindest eine gewindeartige Holwecknut aufweist, die von zumindest einer Seitenwand begrenzt ist.
  • Die Erfindung betrifft auch ein Verfahren zur Herstellung einer derartigen Vakuumpumpe.
  • Holwecknuten, insbesondere solche, die ein Innengewinde bilden, werden üblicherweise durch Stoßen ausgebildet. Es kann wünschenswert sein, eine Holweckgeometrie mit schmalen aber im Verhältnis zur Breite sehr tiefen Nuten herzustellen. Speziell im Einlassbereich einer Holweckstufe kann es sinnvoll sein, vergleichsweise tiefe Nuten herzustellen. Derart tiefe Nuten im Einlassbereich erweisen sich zum Beispiel als vorteilhaft, wenn das von einer Turbomolekularpumpstufe mit hohem Saugvermögen geförderte Gas in die Holweckpumpstufe übergeben werden soll. Insbesondere im Hinblick auf die Herstellung von schmalen aber tiefen Nuten im Innendurchmesser eines Holweckbauteils, insbesondere einer Holweck-Statorhülse, hat das verbreitete Verfahren des Stoßens Nachteile. Zum einen müssen dafür sehr filigrane Werkzeuge benutzt werden, die anfällig für Verschleiß und Versagen sind. Zum anderen kann mit jedem Arbeitsgang des Werkzeugs nur eine geringe Zustellung erreicht werden, was lange Produktionszeiten und hohe Kosten verursacht.
  • Es ist eine Aufgabe der Erfindung, die Herstellung einer Holwecknut zu vereinfachen.
  • Diese Aufgabe wird durch eine Vakuumpumpe mit den in Anspruch 1 genannten Merkmalen gelöst, und insbesondere dadurch, dass die Seitenwand in einem Querschnitt, in dem die Rotorachse liegt, zumindest abschnittsweise schräg in Bezug auf die Rotorachse ausgebildet ist.
  • Durch diese Geometrie wird eine prozesssichere und kostengünstige Herstellung ermöglicht, insbesondere von Holwecknuten mit großer Tiefe und relativ geringer Breite.
  • Der Erfindung liegt der Gedanke zugrunde, dass die Seitenwände der Nuten nicht, wie im Stand der Technik üblich, gerade bzw. senkrecht zur Rotorachse ausgerichtet sein müssen. Vielmehr ergeben sich durch die Abweichung von der senkrechten Ausrichtung erhebliche Vorteile im Herstellungsprozess. Die Holwecknut kann somit durch ein spanendes Verfahren hergestellt sein, insbesondere gefräst sein. Insbesondere kann ein spanendes Werkzeug, wie etwa ein Fräser, bei der Bearbeitung entsprechend schräg ausgerichtet sein. Die Holwecknut ist somit besonders leicht zugänglich.
  • Der Begriff "Abschnitt" bezieht sich insbesondere auf die Rotorachse, also auf einen Axialabschnitt, und/oder auf die Schraubenform der Holwecknut. Die Holwecknut kann grundsätzlich in unterschiedlichen Abschnitten unterschiedlich ausgebildet sein. Erfindungsgemäß ist die Seitenwand zumindest in einem Abschnitt schräg ausgebildet. Sie kann beispielsweise über ihre gesamte Länge schräg, insbesondere mit über die Länge gleichem Winkel, ausgebildet sein. Sie kann aber auch in unterschiedlichen Abschnitten unterschiedliche Winkel aufweisen und/oder z.B. auch in wenigstens einem Abschnitt senkrecht zur Rotorachse angeordnet sein.
  • Der maßgebliche Querschnitt ist ein solcher, in dem die Rotorachse liegt. In Bezug auf den Rotor handelt es sich also letztlich um einen Längsschnitt, der jedoch quer zur Seitenwand verläuft.
  • Gemäß einer Ausführungsform ist vorgesehen, dass die Holwecknut ein Innengewinde bildet. Hierbei ergeben sich die erfindungsgemäßen Vorteile in besonderem Maße.
  • Insbesondere kann der Holweckstator die Holwecknut aufweisen. Alternativ kann etwa der Holweckrotor die Holwecknut aufweisen. Grundsätzlich können auch jeweilige Holwecknuten an Rotor und Stator erfindungsgemäß ausgebildet sein.
  • Die Holwecknut weist allgemein einen Nutgrund auf. Dieser kann insbesondere im Querschnitt eben ausgebildet sein. Der Nutgrund definiert insbesondere über mehrere Windungen der Nut hinweg ein Einhüllende, die auch als Grundeinhüllende bezeichnet werden kann. Bei einem vorteilhaften Beispiel ist die Grundeinhüllende zumindest in einem ersten Abschnitt der Holwecknut konisch ausgebildet. Alternativ oder zusätzlich kann der Nutgrund zumindest in einem ersten Abschnitt der Holwecknut in dem Querschnitt schräg in Bezug auf die Rotorachse ausgebildet sein. Im ersten Abschnitt kann insbesondere der Nutgrund zumindest im Wesentlichen senkrecht zum zugehörigen Bereich der Seitenwand angeordnet sein.
  • Bei einer weiteren Ausführungsform ist vorgesehen, dass der erste Abschnitt in Bezug auf eine Pumprichtung ein Einlassabschnitt der Holweckpumpstufe ist. Im Einlassabschnitt können erfindungsgemäß auf einfache Weise besonders tiefe Nuten, insbesondere bei relativ geringer Breite, hergestellt werden. Somit kann auf einfache Weise die Pumpleistung, insbesondere das Saugvermögen, verbessert werden.
  • Der erste Abschnitt kann beispielsweise an einem Ende des Bauteils angeordnet sein, welches die Holwecknut aufweist, wobei ein Ende in Bezug auf die Rotorachse gemeint ist.
  • Die Grundeinhüllende kann, grundsätzlich unabhängig von einem ersten Abschnitt mit konischer Grundeinhüllender bzw. schrägem Nutgrund, bevorzugt in einem, insbesondere zweiten, Abschnitt der Holwecknut zylindrisch ausgebildet sein. Alternativ oder zusätzlich kann der Nutgrund z.B. in einem, insbesondere zweiten, Abschnitt der Holwecknut parallel zur Rotorachse ausgebildet sein. Der, insbesondere zweite, Abschnitt kann beispielsweise im Anschluss an einen Einlassabschnitt und/oder einen Auslassabschnitt der Holweckpumpstufe angeordnet sein.
  • Die Seitenwand weist insbesondere ein radial inneres Ende auf, welches insbesondere über mehrere Windungen der Holwecknut hinweg eine Inneneinhüllende definiert. Die Inneneinhüllende kann bevorzugt in zumindest einem Abschnitt, insbesondere in mehreren Abschnitten, zylindrisch sein. Bevorzugt kann die Inneneinhüllende sowohl im ersten Abschnitt als auch im zweiten Abschnitt zylindrisch sein.
  • Bei einem weiteren Beispiel ist vorgesehen, dass die Seitenwand in einem ersten Abschnitt senkrecht und/oder in einem zweiten Abschnitt schräg zu einem benachbarten und/oder zugeordneten Nutgrund angeordnet ist.
  • Erfindungsgemäß ist die Seitenwand schräg in Bezug auf die Rotorachse ausgebildet, d.h. dass ein Winkel zwischen der Seitenwand und der Rotorachse kleiner als 90° und größer als 0° ist. Besonders vorteilhaft ist es, wenn die Seitenwand in einem Winkel zur Rotorachse angeordnet ist, der wenigstens 50° und/oder höchstens 80° beträgt. Besonders bevorzugt ist ein Winkel von etwa 70°.
  • Zum Beispiel kann die Seitenwand von einem Steg gebildet sein. Ein Steg kann insbesondere zwischen zwei benachbarten Holwecknuten oder zwischen zwei Umläufen derselben Nut gebildet sein. Der Steg kann insbesondere auch eine zweite Seitenwand einer benachbarten bzw. der Holwecknut bilden, insbesondere wobei beide Seitenwände parallel zueinander und/oder schräg zur Rotorachse ausgebildet sind.
  • Allgemein kann die Holweckpumpstufe mehrere Gänge, d.h. mehrere parallel angeordnete, gewindeartige Holwecknuten aufweisen. Insbesondere ist ein, insbesondere gewindeartiger, Steg je Gang vorgesehen. Zwei Gänge bzw. Holwecknuten können z.B. durch einen Steg voneinander getrennt sein.
  • Der Steg kann ein inneres Ende aufweisen, welches z.B. eben ausgebildet ist und/oder parallel zur Rotorachse angeordnet ist. Der Steg kann allgemein z.B. zwei, insbesondere parallele, Seitenwände aufweisen, die jeweilige oder eine Nut begrenzen. Die Seitenwände können bevorzugt beide schräg angeordnet sein.
  • Die Aufgabe der Erfindung wird auch durch ein Verfahren zur Herstellung einer Vakuumpumpe nach vorstehend beschriebener Art gelöst, wobei die Holwecknut in zumindest einem ersten Abschnitt durch Fräsen hergestellt wird.
  • Gemäß einer Ausführungsform ist vorgesehen, dass dabei ein Fräser schräg in Bezug auf eine Gewindeachse der Holwecknut geführt wird. Die Gewindeachse entspricht insbesondere einer Rotorachse im Zusammenbau der Vakuumpumpe.
  • Der erste Abschnitt kann bevorzugt ein Einlassabschnitt der Holweckpumpstufe sein.
  • In einem zweiten Abschnitt kann die Holwecknut allgemein bevorzugt durch ein anderes spanendes Verfahren und insbesondere durch Stoßen hergestellt werden. Insbesondere lassen sich also Fräsen im ersten Abschnitt und Stoßen im zweiten Abschnitt vorteilhaft kombinieren. So kann einerseits im ersten Abschnitt vorteilhaft ausgenutzt werden, dass mittels Fräsen auf einfache Weise relativ tiefe Nuten eingebracht und relativ filigrane Stege ausgebildet werden können. Im zweiten Abschnitt kann vorteilhaft ausgenutzt werden, dass die Nut auch in einem, insbesondere in Pumprichtung dem Einlassabschnitt nachgeordneten, Abschnitt auf einfache Weise hergestellt werden kann, der für einen Fräser nur schwer zugänglich ist. Es können also die jeweiligen Vorteile der Bearbeitungsverfahren jeweils gezielt ausgenutzt werden.
  • Beispielsweise kann es vorgesehen sein, dass sowohl im ersten als auch in einem zweiten Abschnitt, insbesondere dem vorstehend beschriebenen zweiten Abschnitt, die die Holwecknut begrenzende Seitenwand in einem Querschnitt, in dem eine Gewindeachse der Holwecknut liegt, schräg zu der Gewindeachse ausgebildet wird.
  • Allgemein kann zum Fräsen insbesondere ein Schaftfräser und/oder ein Scheibenfräser verwendet werden.
  • Bei der Vakuumpumpe kann es sich bevorzugt um eine Turbomolekularpumpe mit einer Holweckpumpstufe handeln.
  • Es versteht sich, dass das beschriebene Verfahren auch durch die Merkmale und Ausführungsformen, welche im Zusammenhang mit einer Vakuumpumpe beschrieben werden, vorteilhaft weitergebildet werden kann, und umgekehrt. Nachfolgend wird die Erfindung beispielhaft anhand vorteilhafter Ausführungsformen unter Bezugnahme auf die beigefügten Figuren beschrieben. Es zeigen, jeweils schematisch:
  • Fig. 1
    eine perspektivische Ansicht einer Turbomolekularpumpe,
    Fig. 2
    eine Ansicht der Unterseite der Turbomolekularpumpe von Fig. 1,
    Fig. 3
    einen Querschnitt der Turbomolekularpumpe längs der in Fig. 2 gezeigten Schnittlinie A-A,
    Fig. 4
    eine Querschnittsansicht der Turbomolekularpumpe längs der in Fig. 2 gezeigten Schnittlinie B-B,
    Fig. 5
    eine Querschnittsansicht der Turbomolekularpumpe längs der in Fig. 2 gezeigten Schnittlinie C-C,
    Fig. 6
    zeigt ein Gehäusebauteil einer erfindungsgemäßen Vakuumpumpe im Querschnitt.
    Fig. 7
    zeigt ebenfalls das Gehäusebauteil der Fig. 6 im Querschnitt, wobei zur Illustration des zugrundeliegenden Herstellungsverfahrens ein Fräser angedeutet ist.
  • Die in Fig. 1 gezeigte Turbomolekularpumpe 111 umfasst einen von einem Einlassflansch 113 umgebenen Pumpeneinlass 115, an welchen in an sich bekannter Weise ein nicht dargestellter Rezipient angeschlossen werden kann. Das Gas aus dem Rezipienten kann über den Pumpeneinlass 115 aus dem Rezipienten gesaugt und durch die Pumpe hindurch zu einem Pumpenauslass 117 gefördert werden, an den eine Vorvakuumpumpe, wie etwa eine Drehschieberpumpe, angeschlossen sein kann.
  • Der Einlassflansch 113 bildet bei der Ausrichtung der Vakuumpumpe gemäß Fig. 1 das obere Ende des Gehäuses 119 der Vakuumpumpe 111. Das Gehäuse 119 umfasst ein Unterteil 121, an welchem seitlich ein Elektronikgehäuse 123 angeordnet ist. In dem Elektronikgehäuse 123 sind elektrische und/oder elektronische Komponenten der Vakuumpumpe 111 untergebracht, z.B. zum Betreiben eines in der Vakuumpumpe angeordneten Elektromotors 125. Am Elektronikgehäuse 123 sind mehrere Anschlüsse 127 für Zubehör vorgesehen. Außerdem sind eine Datenschnittstelle 129, z.B. gemäß dem RS485-Standard, und ein Stromversorgungsanschluss 131 am Elektronikgehäuse 123 angeordnet.
  • Am Gehäuse 119 der Turbomolekularpumpe 111 ist ein Fluteinlass 133, insbesondere in Form eines Flutventils, vorgesehen, über den die Vakuumpumpe 111 geflutet werden kann. Im Bereich des Unterteils 121 ist ferner noch ein Sperrgasanschluss 135, der auch als Spülgasanschluss bezeichnet wird, angeordnet, über welchen Spülgas zum Schutz des Elektromotors 125 (siehe z.B. Fig. 3) vor dem von der Pumpe geförderten Gas in den Motorraum 137, in welchem der Elektromotor 125 in der Vakuumpumpe 111 untergebracht ist, gebracht werden kann. Im Unterteil 121 sind ferner noch zwei Kühlmittelanschlüsse 139 angeordnet, wobei einer der Kühlmittelanschlüsse als Einlass und der andere Kühlmittelanschluss als Auslass für Kühlmittel vorgesehen ist, das zu Kühlzwecken in die Vakuumpumpe geleitet werden kann.
  • Die untere Seite 141 der Vakuumpumpe kann als Standfläche dienen, sodass die Vakuumpumpe 111 auf der Unterseite 141 stehend betrieben werden kann. Die Vakuumpumpe 111 kann aber auch über den Einlassflansch 113 an einem Rezipienten befestigt werden und somit gewissermaßen hängend betrieben werden. Außerdem kann die Vakuumpumpe 111 so gestaltet sein, dass sie auch in Betrieb genommen werden kann, wenn sie auf andere Weise ausgerichtet ist als in Fig. 1 gezeigt ist. Es lassen sich auch Ausführungsformen der Vakuumpumpe realisieren, bei der die Unterseite 141 nicht nach unten, sondern zur Seite gewandt oder nach oben gerichtet angeordnet werden kann.
  • An der Unterseite 141, die in Fig. 2 dargestellt ist, sind noch diverse Schrauben 143 angeordnet, mittels denen hier nicht weiter spezifizierte Bauteile der Vakuumpumpe aneinander befestigt sind. Beispielsweise ist ein Lagerdeckel 145 an der Unterseite 141 befestigt.
  • An der Unterseite 141 sind außerdem Befestigungsbohrungen 147 angeordnet, über welche die Pumpe 111 beispielsweise an einer Auflagefläche befestigt werden kann.
  • In den Figuren 2 bis 5 ist eine Kühlmittelleitung 148 dargestellt, in welcher das über die Kühlmittelanschlüsse 139 ein- und ausgeleitete Kühlmittel zirkulieren kann.
  • Wie die Schnittdarstellungen der Figuren 3 bis 5 zeigen, umfasst die Vakuumpumpe mehrere Prozessgaspumpstufen zur Förderung des an dem Pumpeneinlass 115 anstehenden Prozessgases zu dem Pumpenauslass 117.
  • In dem Gehäuse 119 ist ein Rotor 149 angeordnet, der eine um eine Rotationsachse 151 drehbare Rotorwelle 153 aufweist.
  • Die Turbomolekularpumpe 111 umfasst mehrere pumpwirksam miteinander in Serie geschaltete turbomolekulare Pumpstufen mit mehreren an der Rotorwelle 153 befestigten radialen Rotorscheiben 155 und zwischen den Rotorscheiben 155 angeordneten und in dem Gehäuse 119 festgelegten Statorscheiben 157. Dabei bilden eine Rotorscheibe 155 und eine benachbarte Statorscheibe 157 jeweils eine turbomolekulare Pumpstufe. Die Statorscheiben 157 sind durch Abstandsringe 159 in einem gewünschten axialen Abstand zueinander gehalten.
  • Die Vakuumpumpe umfasst außerdem in radialer Richtung ineinander angeordnete und pumpwirksam miteinander in Serie geschaltete Holweck-Pumpstufen. Der Rotor der Holweck-Pumpstufen umfasst eine an der Rotorwelle 153 angeordnete Rotornabe 161 und zwei an der Rotornabe 161 befestigte und von dieser getragene zylindermantelförmige Holweck-Rotorhülsen 163, 165, die koaxial zur Rotationsachse 151 orientiert und in radialer Richtung ineinander geschachtelt sind. Ferner sind zwei zylindermantelförmige Holweck-Statorhülsen 167, 169 vorgesehen, die ebenfalls koaxial zu der Rotationsachse 151 orientiert und in radialer Richtung gesehen ineinander geschachtelt sind.
  • Die pumpaktiven Oberflächen der Holweck-Pumpstufen sind durch die Mantelflächen, also durch die radialen Innen- und/oder Außenflächen, der Holweck-Rotorhülsen 163, 165 und der Holweck-Statorhülsen 167, 169 gebildet. Die radiale Innenfläche der äußeren Holweck-Statorhülse 167 liegt der radialen Außenfläche der äußeren Holweck-Rotorhülse 163 unter Ausbildung eines radialen Holweck-Spalts 171 gegenüber und bildet mit dieser die der Turbomolekularpumpen nachfolgende erste Holweck-Pumpstufe. Die radiale Innenfläche der äußeren Holweck-Rotorhülse 163 steht der radialen Außenfläche der inneren Holweck-Statorhülse 169 unter Ausbildung eines radialen Holweck-Spalts 173 gegenüber und bildet mit dieser eine zweite Holweck-Pumpstufe. Die radiale Innenfläche der inneren Holweck-Statorhülse 169 liegt der radialen Außenfläche der inneren Holweck-Rotorhülse 165 unter Ausbildung eines radialen Holweck-Spalts 175 gegenüber und bildet mit dieser die dritte Holweck-Pumpstufe.
  • Am unteren Ende der Holweck-Rotorhülse 163 kann ein radial verlaufender Kanal vorgesehen sein, über den der radial außenliegende Holweck-Spalt 171 mit dem mittleren Holweck-Spalt 173 verbunden ist. Außerdem kann am oberen Ende der inneren Holweck-Statorhülse 169 ein radial verlaufender Kanal vorgesehen sein, über den der mittlere Holweck-Spalt 173 mit dem radial innenliegenden Holweck-Spalt 175 verbunden ist. Dadurch werden die ineinander geschachtelten Holweck-Pumpstufen in Serie miteinander geschaltet. Am unteren Ende der radial innenliegenden Holweck-Rotorhülse 165 kann ferner ein Verbindungskanal 179 zum Auslass 117 vorgesehen sein.
  • Die vorstehend genannten pumpaktiven Oberflächen der Holweck-Statorhülsen 163, 165 weisen jeweils mehrere spiralförmig um die Rotationsachse 151 herum in axialer Richtung verlaufende Holweck-Nuten auf, während die gegenüberliegenden Mantelflächen der Holweck-Rotorhülsen 163, 165 glatt ausgebildet sind und das Gas zum Betrieb der Vakuumpumpe 111 in den Holweck-Nuten vorantreiben.
  • Zur drehbaren Lagerung der Rotorwelle 153 sind ein Wälzlager 181 im Bereich des Pumpenauslasses 117 und ein Permanentmagnetlager 183 im Bereich des Pumpeneinlasses 115 vorgesehen.
  • Im Bereich des Wälzlagers 181 ist an der Rotorwelle 153 eine konische Spritzmutter 185 mit einem zu dem Wälzlager 181 hin zunehmenden Außendurchmesser vorgesehen. Die Spritzmutter 185 steht mit mindestens einem Abstreifer eines Betriebsmittelspeichers in gleitendem Kontakt. Der Betriebsmittelspeicher umfasst mehrere aufeinander gestapelte saugfähige Scheiben 187, die mit einem Betriebsmittel für das Wälzlager 181, z.B. mit einem Schmiermittel, getränkt sind.
  • Im Betrieb der Vakuumpumpe 111 wird das Betriebsmittel durch kapillare Wirkung von dem Betriebsmittelspeicher über den Abstreifer auf die rotierende Spritzmutter 185 übertragen und in Folge der Zentrifugalkraft entlang der Spritzmutter 185 in Richtung des größer werdenden Außendurchmessers der Spritzmutter 185 zu dem Wälzlager 181 hin gefördert, wo es z.B. eine schmierende Funktion erfüllt. Das Wälzlager 181 und der Betriebsmittelspeicher sind durch einen wannenförmigen Einsatz 189 und den Lagerdeckel 145 in der Vakuumpumpe eingefasst.
  • Das Permanentmagnetlager 183 umfasst eine rotorseitige Lagerhälfte 191 und eine statorseitige Lagerhälfte 193, welche jeweils einen Ringstapel aus mehreren in axialer Richtung aufeinander gestapelten permanentmagnetischen Ringen 195, 197 umfassen. Die Ringmagnete 195, 197 liegen einander unter Ausbildung eines radialen Lagerspalts 199 gegenüber, wobei die rotorseitigen Ringmagnete 195 radial außen und die statorseitigen Ringmagnete 197 radial innen angeordnet sind. Das in dem Lagerspalt 199 vorhandene magnetische Feld ruft magnetische Abstoßungskräfte zwischen den Ringmagneten 195, 197 hervor, welche eine radiale Lagerung der Rotorwelle 153 bewirken. Die rotorseitigen Ringmagnete 195 sind von einem Trägerabschnitt 201 der Rotorwelle 153 getragen, welcher die Ringmagnete 195 radial außenseitig umgibt. Die statorseitigen Ringmagnete 197 sind von einem statorseitigen Trägerabschnitt 203 getragen, welcher sich durch die Ringmagnete 197 hindurch erstreckt und an radialen Streben 205 des Gehäuses 119 aufgehängt ist. Parallel zu der Rotationsachse 151 sind die rotorseitigen Ringmagnete 195 durch ein mit dem Trägerabschnitt 203 gekoppeltes Deckelelement 207 festgelegt. Die statorseitigen Ringmagnete 197 sind parallel zu der Rotationsachse 151 in der einen Richtung durch einen mit dem Trägerabschnitt 203 verbundenen Befestigungsring 209 sowie einen mit dem Trägerabschnitt 203 verbundenen Befestigungsring 211 festgelegt. Zwischen dem Befestigungsring 211 und den Ringmagneten 197 kann außerdem eine Tellerfeder 213 vorgesehen sein.
  • Innerhalb des Magnetlagers ist ein Not- bzw. Fanglager 215 vorgesehen, welches im normalen Betrieb der Vakuumpumpe 111 ohne Berührung leer läuft und erst bei einer übermäßigen radialen Auslenkung des Rotors 149 relativ zu dem Stator in Eingriff gelangt, um einen radialen Anschlag für den Rotor 149 zu bilden, da eine Kollision der rotorseitigen Strukturen mit den statorseitigen Strukturen verhindert wird. Das Fanglager 215 ist als ungeschmiertes Wälzlager ausgebildet und bildet mit dem Rotor 149 und/oder dem Stator einen radialen Spalt, welcher bewirkt, dass das Fanglager 215 im normalen Pumpbetrieb außer Eingriff ist. Die radiale Auslenkung, bei der das Fanglager 215 in Eingriff gelangt, ist groß genug bemessen, sodass das Fanglager 215 im normalen Betrieb der Vakuumpumpe nicht in Eingriff gelangt, und gleichzeitig klein genug, sodass eine Kollision der rotorseitigen Strukturen mit den statorseitigen Strukturen unter allen Umständen verhindert wird.
  • Die Vakuumpumpe 111 umfasst den Elektromotor 125 zum drehenden Antreiben des Rotors 149. Der Anker des Elektromotors 125 ist durch den Rotor 149 gebildet, dessen Rotorwelle 153 sich durch den Motorstator 217 hindurch erstreckt. Auf den sich durch den Motorstator 217 hindurch erstreckenden Abschnitt der Rotorwelle 153 kann radial außenseitig oder eingebettet eine Permanentmagnetanordnung angeordnet sein. Zwischen dem Motorstator 217 und dem sich durch den Motorstator 217 hindurch erstreckenden Abschnitt des Rotors 149 ist ein Zwischenraum 219 angeordnet, welcher einen radialen Motorspalt umfasst, über den sich der Motorstator 217 und die Permanentmagnetanordnung zur Übertragung des Antriebsmoments magnetisch beeinflussen können.
  • Der Motorstator 217 ist in dem Gehäuse innerhalb des für den Elektromotor 125 vorgesehenen Motorraums 137 festgelegt. Über den Sperrgasanschluss 135 kann ein Sperrgas, das auch als Spülgas bezeichnet wird, und bei dem es sich beispielsweise um Luft oder um Stickstoff handeln kann, in den Motorraum 137 gelangen. Über das Sperrgas kann der Elektromotor 125 vor Prozessgas, z.B. vor korrosiv wirkenden Anteilen des Prozessgases, geschützt werden. Der Motorraum 137 kann auch über den Pumpenauslass 117 evakuiert werden, d.h. im Motorraum 137 herrscht zumindest annäherungsweise der von der am Pumpenauslass 117 angeschlossenen Vorvakuumpumpe bewirkte Vakuumdruck.
  • Zwischen der Rotornabe 161 und einer den Motorraum 137 begrenzenden Wandung 221 kann außerdem eine sog. und an sich bekannte Labyrinthdichtung 223 vorgesehen sein, insbesondere um eine bessere Abdichtung des Motorraums 217 gegenüber den radial außerhalb liegenden Holweck-Pumpstufen zu erreichen.
  • Die vorstehende Beschreibung der Turbomolekularpumpe 111, welche eine Holweckpumpstufe umfasst, dient der Illustration des technischen Hintergrunds. Die Pump 111 kann insbesondere erfindungsgemäß weitergebildet werden. Umgekehrt kann die erfindungsgemäße Vakuumpumpe insbesondere vorteilhaft durch einzelne oder mehrere Merkmale der vorstehend beschriebenen Pumpe 111 weitergebildet werden.
  • In den Fig. 6 und 7 ist ein Gehäusebauteil 10 einer erfindungsgemäßen Vakuumpumpe jeweils im Querschnitt gezeigt, wobei die Schnittebene entlang einer Rotorachse 12 eines hier nicht dargestellten Holweckrotors verläuft.
  • Die Vakuumpumpe umfasst eine Holweckpumpstufe 14, von der lediglich die statorseitigen Elemente sichtbar sind, nämlich zumindest eine gewindeartige Holwecknut 16, die in dem Gehäusebauteil 10 ausgebildet ist. Im Zusammenbau rotiert in der Holweckpumpstufe 14 bevorzugt eine Holweck-Rotorhülse, zum Beispiel wie sie im Zusammenhang mit den Fig. 1 bis 5 beschrieben ist. In dieser Ausführungsform umfasst die Holweckpumpstufe 14 mehrere parallel verlaufende Holwecknuten 16, ist also mehrgängig ausgebildet.
  • Im dargestellten Querschnitt sind Seitenwände 18 sichtbar, die die jeweiligen Nuten 16 begrenzen und voneinander trennen. Die Seitenwände 18 sind schräg in Bezug auf die Rotorachse 12 angeordnet. In Fig. 6 ist ein Winkel 20 zwischen einer Seitenwand 18 und der Rotorachse 12 bzw. einem Nutgrund 22 angedeutet. Dieser beträgt in der gezeigten Ausführungsform etwa 70° und kann bevorzugt wenigstens 50° und/oder höchstens 80° betragen. In der gezeigten Ausführungsform sind alle Seitenwände 18 parallel zueinander und im Winkel 20 schräg zur Rotorachse 12 angeordnet.
  • Eine jeweilige Holwecknut 16 ist in axialer Richtung durch die Seitenwände 18 und in radialer Richtung durch einen Nutgrund 22 begrenzt, der sich zwischen den Seitenwänden 18 erstreckt. Der Nutgrund 22 definiert entlang seiner axialen Erstreckung und über mehrere Gänge bzw. Windungen hinweg eine Grundeinhüllende. Diese ist in einem ersten Abschnitt 24 konisch und in einem zweiten Abschnitt 26 zylindrisch ausgebildet. Der Nutgrund 22 ist allgemein eben ausgebildet, wobei jedoch in einem Übergangsbereich zwischen dem ersten Abschnitt 24 und dem zweiten Abschnitt 26 eine Unebenheit am Nutgrund 22 vorhanden ist, welche sich insbesondere aus dem Übergang zwischen den Abschnitten 24 und 26 ergibt.
  • Die Seitenwände 18 sind durch Stege 28 gebildet, die die Holwecknuten 16 der unterschiedlichen Gänge voneinander trennen. Die Stege 28 bzw. die Seitenwände 18 weisen ein inneres Ende auf, welches eine Inneneinhüllende definiert. Die Inneneinhüllende ist hier sowohl im ersten Abschnitt 24 als auch im zweiten Abschnitt 26 zylindrisch ausgebildet. Am inneren Ende sind die Stege 28 eben ausgebildet und parallel zur Rotorachse 12 ausgerichtet.
  • Die Holwecknut 16 ist im ersten Abschnitt 24 tiefer als im zweiten Abschnitt 26 ausgebildet, insbesondere wobei die Breite der Holwecknut 16 bevorzugt in beiden Abschnitten 24 und 26 gleich bzw. über die gesamte axiale Länge der Holweckpumpstufe bevorzugt konstant ist. Die Breite ist insbesondere durch den axialen Abstand der inneren Enden zweier Seitenwände 18 bzw. Stege 28 über eine Nut 16 definiert.
  • Der erste Abschnitt 24 bildet bevorzugt einen Einlassabschnitt der Holweckpumpstufe 14. Die in diesem Abschnitt 24 große Tiefe bzw. das relativ große Volumen der Nut 16 stellt ein besonders gutes Saugvermögen für die Holweckpumpstufe 14 bereit.
  • In Fig. 7 ist ein Fräser 30 angedeutet, wie er beispielsweise zur Fertigung der Holwecknut 16 im ersten Abschnitt 24 geführt werden kann. Der Fräser 30 ist hier beispielhaft als Schaftfräser ausgebildet.
  • Der Fräser 30 ist mit seiner Rotationsachse 32 schräg in Bezug auf die Rotorachse 12 bzw. eine Gewindeachse der gewindeartigen Holwecknut 16 ausgerichtet, welche der Rotorachse 12 im Zusammenbau der Vakuumpumpe entspricht. Dabei entspricht der Winkel zwischen der Rotationsachse 32 und der Rotorachse 12 demjenigen Winkel 20 der Seitenwände 18.
  • Aus Fig. 7 ist insbesondere ersichtlich, dass die Holwecknut 16 im ersten Abschnitt 24 auf einfache Weise mit dem Fräser 30 hergestellt werden kann, ohne dass ein Winkelkopf für den Fräser notwendig wäre. Insbesondere im ersten Abschnitt 24 kann somit die Holwecknut 16 auf einfache Weise hergestellt werden. Im zweiten Abschnitt 26 kann die Holwecknut 16 bevorzugt mittels Stoßen hergestellt werden.
  • Im ersten bzw. Einlassabschnitt 24 der Holweckpumpstufe 14 können die ein oder mehreren Nuten 16 allgemein mit einem Fräser, z.B. mit einem Schaft- oder Scheibenfräser hergestellt werden. Die weitere Innenbearbeitung, z.B. im zweiten Abschnitt 26, kann aufgrund der Geometrie (z.B. kleiner Durchmesser) nicht oder schwierig mit einem Winkelkopf auf der Fräsmaschine möglich sein. Erfindungsgemäß kann insbesondere mit einem schräg angestellten Fräser, z.B. wie in Fig. 7 dargestellt, von außen ein, insbesondere mit der Grundeinhüllenden, konischer erster bzw. Einlassabschnitt 24 gefräst werden. Diese Fertigungsmethode führt dazu, dass die Stege 28, welche hier insbesondere solche des Stators sind, zwischen den Nuten 16 im gleichen Winkel geneigt sind, wie der Fräser selbst. Abschnitte des Stators, insbesondere der zweite Abschnitt, die auf diese Art nicht erreicht werden können, weil sie weiter im Inneren des Bauteils 10 liegen, benötigen im Allgemeinen nicht mehr die große Nuttiefe. Die Vorteile der großen Nuttiefe entfalten sich vielmehr besonders im Einlassbereich. Im zweiten Abschnitt 26 können die Nuten 16 folglich weiterhin per Stoßen hergestellt werden. Dabei sind bevorzugt auch die gestoßenen Nuten im gleichen Winkel geneigt, wie die gefrästen Nuten, insbesondere damit das Stoßwerkzeug nicht die bereits nach dem Fräsen vorhandenen Stege 28 beschädigt. Außerdem sollten die zwei Fertigungsverfahren bezüglich der Winkellage der Nuten 16 bzw. der Seitenwände 18 synchronisiert werden.
  • Bezugszeichenliste
  • 111
    Turbomolekularpumpe
    113
    Einlassflansch
    115
    Pumpeneinlass
    117
    Pumpenauslass
    119
    Gehäuse
    121
    Unterteil
    123
    Elektronikgehäuse
    125
    Elektromotor
    127
    Zubehöranschluss
    129
    Datenschnittstelle
    131
    Stromversorgungsanschluss
    133
    Fluteinlass
    135
    Sperrgasanschluss
    137
    Motorraum
    139
    Kühlmittelanschluss
    141
    Unterseite
    143
    Schraube
    145
    Lagerdeckel
    147
    Befestigungsbohrung
    148
    Kühlmittelleitung
    149
    Rotor
    151
    Rotationsachse
    153
    Rotorwelle
    155
    Rotorscheibe
    157
    Statorscheibe
    159
    Abstandsring
    161
    Rotornabe
    163
    Holweck-Rotorhülse
    165
    Holweck-Rotorhülse
    167
    Holweck-Statorhülse
    169
    Holweck-Statorhülse
    171
    Holweck-Spalt
    173
    Holweck-Spalt
    175
    Holweck-Spalt
    179
    Verbindungskanal
    181
    Wälzlager
    183
    Permanentmagnetlager
    185
    Spritzmutter
    187
    Scheibe
    189
    Einsatz
    191
    rotorseitige Lagerhälfte
    193
    statorseitige Lagerhälfte
    195
    Ringmagnet
    197
    Ringmagnet
    199
    Lagerspalt
    201
    Trägerabschnitt
    203
    Trägerabschnitt
    205
    radiale Strebe
    207
    Deckelelement
    209
    Stützring
    211
    Befestigungsring
    213
    Tellerfeder
    215
    Not- bzw. Fanglager
    217
    Motorstator
    219
    Zwischenraum
    221
    Wandung
    223
    Labyrinthdichtung
    10
    Gehäusebauteil
    12
    Rotorachse/Gewindeachse
    14
    Holweckpumpstufe
    16
    Holwecknut
    18
    Seitenwand
    20
    Winkel
    22
    Nutgrund
    24
    erster Abschnitt
    26
    zweiter Abschnitt
    28
    Steg
    30
    Fräser
    32
    Rotationsachse

Claims (15)

  1. Vakuumpumpe umfassend eine Holweckpumpstufe (14) mit einem Holweckstator und einem im Betrieb der Vakuumpumpe um eine Rotorachse (12) rotierenden Holweckrotor, der mit dem Holweckstator zum Erzeugen einer Pumpwirkung zusammenwirkt,
    wobei die Holweckpumpstufe (14) zumindest eine gewindeartige Holwecknut (16) aufweist, die von zumindest einer Seitenwand (18) begrenzt ist, wobei die Seitenwand (18) in einem Querschnitt, in dem die Rotorachse (12) liegt, zumindest abschnittsweise schräg in Bezug auf die Rotorachse (12) ausgebildet ist.
  2. Vakuumpumpe nach Anspruch 1,
    wobei die Holwecknut (16) ein Innengewinde bildet.
  3. Vakuumpumpe nach Anspruch 1 oder 2,
    wobei der Holweckstator die Holwecknut (16) aufweist.
  4. Vakuumpumpe nach wenigstens einem der vorstehenden Ansprüche, wobei die Holwecknut (12) einen Nutgrund (22) aufweist, der eine Grundeinhüllende definiert, wobei die Grundeinhüllende in einem ersten Abschnitt (24) der Holwecknut (16) konisch ausgebildet ist und/oder wobei der Nutgrund (22) in einem ersten Abschnitt (24) der Holwecknut (16) in dem Querschnitt schräg in Bezug auf die Rotorachse (12) ausgebildet ist.
  5. Vakuumpumpe nach Anspruch 4,
    wobei der erste Abschnitt (24) in Bezug auf eine Pumprichtung ein Einlassabschnitt der Holweckpumpstufe (14) ist.
  6. Vakuumpumpe nach wenigstens einem der vorstehenden Ansprüche, wobei die Holwecknut (12) einen Nutgrund (22) aufweist, der eine Grundeinhüllende definiert, wobei die Grundeinhüllende in einem zweiten Abschnitt (24) der Holwecknut (16) zylindrisch ausgebildet ist und/oder wobei der Nutgrund (22) in einem zweiten Abschnitt (26) der Holwecknut (16) parallel zur Rotorachse (12) ausgebildet ist.
  7. Vakuumpumpe nach wenigstens einem der vorstehenden Ansprüche, wobei die Seitenwand (18) mit einem radial inneren Ende eine Inneneinhüllende definiert, die sowohl in einem ersten Abschnitt (24) als auch in einem zweiten Abschnitt (26) zylindrisch ist.
  8. Vakuumpumpe nach wenigstens einem der vorstehenden Ansprüche, wobei die Seitenwand (18) in einem ersten Abschnitt (24) senkrecht und in einem zweiten Abschnitt (26) schräg zu einem benachbarten Nutgrund (22) angeordnet ist.
  9. Vakuumpumpe nach wenigstens einem der vorstehenden Ansprüche, wobei die Seitenwand (18) in einem Winkel (20) zur Rotorachse (12) angeordnet ist, der wenigstens 50° und/oder höchstens 80° beträgt.
  10. Vakuumpumpe nach wenigstens einem der vorstehenden Ansprüche, wobei die Seitenwand (18) von einem Steg (28) gebildet ist.
  11. Verfahren zur Herstellung einer Vakuumpumpe nach einem der vorstehenden Ansprüche,
    wobei die Holwecknut (16) in zumindest einem ersten Abschnitt (24) durch Fräsen hergestellt wird.
  12. Verfahren nach Anspruch 11,
    wobei ein Fräser (30) schräg in Bezug auf eine Gewindeachse (12) der Holwecknut (16) geführt wird.
  13. Verfahren nach Anspruch 11 oder 12,
    wobei der erste Abschnitt (24) ein Einlassabschnitt der Holweckpumpstufe (14) ist.
  14. Verfahren nach wenigstens einem der Ansprüche 11 bis 13,
    wobei die Holwecknut (16) in einem zweiten Abschnitt (26) durch Stoßen hergestellt wird.
  15. Verfahren nach wenigstens einem der Ansprüche 11 bis 14,
    wobei sowohl im ersten Abschnitt (24) als auch in einem zweiten Abschnitt (26) die die Holwecknut (16) begrenzende Seitenwand (18) in einem Querschnitt, in dem eine Gewindeachse (12) der Holwecknut (18) liegt, schräg zu der Gewindeachse (12) ausgebildet wird.
EP19210020.4A 2019-11-19 2019-11-19 Vakuumpumpe und verfahren zur herstellung einer solchen Active EP3670924B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19210020.4A EP3670924B1 (de) 2019-11-19 2019-11-19 Vakuumpumpe und verfahren zur herstellung einer solchen
JP2020159322A JP7032500B2 (ja) 2019-11-19 2020-09-24 真空ポンプ及びそのような真空ポンプを製造する方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19210020.4A EP3670924B1 (de) 2019-11-19 2019-11-19 Vakuumpumpe und verfahren zur herstellung einer solchen

Publications (2)

Publication Number Publication Date
EP3670924A1 true EP3670924A1 (de) 2020-06-24
EP3670924B1 EP3670924B1 (de) 2021-11-17

Family

ID=68618031

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19210020.4A Active EP3670924B1 (de) 2019-11-19 2019-11-19 Vakuumpumpe und verfahren zur herstellung einer solchen

Country Status (2)

Country Link
EP (1) EP3670924B1 (de)
JP (1) JP7032500B2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022112745A1 (en) * 2020-11-25 2022-06-02 Edwards Limited Drag pumping mechanism for a turbomolecular pump

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB242084A (en) * 1924-11-13 1925-11-05 Radions Ltd Improvements in vacuum pumps
US4746265A (en) * 1981-12-14 1988-05-24 Ultra-Centrifuge Nederland B.V. High-vacuum molecular pump
US6315517B1 (en) * 1998-10-28 2001-11-13 Seiko Instruments Inc. Vacuum pump
WO2011070856A1 (ja) * 2009-12-11 2011-06-16 エドワーズ株式会社 ネジ溝排気部の筒形固定部材と、これを使用した真空ポンプ
DE202013009462U1 (de) * 2013-10-28 2015-01-29 Oerlikon Leybold Vacuum Gmbh Trägerelement für Rohrelemente einer Holweckstufe
DE102014105582A1 (de) * 2014-04-17 2015-10-22 Pfeiffer Vacuum Gmbh Vakuumpumpe

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02114796U (de) * 1989-02-28 1990-09-13
JPH03275997A (ja) * 1990-03-26 1991-12-06 Nippon Soken Inc 可変容量型真空ポンプ
DE10048695A1 (de) * 2000-09-30 2002-04-11 Leybold Vakuum Gmbh Pumpe als Seitenkanalpumpe
DE10210404A1 (de) * 2002-03-08 2003-09-18 Leybold Vakuum Gmbh Verfahren zur Herstellung des Rotors einer Reibungsvakuumpumpe sowie nach diesem Verfahren hergestellter Rotor
DE102004047930A1 (de) * 2004-10-01 2006-04-06 Leybold Vacuum Gmbh Reibungsvakuumpumpe

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB242084A (en) * 1924-11-13 1925-11-05 Radions Ltd Improvements in vacuum pumps
US4746265A (en) * 1981-12-14 1988-05-24 Ultra-Centrifuge Nederland B.V. High-vacuum molecular pump
US6315517B1 (en) * 1998-10-28 2001-11-13 Seiko Instruments Inc. Vacuum pump
WO2011070856A1 (ja) * 2009-12-11 2011-06-16 エドワーズ株式会社 ネジ溝排気部の筒形固定部材と、これを使用した真空ポンプ
DE202013009462U1 (de) * 2013-10-28 2015-01-29 Oerlikon Leybold Vacuum Gmbh Trägerelement für Rohrelemente einer Holweckstufe
DE102014105582A1 (de) * 2014-04-17 2015-10-22 Pfeiffer Vacuum Gmbh Vakuumpumpe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022112745A1 (en) * 2020-11-25 2022-06-02 Edwards Limited Drag pumping mechanism for a turbomolecular pump

Also Published As

Publication number Publication date
JP7032500B2 (ja) 2022-03-08
EP3670924B1 (de) 2021-11-17
JP2021080917A (ja) 2021-05-27

Similar Documents

Publication Publication Date Title
EP2826999B1 (de) Vakuumpumpe
EP2829734A1 (de) Vakuumpumpe
EP3657021B1 (de) Vakuumpumpe
EP3670924B1 (de) Vakuumpumpe und verfahren zur herstellung einer solchen
EP3034880B1 (de) Rotoranordnung für eine vakuumpumpe und verfahren zur herstellung derselben
EP3196471B1 (de) Vakuumpumpe
EP3088745B1 (de) Rotoranordnung für eine vakuumpumpe und vakuumpumpe
EP3051138B1 (de) Vakuumpumpengehäuse, Vakuumpumpe und Verfahren zur Herstellung eines Vakuumpumpengehäuses
EP3734078B1 (de) Turbomolekularpumpe und verfahren zur herstellung einer statorscheibe für eine solche
DE102015104438A1 (de) Vakuumsystem
EP3536966B1 (de) Vakuumgerät
EP3093496B1 (de) Rotor einer vakuumpumpe
EP3462036B1 (de) Turbomolekularvakuumpumpe
EP3135932B1 (de) Vakuumpumpe und permanentmagnetlager
EP3628883B1 (de) Vakuumpumpe
EP3327293B1 (de) Vakuumpumpe mit mehreren einlässen
EP3564538B1 (de) Vakuumsystem und verfahren zur herstellung eines solchen
EP3760872B1 (de) Vakuumpumpe mit befestigungsvorkehrung zur anbringung der pumpe an einer befestigungsstruktur sowie pumpstand mit solch einer daran angebrachten vakuumpumpe
EP3845764B1 (de) Vakuumpumpe und vakuumpumpensystem
EP4194700A1 (de) Vakuumpumpe mit einer holweck-pumpstufe mit veränderlicher holweck-geometrie
EP3916235B1 (de) Verfahren zur herstellung einer vakuumpumpe
EP4325061A1 (de) Turbomolekularvakuumpumpe
EP3561307B1 (de) Vakuumpumpe mit einem einlassflansch und einem lagerträger im einlass
EP3597926B1 (de) Vakuumpumpe
EP4151860A2 (de) Vakuumpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200915

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20201204

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210702

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019002770

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1448274

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211215

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220317

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220317

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220217

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220218

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211119

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019002770

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211119

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20191119

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231124

Year of fee payment: 5

Ref country code: CZ

Payment date: 20231110

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240129

Year of fee payment: 5