EP3135932B1 - Vakuumpumpe und permanentmagnetlager - Google Patents

Vakuumpumpe und permanentmagnetlager Download PDF

Info

Publication number
EP3135932B1
EP3135932B1 EP15182204.6A EP15182204A EP3135932B1 EP 3135932 B1 EP3135932 B1 EP 3135932B1 EP 15182204 A EP15182204 A EP 15182204A EP 3135932 B1 EP3135932 B1 EP 3135932B1
Authority
EP
European Patent Office
Prior art keywords
ring magnet
magnet
outer ring
bearing
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15182204.6A
Other languages
English (en)
French (fr)
Other versions
EP3135932A1 (de
Inventor
Armin Conrad
Matthias Mädler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum GmbH
Original Assignee
Pfeiffer Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53969287&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3135932(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Pfeiffer Vacuum GmbH filed Critical Pfeiffer Vacuum GmbH
Priority to EP15182204.6A priority Critical patent/EP3135932B1/de
Priority to JP2016096838A priority patent/JP2017061920A/ja
Publication of EP3135932A1 publication Critical patent/EP3135932A1/de
Application granted granted Critical
Publication of EP3135932B1 publication Critical patent/EP3135932B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0423Passive magnetic bearings with permanent magnets on both parts repelling each other
    • F16C32/0425Passive magnetic bearings with permanent magnets on both parts repelling each other for radial load mainly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/048Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps comprising magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • F16C2360/45Turbo-molecular pumps

Definitions

  • the present invention relates inter alia to a permanent magnet bearing according to the preamble of claim 1 for rotatably supporting a rotor of the vacuum pump, wherein the permanent magnet bearing has at least one stator-side ring magnet and a rotor-side ring magnet arranged on the rotor, wherein one of the two ring magnets is an inner ring magnet which radially is disposed within the other, outer ring magnet and concentric with the outer ring magnet, wherein between the radially outwardly facing outer side of the inner ring magnet and the opposite, radially inwardly facing inside of the outer ring magnet, a radial gap is provided with a radially extending gap width ,
  • Such permanent magnet bearings are for example from the publications DE 18 888 854 U . DE 103 58 341 A1 as well as from the article by Jean-Paul Yonnet entitled "Stacked structures of passive magnetic bearings”.
  • Vacuum pumps of the type mentioned are known, for example from the DE 10 2013 218 220 A1 ,
  • the permanent magnet bearing is used primarily as a high vacuum side bearing for the rotor of the vacuum pump. It serves to support the rotor of the vacuum pump in the radial direction.
  • the so-called radial stiffness of the permanent magnet bearing is an essential variable for the safe mounting of the rotor in the vacuum pump.
  • the present invention has for its object to provide a permanent magnet bearing or a vacuum pump with a permanent magnet bearing, which is improved in terms of its radial stiffness.
  • the object is achieved in particular by further developing a vacuum pump of the type mentioned above in that the height of the outer ring magnet and / or of the inner ring magnet extending in the axial direction is between 3 times and 5 times the gap width lies.
  • the bearing stiffness depends on the ratio between the magnetic bearing gap and the height measured in the axial direction of the outer ring magnet and / or the inner ring magnet. In particular, it has been found that optimum bearing stiffness can be achieved when the axial height of the outer ring magnet and / or the inner ring magnet is in the range of between 3 times and 5 times the gap width.
  • the axial height of the outer ring magnet and the axial height of the inner ring magnet are made the same size.
  • the width extending in the radial direction of the outer ring magnet and / or the inner ring magnet is smaller or at most equal to 1.5 times the height of the respective ring magnet.
  • the radial width of a ring magnet is thus at most equal to 1.5 times its height.
  • the radial width of the outer ring magnet is equal to the radial width of the inner ring magnet.
  • the width of the outer ring magnet and / or of the inner ring magnet running in the radial direction is greater than or equal to 1.2 times, preferably 1.3 times, the height of the respective ring magnet.
  • the radial width of an outer ring magnet and / or an inner ring magnet is thus between 1.2 times and 1.5 times its height.
  • a stack of outer ring magnets and a stack of inner ring magnets is provided and each ring magnet of the stack of outer ring magnets and / or each ring magnet of the stack of inner ring magnets has a respective axially measured axial height which is between including 3.5 times and including 5 times the gap width.
  • all the ring magnets of the permanent magnet bearing may have an axial height in the above-mentioned range.
  • a stack of outer ring magnets and a stack of inner ring magnets is provided, and each ring magnet of the stack of outer ring magnets and / or each ring magnet of the stack of inner ring magnets has a respective radial radial width extending in the radial direction between 1.2 times and 1.5 times the height of the ring magnets of the respective stack.
  • a stack of outer ring magnets and a stack of inner ring magnets is provided, and each ring magnet of the stack of outer ring magnets and / or each ring magnet of the stack of inner ring magnets has a respective radial width extending in the radial direction, which is smaller or at most equal to 1.5 times the height of the ring magnets of the respective stack.
  • a permanent magnet bearing can be realized, which has a particularly good bearing stiffness and thus is particularly well suited for mounting a rotor of a vacuum pump, such as a turbomolecular pump.
  • turbomolecular pump 111 comprises a pump inlet 115 surrounded by an inlet flange 113, to which in a conventional manner, a non-illustrated recipient can be connected.
  • the gas from the recipient may be drawn from the recipient via the pump inlet 115 and conveyed through the pump to a pump outlet 117 to which a backing pump, such as a rotary vane pump, may be connected.
  • the inlet flange 113 forms according to the orientation of the vacuum pump Fig. 1 the upper end of the housing 119 of the vacuum pump 111.
  • the housing 119 comprises a lower part 121, on which an electronics housing 123 is arranged laterally.
  • Housed in the electronics housing 123 are electrical and / or electronic components of the vacuum pump 111, eg for operating an electric motor 125 arranged in the vacuum pump.
  • a plurality of connections 127 for accessories are provided on the electronics housing 123.
  • a data interface 129 for example, according to the RS485 standard, and a power supply terminal 131 on the electronics housing 123 are arranged.
  • a flood inlet 133 is provided, via which the vacuum pump 111 can be flooded.
  • a sealing gas connection 135, which is also referred to as flushing gas connection is arranged, via which flushing gas for protecting the electric motor 125 from the gas conveyed by the pump into the engine compartment 137, in which the electric motor 125 in the vacuum pump 111 housed, can be brought.
  • two coolant connections 139 are also arranged, wherein one of the coolant connections as an inlet and the other coolant connection as an outlet for Coolant is provided, which can be passed for cooling purposes in the vacuum pump.
  • the lower side 141 of the vacuum pump can serve as a base, so that the vacuum pump 111 can be operated standing on the bottom 141.
  • the vacuum pump 111 can also be fastened to a recipient via the inlet flange 113 and thus be operated to a certain extent suspended.
  • the vacuum pump 111 can be designed so that it can also be put into operation, if it is aligned differently than in Fig. 1 is shown.
  • Embodiments of the vacuum pump can also be implemented in which the lower side 141 can not be turned down but can be turned to the side or directed upwards.
  • a bearing cap 145 is attached to the bottom 141.
  • mounting holes 147 are arranged, via which the pump 111 can be attached, for example, to a support surface.
  • a coolant line 148 is shown, in which the coolant introduced and discharged via the coolant connections 139 can circulate.
  • the vacuum pump comprises a plurality of process gas pumping stages for conveying the process gas pending at the pump inlet 115 to the pump outlet 117.
  • a rotor 149 is arranged, which has a about a rotation axis 151 rotatable rotor shaft 153.
  • Turbomolecular pump 111 includes a plurality of turbomolecular pump stages operatively connected in series with a plurality of rotor disks 155 mounted on rotor shaft 153 and stator disks 157 disposed between rotor disks 155 and housed in housing 119.
  • a rotor disk 155 and an adjacent stator disk 157 each form a turbomolecular one pump stage.
  • the stator disks 157 are held by spacer rings 159 at a desired axial distance from each other.
  • the vacuum pump further comprises Holweck pumping stages which are arranged one inside the other in the radial direction and which are pumpingly connected to one another in series.
  • the rotor of the Holweck pump stages comprises a rotor hub 161 arranged on the rotor shaft 153 and two cylinder shell-shaped Holweck rotor sleeves 163, 165 fastened to the rotor hub 161 and oriented coaxially with the rotation axis 151 and nested in the radial direction.
  • two cylinder jacket-shaped Holweck stator sleeves 167, 169 are provided, which are also oriented coaxially to the rotation axis 151 and, as seen in the radial direction, are nested one inside the other.
  • the pump-active surfaces of the Holweck pump stages are formed by the lateral surfaces, ie by the radial inner and / or outer surfaces, the Holweck rotor sleeves 163, 165 and the Holweck stator sleeves 167, 169.
  • the radially inner surface of the outer Holweck stator sleeve 167 faces the radially outer surface of the outer Holweck rotor sleeve 163, forming a radial Holweck gap 171, and forms with it the first Holweck pump stage subsequent to the turbomolecular pumps.
  • the radially inner surface of the outer Holweck rotor sleeve 163 faces the radially outer surface of the inner Holweck stator sleeve 169 to form a radial Holweck gap 173 and forms with this is a second Holweck pumping stage.
  • the radially inner surface of the inner Holweck stator sleeve 169 faces the radially outer surface of the inner Holweck rotor sleeve 165 to form a radial Holweck gap 175 and forms with this the third Holweck pumping stage.
  • a radially extending channel may be provided, via which the radially outer Holweck gap 171 is connected to the middle Holweck gap 173.
  • a radially extending channel may be provided, via which the middle Holweck gap 173 is connected to the radially inner Holweck gap 175.
  • a connecting channel 179 to the outlet 117 may be provided at the lower end of the radially inner Holweck rotor sleeve 165.
  • the above-mentioned pump-active surfaces of the Holweck stator sleeves 163, 165 each have a plurality of Holweck grooves running around the axis of rotation 151 in the axial direction, while the opposite lateral surfaces of the Holweck rotor sleeves 163, 165 are smooth and the gas for operating the Drive vacuum pump 111 in the Holweck grooves.
  • a roller bearing 181 in the region of the pump outlet 117 and a permanent magnet bearing 183 in the region of the pump inlet 115 are provided.
  • a conical spray nut 185 with an outer diameter increasing toward the rolling bearing 181 is provided on the rotor shaft 153.
  • the spray nut 185 is in sliding contact with at least one scraper of a resource storage.
  • the resource memory comprises a plurality of absorbent discs 187 stacked on top of each other, which are impregnated with an operating medium for the roller bearing 181, for example with a lubricant.
  • the operating means is transferred by capillary action of the resource storage on the scraper on the rotating sprayer nut 185 and due to the centrifugal force along the spray nut 185 in the direction of increasing outer diameter of the injection nut 92 to the roller bearing 181 out promoted, where eg fulfills a lubricating function.
  • the rolling bearing 181 and the resource storage are enclosed by a trough-shaped insert 189 and the bearing cap 145 in the vacuum pump.
  • the permanent magnet bearing 183 includes a rotor-side bearing half 191 and a stator-side bearing half 193, each comprising a ring stack of a plurality of stacked in the axial direction of permanent magnetic rings 195, 197 include.
  • the ring magnets 195, 197 are opposed to each other to form a radial bearing gap 199, wherein the rotor-side ring magnets 195 are disposed radially outward and the stator-side ring magnets 197 radially inward.
  • the magnetic field present in the bearing gap 199 causes magnetic repulsive forces between the ring magnets 195, 197, which cause a radial bearing of the rotor shaft 153.
  • the rotor-side ring magnets 195 are supported by a carrier section 201 of the rotor shaft 153, which surrounds the ring magnets 195 radially on the outside.
  • the stator-side ring magnets 197 are supported by a stator-side support portion 203, which extends through the ring magnets 197 and is suspended on radial struts 205 of the housing 119.
  • Parallel to the axis of rotation 151, the rotor-side ring magnets 195 are fixed by a lid element 207 coupled to the carrier section 203.
  • the stator-side ring magnets 197 are fixed parallel to the axis of rotation 151 in one direction by a fastening ring 209 connected to the carrier section 203 and a fastening ring 211 connected to the carrier section 203. Between the fastening ring 211 and the ring magnet 197 may also be provided a plate spring 213.
  • an emergency bearing 215 which runs empty in the normal operation of the vacuum pump 111 without contact and engages only with an excessive radial deflection of the rotor 149 relative to the stator to a radial stop for the rotor 149th to form, since a collision of the rotor-side structures with the stator-side structures is prevented.
  • the safety bearing 215 is designed as an unlubricated rolling bearing and forms with the rotor 149 and / or the stator a radial gap, which causes the safety bearing 215 is disengaged in the normal pumping operation.
  • the radial deflection at which the safety bearing 215 engages is dimensioned large enough so that the safety bearing 215 does not engage during normal operation of the vacuum pump, and at the same time small enough so that a collision of the rotor-side structures with the stator-side structures under all circumstances is prevented.
  • the vacuum pump 111 includes the electric motor 125 for rotationally driving the rotor 149.
  • the armature of the electric motor 125 is formed by the rotor 149 whose rotor shaft 153 extends through the motor stator 217.
  • On the extending through the motor stator 217 through portion of the rotor shaft 153 may be arranged radially outside or embedded a permanent magnet arrangement.
  • a gap 219 is arranged, which comprises a radial motor gap, via which the motor stator 217 and the permanent magnet arrangement for the transmission of the drive torque can influence magnetically.
  • the motor stator 217 is fixed in the housing within the motor space 137 provided for the electric motor 125.
  • a barrier gas which is also referred to as purge gas, and which may be, for example, air or nitrogen, enter the engine compartment 137.
  • the electric motor 125 can be protected from the process gas, for example from corrosive components of the process gas, via the sealing gas.
  • the engine compartment 137 can also be evacuated via the pump outlet 117, ie in the engine compartment 137 there is at least approximately the vacuum pressure caused by the backing pump connected to the pump outlet 117.
  • delimiting wall 221 Between the rotor hub 161 and a motor space 137 delimiting wall 221 may also be a so-called. And per se known labyrinth seal 223 may be provided, in particular to achieve a better seal of the engine compartment 217 against the Holweck pump stages located radially outside.
  • the in Fig. 6 Section of a permanent magnet bearing 183 according to the invention shown in cross-section has a rotor-side bearing half 191 and a stator-side bearing half 193, as described above.
  • the stator-side bearing half 193 has four ring magnets 197 and the rotor-side bearing half 191 also has four ring magnets 195. But it can also be a different number of ring magnets 195, 197 may be provided, since the said number of four ring magnets is used only for illustration.
  • mutually adjacent ring magnets 197 of the stator bearing half 193 have a mutual polarity. If, for example, one considers the upper ring magnet 197 of the stator-side bearing half 193 and the second-highest ring magnet 197 adjacent thereto, it can be seen that the south poles S of the two ring magnets lie against one another. In addition, the north poles N of the second top ring magnet 197 and the third top ring magnet 197 are adjacent to each other. Furthermore, the south poles S of the lowermost ring magnet 197 and the second lowermost ring magnet 197 are adjacent to each other. The same applies to the ring magnets 195 of the rotor-side bearing half 191st
  • the bearing gap 199 is an annular gap that runs in the radial direction from the radially outward facing outer side of the inner ring magnets 197 and the opposite radially inner side of the outer ring magnets 195.
  • the term "radial direction” refers to the axis of rotation 151 (cf. Fig. 3 ), or on the ideally coincident with the axis of rotation 151 axial central axes of the ring magnets 195, 197th
  • the radial gap 199 has a gap width d extending in the radial direction.
  • the outer ring magnets 195 and the inner ring magnets 197 are dimensioned such that their respective height h extending in the axial direction relative to the rotation axis 151 or to the axial center axes of the ring magnets coinciding with the axis of rotation is in the range between and including 3 times and including 5 times the gap width d.
  • the ring magnets 195, 197 have a width b running in the radial direction, which is smaller than or at most equal to 1.5 times the height h of the ring magnets 195, 197.
  • the width b of the outer ring magnets 195 and the inner ring magnets is greater than or equal to at least 1.2 times the height h.
  • the ring magnets 195 form a stack of outer ring magnets 195 and the ring magnets 197 form a stack of inner ring magnets 197 in which each ring magnet has the same axial height h and the same radial width b.
  • the permanent magnet bearing of Fig. 6 has a particularly good bearing stiffness, so it is particularly good for rotatable storage a rotor of a vacuum pump, such as a turbomolecular pump, is suitable.

Description

  • Die vorliegende Erfindung betrifft unter anderem ein Permanentmagnetlager gemäß dem Oberbegriff des Anspruchs 1 zur drehbaren Lagerung eines Rotors der Vakuumpumpe, wobei das Permanentmagnetlager wenigstens einen statorseitigen Ringmagnet und einen am Rotor angeordneten rotorseitigen Ringmagnet aufweist, wobei einer der beiden Ringmagnete ein innerer Ringmagnet ist, welcher radial innerhalb des anderen, äußeren Ringmagnets und konzentrisch mit dem äußeren Ringmagnet angeordnet ist, wobei zwischen der nach radial außen gewandten Außenseite des inneren Ringmagnets und der gegenüberliegenden, nach radial innen gewandten Innenseite des äußeren Ringmagnets ein radialer Spalt mit einer in radialer Richtung verlaufenden Spaltbreite vorgesehen ist. Derartige Permanentmagnetlager sind beispielsweise aus den Druckschriften DE 18 888 854 U , DE 103 58 341 A1 sowie aus dem Aufsatz von Jean-Paul Yonnet mit dem Titel "Stacked structures of passive magnetic bearings" bekannt.
  • Vakuumpumpen der eingangs genannten Art sind bekannt, beispielweise aus der DE 10 2013 218 220 A1 . Bei derartigen Vakuumpumpen wird das Permanentmagnetlager primär als hochvakuumseitiges Lager für den Rotor der Vakuumpumpe eingesetzt. Es dient dabei zur Lagerung des Rotors der Vakuumpumpe in radialer Richtung. Dabei stellt die sog. radiale Steifigkeit des Permanentmagnetlagers eine wesentliche Größe für die sichere Lagerung des Rotors in der Vakuumpumpe dar.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Permanentmagnetlager bzw. eine Vakuumpumpe mit einem Permanentmagnetlager bereitzustellen, das im Hinblick auf seine radiale Steifigkeit verbessert ist.
  • Die Aufgabe wird durch eine Vakuumpumpe mit den Merkmalen des Anspruchs 7 bzw. durch ein Permanentmagnetlager mit den Merkmalen des Anspruchs 1 gelöst. Bevorzugte Ausführungsformen und Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen angegeben. Außerdem wird ein Verfahren mit den Merkmalen des Anspruchs 5 zur Herstellung solch eines Permanentmagnetlagers angegeben.
  • Die Aufgabe wird insbesondere dadurch gelöst, dass eine Vakuumpumpe der eingangs genannten Art dadurch weitergebildet wird, dass die in axialer Richtung verlaufende Höhe des äußeren Ringmagnets und/oder des inneren Ringmagnets im Bereich zwischen einschließlich dem 3-fachen und einschließlich dem 5-fachen der Spaltbreite liegt.
  • Es wurde erkannt, dass die Lagersteifigkeit von dem Verhältnis zwischen dem Magnetlagerspalt und der in axialer Richtung gemessenen Höhe des äußeren Ringmagnets und/oder des inneren Ringmagnets abhängt. Dabei wurde insbesondere festgestellt, dass sich eine optimale Lagersteifigkeit erreichen lässt, wenn die axiale Höhe des äußeren Ringmagnets und/oder des inneren Ringmagnets in dem Bereich zwischen einschließlich dem 3-fachen und einschließlich dem 5-fachen der Spaltbreite liegt.
  • Vorzugsweise werden die axiale Höhe des äußeren Ringmagnets und die axiale Höhe des inneren Ringmagnets gleich groß ausgestaltet.
  • Im Hinblick auf eine Optimierung der Lagersteifigkeit ist es erfindungsgemäß vorgesehen, dass die in radialer Richtung verlaufende Breite des äußeren Ringmagnets und/oder des inneren Ringmagnets kleiner oder höchstens gleich dem 1,5-fachen der Höhe des jeweiligen Ringmagnets ist. Die radiale Breite eines Ringmagnets ist somit höchstens gleich dem 1,5-fachen seiner Höhe.
  • Vorzugsweise ist die radiale Breite des äußeren Ringmagnets gleich der radialen Breite des inneren Ringmagnets.
  • Erfindungsgemäß ist außerdem die in radialer Richtung verlaufende Breite des äußeren Ringmagnets und/oder des inneren Ringmagnets größer oder höchstens gleich dem 1,2-fachen, bevorzugt dem 1,3-fachen, der Höhe des jeweiligen Ringmagnets. Die radiale Breite eines äußeren Ringmagnets und/oder eines inneren Ringmagnets liegt somit zwischen dem 1,2-fachen und dem 1,5-fachen seiner Höhe. Dadurch kann ein Permanentmagnetlager geschaffen werden, das in der Vakuumpumpe zur Lagerung des Rotors eine möglichst optimale Lagersteifigkeit aufweist.
  • Nach einer bevorzugten Weiterbildung der Erfindung ist ein Stapel von äußeren Ringmagneten und ein Stapel von inneren Ringmagneten vorgesehen und jeder Ringmagnet des Stapels von äußeren Ringmagneten und/oder jeder Ringmagnet des Stapels von inneren Ringmagneten weist eine jeweilige in axialer Richtung gemessene axiale Höhe auf, die zwischen einschließlich dem 3,5-fachen und einschließlich dem 5-fachen der Spaltbreite liegt. Somit können sämtliche Ringmagnete des Permanentmagnetlagers eine in dem vorstehend erwähnten Bereich liegende axiale Höhe aufweisen.
  • Nach einer bevorzugten Weiterbildung der Erfindung ist ein Stapel von äußeren Ringmagneten und ein Stapel von inneren Ringmagneten vorgesehen, und jeder Ringmagnet des Stapels von äußeren Ringmagneten und/oder jeder Ringmagnet des Stapels von inneren Ringmagneten weist eine jeweilige in radialer Richtung verlaufende radiale Breite auf, die zwischen einschließlich dem 1,2-fachen und einschließlich dem 1,5-fachen der Höhe der Ringmagnete des jeweiligen Stapels liegt.
  • Nach einer weiteren bevorzugten Weiterbildung der Erfindung ist ein Stapel von äußeren Ringmagneten und ein Stapel von inneren Ringmagneten vorgesehen, und jeder Ringmagnet des Stapels von äußeren Ringmagneten und/oder jeder Ringmagnet des Stapels von inneren Ringmagneten weist eine jeweilige in radialer Richtung verlaufende radiale Breite auf, die kleiner oder höchstens gleich dem 1,5-fachen der Höhe der Ringmagnete des jeweiligen Stapels ist.
  • Durch das erfindungsgemäße Verfahren kann ein Permanentmagnetlager realisiert werden, das eine besonders gute Lagersteifigkeit aufweist und somit besonders gut zur Lagerung eines Rotors einer Vakuumpumpe, wie etwa einer Turbomolekularpumpe, geeignet ist.
  • Nachfolgend wird die Erfindung beispielhaft anhand vorteilhafter Ausführungsformen unter Bezugnahme auf die beigefügten Figuren beschrieben. Es zeigen, jeweils schematisch:
  • Fig. 1
    eine perspektivische Ansicht einer Turbomolekularpumpe,
    Fig. 2
    eine Ansicht der Unterseite der Turbomolekularpumpe von Fig. 1,
    Fig. 3
    einen Querschnitt der Turbomolekularpumpe längs der in Fig. 2 gezeigten Schnittlinie A-A,
    Fig. 4
    eine Querschnittsansicht der Turbomolekularpumpe längs der in Fig. 2 gezeigten Schnittlinie B-B,
    Fig. 5
    eine Querschnittsansicht der Turbomolekularpumpe längs der in Fig. 2 gezeigten Schnittlinie C-C, und
    Fig. 6
    eine Querschnittsansicht eines Ausschnitts eines erfindungsgemäßen Permanentmagnetlagers.
  • Die in Fig. 1 gezeigte Turbomolekularpumpe 111 umfasst einen von einem Einlassflansch 113 umgebenen Pumpeneinlass 115, an welchen in an sich bekannter Weise ein nicht dargestellter Rezipient angeschlossen werden kann. Das Gas aus dem Rezipienten kann über den Pumpeneinlass 115 aus dem Rezipienten gesaugt und durch die Pumpe hindurch zu einem Pumpenauslass 117 gefördert werden, an den eine Vorvakuumpumpe, wie etwa eine Drehschieberpumpe, angeschlossen sein kann.
  • Der Einlassflansch 113 bildet bei der Ausrichtung der Vakuumpumpe gemäß Fig. 1 das obere Ende des Gehäuses 119 der Vakuumpumpe 111. Das Gehäuse 119 umfasst ein Unterteil 121, an welchem seitlich ein Elektronikgehäuse 123 angeordnet ist. In dem Elektronikgehäuse 123 sind elektrische und/oder elektronische Komponenten der Vakuumpumpe 111 untergebracht, z.B. zum Betreiben eines in der Vakuumpumpe angeordneten Elektromotors 125. Am Elektronikgehäuse 123 sind mehrere Anschlüsse 127 für Zubehör vorgesehen. Außerdem sind eine Datenschnittstelle 129, z.B. gemäß dem RS485-Standard, und ein Stromversorgungsanschluss 131 am Elektronikgehäuse 123 angeordnet.
  • Am Gehäuse 119 der Turbomolekularpumpe 111 ist ein Fluteinlass 133, insbesondere in Form eines Flutventils, vorgesehen, über den die Vakuumpumpe 111 geflutet werden kann. Im Bereich des Unterteils 121 ist ferner noch ein Sperrgasanschluss 135, der auch als Spülgasanschluss bezeichnet wird, angeordnet, über welchen Spülgas zum Schutz des Elektromotors 125 vor dem von der Pumpe geförderten Gas in den Motorraum 137, in welchem der Elektromotor 125 in der Vakuumpumpe 111 untergebracht ist, gebracht werden kann. Im Unterteil 121 sind ferner noch zwei Kühlmittelanschlüsse 139 angeordnet, wobei einer der Kühlmittelanschlüsse als Einlass und der andere Kühlmittelanschluss als Auslass für Kühlmittel vorgesehen ist, das zu Kühlzwecken in die Vakuumpumpe geleitet werden kann.
  • Die untere Seite 141 der Vakuumpumpe kann als Standfläche dienen, sodass die Vakuumpumpe 111 auf der Unterseite 141 stehend betrieben werden kann. Die Vakuumpumpe 111 kann aber auch über den Einlassflansch 113 an einem Rezipienten befestigt werden und somit gewissermaßen hängend betrieben werden. Außerdem kann die Vakuumpumpe 111 so gestaltet sein, dass sie auch in Betrieb genommen werden kann, wenn sie auf andere Weise ausgerichtet ist als in Fig. 1 gezeigt ist. Es lassen sich auch Ausführungsformen der Vakuumpumpe realisieren, bei der die Unterseite 141 nicht nach unten, sondern zur Seite gewandt oder nach oben gerichtet angeordnet werden kann.
  • An der Unterseite 141, die in Fig. 2 dargestellt ist, sind noch diverse Schrauben 143 angeordnet, mittels denen hier nicht weiter spezifizierte Bauteile der Vakuumpumpe aneinander befestigt sind. Beispielsweise ist ein Lagerdeckel 145 an der Unterseite 141 befestigt.
  • An der Unterseite 141 sind außerdem Befestigungsbohrungen 147 angeordnet, über welche die Pumpe 111 beispielsweise an einer Auflagefläche befestigt werden kann.
  • In den Figuren 2 bis 5 ist eine Kühlmittelleitung 148 dargestellt, in welcher das über die Kühlmittelanschlüsse 139 ein- und ausgeleitete Kühlmittel zirkulieren kann.
  • Wie die Schnittdarstellungen der Figuren 3 bis 5 zeigen, umfasst die Vakuumpumpe mehrere Prozessgaspumpstufen zur Förderung des an dem Pumpeneinlass 115 anstehenden Prozessgases zu dem Pumpenauslass 117.
  • In dem Gehäuse 119 ist ein Rotor 149 angeordnet, der eine um eine Rotationsachse 151 drehbare Rotorwelle 153 aufweist.
  • Die Turbomolekularpumpe 111 umfasst mehrere pumpwirksam miteinander in Serie geschaltete turbomolekulare Pumpstufen mit mehreren an der Rotorwelle 153 befestigten radialen Rotorscheiben 155 und zwischen den Rotorscheiben 155 angeordneten und in dem Gehäuse 119 festgelegten Statorscheiben 157. Dabei bilden eine Rotorscheibe 155 und eine benachbarte Statorscheibe 157 jeweils eine turbomolekulare Pumpstufe. Die Statorscheiben 157 sind durch Abstandsringe 159 in einem gewünschten axialen Abstand zueinander gehalten.
  • Die Vakuumpumpe umfasst außerdem in radialer Richtung ineinander angeordnete und pumpwirksam miteinander in Serie geschaltete Holweck-Pumpstufen. Der Rotor der Holweck-Pumpstufen umfasst eine an der Rotorwelle 153 angeordnete Rotornabe 161 und zwei an der Rotornabe 161 befestigte und von dieser getragene zylindermantelförmige Holweck-Rotorhülsen 163, 165, die koaxial zur Rotationsachse 151 orientiert und in radialer Richtung ineinander geschachtelt sind. Ferner sind zwei zylindermantelförmige Holweck-Statorhülsen 167, 169 vorgesehen, die ebenfalls koaxial zu der Rotationsachse 151 orientiert und in radialer Richtung gesehen ineinander geschachtelt sind.
  • Die pumpaktiven Oberflächen der Holweck-Pumpstufen sind durch die Mantelflächen, also durch die radialen Innen- und/oder Außenflächen, der Holweck-Rotorhülsen 163, 165 und der Holweck-Statorhülsen 167, 169 gebildet. Die radiale Innenfläche der äußeren Holweck-Statorhülse 167 liegt der radialen Außenfläche der äußeren Holweck-Rotorhülse 163 unter Ausbildung eines radialen Holweck-Spalts 171 gegenüber und bildet mit dieser die der Turbomolekularpumpen nachfolgende erste Holweck-Pumpstufe. Die radiale Innenfläche der äußeren Holweck-Rotorhülse 163 steht der radialen Außenfläche der inneren Holweck-Statorhülse 169 unter Ausbildung eines radialen Holweck-Spalts 173 gegenüber und bildet mit dieser eine zweite Holweck-Pumpstufe. Die radiale Innenfläche der inneren Holweck-Statorhülse 169 liegt der radialen Außenfläche der inneren Holweck-Rotorhülse 165 unter Ausbildung eines radialen Holweck-Spalts 175 gegenüber und bildet mit dieser die dritte Holweck-Pumpstufe.
  • Am unteren Ende der Holweck-Rotorhülse 163 kann ein radial verlaufender Kanal vorgesehen sein, über den der radial außenliegende Holweck-Spalt 171 mit dem mittleren Holweck-Spalt 173 verbunden ist. Außerdem kann am oberen Ende der inneren Holweck-Statorhülse 169 ein radial verlaufender Kanal vorgesehen sein, über den der mittlere Holweck-Spalt 173 mit dem radial innenliegenden Holweck-Spalt 175 verbunden ist. Dadurch werden die ineinander geschachtelten Holweck-Pumpstufen in Serie miteinander geschaltet. Am unteren Ende der radial innenliegenden Holweck-Rotorhülse 165 kann ferner ein Verbindungskanal 179 zum Auslass 117 vorgesehen sein.
  • Die vorstehend genannten pumpaktiven Oberflächen der Holweck-Statorhülsen 163, 165 weisen jeweils mehrere spiralförmig um die Rotationsachse 151 herum in axialer Richtung verlaufende Holweck-Nuten auf, während die gegenüberliegenden Mantelflächen der Holweck-Rotorhülsen 163, 165 glatt ausgebildet sind und das Gas zum Betrieb der Vakuumpumpe 111 in den Holweck-Nuten vorantreiben.
  • Zur drehbaren Lagerung der Rotorwelle 153 sind ein Wälzlager 181 im Bereich des Pumpenauslasses 117 und ein Permanentmagnetlager 183 im Bereich des Pumpeneinlasses 115 vorgesehen.
  • Im Bereich des Wälzlagers 181 ist an der Rotorwelle 153 eine konische Spritzmutter 185 mit einem zu dem Wälzlager 181 hin zunehmenden Außendurchmesser vorgesehen. Die Spritzmutter 185 steht mit mindestens einem Abstreifer eines Betriebsmittelspeichers in gleitendem Kontakt. Der Betriebsmittelspeicher umfasst mehrere aufeinander gestapelte saugfähige Scheiben 187, die mit einem Betriebsmittel für das Wälzlager 181, z.B. mit einem Schmiermittel, getränkt sind.
  • Im Betrieb der Vakuumpumpe 111 wird das Betriebsmittel durch kapillare Wirkung von dem Betriebsmittelspeicher über den Abstreifer auf die rotierende Spritzmutter 185 übertragen und in Folge der Zentrifugalkraft entlang der Spritzmutter 185 in Richtung des größer werdenden Außendurchmessers der Spritzmutter 92 zu dem Wälzlager 181 hin gefördert, wo es z.B. eine schmierende Funktion erfüllt. Das Wälzlager 181 und der Betriebsmittelspeicher sind durch einen wannenförmigen Einsatz 189 und den Lagerdeckel 145 in der Vakuumpumpe eingefasst.
  • Das Permanentmagnetlager 183 umfasst eine rotorseitige Lagerhälfte 191 und eine statorseitige Lagerhälfte 193, welche jeweils einen Ringstapel aus mehreren in axialer Richtung aufeinander gestapelten permanentmagnetischen Ringen 195, 197 umfassen. Die Ringmagnete 195, 197 liegen einander unter Ausbildung eines radialen Lagerspalts 199 gegenüber, wobei die rotorseitigen Ringmagnete 195 radial außen und die statorseitigen Ringmagnete 197 radial innen angeordnet sind. Das in dem Lagerspalt 199 vorhandene magnetische Feld ruft magnetische Abstoßungskräfte zwischen den Ringmagneten 195, 197 hervor, welche eine radiale Lagerung der Rotorwelle 153 bewirken. Die rotorseitigen Ringmagnete 195 sind von einem Trägerabschnitt 201 der Rotorwelle 153 getragen, welcher die Ringmagnete 195 radial außenseitig umgibt. Die statorseitigen Ringmagnete 197 sind von einem statorseitigen Trägerabschnitt 203 getragen, welcher sich durch die Ringmagnete 197 hindurch erstreckt und an radialen Streben 205 des Gehäuses 119 aufgehängt ist. Parallel zu der Rotationsachse 151 sind die rotorseitigen Ringmagnete 195 durch ein mit dem Trägerabschnitt 203 gekoppeltes Deckelelement 207 festgelegt. Die statorseitigen Ringmagnete 197 sind parallel zu der Rotationsachse 151 in der einen Richtung durch einen mit dem Trägerabschnitt 203 verbundenen Befestigungsring 209 sowie einen mit dem Trägerabschnitt 203 verbundenen Befestigungsring 211 festgelegt. Zwischen dem Befestigungsring 211 und den Ringmagneten 197 kann außerdem eine Tellerfeder 213 vorgesehen sein.
  • Innerhalb des Magnetlagers ist ein Not- bzw. Fanglager 215 vorgesehen, welches im normalen Betrieb der Vakuumpumpe 111 ohne Berührung leer läuft und erst bei einer übermäßigen radialen Auslenkung des Rotors 149 relativ zu dem Stator in Eingriff gelangt, um einen radialen Anschlag für den Rotor 149 zu bilden, da eine Kollision der rotorseitigen Strukturen mit den statorseitigen Strukturen verhindert wird. Das Fanglager 215 ist als ungeschmiertes Wälzlager ausgebildet und bildet mit dem Rotor 149 und/oder dem Stator einen radialen Spalt, welcher bewirkt, dass das Fanglager 215 im normalen Pumpbetrieb außer Eingriff ist. Die radiale Auslenkung, bei der das Fanglager 215 in Eingriff gelangt, ist groß genug bemessen, sodass das Fanglager 215 im normalen Betrieb der Vakuumpumpe nicht in Eingriff gelangt, und gleichzeitig klein genug, sodass eine Kollision der rotorseitigen Strukturen mit den statorseitigen Strukturen unter allen Umständen verhindert wird.
  • Die Vakuumpumpe 111 umfasst den Elektromotor 125 zum drehenden Antreiben des Rotors 149. Der Anker des Elektromotors 125 ist durch den Rotor 149 gebildet, dessen Rotorwelle 153 sich durch den Motorstator 217 hindurch erstreckt. Auf den sich durch den Motorstator 217 hindurch erstreckenden Abschnitt der Rotorwelle 153 kann radial außenseitig oder eingebettet eine Permanentmagnetanordnung angeordnet sein. Zwischen dem Motorstator 217 und dem sich durch den Motorstator 217 hindurch erstreckenden Abschnitt des Rotors 149 ist ein Zwischenraum 219 angeordnet, welcher einen radialen Motorspalt umfasst, über den sich der Motorstator 217 und die Permanentmagnetanordnung zur Übertragung des Antriebsmoments magnetisch beeinflussen können.
  • Der Motorstator 217 ist in dem Gehäuse innerhalb des für den Elektromotor 125 vorgesehenen Motorraums 137 festgelegt. Über den Sperrgasanschluss 135 kann ein Sperrgas, das auch als Spülgas bezeichnet wird, und bei dem es sich beispielsweise um Luft oder um Stickstoff handeln kann, in den Motorraum 137 gelangen. Über das Sperrgas kann der Elektromotor 125 vor Prozessgas, z.B. vor korrosiv wirkenden Anteilen des Prozessgases, geschützt werden. Der Motorraum 137 kann auch über den Pumpenauslass 117 evakuiert werden, d.h. im Motorraum 137 herrscht zumindest annäherungsweise der von der am Pumpenauslass 117 angeschlossenen Vorvakuumpumpe bewirkte Vakuumdruck.
  • Zwischen der Rotornabe 161 und einer den Motorraum 137 begrenzenden Wandung 221 kann außerdem eine sog. und an sich bekannte Labyrinthdichtung 223 vorgesehen sein, insbesondere um eine bessere Abdichtung des Motorraums 217 gegenüber den radial außerhalb liegenden Holweck-Pumpstufen zu erreichen.
  • Der in Fig. 6 im Querschnitt gezeigte Ausschnitt eines erfindungsgemäßen Permanentmagnetlagers 183 weist entsprechend den vorstehenden Ausführungen eine rotorseitige Lagerhälfte 191 und eine statorseitige Lagerhälfte 193 auf. Die statorseitige Lagerhälfte 193 weist vier Ringmagnete 197 auf und die rotorseitige Lagerhälfte 191 weist ebenfalls vier Ringmagnete 195 auf. Es kann aber auch eine andere Anzahl an Ringmagneten 195, 197 vorgesehen sein, da die genannte Anzahl an jeweils vier Ringmagneten nur der Illustration dient.
  • Wie in Fig. 6 eingezeichnet ist, weisen zueinander benachbarte Ringmagnete 197 der statorseitigen Lagerhälfte 193 eine wechselseitige Polung auf. Betrachtet man z.B. den oberen Ringmagneten 197 der statorseitigen Lagerhälfte 193 sowie den dazu benachbarten zweitobersten Ringmagneten 197, so ist zu sehen, dass die Südpole S der beiden Ringmagnete aneinander liegen. Außerdem liegen die Nordpole N des zweitobersten Ringmagnets 197 und des drittobersten Ringmagnets 197 aneinander. Ferner liegen die Südpole S des untersten Ringmagnets 197 und des zweituntersten Ringmagnets 197 aneinander. Entsprechendes gilt für die Ringmagnete 195 der rotorseitigen Lagerhälfte 191.
  • Zwischen der rotorseitigen Lagerhälfte 191 und der statorseitigen Lagerhälfte 193 ist der Lagerspalt 199 vorgesehen. Bei dem Lagerspalt 199 handelt es sich um einen ringförmigen Spalt, der von der nach radial außen gewandten Außenseite der inneren Ringmagnete 197 und der gegenüberliegenden, nach radial innen gewandten Innenseite der äußeren Ringmagnete 195 in radialer Richtung verläuft. Der Begriff "radiale Richtung" bezieht sich auf die Rotationsachse 151 (vgl. Fig. 3), bzw. auf die im Idealfall mit der Rotationsachse 151 zusammenfallenden axialen Mittelachsen der Ringmagnete 195, 197.
  • Der radiale Spalt 199 weist eine in radialer Richtung verlaufende Spaltbreite d auf. Die äußeren Ringmagnete 195 und die inneren Ringmagnete 197 sind so dimensioniert, dass deren jeweilige in axialer Richtung - bezogen auf die Rotationsachse 151 bzw. auf die mit der Rotationsachse zusammenfallenden axialen Mittelachsen der Ringmagnete - verlaufende Höhe h im Bereich zwischen einschließlich dem 3-fachen und einschließlich dem 5-fachen der Spaltbreite d liegt.
  • Außerdem weisen die Ringmagnete 195, 197 eine in radialer Richtung verlaufende Breite b auf, die kleiner oder höchstens gleich dem 1,5-fachen der Höhe h der Ringmagnete 195, 197 ist. Erfindungsgemäß ist die Breite b der äußeren Ringmagnete 195 und der inneren Ringmagnete größer oder höchstens gleich dem 1,2-fachen der Höhe h.
  • Die Ringmagnete 195 bilden einen Stapel von äußeren Ringmagneten 195 und die Ringmagnete 197 bilden einen Stapel von inneren Ringmagneten 197, bei denen jeder Ringmagnet dieselbe axiale Höhe h und dieselbe radiale Breite b aufweist.
  • Vorteilhaft an dem Permanentmagnetlager der Fig. 6 ist, dass es eine besonders gute Lagersteifigkeit aufweist, sodass es sich besonders gut zur drehbaren Lagerung eines Rotors einer Vakuumpumpe, wie beispielsweise einer Turbomolekularpumpe, eignet.
  • Bezugszeichenliste
  • 111
    Turbomolekularpumpe
    113
    Einlassflansch
    115
    Pumpeneinlass
    117
    Pumpenauslass
    119
    Gehäuse
    121
    Unterteil
    123
    Elektronikgehäuse
    125
    Elektromotor
    127
    Zubehöranschluss
    129
    Datenschnittstelle
    131
    Stromversorgungsanschluss
    133
    Fluteinlass
    135
    Sperrgasanschluss
    137
    Motorraum
    139
    Kühlmittelanschluss
    141
    Unterseite
    143
    Schraube
    145
    Lagerdeckel
    147
    Befestigungsbohrung
    148
    Kühlmittelleitung
    149
    Rotor
    151
    Rotationsachse
    153
    Rotorwelle
    155
    Rotorscheibe
    157
    Statorscheibe
    159
    Abstandsring
    161
    Rotornabe
    163
    Holweck-Rotorhülse
    165
    Holweck-Rotorhülse
    167
    Holweck-Statorhülse
    169
    Holweck-Statorhülse
    171
    Holweck-Spalt
    173
    Holweck-Spalt
    175
    Holweck-Spalt
    179
    Verbindungskanal
    181
    Wälzlager
    183
    Permanentmagnetlager
    185
    Spritzmutter
    187
    Scheibe
    189
    Einsatz
    191
    rotorseitige Lagerhälfte
    193
    statorseitige Lagerhälfte
    195
    Ringmagnet
    197
    Ringmagnet
    199
    Lagerspalt
    201
    Trägerabschnitt
    203
    Trägerabschnitt
    205
    radiale Strebe
    207
    Deckelelement
    209
    Stützring
    211
    Befestigungsring
    213
    Tellerfeder
    215
    Not-bzw. Fanglager
    217
    Motorstator
    219
    Zwischenraum
    221
    Wandung
    223
    Labyrinthdichtung
    d
    Spaltbreite
    h
    axiale Höhe
    b
    radiale Breite
    N
    Nordpol
    S
    Südpol

Claims (7)

  1. Permanentmagnetlager zur drehbaren Lagerung eines Rotors (149) einer Vakuumpumpe, insbesondere Turbomolekularpumpe, umfassend wenigstens einen zur Anordnung an einem Stator der Vakuumpumpe vorgesehenen statorseitigen Ringmagnet (197) und einen zur Anordnung an dem Rotor (149) der Vakuumpumpe vorgesehenen rotorseitigen Ringmagnet (195), wobei einer der beiden Ringmagnete ein innerer Ringmagnet (197) ist, welcher radial innerhalb des anderen, äußeren Ringmagnets (195) und konzentrisch mit dem äußeren Ringmagnet (195) derart angeordnet oder anordenbar ist, dass zwischen der nach radial außen gewandten Außenseite des inneren Ringmagnets (197) und der gegenüberliegenden, nach radial innen gewandten Innenseite des äußeren Ringmagnets (195) ein radialer Spalt (199) mit einer in radialer Richtung verlaufenden Spaltbreite (d) gebildet wird, wobei der äußere Ringmagnet (195) und/oder der innere Ringmagnet (197) eine in axialer Richtung verlaufende Höhe (h) aufweist, die im Bereich zwischen einschließlich dem 3-fachen und einschließlich dem 5-fachen der Spaltbreite (d) liegt; und wobei die in radialer Richtung verlaufende Breite (b) des äußeren Ringmagnets (195) und/oder des inneren Ringmagnets (197) kleiner oder höchstens gleich dem 1,5-fachen der Höhe (h) des jeweiligen Ringmagnets (195, 197) ist;
    dadurch gekennzeichnet, dass
    die in radialer Richtung verlaufende Breite (b) des äußeren Ringmagnets (195) und/oder des inneren Ringmagnets (197) größer oder höchstens gleich dem 1,2-fachen der Höhe (h) des jeweiligen Ringmagnets (195, 197) ist.
  2. Permanentmagnetlager nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die in radialer Richtung verlaufende Breite (b) des äußeren Ringmagnets (195) und/oder des inneren Ringmagnets (197) größer oder höchstens gleich dem 1,3-fachen der Höhe (h) des jeweiligen Ringmagnets (195, 197) ist.
  3. Permanentmagnetlager nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass
    dieses einen Stapel von äußeren Ringmagneten (195) und einen Stapel von inneren Ringmagneten (197) aufweist, und dass jeder Ringmagnet des Stapels von äußeren Ringmagneten (195) und/oder jeder Ringmagnet des Stapels von inneren Ringmagneten (197) eine jeweilige axiale Höhe (h) aufweist, die zwischen einschließlich dem 3-fachen und einschließlich dem 5-fachen der Spaltbreite (d) liegt.
  4. Permanentmagnetlager nach einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    dieses einen Stapel von äußeren Ringmagneten (195) und einen Stapel von inneren Ringmagneten (197) umfasst, und dass jeder Ringmagnet des Stapels von äußeren Ringmagneten (195) und/oder jeder Ringmagnet des Stapels von inneren Ringmagneten (197) eine jeweilige in radialer Richtung verlaufende Breite (b) aufweist, die zwischen einschließlich dem 1,2-fachen und einschließlich dem 1,5-fachen der Höhe (h) der Ringmagnete (195, 197) des jeweiligen Stapels liegt.
  5. Verfahren zur Herstellung eines Permanentmagnetlagers (183) für eine Vakuumpumpe, insbesondere Turbomolekularpumpe, mit wenigstens einem äußeren Ringmagnet (195) und einem inneren Ringmagnet (197), welcher radial innerhalb des äußeren Ringmagnets (195) und konzentrisch mit dem äußeren Ringmagnet (195) derart angeordnet oder anordenbar ist, dass zwischen der nach radial außen gewandten Außenseite des inneren Ringmagnets (197) und der gegenüberliegenden, nach radial innen gewandten Innenseite des äußeren Ringmagnets (195) ein radialer Spalt (199) mit einer in radialer Richtung verlaufenden Spaltbreite (d) gebildet wird, wobei eine in axialer Richtung verlaufende Höhe (h) des äußeren Ringmagnets (195) und/oder des inneren Ringmagnets (197) derart dimensioniert wird, dass sie im Bereich zwischen einschließlich dem 3-fachen und einschließlich dem 5-fachen der Spaltbreite (d) liegt; und wobei eine in radialer Richtung verlaufenden Breite (b) des äußeren Ringmagnets (195) und/oder des inneren Ringmagnets (197) derart dimensioniert wird, dass sie kleiner oder höchstens gleich dem 1,5-fachen der Höhe (h) des jeweiligen Ringmagnets (195, 197) ist;
    dadurch gekennzeichnet, dass
    die in radialer Richtung verlaufende Breite (b) des äußeren Ringmagnets (195) und/oder des inneren Ringmagnets (197) derart dimensioniert wird, dass sie größer oder höchstens gleich dem 1,2-fachen der Höhe (h) des jeweiligen Ringmagnets (195, 197) ist.
  6. Verfahren nach Anspruch 5,
    dadurch gekennzeichnet, dass
    die in radialer Richtung verlaufende Breite (b) des äußeren Ringmagnets (195) und/oder des inneren Ringmagnets (197) derart dimensioniert wird, dass sie größer oder höchstens gleich dem 1,3-fachen der Höhe (h) des jeweiligen Ringmagnets (195, 197) ist.
  7. Vakuumpumpe, insbesondere Turbomolekularpumpe, umfassend wenigstens ein Permanentmagnetlager (183) gemäß einem der Ansprüche 1-4.
EP15182204.6A 2015-08-24 2015-08-24 Vakuumpumpe und permanentmagnetlager Active EP3135932B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15182204.6A EP3135932B1 (de) 2015-08-24 2015-08-24 Vakuumpumpe und permanentmagnetlager
JP2016096838A JP2017061920A (ja) 2015-08-24 2016-05-13 真空ポンプと永久磁石支承部

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15182204.6A EP3135932B1 (de) 2015-08-24 2015-08-24 Vakuumpumpe und permanentmagnetlager

Publications (2)

Publication Number Publication Date
EP3135932A1 EP3135932A1 (de) 2017-03-01
EP3135932B1 true EP3135932B1 (de) 2018-10-31

Family

ID=53969287

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15182204.6A Active EP3135932B1 (de) 2015-08-24 2015-08-24 Vakuumpumpe und permanentmagnetlager

Country Status (2)

Country Link
EP (1) EP3135932B1 (de)
JP (1) JP2017061920A (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3385961B1 (de) * 2017-04-05 2021-09-01 Pfeiffer Vacuum Gmbh Monolithischer permanentmagnet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040227421A1 (en) 2003-05-16 2004-11-18 Chien-Chang Wang Magnetic suspension bearing
CN104712655A (zh) 2015-02-16 2015-06-17 西安理工大学 矩形截面永磁体导轨或轴承的磁力确定方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB946701A (en) * 1960-04-12 1964-01-15 Philips Electrical Ind Ltd Improvements in magnetic bearings
JPH0242194A (ja) * 1988-07-31 1990-02-13 Shimadzu Corp ターボ分子ポンプ
FR2659395B1 (fr) * 1990-03-07 1992-05-15 Cit Alcatel Pompe a vide a suspension magnetique.
JPH04219493A (ja) * 1990-08-10 1992-08-10 Ebara Corp ターボ分子ポンプ
DE10358341B4 (de) * 2003-12-12 2010-03-25 Siemens Ag Vorrichtung zum Lagern einer Kühlmittelzuführung für supraleitende Maschinen
JP5312876B2 (ja) * 2008-08-28 2013-10-09 バキュームプロダクツ株式会社 回転部の軸受け装置及びそれを用いたポンプ
DE102013218220A1 (de) * 2013-09-11 2015-03-12 Pfeiffer Vacuum Gmbh Anordnung zur magnetischen Kopplung zweier Komponenten
DE102013113986A1 (de) * 2013-12-13 2015-06-18 Pfeiffer Vacuum Gmbh Rotierendes System

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040227421A1 (en) 2003-05-16 2004-11-18 Chien-Chang Wang Magnetic suspension bearing
CN104712655A (zh) 2015-02-16 2015-06-17 西安理工大学 矩形截面永磁体导轨或轴承的磁力确定方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BRAD PADEN ET AL.: "Design Formulas for Permanent-Magnet Bearings", TRANSACTIONS OF THE ASME, December 2003 (2003-12-01), pages 734 - 738, XP055629813
JEAN-PAUL YONNET: "Stacked structures of passive magnetic bearings", JOURNAL OF APPLIED PHYSICS, vol. 70, no. 10 PT 02, 15 November 1991 (1991-11-15), pages 6633, XP000281729
N/A THE OPPOSED PATENT

Also Published As

Publication number Publication date
JP2017061920A (ja) 2017-03-30
EP3135932A1 (de) 2017-03-01

Similar Documents

Publication Publication Date Title
EP2829734B1 (de) Vakuumpumpe
EP2826999B1 (de) Vakuumpumpe
EP3657021B1 (de) Vakuumpumpe
EP3135932B1 (de) Vakuumpumpe und permanentmagnetlager
EP3196471B1 (de) Vakuumpumpe
EP3608545B1 (de) Vakuumpumpe
EP4108932A1 (de) Rezipient und hochvakuumpumpe
EP3693610B1 (de) Molekularvakuumpumpe
EP3683449B1 (de) Magnetlager und vakuumgerät
EP3670924B1 (de) Vakuumpumpe und verfahren zur herstellung einer solchen
EP3734078B1 (de) Turbomolekularpumpe und verfahren zur herstellung einer statorscheibe für eine solche
EP3327293B1 (de) Vakuumpumpe mit mehreren einlässen
DE102015113821A1 (de) Vakuumpumpe
EP3628883B1 (de) Vakuumpumpe
EP3767109B1 (de) Vakuumsystem
EP3564538B1 (de) Vakuumsystem und verfahren zur herstellung eines solchen
DE102014102273A1 (de) Vakuumpumpe
EP3561306B1 (de) Vakuumpumpe
EP3561307B1 (de) Vakuumpumpe mit einem einlassflansch und einem lagerträger im einlass
EP3845764B1 (de) Vakuumpumpe und vakuumpumpensystem
EP3462036B1 (de) Turbomolekularvakuumpumpe
EP4194700A1 (de) Vakuumpumpe mit einer holweck-pumpstufe mit veränderlicher holweck-geometrie
EP4293232A1 (de) Pumpe
EP4151860A2 (de) Vakuumpumpe
EP3926175A1 (de) Vakuumpumpe mit wälzlager

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170524

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171103

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180511

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1059766

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015006646

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181031

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190131

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190228

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190201

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502015006646

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

26 Opposition filed

Opponent name: EDWARDS LIMITED

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190824

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150824

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1059766

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200824

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230825

Year of fee payment: 9

Ref country code: GB

Payment date: 20230822

Year of fee payment: 9

Ref country code: CZ

Payment date: 20230815

Year of fee payment: 9

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231027

Year of fee payment: 9