EP3096020B1 - Vakuumpumpe - Google Patents

Vakuumpumpe Download PDF

Info

Publication number
EP3096020B1
EP3096020B1 EP15167995.8A EP15167995A EP3096020B1 EP 3096020 B1 EP3096020 B1 EP 3096020B1 EP 15167995 A EP15167995 A EP 15167995A EP 3096020 B1 EP3096020 B1 EP 3096020B1
Authority
EP
European Patent Office
Prior art keywords
rotor
stator
spacer element
vacuum pump
accordance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15167995.8A
Other languages
English (en)
French (fr)
Other versions
EP3096020A1 (de
Inventor
Sönke Gilbrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum GmbH
Original Assignee
Pfeiffer Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum GmbH filed Critical Pfeiffer Vacuum GmbH
Priority to EP15167995.8A priority Critical patent/EP3096020B1/de
Publication of EP3096020A1 publication Critical patent/EP3096020A1/de
Application granted granted Critical
Publication of EP3096020B1 publication Critical patent/EP3096020B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors

Definitions

  • the present invention relates to a vacuum pump, in particular a turbomolecular pump, with a rotor which is rotatably mounted in the vacuum pump and having a portion on which a plurality of rotor blades are arranged, and a stator which is axially offset from the rotor blades having the rotor part in a housing of the vacuum pump is arranged and has at least one stator blade.
  • Vacuum pumps in the form of turbomolecular pumps are basically known and are used, for example, in the semiconductor industry and in physical research in order to generate a high vacuum required there.
  • the turbomolecular pump is characterized by a rotor, also referred to as a blade rotor, whose structure is reminiscent of the rotor of a turbine.
  • the rotor cooperates with a stator, also referred to as a blade stator, and usually rotates at such a high speed that the tangential velocity of the individual rotor blades is of a similar magnitude to the average thermal velocity of particles to be conveyed.
  • a vertical pumping direction from top to bottom the majority of the particles collide with a bottom surface of an angularly pitched rotor blade.
  • turbomolecular pumping stage By a preferred direction of the bottom of the rotor blade in the pumping direction creates a pumping action.
  • the portion of the turbomolecular pump that includes the blade rotor and the blade stator is generally referred to as a turbomolecular pumping stage or turbo stage.
  • a pressure equalization between a vacuum pressure and a higher pressure e.g. Atmospheric pressure generated.
  • a pressure equalization between a vacuum pressure and a higher pressure e.g. Atmospheric pressure generated.
  • a stator made of sheet metal bends through the load of the flood process and strikes with its stator blades against the rotating rotor.
  • the part of the rotor having the rotor blades may also bend, which may cause the rotor blades to strike against the stator.
  • the contact between the rotor and the stator may cause particles to detach from the stator and / or rotor, which may damage the stator and the rotor and cause further damage to the pump.
  • a vacuum pump according to the preamble of claim 1 which has rotor discs with a stepped portion on an inner support portion.
  • the stepped portion serves as a spacer to avoid contact between the rotor disks and stator disks when the stator disks are bent by applying a force.
  • the JP 2008 280977 A describes a similar vacuum pump.
  • the invention has for its object to provide a vacuum pump to which in the case of a violent flooding less damage.
  • a vacuum pump with the features of claim 1 and in particular by the fact that between the rotor blades having part and the stator, a spacer element is arranged, which is adapted to bending of the stator, in particular as a result of a flood, the at least Keep a stator blade at a distance from the rotor.
  • the spacer element according to the invention is formed in the form of a ring on which the rotor blades having part, wherein the rotor between the ring and a rotation axis of the rotor has a recess.
  • the invention is based on the general idea, especially in turbomolecular pumps with laminated or stamped stator discs to prevent contact between the stator blades and the rotating rotor and thereby avoid damage that would be generated by a collision of the stator blades and the rotor. This is accomplished by having the stator blades move axially during a flood process, i. in the extension direction of the axis of rotation of the rotor, spaced to be held to the rotor by a spacer element between the stator and the rotor is connected.
  • the spacer element is formed integrally with the part having the rotor blades. This facilitates the assembly of the vacuum pump and ensures a stable connection between the rotor and the spacer element.
  • This ring may be designed as a closed ring surrounding the axis of rotation of the rotor. This allows a bent stator to slide on the spacer without snagging.
  • the ring is arranged concentrically around the axis of rotation of the rotor and in particular has a constant cross section.
  • the cross section may be, for example, rectangular, triangular, semicircular or trapezoidal.
  • the spacer element preferably has a constant maximum height when viewed in the circumferential direction. In other words, the height of the spacer in the direction of rotation of the rotor can remain the same. This avoids that the sliding along the spacer element stator due to varying heights moves the spacer element in the axial direction and is thereby vibrated.
  • the spacer element is formed in a radially inner portion of the rotor blades having part.
  • the rotor blades are arranged radially spaced from the spacer element and positioned so that a smooth radially inner portion of the stator can come into contact with the spacer element.
  • a smooth, radially inner section is provided in the case of laminated stator disks as a so-called inner ring in order to connect the stator blades to one another on the inner circumference of the stator disk.
  • a contact surface of the spacer element may be rounded.
  • the contact surface can be adapted from the angular position to the angular position of a part of the stator bearing against the spacer element in the bent state.
  • the contact surface of the spacer element is aligned in space so that the stator in the bent state plan, i. flat, abuts the contact surface of the spacer element.
  • the rotor blades having part of the rotor is formed as a separate rotor disk.
  • a plurality of such rotor disks may be secured to a rotor shaft extending in the axial direction.
  • the rotor disks may be shrunk onto the rotor shaft. This can achieve manufacturing advantages.
  • the rotor blades having part of the rotor may be integrally formed with a shaft portion of the rotor.
  • a plurality of rotor blades having parts may be formed in the form of a single component.
  • Such a rotor, in which the part having the rotor blades is formed integrally with the rotor shaft, is also referred to as a solid rotor.
  • the stator comprises a stator disc, which is made of a sheet metal and is produced in particular by stamping.
  • a stator disc which is made of a sheet metal and is produced in particular by stamping.
  • the stator blades come into contact with the rotor during a flooding process. This is due to the fact that in laminated stator discs, the stator blades are positioned so that they protrude from the main plane of the stator. Consequently, the present invention is particularly advantageous when using laminated stator disks.
  • the spacer may have a height that is so high that upon bending of the stator, a smooth part of the stator abuts the spacer and the stator blades of the stator are spaced from the rotor, and at the same time is so small that in normal operation no Impairment of the relative movement between the rotor and stator takes place.
  • the damage to the vacuum pump in uncontrolled flooding and at the same time the wear during normal operation can be minimized.
  • the vacuum pump shown comprises a pump inlet 10 surrounded by an inlet flange 11 and a pump outlet 12 and a plurality of process gas pumping stages for conveying the process gas at the pump inlet 10 to the pump outlet 12.
  • the vacuum pump comprises a housing 64 and a rotor 16 arranged in the housing 64 with one the rotational axis 14 rotatably mounted rotor shaft 15th
  • the pump is designed as a turbomolecular pump and comprises a plurality of turbomolecular pump stages connected to the rotor shaft 15 with a plurality of radial rotor disks 66 attached to the rotor shaft 15 and stator disks 68 arranged between the rotor disks 66 and fixed in the housing 64, one rotor disk 66 and one rotor disk 66 adjacent stator disk 68 each form a turbomolecular pumping stage.
  • the stator disks 68 are held by spacer rings 70 at a desired axial distance from each other.
  • a vacuum pump with rotor disks 66 which are designed as separate components, is also an embodiment of the rotor 16 as a solid rotor conceivable.
  • the vacuum pump also comprises four radially arranged pumping stages which are connected to one another in pumping fashion in series with each other.
  • the rotor of the Holweckpumplien comprises a rotor shaft 15 integrally formed with the rotor hub 72 and two attached to the rotor hub 72 and carried by this cylinder jacket Holweckrotorhülsen 74, 76, which are coaxial with the axis of rotation 14 oriented and nested in the radial direction.
  • two cylinder jacket-shaped Holweckstatorhülsen 78, 80 are provided, which are also coaxial with the axis of rotation 14 oriented and nested in the radial direction.
  • a third Holweckstatorhülse is formed by a receiving portion 132 of the housing 64, which serves in the manner described below for receiving and fixing a drive motor 20.
  • the pump-active surfaces of the Holweckpumpthroughn are formed by the lateral surfaces, ie the radial inner and outer surfaces of the Holweckrotorhülsen 74, 76, the Holweckstatorhülsen 78, 80 and the receiving portion 132.
  • the radially inner surface of the outer Holweckstatorhülse 78 is opposite to the radial outer surface of the outer Holweckrotorhülse 74 to form a radial Holweckspalts 82 and forms with this the first Holweckpumpcut.
  • the radially inner surface of the outer Holweckrotorheckse 74 faces the radial outer surface of the inner Holweckstatorhülse 80 to form a radial Holweckspalts 84 and forms with this the second Holweckpumpch.
  • the radially inner surface of the inner Holweckstatorhülse 80 is opposite to the radial outer surface of the inner Holweckrotorhülse 76 to form a radial Holweckspalts 86 and forms with this the third Holweckpumpcut.
  • the radially inner surface of the inner Holweckrotorhülse 76 is the radial outer surface of the Receiving portion 132 with formation of a radial Holweckspalts 87 opposite and forms with this the fourth Holweckpumpch.
  • the aforementioned pump-active surfaces of Holweckstatorhülsen 78, 80 and the receiving portion 132 each have a plurality of spiral around the axis of rotation 14 around axially extending Holwecknuten, while the opposite lateral surfaces of Holweckrotorhülsen 74, 76 are smooth and the gas in the operation of the vacuum pump in drive the Holwecknuten.
  • a rolling bearing 88 in the region of the pump outlet 12 and a permanent magnet bearing 90 in the region of the pump inlet 10 are provided.
  • a conical injection nut 92 with an outer diameter increasing toward the rolling bearing 88 is provided on the rotor shaft 15.
  • the spray nut 92 is in sliding contact with at least one scraper of a resource storage.
  • the resource storage comprises a plurality of stacked absorbent pads 94 impregnated with a rolling bearing bearing means 88, for example a lubricant.
  • the operating medium is transferred by capillary action from the working fluid reservoir via the scraper to the rotating spray nut 92 and due to the centrifugal force along the injection nut 92 in the direction of increasing outer diameter of the injection nut 92 to the rolling bearing 88 promoted where it is e.g. fulfills a lubricating function.
  • the rolling bearing 88 and the resource storage are enclosed by a trough-shaped insert 96 and a cover member 98 of the vacuum pump.
  • the permanent magnet bearing comprises a rotor-side bearing half 100 and a stator-side bearing half 102, which each have a ring stack of several in Axial direction stacked permanent magnetic rings 104 and 106 include.
  • the magnetic rings 104, 106 are opposed to each other to form a radial bearing gap 108, wherein the rotor-side magnet rings 104 are arranged radially on the outside and the stator magnet rings 106 radially inward.
  • the magnetic field present in the bearing gap 108 causes magnetic repulsive forces between the magnetic rings 104, 106, which cause a radial bearing of the rotor shaft 15.
  • the rotor-side magnetic rings 104 are carried by a support portion 110 of the rotor shaft, which surrounds the magnet rings 104 radially on the outside.
  • the stator-side magnet rings are supported by a stator-side support portion 112 which extends through the magnet rings 106 and is suspended from radial struts 114 of the housing 64.
  • Parallel to the axis of rotation 14, the rotor-side magnet rings 104 are fixed in one direction by a cover element 116 coupled to the carrier section 110 and in the other direction by a radially projecting shoulder section of the carrier section 110.
  • the stator-side magnet rings 106 are parallel to the axis of rotation 14 in one direction by a fastening ring 118 connected to the carrier section 112 and a compensation element 120 arranged between the fastening ring 118 and the magnet rings 106 and in the other direction by a support ring 122 connected to the carrier section 112 established.
  • an emergency or fishing camp 124 is provided, which runs empty during normal operation of the vacuum pump without touching and only with an excessive radial deflection of the rotor 16 engages relative to the stator in engagement to a radial stop for the rotor 16 form, which prevents a collision of the rotor-side structures with the stator-side structures.
  • the backup bearing 124 is formed as an unlubricated rolling bearing and forms with the rotor 16 and / or the stator a radial gap, which causes the backup bearing 124 is disengaged in the normal pumping operation.
  • the radial deflection, in which the fishing camp 124 engages is sized large enough so that the fishing camp 124 is not engaged during normal operation of the vacuum pump, and at the same time small enough so that a collision of the rotor-side structures with the stator-side structures is prevented under all circumstances ,
  • the vacuum pump includes the drive motor 20 for rotationally driving the rotor 16.
  • the drive motor 20 includes a motor stator 22 having a core 38 and having one or more in Fig. 1 only schematically illustrated coils 42 which are defined in provided on the radially inner side of the core 38 grooves 38 of the core.
  • the armature of the drive motor 20 is formed by the rotor 16, whose rotor shaft 15 extends through the motor stator 22 therethrough.
  • a permanent magnet assembly 128 is fixed radially on the outside.
  • a gap 24 is arranged, which comprises a radial motor gap, via which the motor stator 22 and the permanent magnet arrangement 128 influence magnetically for transmission of the drive torque.
  • the permanent magnet arrangement 128 is fixed to the rotor shaft 15 in the axial direction by a fastening sleeve 126 plugged onto the rotor shaft 15.
  • An encapsulation 130 surrounds the permanent magnet arrangement 128 on its radial outer side and seals it with respect to the intermediate space 24.
  • the motor stator 22 is fixed in the housing 64 by the housing-fixed receiving portion 132, which surrounds the motor stator 22 radially on the outside and supports the motor stator 22 in the radial and axial directions.
  • the recording section 132 defines together with the rotor hub 72, an engine compartment 18 in which the drive motor 20 is received.
  • the engine compartment 18 has an inlet 28 arranged on one side of the intermediate space 24 and gas-conductively connected to the inner, fourth Holweckpumpcut and an outlet 30 arranged on the opposite side of the intermediate space 24 and gas-conducting to the pump outlet 12.
  • the core 38 of the motor stator 22 has at its radial outer side in the in Fig. 1 On the left, a recess 34, which together with the adjacent portion of the receiving portion 132 forms a channel 32 through which the process gas delivered into the engine compartment 18 is conveyed to the gap 24 from the inlet 28 to the outlet 30.
  • the gas path on which the process gas passes from the pump inlet 10 to the pump outlet 12 is in Fig. 1 . 2 and 3 illustrated by arrows 26.
  • the process gas is first pumped from the pump inlet 10 sequentially through the turbomolecular pumping stages and then sequentially through the four Holweck pumping stages.
  • the gas exiting the fourth Holweckpumprise enters the engine compartment 18 and is conveyed from the inlet 28 of the engine compartment 18 through the channel 32 to the outlet 30 of the engine compartment 18 and the pump outlet 12.
  • FIG. 2 Three different variants I, II, III of a turbomolecular pumping stage are shown, each comprising a rotor disk 66 ', 66 ", 66"' and a stator disk 68 ', 68 ", 68"'.
  • a rotor disk 66 ', 66 ", 66"' and a stator disk 68 ', 68 ", 68"'.
  • a vacuum pump for a vacuum pump.
  • Each rotor disk 66 is connected in a rotationally fixed manner to the rotor shaft 15 and is designed to rotate together with the rotor shaft 15 about an axis of rotation 14.
  • Each rotor disk 66 has a radially inner portion 134 and a rotor blade portion 136.
  • the stator disks 68 also each include a radially inner portion 138 and a stator blade portion 140.
  • the first variant shown under I shows a sawn stator disk 68 'in its position during normal operation 68a' and the same sawn stator disk 68 'in the bent state 68b'. It can be seen that a first contact 142 'between the rotor disc 66' and the bent stator disc 68b 'between the radially inner portion 138 of the stator disc 68' and the radially inner portion 134 of the rotor disc 66 'takes place. As a result, a distance between a stator blade 144 'of the stator disk 68' and the rotor disk 66 'is maintained even in the bent state of the stator disk 68b'.
  • the second variant shows a laminated stator disk 68 ", likewise in its position in normal operation 68a" and in the bent state 68b.
  • the radially inner section 138 the stator disk 68 has a smaller dimension in the axial direction than the stator blade portion 140.
  • a first contact 142" does not take place on the radially inner portion 138 of the stator disk 68 ", but between the stator blade 144" and the rotor disk 66 ".
  • the stator blade 144" strikes the rotating rotor disk 66 "and damage may occur to the rotor disk 66" and the laminated stator disk 68 ".
  • a spacer element 146 is arranged on the rotor disk 66 '", which is also in Fig. 1 is shown.
  • the spacer element 146 is formed on the radially inner section 134 of the rotor disk 66 '"in the form of a slip ring revolving around the rotor shaft 15.
  • the spacer element 146 is arranged so that a first contact 142'" between a bent laminated stator disk 68b '''and the first Rotor disc 66 '"between the radially inner portion 138 of the stator disc 68'" and the spacer element 146.
  • stator disk 68 '" In normal operation 68a'", stator disk 68 '"is spaced from spacer 146 so that spacer 146 is not in contact with stator disk 68'".
  • Fig. 3 shows several embodiments of the spacer element 146.
  • the cross section of the spacer element 146 in the form of a rectangle, here a square formed.
  • the end face which represents a contact surface 148 and points in the direction of a stator disk (not shown), is arranged at least substantially parallel to a main plane defined by the rotor disk.
  • Embodiment B shows a spacer element 146 with a triangular cross-section. More specifically, the cross section has the shape of an isosceles triangle whose apex points toward a stator disk, not shown.
  • the contact between the stator disk and the spacer element 146 arises at the apex of the triangular cross section.
  • Embodiment C shows a spacer element 146 with a semicircular cross section.
  • the stator disk, not shown, in this embodiment lies in the bent state on a convex outer surface of the spacer element 146.
  • Embodiment D shows a spacer element 146 with a trapezoidal cross-sectional shape.
  • the spacer element 146 is in this case arranged radially spaced from the rotor 16 to form a rotor disk collar 150.
  • the height of the spacer 146 i. So the dimension in the axial direction increases in the radial direction from the inside to the outside.
  • the resulting inclined plane forms a contact surface 148 for the stator disk, not shown.
  • the angle of the oblique plane is preferably selected so that the stator disc in the bent state is substantially flat against it.
  • Embodiment E shows a spacer element 146, which forms a geometric unit together with a rotor disk collar 150.
  • the spacer 146 is formed in the form of a survey 152, the edge of which is a contact surface 148 for a stator, not shown.
  • An unclaimed embodiment F shows a spacer element 146, which is designed in the form of a rotor disk collar 150.
  • a difference to embodiment E is that the motor disc collar 150 merges into the elevation 152 without an intermediate recess.
  • the contact surface 148 is thus substantially perpendicular to the axis of rotation 14.
  • the rotor disk collar 150 is formed on both sides of the rotor 16.
  • the spacer element 146 is formed on individual rotor disks, which are fastened to a rotor shaft 15, the spacer element 146 may also be formed on corresponding parts of a solid rotor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Vakuumpumpe, insbesondere eine Turbomolekularpumpe, mit einem Rotor, der drehbar in der Vakuumpumpe gelagert ist und einen Teil aufweist, an dem mehrere Rotorschaufeln angeordnet sind, und einem Stator, der axial versetzt zu dem die Rotorschaufeln aufweisenden Teil des Rotors in einem Gehäuse der Vakuumpumpe angeordnet ist und wenigstens eine Statorschaufel aufweist.
  • Vakuumpumpen in der Form von Turbomolekularpumpen sind grundsätzlich bekannt und werden z.B. in der Halbleiterindustrie und in der physikalischen Forschung eingesetzt, um ein dort benötigtes Hochvakuum zu erzeugen. Die Turbomolekularpumpe zeichnet sich durch einen auch als Schaufelrotor bezeichneten Rotor aus, dessen Aufbau an den Rotor einer Turbine erinnert. Der Rotor wirkt mit einem auch als Schaufelstator bezeichneten Stator zusammen und rotiert üblicherweise mit einer derart hohen Geschwindigkeit, dass die Tangentialgeschwindigkeit der einzelnen Rotorschaufeln in ähnlicher Größenordnung zu der mittleren thermischen Geschwindigkeit von zu fördernden Teilchen liegt. Bei einer senkrechten Pumprichtung von oben nach unten kollidiert die Mehrzahl der Teilchen mit einer Unterseite einer winklig angestellten Rotorschaufel. Durch eine Vorzugsrichtung der Unterseite der Rotorschaufel in Pumprichtung entsteht eine Pumpwirkung. Der Abschnitt der Turbomolekularpumpe, der den Schaufelrotor und den Schaufelstator umfasst, wird im Allgemeinen als turbomolekulare Pumpstufe oder Turbostufe bezeichnet.
  • Um ein von der Vakuumpumpe erzeugtes Vakuum wieder abzubauen, d.h. Gasteilchen in einen unter Vakuum gesetzten Raum einzulassen, wird durch einen sogenannten Flutvorgang ein Druckausgleich zwischen einem Vakuumdruck und einem höheren Druck, z.B. Atmosphärendruck, erzeugt. Jedoch kann beispielsweise durch unsachgemäße Bedienung ein zu rascher Druckausgleich und damit ein zu heftiger Flutvorgang erzeugt werden. Bei einem solchen zu heftigen Flutvorgang besteht die Gefahr, dass sich insbesondere ein aus Blech hergestellter Stator durch die Last des Flutvorgangs verbiegt und mit seinen Statorschaufeln gegen den rotierenden Rotor schlägt. Ferner kann sich auch der die Rotorschaufeln aufweisende Teil des Rotors verbiegen, was dazu führen kann, dass die Rotorschaufeln gegen den Stator schlagen. Durch den Kontakt zwischen Rotor und Stator können sich Partikel am Stator und/oder Rotor ablösen, wodurch zum einen der Stator und der Rotor beschädigt werden und zum anderen die Partikel weiteren Schaden in der Pumpe anrichten können.
  • In der JP 3 099475 B2 ist eine Vakuumpumpe gemäß dem Oberbegriff des Anspruchs 1 beschrieben, die Rotorscheiben mit einem gestuften Abschnitt an einem inneren Trägerabschnitt aufweist. Der gestufte Abschnitt dient als Distanzelement, mit dem ein Kontakt zwischen den Rotorscheiben und Statorscheiben vermieden wird, wenn die Statorscheiben durch Ausübung einer Kraft verbogen werden.
  • Die JP 2008 280977 A beschreibt eine ähnliche Vakuumpumpe.
  • In der EP 0 967 395 A2 ist eine Vakuumpumpe beschrieben, bei der an einer Statorscheibe einen Innenring angeordnet ist.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Vakuumpumpe zu schaffen, an der im Fall eines heftigen Flutvorgangs ein geringerer Schaden entsteht.
  • Die Aufgabe wird gelöst durch eine Vakuumpumpe mit den Merkmalen des Anspruchs 1 und insbesondere dadurch, dass zwischen dem die Rotorschaufeln aufweisenden Teil und dem Stator ein Distanzelement angeordnet ist, das dazu ausgebildet ist, bei einem Verbiegen des Stators, insbesondere infolge eines Flutvorgangs, die wenigstens eine Statorschaufel auf Abstand zu dem Rotor zu halten.
  • Das Distanzelement ist erfindungsgemäß in Form eines Rings an dem die Rotorschaufeln aufweisenden Teil ausgebildet, wobei der Rotor zwischen dem Ring und einer Drehachse des Rotors eine Aussparung aufweist.
  • Der Erfindung liegt der allgemeine Gedanke zugrunde, vor allem bei Turbomolekularpumpen mit geblechten bzw. gestanzten Statorscheiben einen Kontakt zwischen den Statorschaufeln und dem sich drehenden Rotor zu verhindern und dadurch einen Schaden zu vermeiden, der durch ein Aneinanderschlagen der Statorschaufeln und dem Rotor erzeugt werden würde. Dies wird dadurch erreicht, dass die Statorschaufeln während eines Flutvorgangs axial, d.h. in Erstreckungsrichtung der Rotationsachse des Rotors, beabstandet zu dem Rotor gehalten werden, indem ein Distanzelement zwischen den Stator und den Rotor geschaltet ist.
  • Vorteilhafte Ausbildungen der Erfindung sind den Unteransprüchen, der Beschreibung und den Zeichnungen zu entnehmen.
  • Gemäß einer Ausführungsform ist das Distanzelement einstückig mit dem die Rotorschaufeln aufweisenden Teil ausgebildet. Dies erleichtert den Zusammenbau der Vakuumpumpe und sorgt für eine stabile Verbindung zwischen dem Rotor und dem Distanzelement.
  • Dieser Ring kann als ein um die Rotationsachse des Rotors umlaufender, geschlossener Ring ausgebildet sein. Hierdurch wird ermöglicht, dass ein verbogener Stator auf dem Distanzelement gleitet, ohne sich zu verhaken.
  • Um eine Unwucht am Rotor zu vermeiden, ist es vorteilhaft, wenn der Ring konzentrisch um die Drehachse des Rotors angeordnet ist und insbesondere einen konstanten Querschnitt aufweist.
  • Der Querschnitt kann beispielsweise rechteckig, dreieckig, halbkreisförmig oder trapezförmig sein.
  • Das Distanzelement weist in Umfangsrichtung gesehen bevorzugt eine konstante Maximalhöhe auf. Mit anderen Worten kann die Höhe des Distanzelements in der Rotationsrichtung des Rotors gleich bleiben. Hierdurch wird vermieden, dass sich der an dem Distanzelement entlanggleitende Stator aufgrund variierender Höhen des Distanzelements in axialer Richtung bewegt und dadurch in Schwingung versetzt wird.
  • Vorteilhafterweise ist das Distanzelement in einem radial inneren Abschnitt des die Rotorschaufeln aufweisenden Teils ausgebildet. Dabei sind die Rotorschaufeln radial beabstandet von dem Distanzelement angeordnet und so positioniert, dass ein glatter radial innerer Abschnitt des Stators mit dem Distanzelement in Kontakt kommen kann. In der Regel ist ein solcher glatter radial innerer Abschnitt bei geblechten Statorscheiben als sogenannter Innenring vorgesehen, um die Statorschaufeln am inneren Umfang der Statorscheibe miteinander zu verbinden. Durch die oben genannte Positionierung des Distanzelements wird sichergestellt, dass bei einem Kontakt zwischen Stator und Rotor nur eine glatte Fläche des Stators an dem Distanzelement entlang gleitet und hierdurch der Schaden an Rotor und Stator minimal gehalten wird.
  • Um eine Beschädigung des Stators noch weiter zu minimieren, kann eine Kontaktfläche des Distanzelements abgerundet sein. Alternativ oder zusätzlich kann die Kontaktfläche von der Winkelstellung her an die Winkelstellung eines an dem Distanzelement anliegenden Teils des Stators im verbogenen Zustand angepasst sein. Mit anderen Worten ist die Kontaktfläche des Distanzelements so im Raum ausgerichtet, dass der Stator im verbogenen Zustand plan, d.h. flächig, an der Kontaktfläche des Distanzelements anliegt.
  • Gemäß einer Ausführungsform ist der die Rotorschaufeln aufweisende Teil des Rotors als separate Rotorscheibe ausgebildet. Bei dieser Ausführungsform können mehrere solcher Rotorscheiben an einer sich in axialer Richtung erstreckenden Rotorwelle befestigt sein. Beispielsweise können die Rotorscheiben auf die Rotorwelle aufgeschrumpft sein. Dies kann fertigungstechnische Vorteile erzielen.
  • Alternativ dazu kann der die Rotorschaufeln aufweisende Teil des Rotors einstückig mit einem Wellenabschnitt des Rotors ausgebildet sein. Bei dieser Ausführungsform können insbesondere mehrere Rotorschaufeln aufweisende Teile in Form eines einzigen Bauteils ausgebildet sein. Ein solcher Rotor, bei dem der die Rotorschaufeln aufweisende Teil einstückig mit der Rotorwelle ausgebildet ist, wird auch als Vollrotor bezeichnet.
  • Aus Gründen der Symmetrie kann an zwei einander entgegengesetzten Seiten des die Rotorschaufeln aufweisenden Teils jeweils ein Distanzelement vorgesehen sein. Als "entgegengesetzt" werden hier zwei Seiten des Teils angesehen, die im Wesentlichen parallel zueinander ausgerichtet sind und deren Flächen in entgegengesetzte Richtungen weisen.
  • Vorteilhafterweise umfasst der Stator eine Statorscheibe, die aus einem Blech hergestellt ist und insbesondere durch Stanzen hergestellt ist. Besonders bei solchen geblechten Statorscheiben besteht die Gefahr, dass die Statorschaufeln bei einem Flutvorgang mit dem Rotor in Kontakt kommen. Dies ist dadurch begründet, dass bei geblechten Statorscheiben die Statorschaufeln so aufgestellt sind, dass sie aus der Hauptebene der Statorscheibe herausstehen. Demzufolge ist im besonderen Maße bei einem Einsatz von geblechten Statorscheiben die vorliegende Erfindung vorteilhaft.
  • Konkret kann das Distanzelement eine Höhe aufweisen, die so hoch ist, dass bei einem Verbiegen des Stators ein glatter Teil des Stators an dem Distanzelement anliegt und die Statorschaufeln des Stators beabstandet von dem Rotor gehalten sind, und gleichzeitig so klein ist, dass bei Normalbetrieb keine Beeinträchtigung der Relativbewegung zwischen Rotor und Stator erfolgt. Hierdurch kann der Schaden an der Vakuumpumpe bei unkontrolliertem Fluten und auch gleichzeitig der Verschleiß bei Normalbetrieb minimiert werden.
  • Nachfolgend wird die Erfindung anhand einer rein beispielhaften Ausführungsform unter Bezugnahme auf die beigefügten Zeichnungen beschrieben. Es zeigen:
  • Fig. 1
    eine Schnittansicht einer erfindungsgemäßen Vakuumpumpe;
    Fig. 2
    eine Skizze, die jeweils den Erstkontaktpunkt bei einer gesägten Statorscheibe (I), bei einer geblechten Scheibe ohne Distanzelement (II) und bei einer geblechten Scheibe, die gemäß der Erfindung mit einem Distanzelement zusammenwirkt (III), darstellt;
    Fig. 3
    verschiedene Querschnittsformen eines Distanzelements gemäß der Erfindung.
  • Die in Fig. 1 gezeigte Vakuumpumpe umfasst einen von einem Einlassflansch 11 umgebenen Pumpeneinlass 10 und einen Pumpenauslass 12 sowie mehrere Prozessgaspumpstufen zur Förderung des an dem Pumpeneinlass 10 anstehenden Prozessgases zu dem Pumpenauslass 12. Die Vakuumpumpe umfasst ein Gehäuse 64 und einen in dem Gehäuse 64 angeordneten Rotor 16 mit einer um die Rotationsachse 14 drehbar gelagerten Rotorwelle 15.
  • Die Pumpe ist im vorliegenden Ausführungsbeispiel als Turbomolekularpumpe ausgebildet und umfasst mehrere pumpwirksam miteinander in Serie geschaltete turbomolekulare Pumpstufen mit mehreren an der Rotorwelle 15 befestigten radialen Rotorscheiben 66 und zwischen den Rotorscheiben 66 angeordneten und in dem Gehäuse 64 festgelegten Statorscheiben 68, wobei eine Rotorscheibe 66 und eine benachbarte Statorscheibe 68 jeweils eine turbomolekulare Pumpstufe bilden. Die Statorscheiben 68 sind durch Abstandsringe 70 in einem gewünschten axialen Abstand zueinander gehalten.
  • Während somit das in Fig. 1 gezeigten Ausführungsbeispiel eine Vakuumpumpe mit Rotorscheiben 66 zeigt, die als separate Bauteile ausgeführt sind, ist auch eine Ausgestaltung des Rotors 16 als Vollrotor denkbar.
  • Die Vakuumpumpe umfasst außerdem vier in radialer Richtung ineinander angeordnete und pumpwirksam miteinander in Serie geschaltete Holweckpumpstufen. Der Rotor der Holweckpumpstufen umfasst eine mit der Rotorwelle 15 einteilig ausgebildete Rotornabe 72 und zwei an der Rotornabe 72 befestigte und von dieser getragene zylindermantelförmige Holweckrotorhülsen 74, 76, die koaxial zur Rotationsachse 14 orientiert und in radialer Richtung ineinander geschachtelt sind. Ferner sind zwei zylindermantelförmige Holweckstatorhülsen 78, 80 vorgesehen, die ebenfalls koaxial zu der Rotationsachse 14 orientiert und in radialer Richtung ineinander geschachtelt sind. Eine dritte Holweckstatorhülse ist durch einen Aufnahmeabschnitt 132 des Gehäuses 64 gebildet, der in der nachstehend beschriebenen Weise zur Aufnahme und Festlegung eines Antriebsmotors 20 dient.
  • Die pumpaktiven Oberflächen der Holweckpumpstufen sind durch die Mantelflächen, d.h. die radialen Innen- und Außenflächen, der Holweckrotorhülsen 74, 76, der Holweckstatorhülsen 78, 80 und des Aufnahmeabschnitts 132 gebildet. Die radiale Innenfläche der äußeren Holweckstatorhülse 78 liegt der radialen Außenfläche der äußeren Holweckrotorhülse 74 unter Ausbildung eines radialen Holweckspalts 82 gegenüber und bildet mit dieser die erste Holweckpumpstufe. Die radiale Innenfläche der äußeren Holweckrotorhülse 74 steht der radialen Außenfläche der inneren Holweckstatorhülse 80 unter Ausbildung eines radialen Holweckspalts 84 gegenüber und bildet mit dieser die zweite Holweckpumpstufe. Die radiale Innenfläche der inneren Holweckstatorhülse 80 liegt der radialen Außenfläche der inneren Holweckrotorhülse 76 unter Ausbildung eines radialen Holweckspalts 86 gegenüber und bildet mit dieser die dritte Holweckpumpstufe. Die radiale Innenfläche der inneren Holweckrotorhülse 76 liegt der radialen Außenfläche des Aufnahmeabschnitts 132 unter Ausbildung eines radialen Holweckspalts 87 gegenüber und bildet mit dieser die vierte Holweckpumpstufe.
  • Die vorstehend genannten pumpaktiven Oberflächen der Holweckstatorhülsen 78, 80 und des Aufnahmeabschnitts 132 weisen jeweils mehrere spiralförmig um die Rotationsachse 14 herum in axialer Richtung verlaufende Holwecknuten auf, während die gegenüberliegenden Mantelflächen der Holweckrotorhülsen 74, 76 glatt ausgebildet sind und das Gas im Betrieb der Vakuumpumpe in den Holwecknuten vorantreiben.
  • Zur drehbaren Lagerung der Rotorwelle 15 sind ein Wälzlager 88 im Bereich des Pumpenauslasses 12 und ein Permanentmagnetlager 90 im Bereich des Pumpeneinlasses 10 vorgesehen.
  • Im Bereich des Wälzlagers 88 ist an der Rotorwelle 15 eine konische Spritzmutter 92 mit einem zu dem Wälzlager 88 hin zunehmenden Außendurchmesser vorgesehen. Die Spritzmutter 92 steht mit zumindest einem Abstreifer eines Betriebsmittelspeichers in gleitendem Kontakt. Der Betriebsmittelspeicher umfasst mehrere aufeinander gestapelte saugfähige Scheiben 94, die mit einem Betriebsmittel für das Wälzlager 88, zum Beispiel mit einem Schmiermittel, getränkt sind. Im Betrieb der Vakuumpumpe wird das Betriebsmittel durch kapillare Wirkung von dem Betriebsmittelspeicher über den Abstreifer auf die rotierende Spritzmutter 92 übertragen und infolge der Zentrifugalkraft entlang der Spritzmutter 92 in Richtung des größer werdenden Außendurchmessers der Spritzmutter 92 zu dem Wälzlager 88 hin gefördert, wo es z.B. eine schmierende Funktion erfüllt. Das Wälzlager 88 und der Betriebsmittelspeicher sind durch einen wannenförmigen Einsatz 96 und ein Deckelelement 98 der Vakuumpumpe eingefasst.
  • Das Permanentmagnetlager umfasst eine rotorseitige Lagerhälfte 100 und eine statorseitige Lagerhälfte 102, welche jeweils einen Ringstapel aus mehreren in axialer Richtung aufeinander gestapelten permanentmagnetischen Ringen 104 bzw. 106 umfassen. Die Magnetringe 104, 106 liegen einander unter Ausbildung eines radialen Lagerspalts 108 gegenüber, wobei die rotorseitigen Magnetringe 104 radial außen und die statorseitigen Magnetringe 106 radial innen angeordnet sind. Das in dem Lagerspalt 108 vorhandene magnetische Feld ruft magnetische Abstoßungskräfte zwischen den Magnetringen 104, 106 hervor, welche eine radiale Lagerung der Rotorwelle 15 bewirken.
  • Die rotorseitigen Magnetringe 104 sind von einem Trägerabschnitt 110 der Rotorwelle getragen, welcher die Magnetringe 104 radial außenseitig umgibt. Die statorseitigen Magnetringe sind von einem statorseitigen Trägerabschnitt 112 getragen, welcher sich durch die Magnetringe 106 hindurch erstreckt und an radialen Streben 114 des Gehäuses 64 aufgehängt ist. Parallel zu der Rotationsachse 14 sind die rotorseitigen Magnetringe 104 in der einen Richtung durch ein mit dem Trägerabschnitt 110 gekoppeltes Deckelelement 116 und in der anderen Richtung durch einen radial vorstehenden Schulterabschnitt des Trägerabschnitts 110 festgelegt. Die statorseitigen Magnetringe 106 sind parallel zu der Rotationsachse 14 in der einen Richtung durch einen mit dem Trägerabschnitt 112 verbundenen Befestigungsring 118 und ein zwischen dem Befestigungsring 118 und den Magnetringen 106 angeordnetes Ausgleichselement 120 und in der anderen Richtung durch einen mit dem Trägerabschnitt 112 verbundenen Stützring 122 festgelegt.
  • Innerhalb des Magnetlagers ist ein Not- bzw. Fanglager 124 vorgesehen, welches im normalen Betrieb der Vakuumpumpe ohne Berührung leer läuft und erst bei einer übermäßigen radialen Auslenkung des Rotors 16 relativ zu den Stator in Eingriff gelangt, um einen radialen Anschlag für den Rotor 16 zu bilden, der eine Kollision der rotorseitigen Strukturen mit den statorseitigen Strukturen verhindert. Das Fanglager 124 ist als ungeschmiertes Wälzlager ausgebildet und bildet mit dem Rotor 16 und/oder dem Stator einen radialen Spalt, welcher bewirkt, dass das Fanglager 124 im normalen Pumpbetrieb außer Eingriff ist. Die radiale Auslenkung, bei der das Fanglager 124 in Eingriff gelangt, ist groß genug bemessen, so dass das Fanglager 124 im normalen Betrieb der Vakuumpumpe nicht in Eingriff gelangt, und gleichzeitig klein genug, so dass eine Kollision der rotorseitigen Strukturen mit den statorseitigen Strukturen unter allen Umständen verhindert wird.
  • Die Vakuumpumpe umfasst den Antriebsmotor 20 zum drehenden Antreiben des Rotors 16. Der Antriebsmotor 20 umfasst einen Motorstator 22 mit einem Kern 38 und mit ein oder mehreren in Fig. 1 nur schematisch dargestellten Spulen 42, die in an der radialen Innenseite des Kerns 38 vorgesehenen Nuten des Kerns 38 festgelegt sind.
  • Der Anker des Antriebsmotors 20 ist durch den Rotor 16 gebildet, dessen Rotorwelle 15 sich durch den Motorstator 22 hindurch erstreckt. Auf dem sich durch den Motorstator 22 hindurch erstreckenden Abschnitt der Rotorwelle 15 ist radial außenseitig eine Permanentmagnetanordnung 128 festgelegt. Zwischen dem Motorstator 22 und dem sich durch den Motorstator 22 hindurch erstreckenden Abschnitt des Rotors 16 ist ein Zwischenraum 24 angeordnet, welcher einen radialen Motorspalt umfasst, über den sich der Motorstator 22 und die Permanentmagnetanordnung 128 zur Übertragung des Antriebsmoments magnetisch beeinflussen.
  • Die Permanentmagnetanordnung 128 ist in axialer Richtung durch eine auf die Rotorwelle 15 aufgesteckte Befestigungshülse 126 an der Rotorwelle 15 fixiert. Eine Kapselung 130 umgibt die Permanentmagnetanordnung 128 an deren radialer Außenseite und dichtet diese gegenüber dem Zwischenraum 24 ab.
  • Der Motorstator 22 ist in dem Gehäuse 64 durch den gehäusefesten Aufnahmeabschnitt 132 festgelegt, welcher den Motorstator 22 radial außenseitig umgibt und den Motorstator 22 in radialer und axialer Richtung abstützt. Der Aufnahmeabschnitt 132 begrenzt gemeinsam mit der Rotornabe 72 einen Motorraum 18, in dem der Antriebsmotor 20 aufgenommen ist.
  • Der Motorraum 18 weist einen auf der einen Seite des Zwischenraums 24 angeordneten und mit der innenliegenden, vierten Holweckpumpstufe gasleitend verbundenen Einlass 28 und einen auf der gegenüberliegenden Seite des Zwischenraums 24 angeordneten und mit dem Pumpenauslass 12 gasleitend verbundenen Auslass 30 auf.
  • Der Kern 38 des Motorstators 22 weist an seiner radialen Außenseite in dem in Fig. 1 links gezeigten Bereich eine Aussparung 34 auf, die gemeinsam mit dem benachbarten Bereich des Aufnahmeabschnitts 132 einen Kanal 32 bildet, durch den das in den Motorraum 18 geförderte Prozessgas an dem Zwischenraum 24 vorbei von dem Einlass 28 zu dem Auslass 30 förderbar ist.
  • Der Gasweg, auf dem das Prozessgas von dem Pumpeneinlass 10 zu dem Pumpenauslass 12 gelangt, ist in Fig. 1, 2 und 3 durch Pfeile 26 veranschaulicht. Das Prozessgas wird ausgehend von dem Pumpeneinlass 10 zuerst der Reihe nach durch die turbomolekularen Pumpstufen und anschließend der Reihe nach durch die vier Holweckpumpstufen gefördert. Das aus der vierten Holweckpumpstufe austretende Gas gelangt in den Motorraum 18 und wird von dem Einlass 28 des Motorraums 18 durch den Kanal 32 hindurch zu dem Auslass 30 des Motorraums 18 und dem Pumpenauslass 12 gefördert.
  • Nachdem im Vorhergehenden der grundsätzliche Aufbau einer Turbomolekularpumpe beschrieben wurde, wird im Anschluss nun näher auf die Erfindung eingegangen.
  • Bei einem Flutvorgang und einem damit einhergehenden plötzlichen Druckanstieg an der Hochvakuumseite fließt in kurzer Zeit ein hoher Volumenstrom entgegen der Pfeile 26. Dieser Volumenstrom erzeugt eine Druckwelle, die die Statorscheiben 68 in Richtung der Hochvakuumseite hin, d.h. entgegen der Pfeile 26, verformt bzw. verbiegt.
  • In Fig. 2 sind drei verschiedene Varianten I, II, III einer turbomolekularen Pumpstufe gezeigt, die jeweils eine Rotorscheibe 66', 66", 66"' und eine Statorscheibe 68', 68", 68"' umfasst. Der Fachmann wird allerdings verstehen, dass in der Regel, wie in Fig. 1 gezeigt, mehrere gleichartige turbomolekulare Pumpstufen in einer Vakuumpumpe angeordnet sind. Jede Rotorscheibe 66 ist drehfest mit der Rotorwelle 15 verbunden und dazu ausgebildet, gemeinsam mit der Rotorwelle 15 um eine Rotationsachse 14 zu rotieren. Jede Rotorscheibe 66 weist einen radial inneren Abschnitt 134 auf und einen Rotorschaufelabschnitt 136. Die Statorscheiben 68 umfassen ebenfalls jeweils einen radial inneren Abschnitt 138 und einen Statorschaufelabschnitt 140.
  • Die unter I dargestellte erste Variante zeigt eine gesägte Statorscheibe 68' in ihrer Lage bei Normalbetrieb 68a' und dieselbe gesägte Statorscheibe 68' im verbogenen Zustand 68b'. Dabei ist zu erkennen, dass ein Erstkontakt 142' zwischen der Rotorscheibe 66' und der verbogenen Statorscheibe 68b' zwischen dem radial inneren Abschnitt 138 der Statorscheibe 68' und dem radial inneren Abschnitt 134 der Rotorscheibe 66' erfolgt. Hierdurch ist ein Abstand zwischen einer Statorschaufel 144' der Statorscheibe 68' und der Rotorscheibe 66' auch im verbogenen Zustand der Statorscheibe 68b' gewahrt.
  • Anders verhält es sich bei der Variante II. Die zweite Variante zeigt eine geblechte Statorscheibe 68", ebenfalls in ihrer Lage bei Normalbetrieb 68a" und im verbogenen Zustand 68b". Hier ist im Gegensatz zu Variante I zu erkennen, dass der radial innere Abschnitt 138 der Statorscheibe 68" eine kleinere Abmessung in axialer Richtung gesehen aufweist, als der Statorschaufelabschnitt 140. Hierdurch erfolgt ein Erstkontakt 142" nicht an dem radial inneren Abschnitt 138 der Statorscheibe 68", sondern zwischen der Statorschaufel 144" und der Rotorscheibe 66". Dies hat zur Folge, dass die Statorschaufel 144" an die sich drehende Rotorscheibe 66" schlägt und ein Schaden an der Rotorscheibe 66" und der geblechten Statorscheibe 68" entstehen kann.
  • Um dies zu verhindern, ist in Variante III ein Distanzelement 146 an der Rotorscheibe 66'" angeordnet, welches auch in Fig. 1 gezeigt ist. Das Distanzelement 146 ist an dem radial inneren Abschnitt 134 der Rotorscheibe 66'" in Form eines um die Rotorwelle 15 umlaufenden Schleifrings ausgebildet. Das Distanzelement 146 ist dabei so angeordnet, dass ein Erstkontakt 142'" zwischen einer verbogenen geblechten Statorscheibe 68b'" und der Rotorscheibe 66'" zwischen dem radial inneren Abschnitt 138 der Statorscheibe 68'" und dem Distanzelement 146 erfolgt. Dadurch wird die Statorschaufel 144'" im vergebogenen Zustand 68b'" der Statorscheibe 68'" beabstandet zur Rotorscheibe 66'" gehalten. Somit schlägt die Statorschaufel 144'" bei einem Flutvorgang nicht gegen die Rotorscheibe 66"'. Im Normalbetrieb 68a'" weist die Statorscheibe 68'" einen Abstand zu dem Distanzelement 146 auf, sodass das Distanzelement 146 nicht in Kontakt mit der Statorscheibe 68'" steht.
  • Fig. 3 zeigt mehrere Ausführungsbeispiele des Distanzelements 146. Gemäß einem Ausführungsbeispiel A ist der Querschnitt des Distanzelements 146 in Form eines Rechtecks, hier eines Quadrates, ausgebildet. Dabei ist die Stirnseite, die eine Kontaktfläche 148 darstellt und in Richtung einer nicht gezeigten Statorscheibe zeigt, zumindest im Wesentlichen parallel zu einer durch die Rotorscheibe definierten Hauptebene angeordnet.
  • Ausführungsbeispiel B zeigt ein Distanzelement 146 mit einem dreieckigen Querschnitt. Genauer gesagt hat der Querschnitt die Form eines gleichschenkligen Dreiecks, dessen Spitze in Richtung einer nicht gezeigten Statorscheibe zeigt.
  • Somit entsteht bei dieser Ausführungsform der Kontakt zwischen Statorscheibe und Distanzelement 146 an der Spitze des dreieckigen Querschnitts.
  • Ausführungsbeispiel C zeigt ein Distanzelement 146 mit halbkreisförmigem Querschnitt. Die nicht gezeigte Statorscheibe liegt bei dieser Ausführungsform im verbogenen Zustand auf einer konvexen Außenfläche des Distanzelements 146 an.
  • Ausführungsbeispiel D zeigt ein Distanzelement 146 mit einer trapezförmigen Querschnittsform. Das Distanzelement 146 ist hierbei zu einem Rotorscheibenbund 150 radial beabstandet an dem Rotor 16 angeordnet. Die Höhe des Distanzelements 146, d.h. also das Maß in axialer Richtung, nimmt in radialer Richtung von innen nach außen zu. Die dadurch resultierende schräge Ebene bildet eine Kontaktfläche 148 für die nicht gezeigte Statorscheibe. Der Winkel der schrägen Ebene ist bevorzugt so gewählt, dass die Statorscheibe im verbogenen Zustand im Wesentlichen plan daran anliegt.
  • Ausführungsform E zeigt ein Distanzelement 146, das zusammen mit einem Rotorscheibenbund 150 eine geometrische Einheit bildet. Das Distanzelement 146 ist in Form einer Erhebung 152 ausgebildet, deren Flanke eine Kontaktfläche 148 für eine nicht gezeigte Statorscheibe darstellt.
  • Eine nicht beanspruchte Ausführungsform F zeigt ein Distanzelement 146, das in Form eines Rotorscheibenbunds 150 ausgebildet ist. Ein Unterschied zu Ausführungsform E besteht darin, dass der Motorscheibenbund 150 ohne eine dazwischenliegende Aussparung in die Erhebung 152 übergeht. Die Kontaktfläche 148 steht somit im Wesentlichen senkrecht zur Rotationsachse 14. In der gezeigten Ausführungsform ist der Rotorscheibenbund 150 auf beiden Seiten des Rotors 16 ausgebildet.
  • Während in den gezeigten Ausführungsformen das Distanzelement 146 an einzelnen Rotorscheiben ausgebildet ist, die an einer Rotorwelle 15 befestigt sind, kann das Distanzelement 146 auch an entsprechenden Teilen eines Vollrotors ausgebildet sein.
  • Bezugszeichenliste
  • 10
    Pumpeneinlass
    11
    Einlassflansch
    12
    Pumpenauslass
    14
    Rotationsachse
    15
    Rotorwelle
    16
    Rotor
    18
    Motorraum
    20
    Antriebsmotor
    22
    Motorstator
    24
    Zwischenraum
    26
    Pfeile, Gasweg
    28
    Einlass
    30
    Auslass
    32
    Kanal
    34
    Aussparung
    38
    Kern
    42
    Spule
    64
    Gehäuse
    66
    Rotorscheibe
    68
    Statorscheibe
    68a
    gesägte Statorscheibe bei Normalbetrieb
    68b
    gesägte Statorscheibe im verbogenen Zustand
    70
    Abstandsring
    72
    Rotornabe
    74,76
    Holweckrotorhülse
    78, 80
    Holweckstatorhülse
    82, 84, 86, 87
    Holweckspalt
    88
    Wälzlager
    90
    Permanentmagnetlager
    92
    Spritzmutter
    94
    saugfähige Scheibe
    96
    wannenförmiger Einsatz
    98
    Deckelelement
    100
    rotorseitige Lagerhälfte
    102
    statorseitige Lagerhälfte
    104, 106
    Magnetring
    108
    Lagerspalt
    110, 112
    Trägerabschnitt
    114
    Strebe
    116
    Deckelelement
    118
    Befestigungsring
    120
    Ausgleichselement
    122
    Stützring
    124
    Fanglager
    126
    Befestigungshülse
    128
    Permanentmagnetanordnung
    130
    Kapselung
    132
    Aufnahmeabschnitt
    134
    radial innerer Abschnitt (Rotorscheibe)
    136
    Rotorschaufelabschnitt
    138
    radial innerer Abschnitt (Statorscheibe)
    140
    Statorschaufelabschnitt
    142
    Erstkontaktpunkt
    144
    Statorschaufel
    146
    Distanzelement
    148
    Kontaktfläche
    150
    Rotorscheibenbund
    152
    Erhebung

Claims (10)

  1. Vakuumpumpe, insbesondere Turbomolekularpumpe, mit
    einem Rotor (16), der drehbar in der Vakuumpumpe gelagert ist und einen Teil (66) aufweist, an dem mehrere Rotorschaufeln angeordnet sind, und
    einem Stator (68), der axial versetzt zu dem die Rotorschaufeln aufweisenden Teil (66) des Rotors in einem Gehäuse (64) der Vakuumpumpe angeordnet ist und wenigstens eine Statorschaufel (144) aufweist,
    wobei zwischen dem die Rotorschaufeln aufweisenden Teil (66) und dem Stator (68) ein Distanzelement (146) angeordnet ist, das dazu ausgebildet ist, bei einem Verbiegen des Stators (68b) die wenigstens eine Statorschaufel (144) auf Abstand zu dem Rotor (16) zu halten, wobei das Distanzelement (146) an dem die Rotorschaufeln aufweisenden Teil (66) ausgebildet ist,
    dadurch gekennzeichnet, dass
    das Distanzelement (146) als Ring ausgebildet ist, wobei der Rotor (16) zwischen dem Ring und einer Drehachse (14) des Rotors (16) eine Aussparung aufweist.
  2. Vakuumpumpe nach Anspruch 1,
    dadurch gekennzeichnet, dass
    das Distanzelement (146) einstückig mit dem die Rotorschaufeln aufweisenden Teil (66) ausgebildet ist.
  3. Vakuumpumpe nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass
    der Ring konzentrisch um die Drehachse (14) des Rotors (16) angeordnet ist.
  4. Vakuumpumpe nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    das Distanzelement (146) in Umfangsrichtung gesehen eine konstante Maximalhöhe aufweist.
  5. Vakuumpumpe nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    das Distanzelement (146) an einem radial inneren Abschnitt (134) des die Rotorschaufeln aufweisenden Teils (66) ausgebildet und so angeordnet ist, dass ein glatter radial innerer Abschnitt (138) des verbogenen Stators (68b) mit dem Distanzelement (146) in Kontakt kommt.
  6. Vakuumpumpe nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    eine Kontaktfläche (148) des Distanzelements (146) abgerundet ist und/oder von der Winkelstellung her an die Winkelstellung eines an dem Distanzelement (146) anliegenden Abschnitts (138) des verbogenen Stators (68b) angepasst ist.
  7. Vakuumpumpe nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der die Rotorschaufeln aufweisende Teil des Rotors als separate Rotorscheibe (66) ausgebildet ist.
  8. Vakuumpumpe nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    an zwei entgegengesetzten Seiten des die Rotorschaufeln aufweisenden Teils (66) jeweils ein Distanzelement (146) vorgesehen ist.
  9. Vakuumpumpe nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der Stator eine Statorscheibe (68) umfasst, die aus einem Blech hergestellt ist und insbesondere durch Stanzen hergestellt ist.
  10. Vakuumpumpe nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    das Distanzelement (146) eine Höhe aufweist, die ausreichend hoch ist, sodass bei einem Verbiegen des Stators (68b) ein glatter Abschnitt (138) des Stators (68) an dem Distanzelement (146) anliegt und die Statorschaufel (144) des Stators (68) beabstandet von dem Rotor (16) gehalten ist, und die ausreichend klein ist, sodass bei Normalbetrieb (68a) keine Beeinträchtigung der Relativbewegung zwischen Rotor (16) und Stator (68) durch das Distanzelement (146) erfolgt.
EP15167995.8A 2015-05-18 2015-05-18 Vakuumpumpe Active EP3096020B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15167995.8A EP3096020B1 (de) 2015-05-18 2015-05-18 Vakuumpumpe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15167995.8A EP3096020B1 (de) 2015-05-18 2015-05-18 Vakuumpumpe

Publications (2)

Publication Number Publication Date
EP3096020A1 EP3096020A1 (de) 2016-11-23
EP3096020B1 true EP3096020B1 (de) 2019-12-11

Family

ID=53177282

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15167995.8A Active EP3096020B1 (de) 2015-05-18 2015-05-18 Vakuumpumpe

Country Status (1)

Country Link
EP (1) EP3096020B1 (de)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3099475B2 (ja) * 1991-12-03 2000-10-16 株式会社島津製作所 ターボ分子ポンプ
JP3013083B2 (ja) * 1998-06-23 2000-02-28 セイコー精機株式会社 ターボ分子ポンプ
JP2008280977A (ja) * 2007-05-14 2008-11-20 Shimadzu Corp ターボ分子ポンプ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3096020A1 (de) 2016-11-23

Similar Documents

Publication Publication Date Title
EP2829734B1 (de) Vakuumpumpe
EP2826999B1 (de) Vakuumpumpe
EP3657021B1 (de) Vakuumpumpe
DE102015104438B4 (de) Vakuumsystem
EP3034880B1 (de) Rotoranordnung für eine vakuumpumpe und verfahren zur herstellung derselben
EP4212730A1 (de) Vakuumpumpe mit optimierter holweck-pumpstufe zur kompensation temperaturbedingter leistungseinbussen
EP2863063B1 (de) Vakuumpumpe
EP3088745B1 (de) Rotoranordnung für eine vakuumpumpe und vakuumpumpe
EP3096020B1 (de) Vakuumpumpe
EP3088746B1 (de) Vakuumpumpe
EP3001039B1 (de) Vakuumpumpe
EP3196471B1 (de) Vakuumpumpe
EP3734078B1 (de) Turbomolekularpumpe und verfahren zur herstellung einer statorscheibe für eine solche
EP3683447B1 (de) Vakuumpumpe
EP3135932B1 (de) Vakuumpumpe und permanentmagnetlager
EP3730802B1 (de) Flanschelement
EP3561307B1 (de) Vakuumpumpe mit einem einlassflansch und einem lagerträger im einlass
EP3034882A2 (de) Vakuumpumpe
EP2894348B1 (de) Statorscheibe
EP3267040B1 (de) Turbomolekularpumpe
EP3628883B1 (de) Vakuumpumpe
EP2886869B1 (de) Statorscheibe
EP4325061A1 (de) Turbomolekularvakuumpumpe
EP3032106A1 (de) Vakuumpumpe
EP4293232A1 (de) Pumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170522

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180626

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190627

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1212463

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015011174

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191211

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200312

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200411

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015011174

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

26N No opposition filed

Effective date: 20200914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200518

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1212463

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230526

Year of fee payment: 9

Ref country code: CZ

Payment date: 20230509

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230524

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230727

Year of fee payment: 9