WO2011070856A1 - ネジ溝排気部の筒形固定部材と、これを使用した真空ポンプ - Google Patents

ネジ溝排気部の筒形固定部材と、これを使用した真空ポンプ Download PDF

Info

Publication number
WO2011070856A1
WO2011070856A1 PCT/JP2010/068313 JP2010068313W WO2011070856A1 WO 2011070856 A1 WO2011070856 A1 WO 2011070856A1 JP 2010068313 W JP2010068313 W JP 2010068313W WO 2011070856 A1 WO2011070856 A1 WO 2011070856A1
Authority
WO
WIPO (PCT)
Prior art keywords
thread groove
fixing member
cylindrical fixing
groove exhaust
divided
Prior art date
Application number
PCT/JP2010/068313
Other languages
English (en)
French (fr)
Inventor
透 三輪田
祐幸 坂口
好伸 大立
靖 前島
勉 高阿田
Original Assignee
エドワーズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エドワーズ株式会社 filed Critical エドワーズ株式会社
Priority to JP2011545140A priority Critical patent/JP5758303B2/ja
Priority to CN201080053910.6A priority patent/CN102667169B/zh
Priority to KR1020127003659A priority patent/KR101773632B1/ko
Publication of WO2011070856A1 publication Critical patent/WO2011070856A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/044Holweck-type pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/422Discharge tongues
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/64Mounting; Assembling; Disassembling of axial pumps
    • F04D29/644Mounting; Assembling; Disassembling of axial pumps especially adapted for elastic fluid pumps

Definitions

  • the present invention relates to a cylindrical fixing member of a thread groove exhaust portion constituting a vacuum pump and a vacuum pump using the same, and in particular, torque generated when a rotor in the vacuum pump is broken (hereinafter referred to as “breaking torque”).
  • breaking torque While maintaining the strength of the vacuum pump, the screw groove with a complicated shape whose width, depth change, lead angle, etc. vary in the direction of the rotation axis of the rotating member of the screw groove exhaust part It can be easily manufactured on the cylindrical fixing member side of the thread groove exhaust portion, and is suitable for improving exhaust performance and compression performance of the entire vacuum pump by employing such a thread groove.
  • vacuum pumps used in the equipment are required to exhaust large flow gases, to achieve low ultimate pressure, and to have high exhaust performance.
  • the blade exhaust section has a structure in which rotor blades and stationary blades are alternately arranged in multiple stages.
  • the rotor blades that rotate at high speeds give the gas molecules downward momentum and are given the downward momentum.
  • the operation in which the gas molecules are sent to the rotor blade of the next stage by the fixed blade is repeatedly performed in multiple stages, so that the upstream gas molecules are transferred and exhausted to the downstream thread groove exhaust section.
  • the screw groove exhaust portion has a rotating member and a cylindrical fixing member arranged so as to surround the outer periphery of the rotating member, and is provided with a screw groove on the inner peripheral surface of the cylindrical fixing member to fix the cylindrical shape.
  • a spiral thread groove exhaust passage is formed between the member and the rotating member. And the gas molecules transferred from the blade exhaust part as described above enter the thread groove exhaust passage, and the gas molecules are compressed and exhausted by the drag effect on the outer surface of the thread groove and the rotating member. .
  • the thread groove exhaust portion since the thread groove is provided on the inner peripheral surface of the cylindrical fixing member, the width, depth, lead angle, etc. vary in the direction of the rotation axis of the rotating member. It is difficult to form a thread groove having a shape, and the exhaust performance and compression performance of the entire vacuum pump cannot be improved by employing the thread groove having such a shape.
  • the above-described conventional cylindrical fixing member of the thread groove exhaust portion also plays a role of reducing the breaking torque by receiving the broken pieces when the breaking occurs inside the vacuum pump. For this reason, the whole cylindrical fixing member of a thread groove exhaust part cannot be produced only with a casting with low strength.
  • this kind of cylindrical fixing member is made of a high-strength material, for example, an expensive machined product that has been cut out from a material made by forging or extrusion / drawing.
  • the cylindrical fixing member of the thread groove exhaust part is a factor that increases the overall cost of the vacuum pump.
  • the present invention has been made in order to solve the above-mentioned problems, and its purpose is to reduce the cost while maintaining the strength of the vacuum pump against the breaking torque, or to rotate the rotating shaft of the rotating member of the thread groove exhaust portion.
  • Thread grooves with complex shapes that vary in width, depth, lead angle, etc. in the center direction can be easily produced on the cylindrical fixing member side of the thread groove exhaust section. It is an object of the present invention to provide a cylindrical fixing member of a thread groove exhaust pump part suitable for improving exhaust performance and compression performance, and a vacuum pump using the same.
  • the present invention provides a cylindrical fixing member disposed so as to surround an outer periphery of a rotating member of a screw groove exhaust portion, and a gas is interposed between the cylindrical fixing member and the rotating member.
  • the cylindrical fixing member is divided into two or more divided pieces in the direction of the rotation axis of the rotating member.
  • the divided pieces of the cylindrical fixing member may be formed of different materials.
  • a screw groove for forming the screw groove exhaust passage is provided in the cylindrical fixing member, and the lead angle of the screw groove is different between one divided piece of the cylindrical fixing member and the other divided piece.
  • a configuration can also be adopted.
  • a thread groove for forming the thread groove exhaust passage is provided in the cylindrical fixing member, and the number of threads of the thread groove is different between one divided piece of the cylindrical fixing member and the other divided piece.
  • a configuration can also be adopted.
  • a thread groove for forming the thread groove exhaust passage is provided in the cylindrical fixing member, and the width of the thread groove is different between one divided piece of the cylindrical fixing member and the other divided piece. Can also be adopted.
  • a thread groove for forming the thread groove exhaust passage is provided in the cylindrical fixing member, and the amount of change in the depth of the thread groove in one divided piece and the other divided piece of the cylindrical fixing member is Different configurations may be employed.
  • a screw groove for forming the screw groove exhaust passage is provided in the cylindrical fixing member, and in one divided piece and the other divided piece of the cylindrical fixing member, from the upper end of the screw groove to the rotating member. It is also possible to adopt a configuration in which the gap between the cylindrical fixing member and the rotating member is different by changing the distance.
  • the above-mentioned cylindrical fixing member can employ a configuration having a groove formed on the upper surface in the direction of the rotation axis.
  • a thread groove for forming the thread groove exhaust passage is provided in each of the divided pieces, and the cylindrical fixing member is configured such that the thread groove of one divided piece and the thread groove of the other divided piece are continuous. You may comprise so that the thread groove alignment means connected with may be provided.
  • the thread groove alignment means includes an engagement pin erected on the division surface of one division piece, and an engagement hole formed in the division surface of another division piece joined to the division surface. You may comprise so that the said engagement pin may be inserted and fitted in an engagement hole.
  • the engagement hole is a through hole that penetrates the upper and lower end surfaces of the divided piece, and the engagement pin is inserted and fitted into one end of the through hole, while the other end of the through hole is the position of the engagement pin. You may comprise so that it may function as a confirmation window which confirms.
  • the thread groove alignment means includes a first step portion formed on a split surface of one split piece and a second step portion formed on a split surface of another split piece joined to the split surface.
  • the two step portions can be configured to be joined to each other.
  • the thread groove alignment means includes an engaging recess formed on the split surface of one split piece and an engaging convex portion formed on the split face of another split piece joined to the split surface.
  • the engaging convex portion may be configured to engage with the engaging concave portion.
  • the lower end of the cylindrical fixing member is supported by a pump base, and the divided piece positioned at the lowermost of the two or more divided pieces is provided integrally with the pump base by processing the pump base.
  • You may comprise as follows.
  • cylindrical fixing member is provided at the uppermost part of the two or more divided pieces as a product mixing preventing means for preventing the product from entering the gap between the divided pieces and the member located outside the divided pieces.
  • the structure which equips the upper-end outer peripheral part of the division piece located with a cover part is employable.
  • a configuration in which a reinforcing member is attached to the outer peripheral portion of the divided piece may be employed.
  • the cylindrical fixing member of the screw groove exhaust portion is divided into two or more divided pieces in the direction of the rotation axis of the rotating member of the screw groove exhaust portion. Therefore, the following effects (1) or (2) can be obtained.
  • Each divided piece is formed of a different material according to the required strength.
  • a divided piece of a part requiring particularly high strength is cut out from a material made by forging or extrusion / drawing.
  • the A section enlarged view in FIG. The top view of a thread groove exhaust stator (cylindrical fixing member of a thread groove exhaust part).
  • EE sectional drawing of FIG. Sectional drawing of other embodiment (The type from which the lead angle of a thread groove differs for every division
  • Sectional drawing of other embodiment The type in which the number of thread grooves differs for every division
  • Sectional drawing of other embodiment The type from which the width
  • Sectional drawing of other embodiment The type in which the variation
  • Sectional drawing of other embodiment a type with a different gap with a rotor for every division
  • Sectional drawing of other embodiment type provided with the groove
  • Sectional drawing of other embodiment The type provided with the thread groove alignment means by an engagement pin and an engagement hole (closed hole)) of a thread groove exhaust part.
  • Sectional drawing of other embodiment The type provided with the thread groove alignment means by an engagement pin and an engagement hole (through-hole)) of a thread groove exhaust part.
  • the side view of other embodiment (The type provided with the screw groove alignment means by a level
  • the side view of other embodiment (The type provided with the thread groove alignment means by an engagement convex part and an engagement recessed part) of the thread groove exhaust part seen from the arrow B direction of FIG.
  • the side view of other embodiment (The type which employ
  • adopted other embodiment (The type which provided the lower part piece integrally with the pump base) of the thread groove exhaust part.
  • Sectional drawing of other embodiment (The type which employ
  • FIG. 1 is a cross-sectional view of a vacuum pump to which a cylindrical fixing member of a thread groove exhaust portion according to an embodiment of the present invention is applied
  • FIG. 2 is an enlarged view of portion A in FIG. 1
  • FIG. FIG. 4 is a cross-sectional view taken along the line EE of FIG. 3.
  • a vacuum apparatus in a semiconductor manufacturing apparatus or a liquid crystal display panel manufacturing apparatus, and makes the pressure in the vacuum chamber a predetermined degree of vacuum.
  • the vacuum pump P shown in FIG. 1 includes a blade exhaust part Pt that exhausts gas through the rotary blade 13 and the fixed blade 14 and a screw groove exhaust part Ps that exhausts gas through a spiral thread groove exhaust passage S. And a drive system for driving them.
  • the exterior case 1 has a bottomed cylindrical shape in which a cylindrical pump case 1A and a bottomed cylindrical pump base 1B are integrally connected with bolts in the cylinder axis direction.
  • the upper end portion side of the pump case 1A is opened as a gas intake port 2, and a gas exhaust port 3 is provided on the side surface of the lower end portion of the pump base 1B.
  • the gas inlet 2 is connected to a vacuum container (not shown) that is high vacuum, such as a process chamber of a semiconductor manufacturing apparatus, by a bolt (not shown) provided on the flange 1C on the upper edge of the pump case 1A.
  • the gas exhaust port 3 is connected so as to communicate with an auxiliary pump (not shown).
  • a cylindrical stator column 4 containing various electrical components is provided in the center of the pump case 1A, and the stator column 4 is erected in such a manner that its lower end is screwed and fixed onto the pump base 1B. is there.
  • a rotor shaft 5 is provided inside the stator column 4, and the rotor shaft 5 is arranged such that its upper end portion faces the gas inlet 2 and its lower end portion faces the pump base 1B. is there. Further, the upper end portion of the rotor shaft 5 is provided so as to protrude upward from the cylindrical upper end surface of the stator column 4.
  • a rotor 6 is provided outside the stator column 4.
  • the rotor 6 is housed in the pump case 1 ⁇ / b> A and has a cylindrical shape surrounding the outer periphery of the stator column 4.
  • the rotor 6 is integrated with the rotor shaft 5 described above.
  • a flange 8 with a boss hole 7 is provided inside the upper end portion of the rotor 6, and a step portion 9 is provided on the outer periphery of the upper end portion of the rotor shaft 5. Is forming.
  • the rotating body composed of the rotor shaft 5 and the rotor 6 is supported by a radial magnetic bearing 10 and an axial magnetic bearing 11 so as to be rotatable in the radial direction and the axial direction. In this state, the rotating body is rotated by a drive motor 12 with the rotor shaft 5 as an axis. Driven.
  • the drive motor 12 has a structure including a stator 12A and a rotor 12B, and is provided near the center of the rotor shaft 5.
  • the stator 12 ⁇ / b> A of the drive motor 12 is installed inside the stator column 4, and the rotor 12 ⁇ / b> B of the drive motor 12 is integrally mounted on the outer peripheral surface side of the rotor shaft 5.
  • Two sets of radial magnetic bearings 10 are arranged one by one above and below the drive motor 12, and one set of axial magnetic bearings 11 is arranged on the lower end side of the rotor shaft 5.
  • the two sets of radial magnetic bearings 10 and 10 each have a radial electromagnet target 10A attached to the outer peripheral surface of the rotor shaft 5, a plurality of radial electromagnets 10B and a radial direction displacement sensor 10C installed on the inner side surface of the stator column 4 facing this. have.
  • the radial electromagnet target 10A is made of a laminated steel plate in which steel plates of high permeability material are laminated, and the radial electromagnet 10B attracts the rotor shaft 5 with a magnetic force in the radial direction through the radial electromagnet target 10A.
  • the radial direction displacement sensor 10 ⁇ / b> C detects the radial displacement of the rotor shaft 5.
  • the rotating body composed of the rotor shaft 5 and the rotor 6 has a magnetic force at a predetermined position in the radial direction. Is supported by levitation.
  • the axial magnetic bearing 11 includes a disk-shaped armature disk 11A attached to the outer periphery of the lower end portion of the rotor shaft 5, an axial electromagnet 11B facing up and down across the armature disk 11A, and a position slightly away from the lower end surface of the rotor shaft 5. And an axial direction displacement sensor 11C.
  • the armature disk 11A is made of a material having a high magnetic permeability, and the upper and lower axial electromagnets 11B attract the armature disk 11A from the vertical direction with a magnetic force.
  • the axial direction displacement sensor 11 ⁇ / b> C detects the axial displacement of the rotor shaft 5. Then, by controlling the exciting current of the upper and lower axial electromagnets 11B based on the detection value (axial displacement of the rotor shaft) detected by the axial direction displacement sensor 11C, the rotating body composed of the rotor shaft 5 and the rotor 6 is positioned at a predetermined position in the axial direction. Is supported by levitation by magnetic force.
  • blade exhaust part Pt In the vacuum pump P of FIG. 1, substantially the upper half of the rotor 6 functions as a blade exhaust part Pt.
  • the blade exhaust part Pt will be described in detail.
  • a plurality of rotor blades 13 are integrally provided on the outer peripheral surface of the substantially upper half of the rotor 6. These rotor blades 13 are arranged radially about the rotation axis of the rotor 6 or the axis of the outer case 1 (hereinafter referred to as “pump axis”).
  • a plurality of fixed wings 14 are provided on the inner peripheral surface side of the pump case 1A, and these fixed wings 14 are arranged radially around the pump axis.
  • the rotor blades 13 and the stationary blades 14 are alternately arranged in multiple stages along the pump axis, thereby forming the blade exhaust part Pt.
  • Each of the rotor blades 13 is a blade-like cut product that is cut and formed integrally with the outer diameter processed portion of the rotor 6 and is inclined at an angle that is optimal for exhausting gas molecules. All the fixed blades 14 are also inclined at an angle optimal for exhaust of gas molecules.
  • a substantially lower half of the rotor 6 is a portion that rotates as a rotating member of the screw groove exhaust portion Ps, and is accommodated in a cylindrical screw groove exhaust portion stator 18 that is a cylindrical fixing member of the screw groove exhaust portion Ps.
  • a cylindrical screw groove exhaust portion stator 18 that is a cylindrical fixing member of the screw groove exhaust portion Ps.
  • the gap G is about 0.7 mm.
  • the thread groove exhaust portion stator 18 (cylindrical fixing member of the thread groove exhaust portion Ps) is formed with a thread groove 19 which changes in a tapered cone shape whose depth is reduced in the downward direction at the inner peripheral portion thereof, and its lower end.
  • the part is supported by the pump base 1B.
  • a screw groove 19 is formed on the inner peripheral surface of the thread groove exhaust portion stator 18 so that the screw groove 19 and a substantially lower half outer peripheral surface of the rotor 6 opposed thereto spiral.
  • a thread groove exhaust passage S is formed.
  • the screw groove exhaust portion stator 18 of the main screw groove exhaust portion Ps is divided into two divided pieces 18A and 18B in the direction of the rotation axis of the rotor 6 (rotating member of the screw groove exhaust portion Ps).
  • the divided pieces 18A and 18B are integrally connected by fastening means such as bolts or joining means such as shrink fitting. Due to the division of the screw groove exhaust portion stator 18, the screw groove 19 formed on the inner peripheral surface thereof is also divided in the same direction, and the divided screw groove 19 is provided in each of the divided pieces 18A and 18B.
  • the thread groove exhaust part stator 18 is not limited to 2 division of this example, It can divide
  • the two divided pieces 18A and 18B constituting the thread groove exhaust part stator 18 are respectively formed of different materials (see FIG. 4).
  • the upper divided piece 18A that is close to the center of gravity of the rotor 6 and is easily affected when the rotor 6 breaks is made of a high-strength material, specifically forging or extrusion / drawing.
  • the lower divided piece 18B which is less susceptible to such influence, is made as an inexpensive cast article, thereby reducing the cost while maintaining the strength of the vacuum pump. planned.
  • the screw groove 19 is formed on the inner peripheral surface of the above-described screw groove exhaust portion stator 18, while the substantially lower half outer peripheral surface of the rotor 6 facing the screw groove 19 is formed on a smooth cylindrical surface.
  • a spiral thread groove exhaust passage S is formed between the thread groove exhaust portion stator 18 (cylindrical fixing member) and the rotor 6 (rotating member).
  • five thread grooves 19 are provided as shown in FIG. 3, but the number of the thread grooves 19 can be appropriately changed as necessary.
  • the thread groove exhaust passage S is spirally provided from the upper end to the lower end of the thread groove exhaust portion stator 18.
  • the upstream inlet 19A of the thread groove exhaust passage S communicates with a minute gap between the lowermost rotary blade 13 and the fixed blade 14, and the downstream outlet 19B side of the thread groove exhaust passage S is connected to the gas exhaust port 3. It is configured to communicate with the side.
  • the gas groove is transported while being compressed by a drag effect on the outer peripheral surface of the thread groove 19 and the rotor 6. It is set so as to be deepest on the side and shallowest on the downstream outlet 19B side.
  • the thread groove exhaust part Ps in FIG. 5 divides the thread groove exhaust part stator 18 (cylindrical fixing member of the thread groove exhaust part Ps) into two divided pieces 18A and 18B as in the embodiment of FIG. A thread groove 19 is provided in each of the divided pieces 18A and 18B.
  • the upper divided piece 18A and the lower divided piece 18B employ different configurations such that the lead angle ⁇ of the screw groove 19 is 30 degrees and 15 degrees. Note that the lead angle ⁇ of the screw groove 19 is not limited to the above example, and can be changed as needed.
  • the thread groove exhaust part Ps in FIG. 6 divides the thread groove exhaust part stator 18 (cylindrical fixing member of the thread groove exhaust part Ps) into two divided pieces 18A and 18B as in the embodiment of FIG. A screw groove 19 is provided in each of the divided pieces 18A and 18B, and the upper divided piece 18A and the lower divided piece 18B are configured such that the number of the thread grooves 19 is different.
  • the thread groove exhaust part Ps in FIG. 7 divides the thread groove exhaust part stator 18 (cylindrical fixing member of the thread groove exhaust part Ps) into two divided pieces 18A and 18B as in the embodiment of FIG.
  • the screw pieces 19 are provided in the divided pieces 18A and 18B, and the upper divided piece 18A and the lower divided piece 18B adopt different configurations such that the width of the screw groove 19 is L1 and L2.
  • the thread groove exhaust part Ps in FIG. 8 divides the thread groove exhaust part stator 18 (cylindrical fixing member of the thread groove exhaust part Ps) into two divided pieces 18A and 18B as in the embodiment of FIG. Screw grooves 190 and 191 are provided in the divided pieces 18A and 18B, and the amount of change in the depth of the screw groove 19 is different between the upper divided piece 18A and the lower divided piece 18B.
  • the upper divided piece 18 ⁇ / b> A changes so that the screw groove 190 becomes shallow with the same gradient
  • change amount 0
  • the thread groove exhaust part Ps in FIG. 9 divides the thread groove exhaust part stator 18 (cylindrical fixing member of the thread groove exhaust part Ps) into two divided pieces 18A and 18B as in the embodiment of FIG. A screw groove 19 is provided in each of the divided pieces 18A and 18B.
  • the gap between 18 (cylindrical fixing member of the thread groove exhaust part Ps) and the rotor 6 (rotary member of the thread groove exhaust part Ps) is different, such as G1 and G2.
  • the gap is set to G1 ⁇ G2.
  • the gap G1 is about 0.7 mm
  • the gap G2 is about 1 mm.
  • the thread groove exhaust part Ps in FIG. 10 is provided with a groove 20 formed in the direction of the rotational axis on the upper surface of the thread groove exhaust part stator 18 (a cylindrical fixing member of the thread groove exhaust part Ps).
  • a groove 20 formed in the direction of the rotational axis on the upper surface of the thread groove exhaust part stator 18 (a cylindrical fixing member of the thread groove exhaust part Ps).
  • each of these screw groove alignment means 21 is means for arranging the screw groove 19 of the upper divided piece 18A and the screw groove 19 of the lower divided piece 18B so as to be continuous, and has a specific configuration thereof. Is as follows.
  • the thread groove alignment means 21 in FIG. 11 is formed in the engaging pin 21A formed of a taper pin standing on the dividing surface of the lower dividing piece 18B and the dividing surface of the upper dividing piece 18A joined to the dividing surface.
  • the engagement pin 21A is inserted and fitted into the engagement hole 21B so that the screw grooves 19 of the two split pieces 18A and 18B are aligned.
  • the edge of the engagement hole 21B is chamfered so that the engagement pin 21A can be easily inserted into the engagement hole 21B.
  • the engaging pin 21A is erected on the divided surface of the upper divided piece 18A, and the engaging hole 21B is drilled in the lower divided piece 18B joined to the divided surface.
  • a configuration to be provided can also be adopted.
  • a plurality of sets of the engagement pin 21A and the engagement hole 21B as described above may be provided. When two sets of them are provided, the radial positions of the upper and lower divided pieces 18A and 18B are also determined, so that the fitting D described above can be omitted.
  • the form of the engagement hole 21B may be a closed hole as shown in FIG. 11 described above, but may be a through-hole penetrating the upper and lower end surfaces of the upper divided piece 18A as shown in FIG. In this case, the engagement pin 21A is inserted and fitted into the lower end of the through hole, while the upper end of the through hole functions as a confirmation window 21C for confirming the position of the engagement pin 21A.
  • the through hole as shown in FIG. 12 is employed as an example of the engagement hole 21B
  • the upper divided piece 18A and the lower division are formed by inserting and fitting the engagement pin 21A into the engagement hole 21B.
  • the operator can confirm the position of the engagement pin 21A from the confirmation window 21C, so that the alignment operation becomes easy.
  • the screw groove alignment means 21 in FIG. 13 includes a first step portion 21D formed on the divided surface of the upper divided piece 18A and a first divided portion formed on the divided surface of the lower divided piece 18B joined to the divided surface.
  • the two stepped portions 21E and the two stepped portions 21D, 21E are at least in two places and are engaged with each other so that the screw grooves 19 of the divided pieces 18A, 18B are aligned. It is a thing. Although illustration is omitted, the step portions 21D and 21E may be inclined.
  • the thread groove alignment means 21 in FIG. 14 includes an engagement convex portion 21F formed on the divided surface of the upper divided piece 18A and an engagement formed on the divided surface of the lower divided piece 18B joined to the divided surface.
  • the recesses 21G and the engagement protrusions 21F and the engagement recesses 21G are at least at one place and mesh with each other to engage with each other, thereby aligning the screw grooves 19 of the divided pieces 18A and 18B. It is what was done.
  • the handle 22 has a form (eyebolt shape) in which a ring-shaped gripping portion 22B is provided on the head of the bolt 22A.
  • a screw hole (not shown) is formed on the upper surface of the upper divided piece 18A, and the handle 22 is removably attached to the upper divided piece 18A by screwing the bolt 22A of the handle 22 into the screw hole. It is done. After the installation work as described above is completed, the main handle 22 is removed from the upper divided piece 18A and reused in the next installation work.
  • means for attaching the handle 22 to the upper divided piece 18A means other than the bolt 22A may be adopted.
  • Each of the screw groove exhaust portions Ps described above has a screw groove exhaust portion stator 18 (a cylindrical fixing member of the screw groove exhaust portion Ps) divided into two divided pieces 18A and 18B.
  • 18B is supported by the pump base 1B (see FIG. 1 and the like).
  • the lower divided piece 18B can be provided integrally with the pump base 1B as shown in FIG. 16 by processing the pump base 1B.
  • illustration is abbreviate
  • the number of parts can be reduced. Further, since the pump base 1B and the lower divided piece 18B do not have a joint surface that hinders heat transfer, the entire thread groove exhaust portion stator 18 is efficiently cooled by a water cooling pipe (not shown) built in the pump base 1B. It becomes possible.
  • the screw groove exhaust portion Ps described above may be configured so that the upper divided piece 18A is easily bent and deformed by the breaking torque by cutting out the outer peripheral portion of the upper divided piece 18A as shown in FIG. it can.
  • the product may enter the gap 30 formed between the divided piece 18A and the member located outside thereof (pump base 1B in the example of FIG. 17), and the gap 30 may be buried. Then, when the gap 30 is filled, the divided piece 18A is not easily deformed. The gap 30 is generated by cutting out the outer peripheral portion of the divided piece 18A.
  • the upper outer peripheral portion of the upper divided piece 18 ⁇ / b> A as a product mixing preventing means for preventing the product from entering the gap 30.
  • a lid 40 is provided. Although illustration is omitted, when the thread groove exhaust portion stator 18 is divided into three or more divided pieces, at least the outer peripheral portion of the divided piece located at the uppermost part is cut out and bent and deformed.
  • the lid 40 is provided on the outer periphery of the upper end of the split piece located at the uppermost part while being configured to be easy.
  • the lid portion 40 is preferably configured to have a low strength by reducing its thickness as much as possible.
  • the specific configuration of the lid 40 is different from the upper divided piece 18A, for example, as shown in FIG. 17, in which a thin plate is attached and fixed to the upper end surface of the upper divided piece 18A with a fixing member 40A such as a screw. It may be a part. Further, as described above, when the outer peripheral portion of the upper divided piece 18A is cut out, a portion that should become the lid portion 40 is left as shown in FIG. 18, so that the lid portion 40 is separated from the upper divided piece 18A. You may comprise as an integral component.
  • FIG. 17 shows an example in which the lid 40 is employed in a structure in which the lower divided piece 18B is integrated with the pump base 1B. However, the lower divided piece 18B is integrated with the pump base 1B. It is possible to adopt even a structural example that is not (see FIG. 1 etc.).
  • the upper split piece 18A is easily bent and deformed by the gap 30 as described above, and at the same time, is easily broken by a relatively weak force. If it breaks easily with a weak force, the effect of bending deformation of the upper divided piece 18A cannot be sufficiently exhibited. For this reason, in the thread groove exhaust portion Ps of FIG. 18, a high-strength member such as CFRP is attached as a reinforcing member 50 to the outer peripheral portion of the upper divided piece 18 ⁇ / b> A, specifically, the portion where the gap 30 is formed.
  • FIG. 18 shows an example in which the reinforcing member 50 is adopted in the structural example in which the lower divided piece 18B is integrated with the pump base 1B. However, the lower divided piece 18B is integrated with the pump base 1B. An unstructured structure (see FIG. 1 etc.) can also be adopted.
  • the divided pieces 18A and 18B may be formed of different materials as shown in FIG. Further, a screw groove having a more complicated shape can be adopted by appropriately combining the screw grooves 19, 190 and 191 having complicated shapes as shown in FIGS.
  • the thread groove exhaust portion stator 18 fixing member for the thread groove exhaust portion Ps
  • the thread groove exhaust portion stator 18 is provided with the rotor 6 (rotation of the thread groove exhaust portion Ps). Since the structure in which the member is divided into two or more divided pieces 18A and 18B in the direction of the rotation axis is employed, the following effects (1) or (2) can be obtained.
  • Each divided piece is formed of a different material according to the required strength.
  • a divided piece of a part requiring particularly high strength is cut out from a material made by forging or extrusion / drawing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

【課題】破壊トルクに対する真空ポンプの強度を維持しつつそのコストダウンを図ったり、ネジ溝排気部の回転部材の回転軸心方向で幅、深さ、リード角等が変化する複雑な形状のネジ溝をネジ溝排気部の筒形固定部材側に容易に作製することができ、かかるネジ溝の採用によって真空ポンプ全体の排気性能・圧縮性能の向上を図ったりするのに好適な、ネジ溝排気ポンプ部の筒形固定部材を提供する。 【解決手段】ネジ溝排気部Psの筒形固定部材(ネジ溝排気部ステータ18)は、ネジ溝排気部Psの回転部材(ロータ6の略下半分)の外周を囲むように配置されることによって回転部材との間に気体を排気するための螺旋状のネジ溝排気通路Sを形成する。このような筒形固定部材は、回転部材の回転軸心方向で2以上の分割片18A、18Bに分割されていて、それぞれの分割片をボルト等の締結手段又は焼きばめ等の接合手段によって一体に連結した構造になっている。

Description

ネジ溝排気部の筒形固定部材と、これを使用した真空ポンプ
 本発明は、真空ポンプを構成するネジ溝排気部の筒形固定部材と、これを使用した真空ポンプに関し、特に、真空ポンプ内のロータが破壊した時に発生するトルク(以下「破壊トルク」という)に対する真空ポンプの強度を維持しつつそのコストダウンを図ったり、ネジ溝排気部の回転部材の回転軸心方向で幅、深さの変化量、リード角等が変化する複雑な形状のネジ溝をネジ溝排気部の筒形固定部材側に容易に作製することができ、かかるネジ溝の採用によって真空ポンプ全体の排気性能・圧縮性能の向上を図ったりするのに好適なものである。
 近年の半導体製造装置におけるウエハの大口径化に伴い、同装置で使用される真空ポンプには、大流量ガスの排気および低い到達圧力、高い排気性能等が要求されている。
 かかる要求を満たす真空ポンプとしては、翼排気部とネジ溝排気部を組み合わせた複合翼型真空ポンプが知られている(同型の真空ポンプについては、例えば、特許文献1の図6参照)。
 上記翼排気部は、回転翼と固定翼を交互に多段に配置した構造になっていて、高速回転する回転翼で気体分子に下向き方向の運動量を与える動作と、その下向き方向の運動量を与えられた気体分子が固定翼で次段の回転翼側へ送り込まれる動作とが繰り返し多段に行われることによって、上流の気体分子を下流のネジ溝排気部へ移送・排気するようになっている。
 上記ネジ溝排気部は、回転部材とこの回転部材の外周を囲むように配置された筒形固定部材とを有し、その筒形固定部材の内周面にネジ溝を設けることによって筒形固定部材と回転部材の間に螺旋状のネジ溝排気通路を形成した構造になっている。そして、上記のように翼排気部から移送されてきた気体分子がネジ溝排気通路に入り、ネジ溝と回転部材の外周面でのドラッグ効果によって当該気体分子を圧縮・排気するようになっている。
 しかしながら、上記従来のネジ溝排気部によると、ネジ溝は筒形固定部材の内周面に設けられることから、回転部材の回転軸心方向で幅、深さ、リード角等が変化する複雑な形状のネジ溝を形成することは困難であり、かかる形状のネジ溝の採用によって真空ポンプ全体の排気性能・圧縮性能の向上を図ることはできなかった。
 また、上記従来のネジ溝排気部の筒形固定部材は、真空ポンプ内部で破壊が生じたときにその破片を受け止めることで破壊トルクを低減する役割も果たしている。このため、強度の低い鋳物だけでネジ溝排気部の筒形固定部材全体を作製することはできない。破壊トルクに対する真空ポンプの強度を確保するため、この種の筒形固定部材としては、強度の高い材料、例えば鍛造加工や押出/引抜き加工で作られた材料から削りだした高価な切削加工品を採用しなければならず、ネジ溝排気部の筒形固定部材が真空ポンプ全体のコスト高を招く要因になっている。
特開2002-115691号公報
 本発明は、上記問題点を解決するためになされたものであり、その目的は、破壊トルクに対する真空ポンプの強度を維持しつつそのコストダウンを図ったり、ネジ溝排気部の回転部材の回転軸心方向で幅、深さ、リード角等が変化する複雑な形状のネジ溝をネジ溝排気部の筒形固定部材側に容易に作製することができ、かかるネジ溝の採用によって真空ポンプ全体の排気性能・圧縮性能の向上を図ったりするのに好適な、ネジ溝排気ポンプ部の筒形固定部材と、これを使用した真空ポンプを提供することである。
 上記目的を達成するために、本発明は、ネジ溝排気部の回転部材の外周を囲むように配置された筒形固定部材であって、上記筒形固定部材と上記回転部材との間に気体を排気するための螺旋状のネジ溝排気通路が備えられており、上記筒形固定部材は、上記回転部材の回転軸心方向で2以上の分割片に分割されていることを特徴とする。
 上記筒形固定部材の分割片はそれぞれ異なる材料で形成されるように構成してもよい。
 上記ネジ溝排気通路を形成するためのネジ溝が上記筒形固定部材に設けられていて、上記筒形固定部材の一の分割片と他の分割片では上記ネジ溝のリード角が異なっている構成を採用することもできる。
 上記ネジ溝排気通路を形成するためのネジ溝が上記筒形固定部材に設けられていて、上記筒形固定部材の一の分割片と他の分割片では上記ネジ溝の条数が異なっている構成を採用することもできる。
 上記ネジ溝排気通路を形成するためのネジ溝が上記筒形固定部材に設けられていて、上記筒形固定部材の一の分割片と他の分割片では上記ネジ溝の幅が異なっている構成を採用することもできる。
 上記ネジ溝排気通路を形成するためのネジ溝が上記筒形固定部材に設けられていて、上記筒形固定部材の一の分割片と他の分割片では上記ネジ溝の深さの変化量が異なっている構成を採用することもできる。
 上記ネジ溝排気通路を形成するためのネジ溝が上記筒形固定部材に設けられていて、上記筒形固定部材の一の分割片と他の分割片ではネジ溝の溝上端から回転部材までの距離を変えることによって筒形固定部材と回転部材とのギャップが異なっている構成を採用することもできる。
 上記筒形固定部材は、その上面に回転軸心方向に形成された溝を有している構成を採用することができる。
 上記ネジ溝排気通路を形成するためのネジ溝が上記各分割片に設けられていて、上記筒形固定部材は、一の分割片のネジ溝と他の分割片のネジ溝とを連続するように連結させるネジ溝位置合せ手段を備えるように構成してもよい。
 上記ネジ溝位置合せ手段は、一の分割片の分割面に立設した係合ピンと、その分割面に接合される他の分割片の分割面に穿設した係合孔とからなるとともに、上記係合孔に上記係合ピンが挿入嵌合するように構成してもよい。
 上記係合孔は、上記分割片の上下端面を貫通する貫通孔からなり、その貫通孔の一端に上記係合ピンが挿入嵌合する一方、該貫通孔の他端は上記係合ピンの位置を確認する確認窓として機能するように構成してもよい。
 上記ネジ溝位置合せ手段は、一の分割片の分割面に形成した第1の段差部と、その分割面に接合される他の分割片の分割面に形成した第2の段差部とからなるとともに、上記両段差部が互いに接合するように構成することもできる。
 また、上記ネジ溝位置合せ手段は、一の分割片の分割面に形成した係合凹部と、その分割面に接合される他の分割片の分割面に形成した係合凸部とからなるとともに、上記係合凸部が上記係合凹部に係合するように構成してもよい。
 前記本発明においては、一の分割片を他の分割片の上に設置する作業用の取っ手が、当該一の分割片に着脱自在に取り付けられる構成を採用することができる。
 上記筒形固定部材は、その下端部がポンプベースで支持されていて、上記2以上の分割片のうち最下部に位置する分割片は、上記ポンプベースの加工によって該ポンプベースと一体に設けられるように構成してもよい。
 また、上記筒形固定部材は、上記分割片とその外側に位置する部材との隙間に生成物が入り込まないようにするための生成物混入防止手段として、2以上の分割片のうち最上部に位置する分割片の上端外周部に蓋部を備える構成を採用することができる。
 前記本発明においては、上記分割片の外周部に補強部材が取り付けられる構成を採用することもできる。
 本発明にあっては、ネジ溝排気部の筒形固定部材の具体的な構成として、かかる筒形固定部材がネジ溝排気部の回転部材の回転軸心方向で2以上の分割片に分割される構造を採用したため、以下(1)または(2)の作用効果などが奏し得られる。
 (1) それぞれの分割片を必要強度に応じた異なる材料で形成する、例えば、特に強度が必要とされる部位の分割片は鍛造加工や押出/引抜き加工で作られた材料から削りだした比較的高価な加工品とし、あまり強度が必要とされない部位の分割片は安価な鋳物で作製したものとすることによって、真空ポンプの強度を維持しつつそのコストダウンを図ることができる。
 (2) 分割片ごとに個別にネジ溝加工を施すことによって、ネジ溝排気部の筒形固定部材の内周面に、リード角、条数、幅、深さの変化量、または回転部材とのギャップ等が回転部材の回転軸心方向で変化する複雑な形状のネジ溝を高度な生産設備がなくても製作でき、かかるネジ溝の採用によって真空ポンプ全体の排気性能・圧縮性能の向上を図るのに好適である。
本発明の一実施形態であるネジ溝排気部の筒形固定部材を適用した真空ポンプの断面図。 図1中のA部拡大図。 ネジ溝排気ステータ(ネジ溝排気部の筒形固定部材)の平面図。 図3のE-E断面図。 ネジ溝排気部の他の実施形態(分割片ごとにネジ溝のリード角が異なるタイプ)の断面図。 ネジ溝排気部の他の実施形態(分割片ごとにネジ溝の条数が異なるタイプ)の断面図。 ネジ溝排気部の他の実施形態(分割片ごとにネジ溝の幅が異なるタイプ)の断面図。 ネジ溝排気部の他の実施形態(分割片ごとにネジ溝の深さの変化量が異なるタイプ)の断面図。 ネジ溝排気部の他の実施形態(分割片ごとにロータとのギャップが異なるタイプ)の断面図。 ネジ溝排気部の他の実施形態(生成物堆積用の溝を備えたタイプ)の断面図。 ネジ溝排気部の他の実施形態(係合ピンと係合孔(閉じた孔)によるネジ溝位置合せ手段を備えたタイプ)の断面図。 ネジ溝排気部の他の実施形態(係合ピンと係合孔(貫通孔)によるネジ溝位置合せ手段を備えたタイプ)の断面図。 図2の矢印B方向から見たネジ溝排気部の他の実施形態(段差部によるネジ溝位置合せ手段を備えたタイプ)の側面図。 図2の矢印B方向から見たネジ溝排気部の他の実施形態(係合凸部と係合凹部によるネジ溝位置合せ手段を備えたタイプ)の側面図。 図2の矢印B方向から見たネジ溝排気部の他の実施形態(作業用の取っ手を採用したタイプ)の側面図。 ネジ溝排気部の他の実施形態(下側の分割片をポンプベースと一体に設けたタイプ)を採用した真空ポンプの断面図。 ネジ溝排気部の他の実施形態(蓋部を採用したタイプ)の断面図。 ネジ溝排気部の他の実施形態(補強部材を採用したタイプ)の断面図。
 以下、本発明を実施するための最良の形態について、添付した図面を参照しながら詳細に説明する。
 図1は、本発明の一実施形態であるネジ溝排気部の筒形固定部材を適用した真空ポンプの断面図、図2は図1中のA部拡大図、図3はネジ溝排気ステータ(ネジ溝排気部の固定部材)の平面図、図4は図3のE-E断面図である。
 図1の真空ポンプPは、例えば半導体製造装置や液晶ディスプレイパネル製造装置における真空装置の一部として使用され、真空チャンバ内の圧力を所定の真空度とするものである。
 同図の真空ポンプPは、外装ケース1内に、回転翼13と固定翼14により気体を排気する翼排気部Ptと、螺旋状のネジ溝排気通路Sを通じて気体を排気するネジ溝排気部Psと、これらを駆動する駆動系と、を有している。
<外装ケースの詳細>
 外装ケース1は、筒状のポンプケース1Aと有底筒状のポンプベース1Bとをその筒軸方向にボルトで一体に連結した有底円筒形になっている。ポンプケース1Aの上端部側はガス吸気口2として開口しており、ポンプベース1Bの下端部側面にはガス排気口3を設けてある。
 ガス吸気口2は、ポンプケース1A上縁のフランジ1Cに設けた図示しないボルトによって、例えば半導体製造装置のプロセスチャンバ等、高真空となる図示しない真空容器に接続される。ガス排気口3は、図示しない補助ポンプに連通するように接続される。
<支持駆動系の詳細>
 ポンプケース1A内の中央部には各種電装品を内蔵する円筒状のステータコラム4が設けられており、ステータコラム4はその下端側がポンプベース1B上にネジ止め固定される形態で立設してある。
 ステータコラム4の内側にはロータ軸5が設けられており、ロータ軸5は、その上端部がガス吸気口2の方向を向き、その下端部がポンプベース1Bの方向を向くように配置してある。また、ロータ軸5の上端部はステータコラム4の円筒上端面から上方に突出するように設けてある。
 ステータコラム4の外側にはロータ6が設けられている。ロータ6は、ポンプケース1A内に収容され、かつ、ステータコラム4の外周を囲むような円筒形状になっている。また、このロータ6は先に説明したロータ軸5に一体化されている。ロータ6とロータ軸5の一体化構造の一例として、図1の真空ポンプPでは、ロータ6の上端部内側にボス孔7付フランジ8を設けるとともに、ロータ軸5の上端部外周に段部9を形成している。そして、その段部9より上のロータ軸5上端部が上記フランジ8のボス孔7に嵌め込まれ、フランジ8と段部9がネジ止め固定されることによって、ロータ6とロータ軸5は一体化している。
 上記ロータ軸5とロータ6からなる回転体は、ラジアル磁気軸受10とアキシャル磁気軸受11により径方向と軸方向が回転可能に支持され、この状態でロータ軸5を軸心として駆動モータ12により回転駆動される。
 駆動モータ12は、固定子12Aと回転子12Bとからなる構造であって、ロータ軸5の略中央付近に設けられている。かかる駆動モータ12の固定子12Aはステータコラム4の内側に設置しており、同駆動モータ12の回転子12Bはロータ軸5の外周面側に一体に装着してある。
 ラジアル磁気軸受10は、駆動モータ12の上下に1組ずつ合計2組配置され、アキシャル磁気軸受11はロータ軸5の下端部側に1組配置されている。
 2組のラジアル磁気軸受10、10は、それぞれ、ロータ軸5の外周面に取り付けたラジアル電磁石ターゲット10A、これに対向するステータコラム4内側面に設置した複数のラジアル電磁石10Bおよびラジアル方向変位センサ10Cを有している。ラジアル電磁石ターゲット10Aは高透磁率材料の鋼板を積層した積層鋼板からなり、ラジアル電磁石10Bはラジアル電磁石ターゲット10Aを通じてロータ軸5を径方向に磁力で吸引する。ラジアル方向変位センサ10Cはロータ軸5の径方向変位を検出する。そして、ラジアル方向変位センサ10Cでの検出値(ロータ軸の径方向変位)に基づきラジアル電磁石10Bの励磁電流を制御することによって、ロータ軸5とロータ6からなる回転体は径方向所定位置に磁力で浮上支持される。
 アキシャル磁気軸受11は、ロータ軸5の下端部外周に取り付けた円盤形状のアーマチュアディスク11Aと、アーマチュアディスク11Aを挟んで上下に対向するアキシャル電磁石11Bと、ロータ軸5の下端面から少し離れた位置に設置したアキシャル方向変位センサ11Cとを有している。
 アーマチュアディスク11Aは透磁率の高い材料からなり、上下のアキシャル電磁石11Bはアーマチュアディスク11Aをその上下方向から磁力で吸引するようになっている。アキシャル方向変位センサ11Cはロータ軸5の軸方向変位を検出する。そして、アキシャル方向変位センサ11Cでの検出値(ロータ軸の軸方向変位)に基づき上下のアキシャル電磁石11Bの励磁電流を制御することによって、ロータ軸5とロータ6からなる回転体は軸方向所定位置に磁力で浮上支持される。
<翼排気部Ptの詳細構成>
 図1の真空ポンプPでは、ロータ6の略上半分が翼排気部Ptとして機能するようになっている。以下、この翼排気部Ptを詳細に説明する。
 ロータ6の略上半分の外周面には回転翼13が一体に複数設けられている。これらの回転翼13は、ロータ6の回転軸心若しくは外装ケース1の軸心(以下「ポンプ軸心」という)を中心として放射状に並んでいる。一方、ポンプケース1Aの内周面側には固定翼14が複数設けられており、これらの固定翼14は、ポンプ軸心を中心として放射状に並んで配置されている。そして、上記回転翼13と固定翼14とがポンプ軸心に沿って交互に多段に配置されることによって翼排気部Ptを形成している。
 いずれの回転翼13も、ロータ6の外径加工部と一体的に切削加工で切り出し形成したブレード状の切削加工品であって、気体分子の排気に最適な角度で傾斜している。いずれの固定翼14もまた、気体分子の排気に最適な角度で傾斜している。
<翼排気部Ptの排気動作>
 駆動モータ12の起動により、ロータ軸5、ロータ6および複数の回転翼13が一体に高速回転し、最上段の回転翼13がガス吸気口2から入射した気体分子に下向き方向の運動量を付与する。この下向き方向の運動量を有する気体分子が固定翼14によって次段の回転翼13側へ送り込まれる。以上のような気体分子への運動量の付与と送り込み動作とが繰り返し多段に行われることにより、ガス吸気口2側の気体分子はネジ溝排気部Psの上流(より詳しくは後述するネジ溝排気通路Sの上流入口19A)に順次移行するように排気される。
<ネジ溝排気部Psの詳細構成>
 図1の真空ポンプPにおいては、ロータ6の略下半分がネジ溝排気部Psとして機能する。以下このネジ溝排気部Psを詳細に説明する。
 ロータ6の略下半分は、ネジ溝排気部Psの回転部材として回転する部分であって、ネジ溝排気部Psの筒形固定部材である筒状のネジ溝排気部ステータ18内に収容されることにより、図2のように所定のギャップGを介してネジ溝排気部ステータ18と対向するように配置してある。ギャップGは、約0.7mmである。
 ネジ溝排気部ステータ18(ネジ溝排気部Psの筒形固定部材)は、その内周部に、深さが下方に向けて小径化したテーパコーン形状に変化するネジ溝19を形成し、その下端部がポンプベース1Bで支持されるようになっている。
 本ネジ溝排気部Psでは、上記ネジ溝排気部ステータ18の内周面にネジ溝19を形成することで、かかるネジ溝19とこれに対向するロータ6の略下半分の外周面とで螺旋状のネジ溝排気通路Sが形成されるように構成してある。図示は省略するが、ロータ6の略下半分の外周面に上記ネジ溝を形成することで、かかるネジ溝とこれに対向するネジ溝排気部ステータ18の内周面とで螺旋状のネジ溝排気通路を形成してもよい。
 更に、本ネジ溝排気部Psのネジ溝排気部ステータ18は、ロータ6(ネジ溝排気部Psの回転部材)の回転軸心方向で2つの分割片18A、18Bに分割されていて、それぞれの分割片18A、18Bをボルト等の締結手段又は焼きばめ等の接合手段によって一体に連結した構造になっている。ネジ溝排気部ステータ18の分割により、その内周面に形成したネジ溝19も同様の方向に分割されており、分割されたネジ溝19が各分割片18A、18Bに設けられている。なお、ネジ溝排気部ステータ18は本例の2分割に限定されることはなく、3分割、4分割など、2以上に分割することができる。また、2つの分割片18A、18Bの連結部には凹凸の嵌め合いD等、公知の嵌合構造を採用することができる。
 本真空ポンプPにおいては、上記ネジ溝排気部Psの一実施形態として、ネジ溝排気部ステータ18を構成する2つの分割片18A、18Bをそれぞれ異なる材料で形成してある(図4参照)。具体的には、ロータ6の重心から近くて該ロータ6が破壊した時の影響を受け易い上側の分割片18Aは強度の高い材料、具体的には鍛造加工や押出/引抜き加工で作られた材料から削りだした比較的高価な切削加工品とするが、かかる影響を受け難い下側の分割片18Bについては安価な鋳物品とすることによって、真空ポンプの強度を維持しつつそのコストダウンを図った。
 本真空ポンプPでは、上述のネジ溝排気部ステータ18の内周面にネジ溝19を形成する一方、ネジ溝19と対向するロータ6の略下半分の外周面を平滑な円筒面に形成することによって、ネジ溝排気部ステータ18(筒形固定部材)とロータ6(回転部材)との間に螺旋状のネジ溝排気通路Sが形成されるように構成してある。なお、ネジ溝排気部Psでは図3のようにネジ溝19を5条設けたが、その条数は必要に応じて適宜変更することができる。
 ネジ溝排気通路Sは、ネジ溝排気部ステータ18の上端から下端にかけて螺旋状に設けられている。そして、ネジ溝排気通路Sの上流入口19Aは、最下段の回転翼13と固定翼14との間の微小隙間に連通し、同ネジ溝排気通路Sの下流出口19B側は、ガス排気口3側に連通するように構成してある。また、本ネジ溝排気部Psでは、ネジ溝19とロータ6の外周面でのドラッグ効果により気体を圧縮しながら移送するため、ネジ溝19の深さは、ネジ溝排気通路Sの上流入口19A側で最も深く、その下流出口19B側で最も浅くなるように設定してある。
<ネジ溝排気部の排気動作>
 前述の通り駆動モータ12の起動によりロータ軸5、ロータ6および複数の回転翼13が一体に高速回転すると、前述した翼排気部Ptの排気動作によりネジ溝排気通路Sの上流入口19Aに到達した気体分子は、ネジ溝排気通路S内に入り、ロータ6の外周面とネジ溝19でのドラッグ効果によって遷移流から粘性流に圧縮されながらガス排気口3に向って移行し、最終的に図示しない補助ポンプを通じて外部へ排気される。
<ネジ溝排気部の他の実施形態>
 図5から図18は、ネジ溝排気部Psの他の実施形態の説明図である。
 図5のネジ溝排気部Psは、ネジ溝排気部ステータ18(ネジ溝排気部Psの筒形固定部材)を図1の実施形態と同様に2つの分割片18A、18Bに分割し、それぞれの分割片18A、18Bにネジ溝19が設けられている。そして、上側の分割片18Aと下側の分割片18Bではネジ溝19のリード角θが30度と15度のように異なる構成を採用している。なお、ネジ溝19のリード角θは上記例に限定されることはなく、必要に応じて適宜変更することができる。
 図6のネジ溝排気部Psは、ネジ溝排気部ステータ18(ネジ溝排気部Psの筒形固定部材)を図1の実施形態と同様に2つの分割片18A、18Bに分割し、それぞれの分割片18A、18Bにネジ溝19が設けられていて、上側の分割片18Aと下側の分割片18Bではネジ溝19の条数が異なるように構成している。
 図7のネジ溝排気部Psは、ネジ溝排気部ステータ18(ネジ溝排気部Psの筒形固定部材)を図1の実施形態と同様に2つの分割片18A、18Bに分割し、それぞれの分割片18A、18Bにネジ溝19が設けられていて、上側の分割片18Aと下側の分割片18Bではネジ溝19の幅がL1、L2のように異なる構成を採用している。
 図8のネジ溝排気部Psは、ネジ溝排気部ステータ18(ネジ溝排気部Psの筒形固定部材)を図1の実施形態と同様に2つの分割片18A、18Bに分割し、それぞれの分割片18A、18Bにネジ溝190、191が設けられていて、上側の分割片18Aと下側の分割片18Bでネジ溝19の深さの変化量がそれぞれ異なるように構成している。図8では、上側の分割片18Aではネジ溝190が同じ勾配で浅くなるように変化し、下側の分割片18Bではネジ溝191の深さが変化しない(変化量=0)形態を採用しているが、この例に限定されることはない。図示は省略するが、上側の分割片18Aのネジ溝190に比べて、下側の分割片18Bのネジ溝191の方が、緩やかな勾配で浅くなるように変化する形態を採用することもできる。
 図9のネジ溝排気部Psは、ネジ溝排気部ステータ18(ネジ溝排気部Psの筒形固定部材)を図1の実施形態と同様に2つの分割片18A、18Bに分割し、それぞれの分割片18A、18Bにネジ溝19が設けられていて、上側の分割片18Aと下側の分割片18Bではネジ溝19の溝上端からロータ6までの距離を変えることによって、ネジ溝排気部ステータ18(ネジ溝排気部Psの筒形固定部材)とロータ6(ネジ溝排気部Psの回転部材)とのギャップがG1、G2のように異なる形態を採用している。図9では、圧力の高い下側の分割片18Bの方が比較的生成物が堆積しやすいことから、かかるギャップはG1<G2としている。ギャップG1は約0.7mm、ギャップG2は約1mmである。
 図10のネジ溝排気部Psは、ネジ溝排気部ステータ18(ネジ溝排気部Psの筒形固定部材)の上面に回転軸心方向に形成された溝20を設け、この溝20の中にポンプ内部で排気するガスが圧力の高い部分などで固化する等によって生じてしまう生成物を堆積させることによって、ネジ溝排気部ステータ18の上面に生成物が堆積した際の回転翼13との接触防止を図ったものである。この図10の例では、ネジ溝排気部ステータ18を2つの分割片18A、18Bに分割しているので、上記溝20は上側の分割片18Aの上面に設けている。なお、図示は省略するが、ネジ溝排気部ステータ18を3つ又はそれ以上の数の分割片に分割するなら、かかる溝20は回転翼13に最も近い最上部の分割片の上面に設けられる。
 以上説明したネジ溝排気部ステータ18の分割構造では、それぞれの分割片18A、18Bに設けられているネジ溝19を連続するように連結する必要がある。ネジ溝19が途中で途切れていると、ネジ溝排気通路Sの上流入口19Aから下流出口19Bに至るまでの間で、上述したドラッグ効果によるガスの圧縮・排気動作を行うことができないからである。この一方、ネジ溝19は分割片18A、18Bの内周面に形成されていて、ネジ溝19の連結部は作業者にとって見え難い位置にあるので、ネジ溝19の連結作業は大変である。
 そこで、以上説明したネジ溝排気部ステータ18の分割構造を採用する場合は、図11から図14のいずれかに示すネジ溝位置合せ手段21を採用することが好ましい。これらのネジ溝位置合せ手段21は、いずれも、上側の分割片18Aのネジ溝19と下側の分割片18Bのネジ溝19とを連続するように配置させる手段であり、その具体的な構成は以下の通りである。
 図11のネジ溝位置合せ手段21は、下側の分割片18Bの分割面に立設したテーパピンからなる係合ピン21Aと、その分割面に接合される上側の分割片18Aの分割面に穿設した係合孔21Bとからなるとともに、係合孔21Bに係合ピン21Aが挿入嵌合することによって、両分割片18A、18Bのネジ溝19の位置合せが行われるようにしたものである。なお、図11の例では、係合ピン21Aを係合孔21Bに挿入し易くするために、係合孔21Bの縁部に面取り加工を施してある。
 更に、他の実施形態として、上記係合ピン21Aを上側の分割片18Aの分割面に立設し、かつ、上記係合孔21Bをその分割面に接合される下側の分割片18Bに穿設する構成も採用し得る。また、上記のような係合ピン21Aと係合孔21Bのセットは複数セット設けてもよい。それを2セット設けた場合は、上下の分割片18A、18Bの径方向位置も決まるので、先に説明した嵌め合いDを省略することも可能である。この場合はいずれか一方の係合ピン21Aが折れた場合に備えて、後述の図13に示す段差部21D、21Eの接合構造、又は図14に示す係合凸部21Fと係合凹部21Gの係合構造を採用するのが望ましい。
 上記係合孔21Bの形態は、先に説明した図11のように閉じた孔でもよいが、図12のように上側の分割片18Aの上下端面を貫通する貫通孔とすることができる。この場合は、その貫通孔の下端に係合ピン21Aが挿入嵌合する一方、当該貫通孔の上端は係合ピン21Aの位置を確認する確認窓21Cとして機能する。
 以上のように係合孔21Bの一例として図12のような貫通孔を採用した場合は、係合孔21Bに係合ピン21Aを挿入嵌合させることによって上側の分割片18Aと下側の分割片18Bとでネジ溝19の位置合せを行う際に、作業者は確認窓21Cから係合ピン21Aの位置を確認できるので、その位置合せ作業は容易になる。
 図13のネジ溝位置合せ手段21は、上側の分割片18Aの分割面に形成した第1の段差部21Dと、その分割面に接合される下側の分割片18Bの分割面に形成した第2の段差部21Eとからなるとともに、これらの両段差部21D、21Eが少なくとも2箇所にあって互いに噛み合って接合することにより、両分割片18A、18Bのネジ溝19の位置合せが行われるようにしたものである。図は省略するが、段差部21D、21Eは傾斜しても良い。
 図14のネジ溝位置合せ手段21は、上側の分割片18Aの分割面に形成した係合凸部21Fと、その分割面に接合される下側の分割片18Bの分割面に形成した係合凹部21Gとからなるとともに、このような係合凸部21Fと係合凹部21Gが少なくとも1箇所にあって互いに噛み合って係合することにより、両分割片18A、18Bのネジ溝19の位置合わせが行われるようにしたものである。
 以上説明したネジ溝排気部ステータ18の分割構造では、上側の分割片18Aを下側の分割片18Bの上に設置する作業を行うが、その作業にあたり、図15に示す作業用の取っ手22を使用することで、設置の作業性向上が図れる。
 上記取っ手22はボルト22Aの頭部にリング形状の把持部22Bを設けた形態(アイボルト形状)になっている。そして、上側の分割片18Aの上面には図示しないネジ孔が形成されており、このネジ孔に取っ手22のボルト22Aをネジ込むことによって、本取っ手22は上側の分割片18Aに着脱自在に取り付けられる。そして、上記のような設置の作業が済んだら、本取っ手22は上側の分割片18Aから取り外され、次の設置作業で再使用される。なお、取っ手22を上側の分割片18Aに取り付ける手段については、上記ボルト22A以外の他の手段を採用してもよい。
 以上説明したネジ溝排気部Psは、いずれもそのネジ溝排気部ステータ18(ネジ溝排気部Psの筒形固定部材)が2つの分割片18A、18Bに分割されていて、下側の分割片18Bがポンプベース1Bで支持されるようになっている(図1等を参照)。この構造において、下側の分割片18Bについては、ポンプベース1Bの加工によって、図16のようにポンプベース1Bと一体に設けることができる。なお、図示は省略するが、ネジ溝排気部ステータ18を3つ又はそれ以上の数の分割片に分割した場合には、最下部に位置する分割片がポンプベース1Bと一体に設けられる。
 以上のようなポンプベース1Bと分割片18Bとの一体構成によると、部品点数の削減を図れる。また、ポンプベース1Bと下側の分割片18Bには熱伝達の障害になる接合面がないので、ポンプベース1Bに内蔵した図示しない水冷管によって、ネジ溝排気部ステータ18全体を効率よく冷却することが可能になる。
 以上説明したネジ溝排気部Psについては、例えば図17のように上側の分割片18Aの外周部を切り欠くことによって上側の分割片18Aが破壊トルクによって屈曲変形し易くなるように構成することができる。この場合、分割片18Aとその外側に位置する部材(図17の例ではポンプベース1B)との間にできる隙間30に生成物が入り込み、隙間30が埋まってしまうおそれがある。そして、隙間30が埋まることにより、分割片18Aが変形しづらくなる。前記隙間30は前記分割片18A外周部を切り欠くことによって生じるものである。
 上記のような不具合を解決するために、図17のネジ溝排気部Psでは、隙間30に生成物が入り込まないようにするための生成物混入防止手段として、上側の分割片18Aの上端外周部に蓋部40を設けている。なお、図示は省略するが、ネジ溝排気部ステータ18を3つ又はそれ以上の数の分割片に分割した場合は、少なくとも最上部に位置する分割片の外周部が切り欠かれて屈曲変形し易くなるように構成するとともに、最上部に位置する分割片の上端外周部に上記のような蓋部40が設けられる。
 ところで、蓋部40の強度が高すぎると、上側の分割片18Aの屈曲変形による効果が損なわれるので、蓋部40はその厚みをできる限り薄くすること等によって低強度に構成することが好ましい。
 蓋部40の具体的な構成としては、例えば、図17のように薄板を上側の分割片18Aの上端面にネジ等の固定部材40Aで取り付け固定する構成など、上側の分割片18Aとは別部品にしてもよい。また、先に述べたように上側の分割片18Aの外周部を切り欠く際に蓋部40となるべき部位を図18のように残しておくことによって、蓋部40は上側の分割片18Aと一体の部品として構成してもよい。なお、図17は下側の分割片18Bがポンプベース1Bと一体化した構造において蓋部40を採用した例であるが、かかる蓋部40は下側の分割片18Bがポンプベース1Bと一体化していない構造例(図1等参照)でも採用し得る。
 ところで、上記のような隙間30によって上側の分割片18Aは屈曲変形し易くなると同時に比較的弱い力で破断し易くなる。弱い力で容易に破断してしまうと、上側の分割片18Aの屈曲変形による効果を十分に発揮することができない。このため、図18のネジ溝排気部Psでは、上側の分割片18Aの外周部、具体的には隙間30を形成した部位にはCFRP等の高強度部材を補強部材50として取り付けてある。なお、図18は下側の分割片18Bがポンプベース1Bと一体化した構造例において補強部材50を採用した例であるが、かかる補強部材50は下側の分割片18Bがポンプベース1Bと一体化していない構造(図1等参照)でも採用し得る。
 以上説明した図5から図18のネジ溝排気部Psにおいてそれぞれの分割片18A、18Bを図4のように異なる材料で形成してもよい。また、図5から図9のような複雑な形状のネジ溝19、190、191を必要に応じて適宜組み合わせることによって、より複雑な形状のネジ溝を採用することもできる。
 以上説明したすべての実施形態では、ネジ溝排気部ステータ18(ネジ溝排気部Psの固定部材)の具体的な構成として、かかるネジ溝排気部ステータ18がロータ6(ネジ溝排気部Psの回転部材)の回転軸心方向で2以上の分割片18A、18Bに分割される構造を採用したため、以下(1)または(2)の作用効果などが奏し得られる。
 (1) それぞれの分割片を必要強度に応じた異なる材料で形成する、例えば、特に強度が必要とされる部位の分割片は鍛造加工や押出/引抜き加工で作られた材料から削りだした比較的高価な加工品とし、あまり強度が必要とされない部位の分割片は安価な鋳物で作製したものとすることによって、真空ポンプの強度を維持しつつそのコストダウンを図ることができる。
 (2) 分割片ごとに個別にネジ溝加工を施すことによって、ネジ溝排気部ステータ18の内周面に、リード角θ、条数、幅L1、L2、深さの変化量、またはロータ6とのギャップ等がロータ6の回転軸心方向で変化する複雑な形状のネジ溝を高度な生産設備がなくても製作でき、かかるネジ溝の採用によって真空ポンプ全体の排気性能・圧縮性能の向上を図ることができる。
1 外装ケース
1A ポンプケース
1B ポンプベース
1C フランジ
2 ガス吸気口
3 ガス排気口
4 ステータコラム
5 ロータ軸
6 ロータ
7 ボス孔
8 フランジ
9 段部
10 ラジアル磁気軸受
10A ラジアル電磁石ターゲット
10B ラジアル電磁石
10C ラジアル方向変位センサ
11 アキシャル磁気軸受
11A アーマチュアディスク
11B アキシャル電磁石
11C アキシャル方向変位センサ
12 駆動モータ
12A 固定子
12B 回転子
13 回転翼
14 固定翼
18 ネジ溝排気部ステータ
18A、18B 分割片
19、190、191 ネジ溝
19A ネジ溝排気通路の上流入口
19B ネジ溝排気通路の下流出口
20 生成物堆積用の溝
21 ネジ溝位置合せ手段
21A 係合ピン
21B 係合孔
21C 確認窓
21D 第1の段差部
21E 第2の段差部
21F 係合凸部
21G 係合凹部
22 取っ手
22A ボルト
22B 把持部
30 分割片とその外側に位置する部材との隙間
40 蓋部
50 補強部材
D 嵌め合い
G、G1、G2 ロータとネジ溝排気部ステータとのギャップ
L1、L2 ネジ溝の溝幅
P 真空ポンプ
Pt 翼排気部
Ps ネジ溝排気部
S ネジ溝排気通路
θ ネジ溝のリード角

Claims (18)

  1.  ネジ溝排気部の回転部材の外周を囲むように配置された筒形固定部材であって、
     上記筒形固定部材と上記回転部材との間に気体を排気するための螺旋状のネジ溝排気通路が備えられており、上記筒形固定部材は、上記回転部材の回転軸心方向で2以上の分割片に分割されていること
     を特徴とするネジ溝排気部の筒形固定部材。
  2.  上記筒形固定部材の分割片はそれぞれ異なる材料で形成されること
     を特徴とする請求項1に記載のネジ溝排気部の筒形固定部材。
  3.  上記ネジ溝排気通路を形成するためのネジ溝が上記各分割片に設けられていて、
     上記一の分割片と他の分割片ではネジ溝のリード角が異なっていること
     を特徴とする請求項1に記載のネジ溝排気部の筒形固定部材。
  4.  上記ネジ溝排気通路を形成するためのネジ溝が上記各分割片に設けられていて、
     上記一の分割片と他の分割片ではネジ溝の条数が異なっていること
     を特徴とする請求項1に記載のネジ溝排気部の筒形固定部材。
  5.  上記ネジ溝排気通路を形成するためのネジ溝が上記各分割片に設けられていて、
     上記一の分割片と他の分割片ではネジ溝の幅が異なっていること
     を特徴とする請求項1に記載のネジ溝排気部の筒形固定部材。
  6.  上記ネジ溝排気通路を形成するためのネジ溝が上記各分割片に設けられていて、
     上記一の分割片と他の分割片ではネジ溝の深さの変化量が異なっていること
     を特徴とする請求項1に記載のネジ溝排気部の筒形固定部材。
  7.  上記ネジ溝排気通路を形成するためのネジ溝が上記各分割片に設けられていて、
     上記一の分割片と他の分割片ではネジ溝の溝上端から回転部材までの距離を変えることによって筒形固定部材と回転部材とのギャップが異なっていること
     を特徴とする請求項1に記載のネジ溝排気部の筒形固定部材。
  8.  上記筒形固定部材は、その上面に回転軸心方向に形成された溝を有していること
     を特徴とする請求項1に記載のネジ溝排気部の筒形固定部材。
  9.  上記ネジ溝排気通路を形成するためのネジ溝が上記各分割片に設けられていて、
     上記筒形固定部材は、
     一の分割片のネジ溝と他の分割片のネジ溝とを連続するように連結させるネジ溝位置合せ手段を備えること
     を特徴とする請求項1に記載のネジ溝排気部の筒形固定部材。
  10.  上記ネジ溝位置合せ手段は、
     一の分割片の分割面に立設した係合ピンと、その分割面に接合される他の分割片の分割面に穿設した係合孔とからなるとともに、上記係合孔に上記係合ピンが挿入嵌合するようになっていること
     を特徴とする請求項9に記載のネジ溝排気部の筒形固定部材。
  11.  上記係合孔は、上記分割片の上下端面を貫通する貫通孔からなり、その貫通孔の一端に上記係合ピンが挿入嵌合する一方、該貫通孔の他端は上記係合ピンの位置を確認する確認窓として機能すること
     を特徴とする請求項10に記載のネジ溝排気部の筒形固定部材。
  12.  上記ネジ溝位置合せ手段は、
     一の分割片の分割面に形成した第1の段差部と、その分割面に接合される他の分割片の分割面に形成した第2の段差部とからなるとともに、上記両段差部が互いに接合するようになっていること
     を特徴とする請求項9に記載のネジ溝排気部の筒形固定部材。
  13.  上記ネジ溝位置合せ手段は、
     一の分割片の分割面に形成した係合凹部と、その分割面に接合される他の分割片の分割面に形成した係合凸部とからなるとともに、上記係合凸部が上記係合凹部に係合するようになっていること
     を特徴とする請求項9に記載のネジ溝排気部の筒形固定部材。
  14.  一の分割片を他の分割片の上に設置する作業用の取っ手が、当該一の分割片に着脱自在に取り付けられること
     を特徴とする請求項1に記載のネジ溝排気部の筒形固定部材。
  15.  上記筒形固定部材は、その下端部がポンプベースで支持されていて、
     上記2以上の分割片のうち最下部に位置する分割片は、上記ポンプベースの加工によって該ポンプベースと一体に設けられていること
     を特徴とする請求項1に記載のネジ溝排気部の筒形固定部材。
  16.  上記筒形固定部材は、
     上記分割片とその外側に位置する部材との隙間に生成物が入り込まないようにするための生成物混入防止手段として、2以上の分割片のうち最上部に位置する分割片の上端外周部に蓋部を備えること
     を特徴とする請求項1に記載のネジ溝排気部の筒形固定部材。
  17.  上記分割片の外周部に補強部材が取り付けられていること
     を特徴とする請求項1に記載のネジ溝排気部の筒形固定部材。
  18.  請求項1から17のいずれか1項に記載されたネジ溝排気部の筒形固定部材を使用した真空ポンプ。
PCT/JP2010/068313 2009-12-11 2010-10-19 ネジ溝排気部の筒形固定部材と、これを使用した真空ポンプ WO2011070856A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011545140A JP5758303B2 (ja) 2009-12-11 2010-10-19 ネジ溝排気部の筒形固定部材と、これを使用した真空ポンプ
CN201080053910.6A CN102667169B (zh) 2009-12-11 2010-10-19 螺纹槽排气部的筒形固定部件以及使用该部件的真空泵
KR1020127003659A KR101773632B1 (ko) 2009-12-11 2010-10-19 나사 홈 배기부의 통형 고정 부재와 이것을 사용한 진공 펌프

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009281985 2009-12-11
JP2009-281985 2009-12-11

Publications (1)

Publication Number Publication Date
WO2011070856A1 true WO2011070856A1 (ja) 2011-06-16

Family

ID=44145409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068313 WO2011070856A1 (ja) 2009-12-11 2010-10-19 ネジ溝排気部の筒形固定部材と、これを使用した真空ポンプ

Country Status (4)

Country Link
JP (1) JP5758303B2 (ja)
KR (1) KR101773632B1 (ja)
CN (1) CN102667169B (ja)
WO (1) WO2011070856A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077411A1 (ja) * 2010-12-10 2012-06-14 エドワーズ株式会社 真空ポンプ
WO2012172851A1 (ja) * 2011-06-17 2012-12-20 エドワーズ株式会社 真空ポンプとそのロータ
EP2594803A1 (de) * 2011-11-16 2013-05-22 Pfeiffer Vacuum Gmbh Reibungsvakuumpumpe
EP2796726A1 (de) * 2013-04-22 2014-10-29 Pfeiffer Vacuum Gmbh Statorelement für eine Holweckpumpstufe, Vakuumpumpe mit einer Holweckpumpstufe und Verfahren zur Herstellung eines Statorelements für eine Holweckpumpstufe
JP2016217248A (ja) * 2015-05-20 2016-12-22 株式会社島津製作所 真空ポンプおよび質量分析装置
EP3018354A4 (en) * 2013-07-05 2017-03-15 Edwards Japan Limited Vacuum pump
JP2018178733A (ja) * 2017-04-03 2018-11-15 株式会社島津製作所 真空ポンプ
EP3657021A1 (de) * 2018-11-21 2020-05-27 Pfeiffer Vacuum Gmbh Vakuumpumpe
EP3670924A1 (de) * 2019-11-19 2020-06-24 Pfeiffer Vacuum Gmbh Vakuumpumpe und verfahren zur herstellung einer solchen
US10704555B2 (en) 2012-09-06 2020-07-07 Edwards Japan Limited Stator-side member and vacuum pump
JP2020186687A (ja) * 2019-05-15 2020-11-19 エドワーズ株式会社 真空ポンプとそのネジ溝ポンプ部の固定部品
EP4194700A1 (de) * 2023-04-18 2023-06-14 Pfeiffer Vacuum Technology AG Vakuumpumpe mit einer holweck-pumpstufe mit veränderlicher holweck-geometrie
EP4273405A1 (de) * 2023-09-20 2023-11-08 Pfeiffer Vacuum Technology AG Vakuumpumpe mit einer holweck-pumpstufe mit veränderlicher holweck-geometrie
JP7534466B2 (ja) 2022-11-14 2024-08-14 プファイファー・ヴァキューム・テクノロジー・アクチエンゲゼルシャフト ホルベックポンプ段の吸引能力が改善された真空ポンプ

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10253777B2 (en) * 2013-09-30 2019-04-09 Edwards Japan Limited Thread groove pump mechanism, vacuum pump including thread groove pump mechanism, and rotor, outer circumference side stator, and inner circumference side stator used in thread groove pump mechanism
JP6331491B2 (ja) * 2013-12-27 2018-05-30 株式会社島津製作所 真空ポンプ
JP2016166594A (ja) * 2015-03-10 2016-09-15 株式会社島津製作所 真空ポンプ
JP6390479B2 (ja) * 2015-03-18 2018-09-19 株式会社島津製作所 ターボ分子ポンプ
JP6692635B2 (ja) * 2015-12-09 2020-05-13 エドワーズ株式会社 連結型ネジ溝スペーサ、および真空ポンプ
CN105909538B (zh) * 2016-06-28 2018-06-26 东北大学 一种采用分段式结构牵引级的复合分子泵
CN112160919A (zh) * 2020-09-28 2021-01-01 东北大学 涡轮分子泵和包括该分子泵的复合分子泵

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5183280A (ja) * 1975-01-18 1976-07-21 Mitsubishi Heavy Ind Ltd Choenshinbunrikyokaitendoondobunpuseigyogatabunshihonpu
JPH0673395U (ja) * 1993-03-19 1994-10-18 セイコー精機株式会社 排気ポンプ
JPH08511071A (ja) * 1993-05-03 1996-11-19 ライボルト アクチエンゲゼルシヤフト 異なる構成のポンプ区分を備えた摩擦真空ポンプ
JP2001032789A (ja) * 1999-07-23 2001-02-06 Anelva Corp 分子ポンプ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3728154C2 (de) * 1987-08-24 1996-04-18 Balzers Pfeiffer Gmbh Mehrstufige Molekularpumpe
DE58907244D1 (de) * 1989-07-20 1994-04-21 Leybold Ag Reibungspumpe mit glockenförmigem Rotor.
JP2000291586A (ja) * 1999-03-31 2000-10-17 Seiko Seiki Co Ltd 真空ポンプ
JP2002155891A (ja) * 2000-11-22 2002-05-31 Seiko Instruments Inc 真空ポンプ
JP2003172290A (ja) * 2001-12-07 2003-06-20 Boc Edwards Technologies Ltd 真空ポンプ
JP2004003501A (ja) * 2003-06-27 2004-01-08 Hitachi Koki Co Ltd ドライターボ真空ポンプ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5183280A (ja) * 1975-01-18 1976-07-21 Mitsubishi Heavy Ind Ltd Choenshinbunrikyokaitendoondobunpuseigyogatabunshihonpu
JPH0673395U (ja) * 1993-03-19 1994-10-18 セイコー精機株式会社 排気ポンプ
JPH08511071A (ja) * 1993-05-03 1996-11-19 ライボルト アクチエンゲゼルシヤフト 異なる構成のポンプ区分を備えた摩擦真空ポンプ
JP2001032789A (ja) * 1999-07-23 2001-02-06 Anelva Corp 分子ポンプ

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9453510B2 (en) 2010-12-10 2016-09-27 Edwards Japan Limited Vacuum pump
WO2012077411A1 (ja) * 2010-12-10 2012-06-14 エドワーズ株式会社 真空ポンプ
EP2650544A4 (en) * 2010-12-10 2018-04-11 Edwards Japan Limited Vacuum pump
JPWO2012172851A1 (ja) * 2011-06-17 2015-02-23 エドワーズ株式会社 真空ポンプとそのロータ
EP2722527A1 (en) * 2011-06-17 2014-04-23 Edwards Japan Limited Vacuum pump and rotor therefor
US10190597B2 (en) 2011-06-17 2019-01-29 Edwards Japan Limited Vacuum pump and rotor thereof
WO2012172851A1 (ja) * 2011-06-17 2012-12-20 エドワーズ株式会社 真空ポンプとそのロータ
EP2722527A4 (en) * 2011-06-17 2014-12-17 Edwards Japan Ltd VACUUM PUMP AND ROTOR
EP2594803A1 (de) * 2011-11-16 2013-05-22 Pfeiffer Vacuum Gmbh Reibungsvakuumpumpe
JP2013104430A (ja) * 2011-11-16 2013-05-30 Pfeiffer Vacuum Gmbh 摩擦真空ポンプ
US10704555B2 (en) 2012-09-06 2020-07-07 Edwards Japan Limited Stator-side member and vacuum pump
EP2894347B1 (en) * 2012-09-06 2022-03-09 Edwards Japan Limited Stator member and vacuum pump
US9784284B2 (en) 2013-04-22 2017-10-10 Pfeiffer Vaccum Gmbh Stator element for a holweck pump stage, vacuum pump having a holweck pump stage and method of manufacturing a stator element for a holweck pump stage
JP2014214745A (ja) * 2013-04-22 2014-11-17 プファイファー・ヴァキューム・ゲーエムベーハー ホルベックポンプ段用のステータ要素、ホルベックポンプ段を有する真空ポンプ、及び、ホルベックポンプ段用のステータ要素を製造するための方法
EP2796726A1 (de) * 2013-04-22 2014-10-29 Pfeiffer Vacuum Gmbh Statorelement für eine Holweckpumpstufe, Vakuumpumpe mit einer Holweckpumpstufe und Verfahren zur Herstellung eines Statorelements für eine Holweckpumpstufe
EP3018354A4 (en) * 2013-07-05 2017-03-15 Edwards Japan Limited Vacuum pump
US10260509B2 (en) 2013-07-05 2019-04-16 Edwards Japan Limited Vacuum pump
JP2016217248A (ja) * 2015-05-20 2016-12-22 株式会社島津製作所 真空ポンプおよび質量分析装置
JP2018178733A (ja) * 2017-04-03 2018-11-15 株式会社島津製作所 真空ポンプ
JP7098882B2 (ja) 2017-04-03 2022-07-12 株式会社島津製作所 真空ポンプ
JP2020094582A (ja) * 2018-11-21 2020-06-18 プファイファー・ヴァキューム・ゲーエムベーハー 真空ポンプ
EP3657021A1 (de) * 2018-11-21 2020-05-27 Pfeiffer Vacuum Gmbh Vakuumpumpe
JP2020186687A (ja) * 2019-05-15 2020-11-19 エドワーズ株式会社 真空ポンプとそのネジ溝ポンプ部の固定部品
WO2020230799A1 (ja) * 2019-05-15 2020-11-19 エドワーズ株式会社 真空ポンプとそのネジ溝ポンプ部の固定部品
EP3670924A1 (de) * 2019-11-19 2020-06-24 Pfeiffer Vacuum Gmbh Vakuumpumpe und verfahren zur herstellung einer solchen
JP2021080917A (ja) * 2019-11-19 2021-05-27 プファイファー・ヴァキューム・ゲーエムベーハー 真空ポンプ及びそのような真空ポンプを製造する方法
JP7032500B2 (ja) 2019-11-19 2022-03-08 プファイファー・ヴァキューム・ゲーエムベーハー 真空ポンプ及びそのような真空ポンプを製造する方法
JP7534466B2 (ja) 2022-11-14 2024-08-14 プファイファー・ヴァキューム・テクノロジー・アクチエンゲゼルシャフト ホルベックポンプ段の吸引能力が改善された真空ポンプ
EP4194700A1 (de) * 2023-04-18 2023-06-14 Pfeiffer Vacuum Technology AG Vakuumpumpe mit einer holweck-pumpstufe mit veränderlicher holweck-geometrie
EP4273405A1 (de) * 2023-09-20 2023-11-08 Pfeiffer Vacuum Technology AG Vakuumpumpe mit einer holweck-pumpstufe mit veränderlicher holweck-geometrie

Also Published As

Publication number Publication date
KR20120115204A (ko) 2012-10-17
JP5758303B2 (ja) 2015-08-05
KR101773632B1 (ko) 2017-08-31
CN102667169B (zh) 2016-03-02
CN102667169A (zh) 2012-09-12
JPWO2011070856A1 (ja) 2013-04-22

Similar Documents

Publication Publication Date Title
JP5758303B2 (ja) ネジ溝排気部の筒形固定部材と、これを使用した真空ポンプ
JP5763660B2 (ja) 排気ポンプ
KR101839162B1 (ko) 배기 펌프
KR102106658B1 (ko) 로터, 및, 이 로터를 구비한 진공 펌프
JP5897005B2 (ja) 真空ポンプとそのロータ
WO2012105116A1 (ja) 真空ポンプの回転体と、これに対向設置する固定部材、及び、これらを備えた真空ポンプ
US9879553B2 (en) Fixed blade assembly usable in exhaust pump, and exhaust pump provided with same
JP2006090231A (ja) ターボ分子ポンプ固定翼の製造方法および真空ポンプ
WO2011102006A1 (ja) 真空ポンプ
JP2015206345A (ja) 真空ポンプ
WO2008012565A1 (en) Molecular drag pumping mechanism

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080053910.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10835778

Country of ref document: EP

Kind code of ref document: A1

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10835778

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011545140

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127003659

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10835778

Country of ref document: EP

Kind code of ref document: A1