EP3647599B1 - Vakuumpumpe, scrollpumpe und herstellungsverfahren für solche - Google Patents

Vakuumpumpe, scrollpumpe und herstellungsverfahren für solche Download PDF

Info

Publication number
EP3647599B1
EP3647599B1 EP19201749.9A EP19201749A EP3647599B1 EP 3647599 B1 EP3647599 B1 EP 3647599B1 EP 19201749 A EP19201749 A EP 19201749A EP 3647599 B1 EP3647599 B1 EP 3647599B1
Authority
EP
European Patent Office
Prior art keywords
pump
pressure sensor
spiral
scroll
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19201749.9A
Other languages
English (en)
French (fr)
Other versions
EP3647599A2 (de
EP3647599A3 (de
Inventor
Michael Willig
Jan Hofmann
Jonas Becker
Gernot Bernhardt
Verena Wangorsch
Stefan Kallenborn
Wolfgang Söhngen
Heiko Schaefer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum GmbH
Original Assignee
Pfeiffer Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=68210710&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3647599(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to EP20200624.3A priority Critical patent/EP3754200B1/de
Priority to EP19201749.9A priority patent/EP3647599B1/de
Application filed by Pfeiffer Vacuum GmbH filed Critical Pfeiffer Vacuum GmbH
Publication of EP3647599A2 publication Critical patent/EP3647599A2/de
Publication of EP3647599A3 publication Critical patent/EP3647599A3/de
Priority to JP2020160698A priority patent/JP7220692B2/ja
Priority to EP22156933.8A priority patent/EP3974655B1/de
Priority to EP20198997.7A priority patent/EP3739166B1/de
Priority to EP22199874.3A priority patent/EP4095387A3/de
Priority to US17/063,912 priority patent/US11773849B2/en
Publication of EP3647599B1 publication Critical patent/EP3647599B1/de
Application granted granted Critical
Priority to JP2022178824A priority patent/JP2023025010A/ja
Priority to US18/449,111 priority patent/US20230383750A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5813Cooling the control unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/50Pumps with means for introducing gas under pressure for ballasting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/60Assembly methods
    • F04C2230/605Balancing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/805Fastening means, e.g. bolts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/808Electronic circuits (e.g. inverters) installed inside the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/81Sensor, e.g. electronic sensor for control or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/18Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/19Temperature

Definitions

  • a vacuum system with a high vacuum pump and a backing pump is in the EP 3 067 560 A1 disclosed.
  • the further state of the art US 9 341 187 B2 , the US 2014/219846 A1 , the EP 1 918 585 A2 and the JP 2003 120529 A .
  • a vacuum system usually already includes a pressure sensor, for example in a vacuum chamber.
  • a pressure sensor for example in a vacuum chamber.
  • the integrated pressure sensor enables the scroll pump to monitor itself and this does not have to be carried out using a complex process control system.
  • a state of wear of the pump can be monitored as a function of a measured pressure.
  • the pressure sensor is integrated into a control of the vacuum system.
  • the pressure sensor can preferably also be integrated into a control of the scroll pump.
  • the scroll pump can thus be better controlled or regulated, on the basis of the now known pressure in the scroll pump.
  • the pressure sensor is provided for measuring a suction pressure of the pump or a pressure between two pump-active spiral walls or between two spiral walls in a pump-active spiral section. Both allow an even more precise monitoring of the pumping process and a wear condition of the pump, in particular a sealing element such as a tip seal, or the spiral walls.
  • the pressure sensor is screwed into a component of the scroll pump.
  • a blind plug can simply be provided, for example, if an integrated pressure sensor is not absolutely necessary for the user's process.
  • an integrated pressure sensor can easily be retrofitted in this case.
  • the component into which the pressure sensor is screwed can be, for example, a housing element and / or a fixed spiral component.
  • the pressure sensor can be screwed axially into a fixed spiral component.
  • the pressure sensor is arranged in a cooling air flow of a cooling device, for example a fan, of the pump.
  • the pressure sensor can thus be cooled directly in an advantageous manner, which improves its service life and measurement accuracy.
  • the pressure sensor can preferably be arranged at least essentially at the beginning of the cooling air flow, namely adjacent to a fan and / or within an air guide hood.
  • the Fig. 1 shows a vacuum pump designed as a scroll pump 20.
  • This comprises a first housing element 22 and a second housing element 24, the second housing element 24 having a pump-active structure, namely a spiral wall 26.
  • the second housing element 24 thus forms a stationary spiral component of the scroll pump 20.
  • the spiral wall 26 acts with a spiral wall 28 of a movable one Spiral component 30 together, wherein the movable spiral component 30 is excited eccentrically to generate a pumping effect via an eccentric shaft 32.
  • a gas to be pumped is conveyed from an inlet 31, which is defined in the first housing element 22, to an outlet 33, which is defined in the second housing element 24.
  • the eccentric shaft 32 is driven by a motor 34 and supported by two roller bearings 36. It comprises an eccentric pin 38 which is arranged eccentrically to its axis of rotation and which transmits its eccentric deflection to the movable spiral component 30 via a further roller bearing 40.
  • an in Fig. 1 The left-hand end of a corrugated bellows 42 is fastened, the right-hand end of which is fastened to the first housing element 22. The left-hand end of the corrugated bellows 42 follows the deflection of the movable spiral component 30.
  • the scroll pump 20 comprises a fan 44 for generating a flow of cooling air.
  • an air guide hood 46 is provided, to which the fan 44 is also attached.
  • the air guide hood 46 and the housing elements 22 and 24 are shaped in such a way that the cooling air flow essentially flows around the entire pump housing and thus achieves a good cooling performance.
  • the scroll pump 20 further comprises an electronics housing 48 in which a control device and power electronics components for driving the motor 34 are arranged.
  • the electronics housing 48 also forms a base for the pump 20. Between the electronics housing 48 and the first housing element 22, a channel 50 is visible through which an air flow generated by the fan 44 is guided along the first housing element 22 and also the electronics housing 48, so that both are effectively cooled will.
  • the electronics housing 48 is in Fig. 2 illustrated in more detail. It comprises several separate chambers 52. Electronic components can be encapsulated in these chambers 52 and are therefore advantageously shielded.
  • the smallest possible amount of the potting material can be used when potting the electronic components.
  • the potting material can first be introduced into the chamber 52 and then the electronic component can be pressed in.
  • the chambers 52 can so be designed so that different variants of the electronic components, in particular different assembly variants of a circuit board, can be arranged in the electronics housing 48 and / or can be encapsulated.
  • individual chambers 52 can also remain empty, that is to say have no electronic components. In this way, a so-called modular system for different types of pumps can be implemented in a simple manner.
  • the potting material can in particular be designed to be thermally conductive and / or electrically insulating.
  • a plurality of walls or ribs 54 are formed which define a plurality of channels 50 for guiding a flow of cooling air.
  • the chambers 52 also allow particularly good heat dissipation from the electronic components arranged in them, in particular in connection with a heat-conducting potting material, and to the ribs 54. The electronic components can thus be cooled particularly effectively and their service life is improved.
  • FIG. 3 the scroll pump 20 is shown in perspective as a whole, but the air guide hood 46 is hidden so that in particular the fixed spiral component 24 and the fan 44 are visible.
  • a plurality of recesses 56 arranged in a star shape are provided on the fixed spiral component 24, each of which defines ribs 58 arranged between the recesses 56.
  • the cooling air flow generated by the fan 44 leads through the recesses 56 and past the ribs 58 and thus cools the stationary spiral component 24 particularly effectively.
  • the cooling air flow first flows around the stationary spiral component 24 and only then the first housing element 22 or the electronics housing 48. This arrangement is particularly advantageous since the active pumping area of the pump 20 generates a lot of heat due to the compression during operation and is therefore primarily cooled here .
  • Fig. 4 shows the pressure sensor 60 and its arrangement on the fixed spiral component 24 in a cross-sectional view.
  • a channel 62 is provided for the pressure sensor 60, which in this case opens into a non-pumping external area between the spiral walls 26 and 28 of the stationary or movable spiral components 24 and 30.
  • the pressure sensor thus measures a suction pressure of the pump.
  • a pressure between the spiral walls 26 and 28 can also be measured in an active pumping area.
  • intermediate pressures can also be measured, for example.
  • the pressure sensor 60 allows, for example by determining a compression, in particular a recognition of a wear condition of the pump-active components, in particular a sealing element 64 also referred to as a tip seal.
  • the measured suction pressure can also be used to regulate the pump (including pump speed).
  • a suction pressure can be specified by the software and a suction pressure can be set by varying the pump speed. It is also conceivable that depending on measured pressure, a wear-related pressure increase can be compensated by increasing the speed. This means that a tip seal change can be postponed or longer change intervals can be implemented.
  • the data from the pressure sensor 60 can therefore generally be used, for example, to determine wear, for situational control of the pump, for process control, etc.
  • the pressure sensor 60 can be optionally provided, for example. Instead of the pressure sensor 60, a blind plug for closing the channel 62 can be provided, for example. A pressure sensor 60 can then be retrofitted, for example, if necessary. Particularly with regard to retrofitting, but also generally advantageous, it can be provided that the pressure sensor 60 is automatically recognized when it is connected to the control device of the pump 20.
  • the pressure sensor 60 is arranged in the cooling air flow of the fan 44. As a result, it is also advantageously cooled. This also has the consequence that no special measures have to be taken for a higher temperature resistance of the pressure sensor 60 and consequently a cost-effective sensor can be used.
  • the pressure sensor 60 is arranged in particular in such a way that the external dimensions of the pump 20 are not increased by it and the pump 20 consequently remains compact.
  • the movable spiral component 30 is shown in different views.
  • the spiral structure of the spiral wall 28 is particularly clearly visible.
  • the spiral component 30 comprises a base plate 66, from which the spiral wall 28 extends.
  • FIG Fig. 6 A side of the base plate 66 facing away from the spiral wall 28 is shown in FIG Fig. 6 visible.
  • the base plate includes several, among other things
  • Fastening recesses for example for fastening the bearing 40 and the corrugated bellows 42, which are shown in Fig. 1 are visible.
  • the holding projections 68 are provided on the outside of the base plate 66.
  • the holding projections 68 extend radially outward.
  • the holding projections 68 all have the same radial height.
  • a first intermediate section 70 of the circumference of the base plate 66 extends between two of the retaining projections 68.
  • This first intermediate section 70 has a greater radial height than a second intermediate section 72 and than a third intermediate section 74.
  • the first intermediate section 70 is an outermost 120 ° section the spiral wall 28 arranged opposite.
  • the base plate 66 and the spiral wall 28 are preferably manufactured from a solid material so as to be tensioned together, i. H. the spiral wall 28 and the base plate 66 are formed in one piece.
  • the spiral component 30 can be clamped directly on the holding projections 68.
  • the in Fig. 6 The side of the base plate 66 shown can be machined, in particular the fastening recesses are introduced.
  • the spiral wall 28 can also be produced from the solid material by cutting within the framework of this clamping.
  • the spiral component 30 can be clamped, for example, with a clamping device 76, as shown in FIG Fig. 7 is shown.
  • a clamping device 76 has a hydraulic three-jaw chuck 78 for direct contact with the three retaining projections 68.
  • the clamping device 76 has a continuous recess 80, through which a tool access to the spiral component 30, in particular to the in Fig. 6 shown side of the same, is enabled. Machining operations can thus be carried out from both sides during a clamping, in particular at least one finishing machining of the spiral wall 28 and the introduction of fastening recesses.
  • the contour of the holding projections 68 and the clamping pressure of the clamping device 76 are preferably selected so that no critical deformations of the spiral component 30 take place.
  • the three holding projections 68 are preferably selected in such a way that the outer dimension, that is to say the maximum diameter of the spiral component 30, is not increased. Thus, on the one hand, material and, on the other hand, machining volume can be saved.
  • the holding projections 68 are in particular designed and / or arranged in such an angular position that the screw connection of the corrugated bellows 42 is accessible.
  • the number of screwing points of the corrugated bellows 42 is preferably not the same as the number of retaining projections 68 on the movable spiral component 30.
  • FIG. 9 A similar section of the image is shown in Fig. 9 shown for another scroll pump, which is preferably the same series of pump 20 of the Fig. 1 listened to.
  • the the Fig. 9 The underlying pump has, in particular, different dimensions and therefore requires a different balance weight 82.
  • the eccentric shafts 32, the counterweights 82 and the housing elements 22 are dimensioned such that only one certain type of the two types of balance weights 82 shown can be mounted on the eccentric shaft 32.
  • the balance weights 82 are in the Figures 8 and 9 dimensioned together with certain dimensions of the installation space provided for them in order to make it clear that the balance weight 82 of the Fig. 9 cannot be mounted on the eccentric shaft 32 and vice versa. It goes without saying that the dimensions given are given purely by way of example.
  • the balance weight 82 of the Fig. 8 is made shorter in the corresponding direction, namely 9 mm long, so it can be installed without any problems.
  • the balance weight 82 of the Fig. 9 each measured from the mounting hole has a longitudinal extension of 11 mm.
  • the balance weight 82 is the Fig. 9 not on the eccentric shaft 32 of the Fig. 8 mountable, since the shaft shoulder 86 collides with the balance weight 82 during an attempted installation or since the balance weight 82 of the Fig. 9 not completely in contact with the eccentric shaft 82 of the Fig. 8 can be brought. Because the balance weight 82 of the Fig.
  • the balance weights 82 are generally designed in such a way that confusion of the balance weight with those of other sizes is avoided during assembly and / or during servicing.
  • the counterweights are preferably attached using through bolts. Similar counterweights of different pump sizes are designed in such a way that the wrong counterweight is prevented from being installed due to adjacent shoulders on the shaft, the positions of the thread and through-hole of the counterweight and shoulders within the housing.
  • the operating handle 92 is fastened to a rotatable element 106 of the valve 90 with three fastening screws 104, which are arranged in a respective bore 108 and of which in the selected sectional view of FIG Fig. 11 only one is visible.
  • the rotatable element 106 is rotatably fastened to the second housing element 24 with a fastening screw (not shown) that extends through a bore 110.
  • valve 90 To actuate the valve 90, a torque applied manually to the actuating handle 92 is transmitted to the rotatable element 106 and the latter is thus rotated. Thus, the bore 98 comes into communication with an interior of the housing.
  • Three switching positions are provided for the valve 90, namely those in Fig. 10 shown, which is a locking position, and each a right and left rotated position in which the bore 98 is in communication with different areas of the interior of the housing.
  • the bores 108 and 110 are closed by a cover 112.
  • the sealing effect of the gas ballast valve 90 is based on axially pressed O-rings. When the valve 90 is actuated, a relative movement is exerted on the O-rings. If dirt, such as particles, gets to the surface of an O-ring, this harbors the risk of premature failure.
  • the cover 112 prevents dirt and the like from penetrating the screws of the handle 92.
  • This cover 112 is attached via an interference fit of three centering elements. Specifically, the cover 112 has an insertion pin, not shown, for each bore 108, with which the cover 112 is held in the bores 108.
  • the bores 108 and 110 and the fastening screws arranged therein are thus protected from contamination.
  • contamination can enter the Valve mechanics are effectively minimized and so the service life of the valve can be improved.
  • the plastic handle with an overmolded stainless steel base part ensures good corrosion resistance and low manufacturing costs. Furthermore, the plastic of the handle remains cooler due to the limited heat conduction and is therefore easier to use.
  • This control enables a minimum noise level to be achieved when the pump is cold, that there is a lower noise level - corresponding to the pump noise - in the final pressure or at low load, that optimal cooling of the pump is achieved with a simultaneously low noise level, and that before a temperature-related reduction in output, the maximum cooling output is ensured.
  • the maximum fan speed can be adaptable, in particular depending on the situation. For example, to achieve a high level of water vapor tolerance, it can be expedient to reduce the maximum fan speed.
  • FIG. 12 the movable scroll member 30 is partial and opposite Fig. 5 shown enlarged.
  • the spiral wall 28 At its end facing away from the base plate 66 and facing a base plate of the fixed spiral component 24, not shown here, the spiral wall 28 has a groove 114 for inserting a sealing element 64, also not shown here, namely a so-called tip seal.
  • a sealing element 64 also not shown here, namely a so-called tip seal.
  • the arrangement in the operating state is, for example, in Fig. 4 clearly visible.
  • the first spiral portion 120 extends from in Fig. 12 indicated location to the outer end of the spiral wall 28, as it is for example also in Fig. 5 is indicated.
  • the first spiral section 120 extends here, for example, over approximately 163 °.
  • the first spiral section 120 forms an outer end section of the spiral wall 28.
  • the first spiral section 120 is at least partially, in particular completely, arranged in a non-pumping area of the spiral wall 28.
  • the first spiral section 120 can at least substantially completely fill the non-pumping area of the spiral wall 28.
  • the first intermediate section 70 can preferably be arranged between two holding projections 68, which has a greater radial height than other intermediate sections 72 and 74, opposite the first spiral section 120.
  • One introduced through the thicker side wall 118 The imbalance can thus be compensated for by the greater weight of the first intermediate section 70.
  • the movable spiral component should generally preferably have a low dead weight. Therefore, the spiral walls are generally made very thin. Furthermore, with thinner walls, the pump dimensions are smaller (significant outside diameter). As a result, the side walls of the tip seal groove are particularly thin. The ratio of the TipSeal wall thickness to the total spiral wall thickness is e.g. 0.17 at the most. Due to the tip seal groove, however, the spiral wall tip is very sensitive to impacts during handling, such as during assembly or when changing the tip seal. Light bumps, e.g. B. Also during transport, the side wall of the groove can be pushed inwards so that the tip seal can no longer be fitted.
  • the groove has an asymmetrical wall thickness, in particular an outwardly local thickening of the spiral wall.
  • This area is preferably not pump-active and can therefore be manufactured with a greater tolerance.
  • a thickening of the spiral wall is preferably not necessary at other points of the component, since the wall is protected by protruding elements of the component.
  • the plug connection 126, 128 is separated from the air flow 124 by a partition 130.
  • the air flow 124 which may contain dust or similar contaminants, for example, is thus kept away from the plug connection 126, 128.
  • the plug connection 126, 128 itself is protected and, on the other hand, it is prevented that the dirt gets through the opening provided for the socket 126 in the electronics housing 48 into the latter and to the control device and / or power electronics.
  • the partition 130 ensures that the air that is sucked in does not reach the electronics via the opening in the plug-in connector 126, 128.
  • the fan cable is led through the V-shaped notch 132 laterally through the partition wall 130.
  • the notch 132 has a lateral offset to the plug connector 126, 128, as a result of which a labyrinth effect and thus a further reduction in the leakage of cooling air to the plug connector 126, 128 can be achieved.
  • a partition 130 within the air guide hood 46 also improves the air guidance in the channel 50 between the electronics housing 48 and the pump housing 22. There is less turbulence and back pressure for the fan 44.
  • the Fig. 15 shows a contact area between the first housing element 22 and the second housing element or fixed spiral component 24 in a schematic sectional illustration.
  • the second housing element 24 is partially inserted into the first housing element 22 with a transition fit 134. Sealing by means of an O-ring 136 is provided here.
  • the transition fit 134 is also used, for example, to center the second housing element 24 with respect to the first housing element 22.
  • the second housing element 24 For maintenance purposes, for example to replace the sealing element 64, the second housing element 24 has to be dismantled, for example. It can happen that the transition fit 134 or the O-ring 136 jam if the second housing element 24 is not pulled out just enough.
  • a forcing thread 138 is provided to solve this problem.
  • a second forcing thread can preferably also be provided at least essentially radially opposite. To loosen the second housing element 24 as straight and guided as possible, a screw can be screwed into the forcing thread 38 until the screw protrudes out of this and comes into contact with the first housing element 22. By screwing in further, the housing elements 22 and 24 are pressed away from one another.
  • the fastening screws 142 provided for fastening the second housing element 24 to the first housing element 22 can be used for pressing off, as they are, for example, in FIGS Fig. 1 and 3 are designated.
  • the forcing thread 138 preferably has the same thread type as the fastening thread provided for the fastening screws 142.
  • a countersink 140 is provided on the second housing element 22, which is assigned to the forcing thread 138. If abrasion particles are carried out when the screw is screwed into the forcing thread 138, these will collect in the depression 140. This prevents such abrasion particles from preventing, for example, the housing elements 22 and 24 from completely resting against one another.
  • the air guide hood 46 has at least one, in particular additional, in Fig. 14 The dome 144 shown, which allows the air guide hood 46 to be mounted only when the screws used for pressing, in particular the fastening screws 142, have been removed again.
  • the air guide hood 46 with the dome 144 is designed in such a way that it would collide with a screw head of a jack screw possibly screwed into the forcing thread 138, so that the air guide hood 46 could not be fully assembled.
  • the air guide hood 46 can only be installed with the jackscrews completely dismantled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Vakuumsystem mit einer Hochvakuumpumpe und einer als Scrollpumpe ausgebildeten Vorpumpe.
  • Ein Vakuumsystem mit einer Hochvakuumpumpe und einer Vorpumpe ist in der EP 3 067 560 A1 offenbart. Weiteren Stand der Technik bilden die US 9 341 187 B2 , die US 2014/219846 A1 , die EP 1 918 585 A2 und die JP 2003 120529 A .
  • Es ist eine Aufgabe der Erfindung, die Anwendung einer Scrollpumpe in einem Vakuumsystem zu vereinfachen. Diese Aufgabe wird durch eine Vakuumsystem nach Anspruch 1 gelöst und insbesondere dadurch, dass die Pumpe einen integrierten Drucksensor umfasst.
  • Ein Vakuumsystem umfasst meist bereits einen Drucksensor, zum Beispiel in einer Vakuumkammer. Durch die Integration des Drucksensors in die Scrollpumpe kann diese nun weitgehend eigenständig und ohne aufwändige Verbindung zum Drucksensor des Vakuumsystems betrieben werden. Umgekehrt kann ein zusätzlicher Drucksensor im Vakuumsystem beispielsweise entfallen. Generell ermöglicht der integrierte Drucksensor, dass sich die Scrollpumpe selbst überwacht und dies nicht aufwendig durch ein Prozessleitsystem durchgeführt werden muss. So kann insbesondere ein Verschleißzustand der Pumpe abhängig von einem gemessenen Druck überwacht werden.
  • Erfindungsgemäß ist der Drucksensor in eine Steuerung des Vakuumsystems eingebunden.
  • Für den erfindungsgemäß vorgesehenen Fall, dass die Scrollpumpe als Vorpumpe für eine Hochvakuumpumpe vorgesehen ist, kann durch den integrierten Drucksensor außerdem eine erhöhte Betriebssicherheit gewährleistet werden. So werden erfindungsgemäß bei einem zu hohen Druck in der Scrollpumpe die Hochvakuumpumpe abgeschaltet und/oder zwischengeschaltete Ventile geschlossen. Die Hockvakuumpumpe kann so zuverlässig vor einen Betrieb bei zu hohem Druck geschützt werden.
  • Vorzugsweise kann der Drucksensor zusätzlich in eine Steuerung der Scrollpumpe eingebunden sein. Die Scrollpumpe kann somit besser gesteuert bzw. geregelt werden, und zwar auf Basis des nun bekannten Drucks in der Scrollpumpe.
  • Gemäß einer Ausführungsform ist vorgesehen, dass der Drucksensor zum Messen eines Ansaugdrucks der Pumpe oder eines Drucks zwischen zwei pumpaktiven Spiralwänden bzw. zwischen zwei Spiralwänden in einem pumpaktiven Spiralabschnitt vorgesehen ist. Beides ermöglicht eine noch genauere Überwachung des Pumpprozesses und eines Verschleißzustandes der Pumpe, insbesondere eines Dichtungselements, wie etwa eines Tip Seals, oder der Spiralwände.
  • Bei einer weiteren vorteilhaften Ausführungsform ist der Drucksensor in ein Bauteil der Scrollpumpe eingeschraubt. Dies ermöglicht einerseits einen einfachen Aufbau und andererseits einen flexiblen Vertrieb der Scrollpumpe. Anstelle des integrierten Drucksensors kann beispielsweise einfach ein Blindstopfen vorgesehen sein, wenn für den Prozess des Anwenders kein integrierter Drucksensor unbedingt nötig ist. Gleichwohl lässt sich in diesem Fall ein integrierter Drucksensor auf einfache Weise nachrüsten. Das Bauteil, in welches der Drucksensor eingeschraubt ist, kann beispielsweise ein Gehäuseelement und/oder festes Spiralbauteil sein. Insbesondere kann der Drucksensor axial in ein festes Spiralbauteil eingeschraubt sein.
  • Gemäß einer Weiterbildung kann vorgesehen sein, dass der Drucksensor in einem Kühlluftstrom einer Kühleinrichtung, beispielsweise eines Lüfters, der Pumpe angeordnet ist. Der Drucksensor kann so auf vorteilhafte Weise direkt gekühlt werden, was seine Lebensdauer und Messgenauigkeit verbessert. Vorzugsweise kann der Drucksensor zumindest im Wesentlichen am Anfang des Kühlluftstromes, nämlich benachbart zu einem Lüfter und/oder innerhalb einer Luftleithaube angeordnet sein.
  • Grundsätzlich können zum Beispiel auch mehrere Drucksensoren vorgesehen sein, die in die Scrollpumpe integriert sind. Hierdurch können insbesondere Steuerung und Verschleißüberwachung noch weiter verbessert werden.
  • Die Erfindung wird nachfolgend lediglich beispielhaft anhand der schematischen Zeichnung erläutert.
  • Fig. 1
    zeigt eine Scrollpumpe in einer Schnittansicht.
    Fig. 2
    zeigt ein Elektronikgehäuse der Scrollpumpe.
    Fig. 3
    zeigt die Scrollpumpe in perspektivischer Ansicht, wobei ausgewählte Elemente freigestellt sind.
    Fig. 4
    zeigt einen in die Pumpe integrierten Drucksensor.
    Fig. 5
    zeigt ein bewegliches Spiralbauteil der Pumpe.
    Fig. 6
    zeigt das Spiralbauteil von einer anderen, der in Fig. 5 sichtbaren Seite gegenüberliegenden Seite.
    Fig. 7
    zeigt eine Einspannvorrichtung für ein Spiralbauteil.
    Fig. 8 und 9
    zeigen jeweils eine Exzenterwelle mit einem Ausgleichsgewicht von unterschiedlichen Scrollpumpen.
    Fig. 10
    zeigt ein Gasballastventil mit einem Betätigungsgriff in perspektivischer Ansicht.
    Fig. 11
    zeigt das Ventil der Fig. 10 in einer Schnittansicht.
    Fig. 12
    zeigt einen Teilbereich des Spiralbauteils der Fig. 5 und 6.
    Fig. 13
    zeigt einen Querschnitt des Spiralbauteils durch die Spiralwand in einem äußeren Endbereich.
    Fig. 14
    zeigt eine Luftleithaube der Scrollpumpe der Fig. 1 in perspektivischer Ansicht.
    Fig. 15
    zeigt ein Abdrückgewinde in einer Schnittdarstellung.
  • Die Fig. 1 zeigt eine als Scrollpumpe 20 ausgebildete Vakuumpumpe. Diese umfasst ein erstes Gehäuseelement 22 und ein zweites Gehäuseelement 24, wobei das zweite Gehäuseelement 24 eine pumpaktive Struktur aufweist, nämlich eine Spiralwand 26. Das zweite Gehäuseelement 24 bildet also ein feststehendes Spiralbauteil der Scrollpumpe 20. Die Spiralwand 26 wirkt mit einer Spiralwand 28 eines beweglichen Spiralbauteils 30 zusammen, wobei das bewegliche Spiralbauteil 30 zum Erzeugen einer Pumpwirkung über eine Exzenterwelle 32 exzentrisch erregt wird. Dabei wird ein zu pumpendes Gas von einem Einlass 31, welcher im ersten Gehäuseelement 22 definiert ist, zu einem Auslass 33 gefördert, welcher im zweiten Gehäuseelement 24 definiert ist.
  • Die Exzenterwelle 32 ist durch einen Motor 34 angetrieben und durch zwei Wälzlager 36 gelagert. Sie umfasst einen exzentrisch zu ihrer Rotationsachse angeordneten Exzenterzapfen 38, der über ein weiteres Wälzlager 40 seine exzentrische Auslenkung an das bewegliche Spiralbauteil 30 überträgt. An dem beweglichen Spiralbauteil 30 ist zwecks Abdichtung außerdem ein in Fig. 1 linksseitiges Ende eines Wellbalgs 42 befestigt, dessen rechtsseitiges Ende an dem ersten Gehäuseelement 22 befestigt ist. Das linksseitige Ende des Wellbalgs 42 folgt der Auslenkung des beweglichen Spiralbauteils 30.
  • Die Scrollpumpe 20 umfasst einen Lüfter 44 zur Erzeugung eines Kühlluftstromes. Für diesen Kühlluftstrom ist eine Luftleithaube 46 vorgesehen, an der der Lüfter 44 auch befestigt ist. Die Luftleithaube 46 und die Gehäuseelemente 22 und 24 sind derart geformt, dass der Kühlluftstrom im Wesentlichen das gesamte Pumpengehäuse umströmt und somit eine gute Kühlleistung erreicht.
  • Die Scrollpumpe 20 umfasst ferner ein Elektronikgehäuse 48, in dem eine Steuerungseinrichtung und Leistungselektronikkomponenten zum Antrieb des Motors 34 angeordnet sind. Das Elektronikgehäuse 48 bildet außerdem einen Standfuß der Pumpe 20. Zwischen dem Elektronikgehäuse 48 und dem ersten Gehäuseelement 22 ist ein Kanal 50 sichtbar, durch den ein vom Lüfter 44 erzeugter Luftstrom am ersten Gehäuseelement 22 und auch am Elektronikgehäuse 48 entlanggeführt ist, sodass beide wirksam gekühlt werden.
  • Das Elektronikgehäuse 48 ist in Fig. 2 näher veranschaulicht. Es umfasst mehrere gesonderte Kammern 52. In diesen Kammern 52 können Elektronikkomponenten vergossen werden und sind somit vorteilhaft abgeschirmt. Bevorzugt kann beim Vergießen der Elektronikkomponenten eine möglichst minimale Menge des Vergussmaterials verwendet werden. Zum Beispiel kann zuerst das Vergussmaterial in die Kammer 52 eingebracht werden und anschließend die Elektronikkomponente hineingedrückt werden. Vorzugsweise können die Kammern 52 so ausgeführt sein, dass verschiedene Varianten der Elektronikkomponenten, insbesondere verschiedene Bestückungsvarianten einer Platine, in dem Elektronikgehäuse 48 angeordnet werden können und/oder vergossen werden können. Für bestimmte Varianten können dabei auch einzelne Kammern 52 leer bleiben, also keine Elektronikkomponente aufweisen. So kann auf einfache Weise ein sogenanntes Baukastensystem für verschiedene Pumpentypen realisiert werden. Das Vergussmaterial kann insbesondere wärmeleitend und/oder elektrisch isolierende ausgebildet sein.
  • An einer in Bezug auf Fig. 2 hinteren Seite des Elektronikgehäuses 48 sind mehrere Wände oder Rippen 54 ausgebildet, die mehrere Kanäle 50 zum Leiten eines Kühlluftstromes definieren. Die Kammern 52 ermöglichen außerdem eine besonders gute Wärmeabfuhr von den in ihnen angeordneten Elektronikkomponenten, insbesondere in Verbindung mit einem wärmeleitenden Vergussmaterial, und hin zu den Rippen 54. Die Elektronikkomponenten lassen sich somit besonders wirksam kühlen und ihre Lebensdauer wird verbessert.
  • In Fig. 3 ist die Scrollpumpe 20 als Ganzes perspektivisch dargestellt, wobei jedoch die Luftleithaube 46 ausgeblendet ist, sodass insbesondere das feststehende Spiralbauteil 24 und der Lüfter 44 sichtbar sind. An dem feststehenden Spiralbauteil 24 sind mehrere, sternförmig angeordnete Ausnehmungen 56 vorgesehen, die jeweils zwischen den Ausnehmungen 56 angeordnete Rippen 58 definieren. Der vom Lüfter 44 erzeugte Kühlluftstrom führt durch die Ausnehmungen 56 und vorbei an den Rippen 58 und kühlt so das feststehende Spiralbauteil 24 besonders wirksam. Dabei umströmt der Kühlluftstrom zunächst das feststehende Spiralbauteil 24 und erst anschließend das erste Gehäuseelement 22 bzw. das Elektronikgehäuse 48. Diese Anordnung ist besonders vorteilhaft, da der pumpaktive Bereich der Pumpe 20 aufgrund der Kompression im Betrieb eine hohe Wärmeentwicklung aufweist und daher hier vorrangig gekühlt wird.
  • Die Pumpe 20 umfasst einen in diese integrierten Drucksensor 60. Dieser ist innerhalb der Luftleithaube 46 angeordnet und in das feststehende Spiralbauteil 24 eingeschraubt. Der Drucksensor 60 ist über eine nur teilweise dargestellte Kabelverbindung mit dem Elektronikgehäuse 48 und einer darin angeordneten Steuerungseinrichtung verbunden. Dabei ist der Drucksensor 60 in die Steuerung der Scrollpumpe 20 eingebunden. Zum Beispiel kann der Motor 34, der in Fig. 1 sichtbar ist, in Abhängigkeit von einem vom Drucksensor 60 gemessenen Druck angesteuert werden. Z.B. beim Einsatz der Pumpe 20 in einem Vakuumsystem als Vorpumpe für eine Hochvakuumpumpe kann beispielsweise die Hochvakuumpumpe nur dann eingeschaltet werden, wenn der Drucksensor 60 einen ausreichend niedrigen Druck misst. So kann die Hochvakuumpumpe vor einer Beschädigung geschützt werden.
  • Fig. 4 zeigt den Drucksensor 60 und seine Anordnung am feststehenden Spiralbauteil 24 in einer Querschnittsdarstellung. Für den Drucksensor 60 ist ein Kanal 62 vorgesehen, der hier in einen nicht pumpaktiven Außenbereich zwischen den Spiralwänden 26 und 28 der feststehenden bzw. beweglichen Spiralbauteile 24 und 30 mündet. Somit misst der Drucksensor einen Ansaugdruck der Pumpe. Alternativ oder zusätzlich kann beispielsweise auch ein Druck zwischen den Spiralwänden 26 und 28 in einem pumpaktiven Bereich gemessen werden. Je nach Position des Drucksensors 60 bzw. des Kanals 62 können also zum Beispiel auch Zwischendrücke gemessen werden.
  • Der Drucksensor 60 erlaubt, zum Beispiel über die Ermittlung einer Kompression, insbesondere eine Erkennung eines Verschleißzustandes der pumpaktiven Komponenten, insbesondere eines auch als Tip Seal bezeichneten Dichteelements 64. Weiterhin kann der gemessene Ansaugdruck auch zu einer Regelung der Pumpe verwendet werden (u. a. Pumpendrehzahl). So kann beispielsweise ein Ansaugdruck softwareseitig vorgegeben werden und durch Variation der Pumpendrehzahl ein Ansaugdruck eingestellt werden. Auch ist denkbar, dass abhängig vom gemessenen Druck ein verschleißbedingter Druckanstieg durch Drehzahlsteigerung kompensiert werden kann. Somit kann ein Tip Seal-Wechsel verschoben werden bzw. größere Wechselintervalle realisiert werden. Die Daten des Drucksensors 60 können also generell z.B. zur Verschleißbestimmung, zur situativen Steuerung der Pumpe, zur Prozesskontrolle, etc. verwendet werden.
  • Der Drucksensor 60 kann zum Beispiel optional vorgesehen sein. Anstelle des Drucksensors 60 kann beispielsweise ein Blindstopfen zum Verschließen des Kanals 62 vorgesehen sein. Ein Drucksensor 60 kann dann beispielsweise bei Bedarf nachgerüstet werden. Insbesondere im Hinblick auf die Nachrüstung, aber auch generell vorteilhaft, kann vorgesehen sein, dass der Drucksensor 60 beim Anschließen an die Steuerungseinrichtung der Pumpe 20 automatisch erkannt wird.
  • Der Drucksensor 60 ist im Kühlluftstrom des Lüfters 44 angeordnet. Hierdurch wird auch er vorteilhaft gekühlt. Dies hat außerdem zur Folge, dass keine besonderen Maßnahmen für eine höhere Temperaturbeständigkeit des Drucksensors 60 zu treffen sind und folglich ein kostengünstiger Sensor eingesetzt werden kann.
  • Außerdem ist der Drucksensor 60 insbesondere derart angeordnet, dass die äußeren Abmessungen der Pumpe 20 durch ihn nicht vergrößert sind und die Pumpe 20 folglich kompakt bleibt.
  • In den Fig. 5 und 6 ist das bewegliche Spiralbauteil 30 in verschiedenen Ansichten gezeigt. In Fig. 5 ist die spiralförmige Struktur der Spiralwand 28 besonders gut sichtbar. Neben der Spiralwand 28 umfasst das Spiralbauteil 30 eine Grundplatte 66, ausgehend von der sich die Spiralwand 28 erstreckt.
  • Eine der Spiralwand 28 abgewandte Seite der Grundplatte 66 ist in Fig. 6 sichtbar. An dieser Seite umfasst die Grundplatte unter anderem mehrere
  • Befestigungsausnehmungen, etwa zur Befestigung des Lagers 40 und des Wellbalgs 42, die in Fig. 1 sichtbar sind.
  • Außen an der Grundplatte 66 sind drei über den Umfang der Grundplatte 66 beabstandete und gleichmäßig über den Umfang verteilte Haltevorsprünge 68 vorgesehen. Die Haltevorsprünge 68 erstrecken sich dabei radial nach außen. Die Haltevorsprünge 68 weisen insbesondere alle die gleiche radiale Höhe auf.
  • Zwischen zwei der Haltevorsprünge 68 erstreckt sich ein erster Zwischenabschnitt 70 des Umfangs der Grundplatte 66. Dieser erste Zwischenabschnitt 70 weist eine größere radiale Höhe auf als ein zweiter Zwischenabschnitt 72 und als ein dritter Zwischenabschnitt 74. Der erste Zwischenabschnitt 70 ist einem äußersten 120°-Abschnitt der Spiralwand 28 gegenüberliegend angeordnet.
  • Bei der Herstellung des beweglichen Spiralbauteils 30 werden bevorzugt die Grundplatte 66 und die Spiralwand 28 aus einem Vollmaterial gemeinsam spannend hergestellt, d. h. die Spiralwand 28 und die Grundplatte 66 sind einteilig ausgebildet.
  • Zum Beispiel bei einer Schlichtbearbeitung kann das Spiralbauteil 30 an den Haltevorsprüngen 68 direkt eingespannt sein. Im Rahmen ein und derselben Einspannung kann zum Beispiel auch die in Fig. 6 gezeigte Seite der Grundplatte 66 bearbeitet werden, insbesondere die Befestigungsausnehmungen eingebracht werden. Grundsätzlich kann im Rahmen dieser Einspannung auch die spahnende Herstellung der Spiralwand 28 aus dem Vollmaterial erfolgen.
  • Das Spiralbauteil 30 kann zu diesem Zweck beispielsweise mit einer Einspannvorrichtung 76 eingespannt sein, wie sie in Fig. 7 gezeigt ist. Diese weist ein hydraulisches Dreibackenfutter 78 zur direkten Anlage an den drei Haltevorsprüngen 68 auf. Außerdem weist die Einspannvorrichtung 76 eine durchgehende Ausnehmung 80 auf, durch die ein Werkzeugzugang zu dem Spiralbauteil 30, insbesondere zu der in Fig. 6 gezeigten Seite desselben, ermöglicht ist. Somit können Bearbeitungsvorgänge von beiden Seiten während einer Einspannung erfolgen, insbesondere wenigstens eine Schlichtbearbeitung der Spiralwand 28 und ein Einbringen von Befestigungsausnehmungen.
  • Die Kontur der Haltevorsprünge 68 und der Spanndruck der Einspannvorrichtung 76 sind bevorzugt so gewählt, dass keine kritischen Verformungen des Spiralbauteils 30 stattfinden. Die drei Haltevorsprünge 68 sind bevorzugt so gewählt, dass die äußere Dimension, also der maximale Durchmesser des Spiralbauteils 30 nicht vergrößert werden. Somit kann zum einen Material und zum anderen Zerspanungsvolumen eingespart werden. Die Haltevorsprünge 68 sind insbesondere so ausgeführt und/oder an einer solchen Winkelposition angeordnet, dass die Zugänglichkeit der Verschraubung des Wellbalgs 42 gegeben ist. Die Anzahl der Verschraubungspunkte des Wellbalgs 42 ist bevorzugt ungleich der Anzahl der Haltevorsprünge 68 am beweglichen Spiralbauteil 30.
  • An der Exzenterwelle 32 der Fig. 1 sind zwei Ausgleichsgewichte 82 zum Ausgleich einer Unwucht des erregten Systems angebracht. Der Bereich des in Fig. 1 rechtsseitigen Ausgleichgewichts 82 ist in Fig. 8 vergrößert dargestellt. Das Ausgleichsgewicht 82 ist an der Exzenterwelle 32 festgeschraubt.
  • Ein ähnlicher Bildausschnitt ist in Fig. 9 für eine andere Scrollpumpe gezeigt, die bevorzugt derselben Baureihe der Pumpe 20 der Fig. 1 angehört. Die der Fig. 9 zugrunde liegende Pumpe weist insbesondere andere Dimensionen auf und benötigt daher ein anderes Ausgleichsgewicht 82.
  • Die Exzenterwellen 32, die Ausgleichsgewichte 82 und die Gehäuseelemente 22 sind so dimensioniert, dass an der jeweils gezeigten Befestigungsposition nur eine bestimmte Art der zwei gezeigten Arten von Ausgleichsgewichten 82 an der Exzenterwelle 32 montierbar ist.
  • Die Ausgleichsgewichte 82 sind in den Fig. 8 und 9 zusammen mit bestimmten Abmessungen des für sie vorgesehenen Bauraumes bemaßt, um zu verdeutlichen, dass das Ausgleichsgewicht 82 der Fig. 9 nicht an der Exzenterwelle 32 montierbar ist und umgekehrt. Es versteht sich, dass die angegebenen Maße rein beispielhaft genannt sind.
  • So beträgt in Fig. 8 ein Abstand zwischen einer Befestigungsbohrung 84 und einem Wellenabsatz 86 9,7 mm. Das Ausgleichsgewicht 82 der Fig. 8 ist in der entsprechenden Richtung kürzer ausgebildet, nämlich 9 mm lang, kann also problemlos montiert werden. Das Ausgleichsgewicht 82 der Fig. 9 weist jeweils gemessen von der Befestigungsbohrung eine Längserstreckung von 11 mm auf. Somit ist das Ausgleichsgewicht 82 der Fig. 9 nicht an der Exzenterwelle 32 der Fig. 8 montierbar, da der Wellenabsatz 86 mit dem Ausgleichsgewicht 82 bei einer versuchten Montage kollidiert bzw. da somit das Ausgleichsgewicht 82 der Fig. 9 nicht vollständig in Anlage mit der Exzenterwelle 82 der Fig. 8 gebracht werden kann. Dadurch, dass das Ausgleichsgewicht 82 der Fig. 9 in beiden bemaßten Dimensionen größer ist als der Abstand von Befestigungsbohrung 84 und Wellenabsatz 86 in Fig. 8, ist auch eine Montage in umgedrehter Richtung verhindert. Zudem verhindert die Dimension von 21,3 mm des Ausgleichsgewichts 82 der Fig. 8 eine umgedrehte und folglich falsche Montageausrichtung des ansonsten richtigen Ausgleichsgewichts 82.
  • In Fig. 9 beträgt ein Abstand in Längsrichtung zwischen der Befestigungsbohrung 84 und einer Gehäuseschulter 88 17,5 mm. Das Ausgleichsgewicht 82 der Fig. 8 mit seiner Erstreckung von 21,3 mm würde beim Einschieben der Exzenterwelle 32 der Fig. 9 mit der Gehäuseschulter 88 kollidieren, sodass keine vollständige Montage möglich wäre. Die falsche Montage ist zwar zunächst möglich, wird aber zuverlässig erkannt. Bei einer um die Achse der Befestigungsbohrung 84 verdrehten Montage des Ausgleichsgewicht 82 der Fig. 8 an der Exzenterwelle 32 der Fig. 9 würde die Erstreckung von 21,3 mm mit der Wellenschulter 86 kollidieren, die nur in einem Abstand von 13,7 mm von der Befestigungsbohrung 84 angeordnet ist.
  • Die Ausgleichsgewichte 82, insbesondere ein motorseitiges Ausgleichsgewicht 82, sind allgemein so ausgeführt, dass eine Verwechslung des Ausgleichsgewichts mit solchen anderer Baugrößen bei der Montage und/oder beim Service vermieden wird. Die Ausgleichsgewichte werden bevorzugt mittels Durchgangsschrauben befestigt. Ähnliche Ausgleichsgewichte verschiedener Pumpengrößen sind insbesondere so ausgeführt, dass aufgrund angrenzender Absätze auf der Welle, der Positionen von Gewinde und Durchgangsbohrung des Ausgleichsgewichts sowie von Absätzen innerhalb des Gehäuses eine Montage des falschen Ausgleichsgewichts verhindert wird.
  • In den Fig. 10 und 11 ist ein Gasballastventil 90 der Scrollpumpe 20 gezeigt. Dieses ist auch in der Gesamtdarstellung der Pumpe 20 in Fig. 3 sichtbar und am feststehenden Spiralbauteil 24 angeordnet.
  • Das Gasballastventil 90 umfasst einen Betätigungsgriff 92. Dieser umfasst einen Kunststoffkörper 94 und ein Basiselement 96, welches bevorzugt aus Edelstahl hergestellt ist. Das Basiselement 96 umfasst eine durchgehende Bohrung 98, die einerseits zum Anschluss und Einleiten eines Ballastgases vorgesehen ist und andererseits ein Rückschlagventil 100 umfasst. Die Bohrung 98 ist außerdem in den Darstellungen mittels eines Stopfens 102 verschlossen. Anstelle des Stopfens 102 kann beispielsweise auch ein Filter vorgesehen sein, wobei das Ballastgas bevorzugt Luft sein kann und über den Filter insbesondere direkt in das Ventil 90 eintritt. Der Betätigungsgriff 92 ist mit drei Befestigungsschrauben 104 an einem drehbaren Element 106 des Ventils 90 befestigt, die in einer jeweiligen Bohrung 108 angeordnet sind und von denen in der gewählten Schnittdarstellung der Fig. 11 nur eine sichtbar ist. Das drehbare Element 106 ist mit einer nicht dargestellten, durch eine Bohrung 110 verlaufende Befestigungsschraube am zweiten Gehäuseelement 24 drehbar befestigt.
  • Zur Betätigung des Ventils 90 wird ein manuell am Betätigungsgriff 92 angelegtes Drehmoment an das drehbare Element 106 übertragen und dieses somit gedreht. Somit gelangt die Bohrung 98 in Kommunikation mit einem Inneren des Gehäuses. Für das Ventil 90 sind dabei drei Schaltstellungen vorgesehen, nämlich die in Fig. 10 dargestellte, welche eine Sperrstellung ist, und jeweils eine nach rechts und nach links verdrehte Stellung, in denen die Bohrung 98 mit unterschiedlichen Bereichen des Inneren des Gehäuses in Kommunikation steht.
  • Die Bohrungen 108 und 110 sind durch einen Deckel 112 verschlossen. Die Dichtwirkung des Gasballastventiles 90 beruht auf axial verpressten O-Ringen. Bei Betätigung des Ventils 90 wird eine Relativbewegung auf die O-Ringe ausgeübt. Gelangen Verschmutzungen, wie etwa Partikel, an die Oberfläche eines O-Rings, so birgt dies die Gefahr eines frühzeitigen Ausfalls. Der Deckel 112 verhindert ein Eindringen von Verschmutzungen und ähnlichem an die Schrauben des Griffes 92.
  • Dieser Deckel 112 wird über eine Übermaßpassung dreier Zentrierelemente befestigt. Konkret weist der Deckel 112 für jede Bohrung 108 einen nicht dargestellten Einsteckzapfen auf, mit denen der Deckel 112 in den Bohrungen 108 gehalten ist. Die Bohrungen 108 und 110 sowie die darin angeordneten Befestigungsschrauben sind somit vor Verschmutzungen geschützt. Insbesondere bei der in der Bohrung 110 angeordneten, nicht dargestellten Befestigungsschraube, die eine Drehbewegung erlaubt, kann so ein Verschmutzungseintrag in die Ventilmechanik wirksam minimiert werden und so die Lebensdauer des Ventils verbessert werden.
  • Der Kunststoff-Griff mit umspritzem Edelstahl-Basisteil sorgt für eine gute Korrosionsbeständigkeit bei gleichzeitig niedrigen Herstellkosten. Weiterhin bleibt der Kunststoff des Griffs aufgrund der eingeschränkten Wärmeleitung kühler und lässt sich dadurch besser bedienen.
  • Für den Lüfter 44, wie er beispielsweise in den Fig. 1 und 3 sichtbar ist, ist bevorzugt eine Drehzahlregelung vorgesehen. Der Lüfter wird mittels PWM abhängig von Leistungsaufnahme und Temperatur des Leistungsmoduls gesteuert, welches z.B. im Elektronikgehäuse 48 untergebracht ist. Die Drehzahl wird analog zur Leistungsaufnahme eingestellt. Die Regelung wird jedoch erst ab einer Modultemperatur von 50 °C zugelassen. Falls die Pumpe in Temperaturbereiche eines möglichen Deratings (temperaturbedingte Leistungsreduktion) hineinkommt, wird automatisch die max. Lüfterdrehzahl angesteuert. Mit dieser Regelung wird ermöglicht, dass bei kalter Pumpe ein minimaler Geräuschpegel erreicht wird, dass im Enddruck bzw. bei geringer Last ein niedriger Geräuschpegel - entsprechend dem Pumpengeräusch - herrscht, dass eine optimale Kühlung der Pumpe bei gleichzeitig niedrigem Geräuschpegel erreicht wird, und dass vor einer temperaturbedingten Leistungsreduktion die max. Kühlleistung sichergestellt wird.
  • Die maximale Lüfterdrehzahl kann, insbesondere situativ, anpassbar sein. Z. B. kann es für eine hohe Wasserdampfverträglichkeit zielführend sein, die maximale Lüfterdrehzahl herabzusetzen.
  • In Fig. 12 ist das bewegliche Spiralbauteil 30 teilweise und gegenüber Fig. 5 vergrößert dargestellt. Eine Schnittansicht des Spiralbauteils 30 entlang der in Fig. 12 angedeuteten Linie A:A ist in Fig. 13 schematisch und nicht maßstabsgerecht dargestellt.
  • Die Spiralwand 28 weist an ihrem der Grundplatte 66 abgewandten und einer Grundplatte des hier nicht dargestellten, festen Spiralbauteils 24 zugewandten Ende eine Nut 114 zur Einlage eines hier ebenfalls nicht dargestellten Dichtungselements 64 auf, nämlich eines sogenannten Tip Seals. Die Anordnung im Betriebszustand ist z.B. in Fig. 4 gut sichtbar.
  • Die Nut 114 ist nach außen und nach innen durch zwei gegenüberliegende Seitenwände begrenzt, nämlich durch eine innere Seitenwand 116 und eine äußere Seitenwand 118. In einem ersten Spiralabschnitt 120 ist die äußere Seitenwand 118 dicker ausgeführt als die innere Seitenwand 116 im ersten Spiralabschnitt 120 und dicker als beide Seitenwände 116 und 118 in einem anderen, zweiten Spiralabschnitt 122.
  • Der erste Spiralabschnitt 120 erstreckt sich vom in Fig. 12 angedeuteten Ort bis zum äußeren Ende der Spiralwand 28, wie es beispielsweise auch in Fig. 5 angedeutet ist. Der erste Spiralabschnitt 120 erstreckt sich hier beispielhaft über etwa 163°.
  • Der erste Spiralabschnitt 120 bildet einen äußeren Endabschnitt der Spiralwand 28. Dabei ist der erste Spiralabschnitt 120 zumindest teilweise, insbesondere vollständig in einem nicht pumpaktiven Bereich der Spiralwand 28 angeordnet. Insbesondere kann der erste Spiralabschnitt 120 den nicht pumpaktiven Bereich der Spiralwand 28 zumindest im Wesentlichen vollständig ausfüllen.
  • Wie es in Fig. 5 sichtbar ist, kann bevorzugt der erste Zwischenabschnitt 70 zwischen zwei Haltevorsprüngen 68, welcher eine größere radiale Höhe hat, als andere Zwischenabschnitte 72 und 74, dem ersten Spiralabschnitt 120 gegenüberliegend angeordnet sein. Eine durch die dickere Seitenwand 118 eingebrachte Unwucht kann somit durch das größere Gewicht des ersten Zwischenabschnitt 70 ausgeglichen werden.
  • Für eine geringe Systembelastung der Lager und anderer Bauteile sollte das bewegliche Spiralbauteil allgemein bevorzugt ein geringes Eigengewicht besitzen. Daher werden die Spiralwände generell sehr dünn ausgeführt. Weiterhin ergeben sich bei dünneren Wänden geringere Pumpenabmessungen (signifikanter Außendurchmesser). Die Seitenwände der Tip Seal-Nut sind in der Folge besonders dünn. Das Verhältnis der TipSeal-Wanddicke zur gesamten Spiralwanddicke beträgt z.B. höchstens 0,17. Aufgrund der Tip Seal-Nut ist jedoch die Spiralwandspitze sehr empfindlich gegenüber Stößen beim Handling, wie etwa bei der Montage oder beim Wechseln des Tip Seal. Durch leichte Stöße, z. B. auch beim Transport, kann die Seitenwand der Nut nach innen gedrückt werden, sodass sich das Tip Seal nicht mehr montieren lässt. Zur Lösung dieses Problems umfasst die Nut eine unsymmetrische Wanddicke, insbesondere eine nach außen lokale Aufdickung der Spiralwand. Dieser Bereich ist bevorzugt nicht pumpaktiv und kann daher mit einer größeren Toleranz gefertigt werden. Durch die einseitige Aufdickung an der, insbesondere letzten halben, Windung werden Schädigungen deutlich reduziert. An übrigen Stellen des Bauteils ist bevorzugt eine Aufdickung der Spiralwand nicht notwendig, da die Wand durch überstehende Elemente des Bauteils geschützt ist.
  • Die in Fig. 1 gezeigte Luftleithaube 46 definiert einen Luftstrom, wie er durch einen gestrichelten Pfeil 124 angedeutet ist. Der Lüfter 44 ist mit einer Steuerungseinrichtung in dem Elektronikgehäuse 48 über ein nicht dargestelltes Kabel, welches durch die Luftleithaube 46 verläuft, und über eine Steckverbindung verbunden. Diese umfasst eine Buchse 126 und einen Stecker 128. Die Buchse 126 ist am Elektronikgehäuse 48 gelagert und/oder an einer in dem Elektronikgehäuse 48 angeordneten Platine befestigt. Die Buchse 126 ist beispielsweise auch in den Fig. 2 und 3 sichtbar. Der Stecker 128 ist über das nicht dargestellte Kabel mit dem Lüfter 44 verbunden.
  • Die Steckverbindung 126, 128 ist durch eine Trennwand 130 von dem Luftstrom 124 getrennt. Der Luftstrom 124, der zum Beispiel Stäube oder ähnliche Verschmutzungen enthalten kann, wird somit von der Steckverbindung 126, 128 ferngehalten. Somit wird einerseits die Steckverbindung 126, 128 selbst geschützt und es wird andererseits verhindert, dass die Verschmutzungen durch die für die Buchse 126 vorgesehene Öffnung im Elektronikgehäuse 48 in dieses hinein und zur Steuerungseinrichtung und/oder Leistungselektronik gelangen.
  • Die Luftleithaube 46 ist in Fig. 14 separat und perspektivisch dargestellt. Es ist unter anderem die Trennwand 130 mit dem dahinter definierten, für den Stecker 128 vorgesehenen Raum sichtbar. Die Trennwand 130 umfasst eine hier als V-förmige Kerbe ausgeführte Ausnehmung 132 zur Durchführung eines Kabels vom Stecker 128 zum Lüfter 44.
  • Z.B. zur Kostenersparnis können kostengünstige Steckverbinder ohne Abdichtung (z.B. kein IP-Schutz) zum Einsatz kommen, da die Trennwand 130 dafür sorgt, dass die angesaugte Luft nicht über den Durchbruch des Steckverbinders 126, 128 an die Elektronik gelangt. Das Kabel des Lüfters wird durch die V-förmige Kerbe 132 seitlich durch die Trennwand 130 geführt. Die Kerbe 132 weist einen seitlichen Versatz zu dem Steckverbinder 126, 128 auf, wodurch eine Labyrinthwirkung und somit eine weitere Verringerung der Leckage von Kühlluft zu dem Steckverbinder 126, 128 erreicht werden. Durch eine Trennwand 130 innerhalb der Luftleithaube 46 wird außerdem die Luftführung in den Kanal 50 zwischen Elektronikgehäuse 48 und Pumpengehäuse 22 verbessert. Es entsteht weniger Verwirbelung und Gegendruck für den Lüfter 44.
  • Die Fig. 15 zeigt einen Anlagebereich zwischen dem ersten Gehäuseelement 22 und dem zweiten Gehäuseelement bzw. feststehenden Spiralbauteil 24 in einer schematischen Schnittdarstellung. Das zweite Gehäuseelement 24 ist mit einer Übergangspassung 134 teilweise in das erste Gehäuseelement 22 eingesteckt. Dabei ist eine Abdichtung mittels eines O-Rings 136 vorgesehen. Die Übergangspassung 134 dient zum Beispiel auch der Zentrierung des zweiten Gehäuseelements 24 gegenüber dem ersten Gehäuseelement 22.
  • Zu Wartungszwecken, zum Beispiel zum Austausch des Dichtungselements 64, muss das zweite Gehäuseelement 24 zum Beispiel demontiert werden. Dabei kann es vorkommen, dass die Übergangspassung 134 oder der O-Ring 136 klemmen, wenn das zweite Gehäuseelement 24 nicht gerade genug herausgezogen wird. Zur Lösung dieses Problems ist ein Abdrückgewinde 138 vorgesehen. Bevorzugt kann auch zumindest im Wesentlichen radial gegenüberliegend ein zweites Abdrückgewinde vorgesehen sein. Zum möglichst geraden und geführten Lösen des zweiten Gehäuseelements 24 kann eine Schraube in das Abdrückgewinde 38 eingeschraubt werden, bis die Schraube aus diesem heraus hervorsteht und in Anlage mit dem ersten Gehäuseelement 22 gelangt. Durch weiteres Einschrauben werden die Gehäuseelemente 22 und 24 voneinander weggedrückt.
  • Zum Abdrücken können zum Beispiel die zur Befestigung des zweiten Gehäuseelements 24 am ersten Gehäuseelement 22 vorgesehenen Befestigungsschrauben 142 verwendet werden, wie sie beispielsweise in den Fig. 1 und 3 bezeichnet sind. Zu diesem Zweck weist das Abdrückgewinde 138 bevorzugt die gleiche Gewindeart auf, wie für die Befestigungsschrauben 142 vorgesehene Befestigungsgewinde.
  • Am zweiten Gehäuseelement 22 ist eine Senkung 140 vorgesehen, die dem Abdrückgewinde 138 zugeordnet ist. Falls beim Einschrauben der Schraube in das Abdrückgewinde 138 Abriebpartikel ausgetragen werden, sammeln sich diese in der Senkung 140. Somit wird verhindert, dass derartige Abriebpartikel zum Beispiel eine vollständige Anlage der Gehäuseelemente 22 und 24 aneinander verhindern.
  • Bei der Montage des festen Spiralbauteils 24 müssen die Schrauben wieder herausgedreht werden, da sonst ein vollständiges Verschrauben (Richtiger Sitz auf der Planfläche des Gehäuses) des feststehenden Spiralbauteils 24 am ersten Gehäuseelement 22 womöglich verhindert ist. Leckage, Schiefstellung und Verringerung der Pumpperformance können die Folge sein. Zur Vermeidung dieses Montagefehlers verfügt die Luftleithaube 46 über wenigstens einen, insbesondere zusätzlichen, in Fig. 14 gezeigten Dom 144, der ein Montieren der Luftleithaube 46 nur dann ermöglicht, wenn die zum Abdrücken verwendeten Schrauben, insbesondere die Befestigungsschrauben 142, wieder entfernt worden sind. Denn die Luftleithaube 46 mit dem Dom 144 ist derart ausgebildet, dass sie mit einem Schraubenkopf einer etwaig in das Abdrückgewinde 138 eingeschraubten Abdrückschraube kollidieren würde, sodass die Luftleithaube 46 nicht vollständig montierbar wäre. Insbesondere kann die Luftleithaube 46 nur bei vollständig demontierten Abdrückschrauben montiert werden.
  • Bezugszeichenliste
  • 20
    Scrollpumpe
    22
    erstes Gehäuseelement
    24
    zweites Gehäuseelement/feststehendes Spiralbauteil
    26
    Spiralwand
    28
    Spiralwand
    30
    bewegliches Spiralbauteil
    32
    Exzenterwelle
    34
    Motor
    36
    Wälzlager
    38
    Exzenterzapfen
    40
    Wälzlager
    42
    Wellbalg
    44
    Lüfter
    46
    Luftleithaube
    48
    Elektronikgehäuse
    50
    Kanal
    52
    Kammer
    54
    Rippe
    56
    Ausnehmung
    58
    Rippe
    60
    Drucksensor
    62
    Kanal
    64
    Dichtungselement
    66
    Grundplatte
    68
    Haltevorsprung
    70
    erster Zwischenabschnitt
    72
    zweiter Zwischenabschnitt
    74
    dritter Zwischenabschnitt
    76
    Einspannvorrichtung
    78
    Dreibackenfutter
    80
    Ausnehmung
    82
    Ausgleichsgewicht
    84
    Befestigungsbohrung
    86
    Wellenabsatz
    88
    Gehäuseschulter
    90
    Gasballastventil
    92
    Betätigungsgriff
    94
    Kunststoffkörper
    96
    Basiselement
    98
    Bohrung
    100
    Rückschlagventil
    102
    Stopfen
    104
    Befestigungsschraube
    106
    drehbares Element
    108
    Bohrung
    110
    Bohrung
    112
    Deckel
    114
    Nut
    116
    innere Seitenwand
    118
    äußere Seitenwand
    120
    erster Spiralabschnitt
    122
    zweiter Spiralabschnitt
    124
    Luftstrom
    126
    Buchse
    128
    Stecker
    130
    Trennwand
    132
    Ausnehmung
    134
    Übergangspassung
    136
    O-Ring
    138
    Abdrückgewinde
    140
    Senkung
    142
    Befestigungsschraube
    144
    Dom

Claims (6)

  1. Vakuumsystem umfassend
    eine Hochvakuumpumpe,
    eine Vakuumpumpe, nämlich Scrollpumpe (20), welche als Vorpumpe für die Hochvakuumpumpe vorgesehen ist, und
    eine Steuerung;
    wobei die Scrollpumpe einen in die Scrollpumpe (20) integrierten Drucksensor (60) umfasst,
    dadurch gekennzeichnet, dass der Drucksensor (60) in die Steuerung des Vakuumsystems eingebunden ist, und
    dass die Steuerung dazu eingerichtet ist, bei einem zu hohen Druck in der Scrollpumpe die Hochvakuumpumpe abzuschalten und/oder zwischengeschaltete Ventile zu schließen.
  2. Vakuumsystem nach Anspruch 1,
    wobei der Drucksensor (60) auch in eine Steuerung der Scrollpumpe (20) eingebunden ist.
  3. Vakuumsystem nach wenigstens einem der vorstehenden Ansprüche,
    wobei der Drucksensor (60) zum Messen eines Ansaugdrucks der Scrollpumpe (20) angeordnet ist.
  4. Vakuumsystem nach wenigstens einem der vorstehenden Ansprüche,
    wobei der Drucksensor (60) zum Messen eines Drucks zwischen zwei pumpaktiven Spiralwänden (26, 28) angeordnet ist.
  5. Vakuumsystem nach wenigstens einem der vorstehenden Ansprüche,
    wobei der Drucksensor (60) in ein Bauteil (24) der Scrollpumpe (20) eingeschraubt ist.
  6. Vakuumsystem nach wenigstens einem der vorstehenden Ansprüche,
    wobei der Drucksensor (60) in einem Kühlluftstrom einer Kühleinrichtung (44) der Scrollpumpe (20) angeordnet ist.
EP19201749.9A 2019-10-07 2019-10-07 Vakuumpumpe, scrollpumpe und herstellungsverfahren für solche Active EP3647599B1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP20200624.3A EP3754200B1 (de) 2019-10-07 2019-10-07 Scrollvakuumpumpe und montageverfahren
EP19201749.9A EP3647599B1 (de) 2019-10-07 2019-10-07 Vakuumpumpe, scrollpumpe und herstellungsverfahren für solche
JP2020160698A JP7220692B2 (ja) 2019-10-07 2020-09-25 真空ポンプ、スクロールポンプ及びその製造方法
EP22199874.3A EP4095387A3 (de) 2019-10-07 2020-09-29 Scrollvakuumpumpe mit integriertem drucksensor
EP20198997.7A EP3739166B1 (de) 2019-10-07 2020-09-29 Scrollvakuumpumpe und ihr herstellungsverfahren
EP22156933.8A EP3974655B1 (de) 2019-10-07 2020-09-29 Scrollvakuumpumpe und ihr herstellungsverfahren
US17/063,912 US11773849B2 (en) 2019-10-07 2020-10-06 Vacuum pump, scroll pump, and manufacturing method for such
JP2022178824A JP2023025010A (ja) 2019-10-07 2022-11-08 真空ポンプ、スクロールポンプ及びその製造方法
US18/449,111 US20230383750A1 (en) 2019-10-07 2023-08-14 Vacuum pump, scroll pump, and manufacturing method for such

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19201749.9A EP3647599B1 (de) 2019-10-07 2019-10-07 Vakuumpumpe, scrollpumpe und herstellungsverfahren für solche

Related Child Applications (3)

Application Number Title Priority Date Filing Date
EP20200624.3A Division EP3754200B1 (de) 2019-10-07 2019-10-07 Scrollvakuumpumpe und montageverfahren
EP20200624.3A Division-Into EP3754200B1 (de) 2019-10-07 2019-10-07 Scrollvakuumpumpe und montageverfahren
EP20184951.0 Division-Into 2020-07-09

Publications (3)

Publication Number Publication Date
EP3647599A2 EP3647599A2 (de) 2020-05-06
EP3647599A3 EP3647599A3 (de) 2020-07-22
EP3647599B1 true EP3647599B1 (de) 2021-12-22

Family

ID=68210710

Family Applications (2)

Application Number Title Priority Date Filing Date
EP19201749.9A Active EP3647599B1 (de) 2019-10-07 2019-10-07 Vakuumpumpe, scrollpumpe und herstellungsverfahren für solche
EP20200624.3A Active EP3754200B1 (de) 2019-10-07 2019-10-07 Scrollvakuumpumpe und montageverfahren

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP20200624.3A Active EP3754200B1 (de) 2019-10-07 2019-10-07 Scrollvakuumpumpe und montageverfahren

Country Status (1)

Country Link
EP (2) EP3647599B1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4219947A2 (de) 2023-06-15 2023-08-02 Pfeiffer Vacuum Technology AG Scrollpumpe mit optimierter spiralgeometrie
EP4234932A2 (de) 2023-06-15 2023-08-30 Pfeiffer Vacuum Technology AG Scrollpumpe mit verbessertem zugang zum ansaugbereich zu montagezwecken

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3708840A3 (de) * 2020-07-22 2021-03-10 Pfeiffer Vacuum Technology AG Rückschlagventil, vakuumgerät und vakuumpumpe
DE102020128369A1 (de) * 2020-10-28 2022-04-28 Leybold Gmbh Verfahren zum Betrieb einer Scroll-Pumpe sowie Scroll-Pumpe
EP4253720A2 (de) 2023-08-08 2023-10-04 Pfeiffer Vacuum Technology AG Scrollvakuumpumpe und scrollvakuumpumpen-system

Citations (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102316A (en) 1986-08-22 1992-04-07 Copeland Corporation Non-orbiting scroll mounting arrangements for a scroll machine
US5209653A (en) 1992-01-17 1993-05-11 Spx Corporation Vacuum pump
EP0798463A2 (de) 1996-03-29 1997-10-01 Anest Iwata Corporation Ölfreie Spiralvakuumpumpe
DE19913593A1 (de) 1999-03-24 2000-10-05 Ilmvac Gmbh Gesteuerter Pumpstand
US20020025265A1 (en) 2000-08-29 2002-02-28 Hideo Ikeda Motor-driven compressors
EP0754860B1 (de) 1995-07-21 2002-04-10 Anest Iwata Corporation Ölfreie Spiralvakuumpumpe
EP0836008B1 (de) 1996-10-08 2002-11-20 VARIAN S.p.A. Vakuumpumpgerät
EP1275849A2 (de) 2001-07-10 2003-01-15 Kabushiki Kaisha Toyota Jidoshokki Verdichter mit Kräfteausgleich
JP2003120529A (ja) * 2001-10-17 2003-04-23 Toyota Industries Corp 真空ポンプにおけるガス供給装置
WO2003042542A1 (de) 2001-11-15 2003-05-22 Leybold Vakuum Gmbh Temperierugsverfahren einer schraubenvakuumpumpe
DE102005042451B4 (de) 2005-09-06 2007-07-26 Vacuubrand Gmbh + Co Kg Vakuumpumpvorrichtung
EP1918585A2 (de) * 2006-10-28 2008-05-07 Pfeiffer Vacuum Gmbh Vakuumpumpe
US20100028185A1 (en) 2008-07-31 2010-02-04 Hitachi Industrial Equipment Systems Co., Ltd. Scroll Fluid Machine
US20110256007A1 (en) 2010-04-16 2011-10-20 Shaffer Robert W Three stage scroll vacuum pump
US20130189090A1 (en) 2010-10-19 2013-07-25 Satoshi Okudera Vacuum pump
WO2014072276A1 (de) 2012-11-09 2014-05-15 Oerlikon Leybold Vacuum Gmbh Vakuumpumpensystem zur evakuierung einer kammer sowie verfahren zur steuerung eines vakuumpumpensystems
FR2985557B1 (fr) 2012-01-11 2014-11-28 Valeo Japan Co Ltd Excentrique balance comprenant une bague et un contrepoids bloques en rotation
EP1980749B1 (de) 2006-01-30 2015-08-26 Sanden Corporation Elektrischer kompressor und klimaanlagensystem mit dem elektrischen kompressor für ein fahrzeug
CN103089668B (zh) 2011-11-08 2015-09-02 株式会社岛津制作所 一体型涡轮分子泵
CN104912829A (zh) 2014-03-12 2015-09-16 埃地沃兹日本有限公司 真空泵的控制装置和具备它的真空泵
CN204941844U (zh) 2015-09-10 2016-01-06 北京北仪优成真空技术有限公司 真空泵气镇阀装置及真空泵
US9341187B2 (en) 2013-08-30 2016-05-17 Emerson Climate Technologies, Inc. Compressor assembly with liquid sensor
EP3067560A1 (de) * 2015-03-12 2016-09-14 Pfeiffer Vacuum GmbH Vakuumpumpe sowie Verfahren zum Betrieb einer Scrollpumpe oder einer Vakuumpumpe mit wenigstens zwei Pumpstufen
US9541084B2 (en) 2013-02-06 2017-01-10 Emerson Climate Technologies, Inc. Capacity modulated scroll compressor
US20170211390A1 (en) 2014-07-23 2017-07-27 Sanden Holdings Corporation Scroll type fluid machine
CN107420301A (zh) 2017-06-28 2017-12-01 湖北维斯曼新能源科技有限公司 新型无油涡旋真空泵
FR3053090A1 (fr) 2016-06-23 2017-12-29 Valeo Japan Co Ltd Masse d'equilibrage d'un compresseur a spirales pour un vehicule automobile, et compresseur a spirales muni d'une telle masse d'equilibrage.
KR20180041475A (ko) 2016-10-14 2018-04-24 주식회사 벡스코 냉각식 진공펌프
DE102018107276A1 (de) 2017-03-31 2018-10-04 Kabushiki Kaisha Toyota Jidoshokki Elektrischer Kompressor
US20190120237A1 (en) 2017-10-25 2019-04-25 Shimadzu Corporation Vacuum pump
EP3153708B1 (de) 2015-10-06 2019-07-17 Pfeiffer Vacuum Gmbh Scrollpumpe und verfahren zum betreiben einer scrollpumpe

Patent Citations (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102316A (en) 1986-08-22 1992-04-07 Copeland Corporation Non-orbiting scroll mounting arrangements for a scroll machine
US5209653A (en) 1992-01-17 1993-05-11 Spx Corporation Vacuum pump
EP0754860B1 (de) 1995-07-21 2002-04-10 Anest Iwata Corporation Ölfreie Spiralvakuumpumpe
EP0798463A2 (de) 1996-03-29 1997-10-01 Anest Iwata Corporation Ölfreie Spiralvakuumpumpe
EP0836008B1 (de) 1996-10-08 2002-11-20 VARIAN S.p.A. Vakuumpumpgerät
DE19913593A1 (de) 1999-03-24 2000-10-05 Ilmvac Gmbh Gesteuerter Pumpstand
US20020025265A1 (en) 2000-08-29 2002-02-28 Hideo Ikeda Motor-driven compressors
EP1275849A2 (de) 2001-07-10 2003-01-15 Kabushiki Kaisha Toyota Jidoshokki Verdichter mit Kräfteausgleich
JP2003120529A (ja) * 2001-10-17 2003-04-23 Toyota Industries Corp 真空ポンプにおけるガス供給装置
WO2003042542A1 (de) 2001-11-15 2003-05-22 Leybold Vakuum Gmbh Temperierugsverfahren einer schraubenvakuumpumpe
DE102005042451B4 (de) 2005-09-06 2007-07-26 Vacuubrand Gmbh + Co Kg Vakuumpumpvorrichtung
EP1980749B1 (de) 2006-01-30 2015-08-26 Sanden Corporation Elektrischer kompressor und klimaanlagensystem mit dem elektrischen kompressor für ein fahrzeug
EP1918585A2 (de) * 2006-10-28 2008-05-07 Pfeiffer Vacuum Gmbh Vakuumpumpe
US20100028185A1 (en) 2008-07-31 2010-02-04 Hitachi Industrial Equipment Systems Co., Ltd. Scroll Fluid Machine
US20110256007A1 (en) 2010-04-16 2011-10-20 Shaffer Robert W Three stage scroll vacuum pump
US20130189090A1 (en) 2010-10-19 2013-07-25 Satoshi Okudera Vacuum pump
CN103089668B (zh) 2011-11-08 2015-09-02 株式会社岛津制作所 一体型涡轮分子泵
FR2985557B1 (fr) 2012-01-11 2014-11-28 Valeo Japan Co Ltd Excentrique balance comprenant une bague et un contrepoids bloques en rotation
WO2014072276A1 (de) 2012-11-09 2014-05-15 Oerlikon Leybold Vacuum Gmbh Vakuumpumpensystem zur evakuierung einer kammer sowie verfahren zur steuerung eines vakuumpumpensystems
US9541084B2 (en) 2013-02-06 2017-01-10 Emerson Climate Technologies, Inc. Capacity modulated scroll compressor
US9341187B2 (en) 2013-08-30 2016-05-17 Emerson Climate Technologies, Inc. Compressor assembly with liquid sensor
CN104912829A (zh) 2014-03-12 2015-09-16 埃地沃兹日本有限公司 真空泵的控制装置和具备它的真空泵
US20170211390A1 (en) 2014-07-23 2017-07-27 Sanden Holdings Corporation Scroll type fluid machine
EP3067560A1 (de) * 2015-03-12 2016-09-14 Pfeiffer Vacuum GmbH Vakuumpumpe sowie Verfahren zum Betrieb einer Scrollpumpe oder einer Vakuumpumpe mit wenigstens zwei Pumpstufen
CN204941844U (zh) 2015-09-10 2016-01-06 北京北仪优成真空技术有限公司 真空泵气镇阀装置及真空泵
EP3153708B1 (de) 2015-10-06 2019-07-17 Pfeiffer Vacuum Gmbh Scrollpumpe und verfahren zum betreiben einer scrollpumpe
FR3053090A1 (fr) 2016-06-23 2017-12-29 Valeo Japan Co Ltd Masse d'equilibrage d'un compresseur a spirales pour un vehicule automobile, et compresseur a spirales muni d'une telle masse d'equilibrage.
KR20180041475A (ko) 2016-10-14 2018-04-24 주식회사 벡스코 냉각식 진공펌프
DE102018107276A1 (de) 2017-03-31 2018-10-04 Kabushiki Kaisha Toyota Jidoshokki Elektrischer Kompressor
CN107420301A (zh) 2017-06-28 2017-12-01 湖北维斯曼新能源科技有限公司 新型无油涡旋真空泵
US20190120237A1 (en) 2017-10-25 2019-04-25 Shimadzu Corporation Vacuum pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4219947A2 (de) 2023-06-15 2023-08-02 Pfeiffer Vacuum Technology AG Scrollpumpe mit optimierter spiralgeometrie
EP4234932A2 (de) 2023-06-15 2023-08-30 Pfeiffer Vacuum Technology AG Scrollpumpe mit verbessertem zugang zum ansaugbereich zu montagezwecken

Also Published As

Publication number Publication date
EP3754200A2 (de) 2020-12-23
EP3647599A2 (de) 2020-05-06
EP3754200A3 (de) 2021-02-17
EP3754200B1 (de) 2021-12-08
EP3647599A3 (de) 2020-07-22

Similar Documents

Publication Publication Date Title
EP3647599B1 (de) Vakuumpumpe, scrollpumpe und herstellungsverfahren für solche
EP3974655B1 (de) Scrollvakuumpumpe und ihr herstellungsverfahren
EP1012448B1 (de) Ölpumpenmodul mit filter, insbesondere für das schmieröl einer brennkraftmaschine
EP0517014B1 (de) Zahnradpumpe für Öl für einen Verbrennungsmotor, insbesondere für Kraftfahrzeuge
EP1843012B1 (de) Brennkraftmaschine mit einer Vorrichtung zur hydraulischen Drehwinkelverstellung ihrer Nockenwelle gegenüber ihrer Kurbelwelle sowie mit einer Vakuumpumpe für einen Servorverbraucher, insbesondere für einen Bremskraftverstärker
EP0166807B1 (de) Drehschieber-Vakuumpumpe
DE60220247T2 (de) Horizontaler spiralverdichter
DE3132537C2 (de)
DE4017194A1 (de) Drehschiebervakuumpumpe
DE19941891B4 (de) Wasserpumpenanordnung für einen Motor
EP3617511B1 (de) Scrollpumpen und herstellungsverfahren für solche
DE19506532C2 (de) Fluid-Pumpe/Motor
DE60011319T2 (de) Gerotormotor
DE60312078T2 (de) Hermetischer Verdichter
DE60218720T2 (de) Zusammensetzung eines schraubenkompressors und methode
EP1249582B1 (de) Brennkraftmaschine mit zumindest zwei obenliegenden Nockenwellen
WO2012080034A2 (de) Vakuumpumpe
EP3708840A2 (de) Rückschlagventil, vakuumgerät und vakuumpumpe
WO2007093581A1 (de) Ölpumpen- und vakuumpumpenmodul
EP0198936A1 (de) Mehrstufige Vakuumpumpe
DE3824686C2 (de) Rotationskolbenmaschine der Gerotor-Bauart
DE10113644A1 (de) Stirnradgetriebe für Einschnecken-Extruder
DE19815384C2 (de) Flüssigkeitsgekühlte Viertakt-Mehrzylinder-Brennkraftmaschine
DE102015114823B4 (de) Aktuator, der zum Verändern des Expansionshubes und/oder des Verdichtungsverhältnisses eines Verbrennungsmotors ausgebildet ist; System beinhaltend einen Aktuator und einen Verbrennungsmotor
EP3940234B1 (de) Pumpe und verfahren zur herstellung einer gleitschicht

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: F04C 25/02 20060101ALI20200615BHEP

Ipc: F04D 19/04 20060101AFI20200615BHEP

Ipc: F01C 21/10 20060101ALI20200615BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201202

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210215

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHAEFER, HEIKO

Inventor name: SOEHNGEN, WOLFGANG

Inventor name: BECKER, JONAS

Inventor name: BERNHARDT, GERNOT

Inventor name: WANGORSCH, VERENA

Inventor name: HOFMANN, JAN

Inventor name: KALLENBORN, STEFAN

Inventor name: WILLIG, MICHAEL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210831

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019003050

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1457256

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220322

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220322

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220422

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502019003050

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220422

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

26 Opposition filed

Opponent name: EDWARDS LIMITED

Effective date: 20220922

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221007

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231020

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231026

Year of fee payment: 5

Ref country code: CZ

Payment date: 20231004

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20191007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231227

Year of fee payment: 5