EP0166807B1 - Drehschieber-Vakuumpumpe - Google Patents

Drehschieber-Vakuumpumpe Download PDF

Info

Publication number
EP0166807B1
EP0166807B1 EP84111178A EP84111178A EP0166807B1 EP 0166807 B1 EP0166807 B1 EP 0166807B1 EP 84111178 A EP84111178 A EP 84111178A EP 84111178 A EP84111178 A EP 84111178A EP 0166807 B1 EP0166807 B1 EP 0166807B1
Authority
EP
European Patent Office
Prior art keywords
housing
pumping stage
pump
rotary vane
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84111178A
Other languages
English (en)
French (fr)
Other versions
EP0166807A2 (de
EP0166807A3 (en
Inventor
Werner Rietschle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Werner Rietschle Masch-U Apparatebau GmbH
Original Assignee
Werner Rietschle Masch-U Apparatebau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=24513615&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0166807(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Werner Rietschle Masch-U Apparatebau GmbH filed Critical Werner Rietschle Masch-U Apparatebau GmbH
Publication of EP0166807A2 publication Critical patent/EP0166807A2/de
Publication of EP0166807A3 publication Critical patent/EP0166807A3/de
Application granted granted Critical
Publication of EP0166807B1 publication Critical patent/EP0166807B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum

Definitions

  • the invention relates to a rotary vane vacuum pump according to the preamble of claim 1.
  • a rotary vane vacuum pump of this type is known from DE-A-2 350 828.
  • Conventional rotary vane vacuum pumps, the z. B. are known from GB-A-335 735, have a water jacket, which is formed between the outside of a cylindrical sleeve which receives the pump rotor, and an outer housing which is spaced from and surrounds the sleeve.
  • the sleeve and outer housing are generally molded in one piece.
  • Rotary vane vacuum pumps are widely used and used in the chemical and pharmaceutical industries for purposes such as distillation, drying and fractionation, and they also serve a wide variety of purposes in the plastics, ceramics and packaging industries. These pumps are often exposed to aggressive and corrosive media, which lead to a deterioration in pump performance after long periods of operation. For example, in chemical processes, the performance of a pump may become insufficient after a year of continuous operation or less, requiring the pump to be serviced or replaced. Replacing the pump is the easiest way to restore the operability of the system to which the pump belongs, but it is also the most expensive. Conventional rotary vane vacuum pumps are in fact relatively expensive because they require a complicatedly structured and shaped pump housing in order to be able to accommodate a cooling water jacket.
  • the pump stage is attached to a flange surface of an intermediate housing, which enables a form-fitting coupling for releasably connecting the rotor to a rotary drive.
  • the housing of the pump stage is arranged in a chamber which is delimited by the intermediate housing on one side and an outer housing on the other hand, which is detachably attached to the flange surface of the intermediate housing.
  • This outer housing is filled with a lubricating oil supply.
  • the invention has for its object to improve a rotary vane vacuum pump of the type specified in such a way that the defective or worn out units can be replaced in a particularly cost-effective manner and with little downtime even if a cooling system and a separate outlet are present.
  • the rotary vane vacuum pump therefore contains at least one pump stage, preferably two pump stages, each of which has a rotor which is accommodated in a generally cylindrical bore in a housing and carries rotary vane which cooperate with the cylindrical bore.
  • the housing of each pump stage is exposed to a cooling liquid that flows in a cooling system.
  • Each pump stage is designed as an interchangeable unit and detachably attached via its housing to a surface of a flange-like intermediate housing, which is referred to as a gear and connection unit.
  • a cooler housing is detachably attached to the same surface of the intermediate housing, and the chamber formed between the cooler housing, the intermediate housing and the housing or the housings of the pump stage or stages is filled with a cooling liquid such as water.
  • the cooling liquid is in direct contact with the outside of this housing in order to dissipate the heat generated during the operation of the pump stages.
  • the cooler housing can be provided with openings for connection to a heat exchanger, through which the cooling system of the pump is completed.
  • each pump stage as an easily interchangeable unit that is reduced to the essential active parts of a rotary vane pump, which are subject to wear and can then deteriorate the operating data of the pump, especially under harsh operating conditions, as is the case in many chemical processes are encountered.
  • Numerous components that are required for a complete rotary vane vacuum pump are therefore located outside each pump stage, namely within the gear unit and connection unit.
  • the transmission and connection unit is provided with channels and passages which are required for the connection of two separate pump stages in series with one another to form a two-stage rotary vane vacuum pump.
  • the transmission and connection unit in the intermediate housing contains a transmission mechanism which is provided between a single drive motor and the two pump stages.
  • the transmission mechanism preferably includes two meshing gears, one of which is driven directly by the motor and drives the rotor of one pump stage, while the other gear drives the rotor of the other pump stage.
  • At least one compartment for receiving an oil reservoir is formed in the intermediate housing, from which oil is to be conveyed to certain zones of the pump stage which require lubrication.
  • lubrication for the bearings of the pump rotor and / or the delivery chamber can be provided, which is formed between the rotary valves of the rotor and the inside of the cylindrical bore in which the rotor is received eccentrically.
  • Separate oil supply chambers can be provided for different types of oil for lubricating different zones of the pump stage.
  • the rotary vane vacuum pump shown in Figures 1 to 5 of the drawing comprises a base plate 10 which carries an electric drive motor 12 and a two-stage rotary vane pump, which is generally designated 14.
  • This pump 14 has a cooler housing 16 and an intermediate housing 18, which is arranged between the cooler housing 16 and the electric motor 12 and is intended for receiving a transmission and connection unit.
  • the cooler housing 16 carries a heat exchanger 20 with an associated fan 22, the heat exchanger 20 being connected to the chamber formed in the interior of the cooler housing 16 via upper pipes 24 and lower pipes 26.
  • Input and output connections 28, 30 are located on one side surface of the narrow intermediate housing 18, as can be seen in FIG. 2.
  • a generally cylindrical oil separator 32 is shown schematically and in broken lines in FIGS. 1 and 2; it is connected to the outlet connection 30 of the pump. Such an oil separator is optionally provided.
  • the pump contains two pump stages 34, 36, which are flanged onto the same side of the intermediate housing 18 as the cooler housing 16.
  • the cooler housing 16 and the two pump stages 34, 36 are detachably attached, for. B. screwed to the intermediate housing 18.
  • the chamber 38 which is delimited between the cooler housing 16 and the intermediate housing 18, is filled with water, so that the housings 40 and 42 of the pump stages 34 and 36 are surrounded by water.
  • the two pump stages 34 and 36 are arranged one above the other and at a distance from one another.
  • the lower pump stage 36 operating as a high pressure stage is dimensioned smaller than the upper low pressure stage 34.
  • the intermediate housing 18 for receiving the transmission and connection unit is composed of a middle housing part 18a and two outer covers, a transmission housing cover 18b and a connection cover 18c.
  • the intermediate housing 18 is hollow and is formed with cavities, compartments and passages.
  • a compartment 44 is shown for receiving an oil supply.
  • the compartment 44 is connected to zones of the pump stages 34, 36, which require lubrication, in a manner described in more detail later.
  • the intermediate housing 18 also has two cavities 46, 48 which extend axially through all three housing parts to permit the passage of positive coupling mechanisms 50, through which the rotors 35, 37 are coupled to a transmission mechanism or a gearbox which or which is contained in a separate compartment 52 of the transmission housing cover 18b.
  • the transmission mechanism comprises two meshing gears 54, 56, of which the gear 56 is coupled directly to the rotor 37 of the lower pump stage 36 and to the rotor of the electric motor 12 via a coupling mechanism 58, while the upper gear 54 to the rotor 35 of the upper Pump stage 34 is coupled on the one hand and to an oil lubrication pump 60 on the other hand.
  • the connections of the oil lubrication pump 60 are not shown for the sake of simplicity.
  • the oil lubrication pump 60 may be in communication with the compartment 44 to draw from this oil and supply a predetermined fresh oil flow rate to the delivery chambers formed between the rotor and the cylindrical bore of each pump stage.
  • the lower portion of compartment 52 is filled with oil to lubricate the transmission mechanism to which the two gears 54, 56 belong.
  • Two further oil compartments 62, 64 are one above the other within the intermediate housing 18 and adjacent to one side surface thereof arranged.
  • the oil compartment 62 is connected to the bearings of the rotor 35 of the upper pump stage 34 in order to supply oil to it only under the action of gravity.
  • the compartment 64 is connected to the bearings of the rotor 37 of the lower pump stage 36 in order to supply oil to it only under the action of gravity.
  • the stage 34 bezel opening 66 communicates with the input port 28 via a channel 68 formed in the interior of the intermediate housing 18.
  • the outlet opening 70 of the stage 34 communicates with the inlet opening 72 of the stage 36 via a channel 74, which is also formed in the interior of the intermediate housing 18.
  • the outlet opening 76 of the stage 36 communicates with the outlet connection 30 via a channel 78, which is likewise formed in the interior of the intermediate housing 18.
  • An overflow valve 80 is also formed between the channel 74 and a side opening 82 of the channel 78; the overflow valve 80 is closed at a standstill.
  • each pump stage 34, 36 is reduced to the basic active parts of a rotary vane pump, namely a cylindrical sleeve or bush and the rotor eccentrically mounted therein. Furthermore, each pump stage is connected to its drive and to its input and output connections and to its oil feeds through only one side surface of its housing, and all these connections are made simultaneously by the housing of the pump stage being connected only to one surface of the gear and connection unit receiving intermediate housing 18 is flanged.
  • the channel 74 forms a straight, vertically extending connection between the two pump stages 34, 36 arranged vertically one above the other. Neither in the pump stages themselves nor on this connecting path are there any zones in which there are at standstill the pump could collect condensate. Rather, this flows out directly via the lower pump stage 36 and the channel 78.
  • the housing parts 18a, 18c of the transmission and connection unit and the two pump stages 34, 36 are shown in an exploded view.
  • a seal 90 is provided between the middle housing part 18a and the connection cover 18c.
  • the hollow interior of the housing part 18a is divided into cavities and compartments by partition walls.
  • the oil compartments 64, 62 are separated by a partition wall 92.
  • the oil level in the interior of the oil compartments 62, 64 can be checked through oil eyes 96 in bores 94. Oil can be refilled through the filler openings 98, which are closed by a removable oil filler button 100.
  • connection cover 18c has two cylindrical cavities 102, 104 through which the two pin couplings can extend.
  • each clutch mechanism 50 comprises a circular flange 106 or 108 which is wedged onto the corresponding end of the associated rotor shaft and is provided with axially projecting pins 110 which are evenly spaced along the circumference of the respective flange .
  • the pins 110 can be received by suitable bores of a similarly shaped circular flange which is coupled to the associated gear 54 or 56, as shown in FIG. 3.
  • the flange surface 112 On its surface facing the pump stages, flat flange surfaces 112, 114 are formed on the connection cover 18c, through which various passages extend.
  • the flange surface 112 has an opening 116 which communicates with the inlet duct 68 (FIG. 4) and an opening 118 which communicates with the duct 74 and, via this, with an opening 120 of the flange surface 114.
  • the flange surface 114 has a further opening 122 which is connected to the outlet channel 78 (FIG. 4).
  • Oil compartments 44, 62 and 64 communicate with various openings formed in flange surfaces 112, 114.
  • the chamber 62 communicates with an arcuate groove 124 of the flange surface 112, and an opening 126 of the flange surface 112 communicates with an outlet of the oil lubrication pump 60.
  • the upper pump stage 34 has a housing 40 which is closed at one end by a housing cover 130 which is designed to match the flange surface 112 and is provided with corresponding openings and passages which extend through it. Between the flange surface 112 and the housing cover 130, a seal 132 is provided which is provided with openings through it which correspond to the different openings which extend through the flange surface 112.
  • the housing cover 130 is detachably fastened to the flange surface 112, in particular by screws 134 which are screwed into threaded holes 136 which are formed in the flange surface 112.
  • Another seal 138 is provided between the housing cover 130 and the corresponding end of the housing 40.
  • the opposite end of the housing 40 is closed by a further housing cover 140 with the interposition of a seal 142.
  • the rotor 35 carries a plurality of rotary vane 33, which are slidably received in slots 31, as in a conventional rotary vane pump.
  • the housing 40 has an inlet channel 41 and an outlet channel 43 which extend generally axially along the outside of the cylindrical sleeve of the housing 40, in which the rotor 35 is received.
  • Each channel 41, 43 is connected to the delivery chamber in via openings which extend radially through the cylindrical sleeve of the housing 40 Connection which is formed between the inside of the sleeve and the rotor 35.
  • the channels 41, 43 are closed by this.
  • these channels are connected to corresponding openings, which extend through this housing cover and are aligned with the openings 116, 118 of the flange surface 112.
  • the bearings (not shown) of rotor 35 are received in cavities of housing covers 130 and 140, respectively, and each of these cavities communicates with oil groove 124, which is formed in flange surface 112. While the connection between the oil groove 124 and the bearing cavity of the housing cover 130 is a direct connection, which takes place through the seal 132, the connection to the bearing cavity of the housing cover 140 is established via two outer connecting lines 160, 162, which are located between the housing covers 130 and 140 extend and there are connected to openings 142 and 146, respectively. The lower connecting line 162 ensures the inflow of the oil, while the upper connecting line 160 vents the storage space in the housing cover 140.
  • the second or lower pump stage and the flange surface 114 assigned to it are fundamentally similar and are therefore not described in further detail.
  • the rotors 35 and 37 are driven in opposite directions by the electric motor 12 and by the meshing gears 54, 56.
  • the speeds of the rotors 35 and 37 can be the same or different, depending on the particular conditions under which the pump is to be operated. Since the lower pump stage 36 is smaller than the upper pump stage 34 and therefore has a lower pumping speed, it is expediently bridged in the initial phase of the suction by the overflow valve 80, which responds to a pressure difference between the channels 74 and 78, which corresponds to the normal pressure drop is opposite at this pump stage
  • the heat generated by the continuous operation of the pump is removed from the housings 40, 42 of the two pump stages by the water that surrounds them and is contained in the chamber 38.
  • the two pump stages are arranged one above the other and at a distance from one another, the smaller stage 36 being located below the larger stage 34.
  • an uninhibited convection flow of water can automatically form inside the chamber 38 along the outer surfaces of the housings 42 and 40 to the upper conduits 24, the flow then through the heat exchanger 20, through the conduits 27 and back to the bottom area of the Chamber 38 is performed.
  • a forced circulation of the cooling water is not necessary, which considerably simplifies the cooling system.
  • the operating data of the pump can become unsatisfactory due to corrosion and wear of the active pump parts.
  • one or both pump stages 34, 36 are easily removed and replaced by simply draining the water from the chamber 38 and removing the radiator housing 16 from the connection cover 18c, loosening the screws 134 and removing the housing 40 and 42 with its associated housing cover is removed from the connection cover 18c, then the defective stage is replaced by a new one and finally the radiator housing 16 is fastened again to the connection cover 18c. After filling the chamber 38 with water, the pump is then ready for operation again. These operations can be carried out within a short time and do not require any particularly qualified maintenance personnel.
  • each pump stage has a very simple shape and structure, so that it is easy to manufacture as a casting.
  • Each pump stage therefore forms a relatively inexpensive unit, so that a pump can be supplied with a set of reserve pump units without incurring high additional costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

  • Die Erfindung betrifft eine Drehschieber-Vakuumpumpe nach dem Oberbegriff des Patentanspruchs 1.
  • Eine Drehschieber-Vakuumpumpe dieser Gattung ist aus der DE-A-2 350 828 bekannt. Herkömmliche Drehschieber-Vakuumpumpen, die z. B. aus der GB-A-335 735 bekannt sind, weisen einen Wassermantel auf, der zwischen der Außenseite einer zylindrischen Hülse, welche den Pumpenrotor aufnimmt, und einem Außengehäuse gebildet ist, das von der Hülse im Abstand angeordnet ist und diese umgibt. Die Hülse und das Außengehäuse sind im allgemeinen einteilig gegossen.
  • Drehschieber-Vakuumpumpen sind in der chemischen und pharmazeutischen Industrie verbreitet und werden dort für Zwecke wie Destillation, Trocknung und Fraktionierung eingesetzt, und sie dienen ferner den verschiedensten Zwecken in der Kunststoffindustrie, Keramikindustrie und Verpakkungsindustrie. Diese Pumpen sind oft aggressiven und korrodierenden Medien ausgesetzt, die nach längerem Betrieb zu einer Verschlechterung der Pumpleistung führen. Bei chemischen Prozessen kann beispielsweise die Leistungsfähigkeit einer Pumpe nach kontinuierlichem Betrieb über ein Jahr oder weniger unzureichend werden, so daß die Pumpe gewartet oder ersetzt werden muß. Das Ersetzen der Pumpe ist zwar die einfachste Weise, um die Betriebsfähigkeit der Anlage, zu welcher die Pumpe gehört, wieder herzustellen, sie ist jedoch auch die aufwendigste. Herkömmliche Drehschieber-Vakuumpumpen sind nämlich relativ teuer, weil sie ein kompliziert strukturiertes und geformtes Pumpengehäuse benötigen, um einen Kühlwassermantel aufnehmen zu können. Die Herstellung von solchen Pumpengehäusen ist gießtechnisch aufwendig. Andrerseits wird zum Ersetzen der verschlissenen Teile der Pumpe eine beträchtliche Arbeitszeit benötigt, bis das Pumpengehäuse freigelegt, die verschlissenen Teile abgebaut und die gesamte Pumpeinheit wieder zusammengesetzt ist. Längere Abschaltzeiten können aber bei vielen chemischen Prozessen kaum toleriert werden.
  • Bei der Drehschieber-Vakuumpumpe nach der DE-A-2 350 828 ist die Pumpstufe an einer Flanschfläche eines Zwischengehäuses befestigt, das eine formschlüssige Ankopplung zum lösbaren Anschließen des Rotors an einen Drehantrieb ermöglicht. Das Gehäuse der Pumpstufe ist in einer Kammer angeordnet, welche durch das Zwischengehäuse auf der einen Seite und ein Außengehäuse andererseits begrenzt ist, das lösbar an der Seite der Flanschfläche des Zwischengehäuses an dieses angebaut ist. Dieses Außengehäuse ist mit einem Schmierölvorrat gefüllt.
  • Durch diese Ausbildung der Drehschieber-Vakuumpumpe wird zwar der Austausch der Pumpstufe erleichtert, jedoch handelt es sich bei dieser bekannten Ausbildung um eine relativ einfache Konstruktion, die über kein gesondertes Kühlsystem verfügt und deren Auslaß einfach an der Oberseite des Außengehäuses gebildet ist und ins Freie ausmündet.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Drehschieber-Vakuumpumpe der eingangs angegebenen Art dahingehend zu verbessern, daß ein Ersetzen der defekten oder verschlissenen Aggregate auf besonders kostengünstige Weise und bei geringer Ausfallzeit auch dann möglich ist, wenn ein Kühlsystem und ein gesonderter Auslaß vorhanden sind.
  • Diese Aufgabe wird durch die im Patentanspruch 1 angegebene Drehschieber-Vakuumpumpe gelöst.
  • Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.
  • Die Drehschieber-Vakuumpumpe enthält gemäß der Erfindung also wenigstens eine Pumpstufe, vorzugsweise zwei Pumpstufen, die jeweils einen Rotor aufweisen, der in einer allgemein zylindrischen Bohrung eines Gehäuses aufgenommen ist und Drehschieber trägt, welche mit der zylindrischen Bohrung zusammenwirken. Das Gehäuse jeder Pumpstufe ist einer Kühlflüssigkeit ausgesetzt, die in einem Kühlsystem strömt. Jede Pumpstufe ist als austauschbare Einheit ausgebildet und über ihr Gehäuse lösbar an einer Fläche eines flanschartigen Zwischengehäuses angebaut, das als Getriebe- und Anschlußeinheit bezeichnet wird. Ein Kühlergehäuse ist lösbar an derselben Fläche des Zwischengehäuses angebaut, und die zwischen dem Kühlergehäuse, dem Zwischengehäuse und dem Gehäuse bzw. den Gehäusen der Pumpstufe bzw. -stufen gebildete Kammer ist mit einer Kühlflüssigkeit wie Wasser angefüllt. Die Kühlflüssigkeit ist direkt mit der Außenseite dieser Gehäuse in Berührung, um die im Betrieb der Pumpstufen erzeugte Wärme abzuführen. Das Kühlergehäuse kann mit Öffnungen versehen sein, um an einen Wärmetauscher angeschlossen zu werden, durch den das Kühlsystem der Pumpe vervollständigt wird.
  • Der wesentliche Gedanke der Erfindung besteht also darin, jede Pumpstufe als leicht austauschbare Einheit vorzusehen, die auf die wesentlichen aktiven Teile einer Drehschieberpumpe reduziert ist, welche Verschleiß ausgesetzt sind und dann die Betriebsdaten der Pumpe verschlechtern können, insbesondere unter harten Einsatzbedingungen, wie sie bei zahlreichen chemischen Prozessen angetroffen werden. Zahlreiche Bauteile, die für eine vollständige Drehschieber-Vakuumpumpe erforderlich sind, befinden sich also außerhalb jeder Pumpstufe, nämlich innerhalb der Getriebe-und Anschlußeinheit. Bei bevorzugten Ausführungsformen ist die Getriebe- und Anschlußeinheit mit Kanälen und Durchgängen versehen, die für die Verbindung von zwei getrennten Pumpstufen in Reihe miteinander zur Bildung einer zweistufigen Drehschieber-Vakuumpumpe erforderlich sind.
  • Gemäß einer weiteren bevorzugten Ausführungsform enthält die Getriebe- und Anschlußeinheit in dem Zwischengehäuse einen Übertragungsmechanismus, der zwischen einem einzigen Antriebsmotor und den beiden Pumpstufen vorgesehen ist.
  • Der Übertragungsmechanismus enthält vorzugsweise zwei miteinander kämmende Zahnräder, von denen das eine durch den Motor direkt angetrieben wird und den Rotor der einen Pumpstufe antreibt, während das andere Zahnrad den Rotor der anderen Pumpstufe antreibt.
  • Gemäß einer weiteren Ausführungsform der Erfindung ist in dem Zwischengehäuse wenigstens ein Abteil zur Aufnahme eines Ölvorrats gebildet, von dem Öl zu bestimmten Zonen der Pumpstufe befördert werden soll, die einer Schmierung bedürfen. Zum Beispiel kann eine Schmierung für die Lager des Pumpenrotors und/oder die Förderkammer vorgesehen sein, welche zwischen den Drehschiebern des Rotors und der Innenseite der zylindrischen Bohrung gebildet ist, in welcher der Rotor exzentrisch aufgenommen ist. Für verschiedene Ölsorten zum Schmieren von verschiedenen Zonen der Pumpstufe können getrennte Ölvorratskammem vorgesehen sein.
  • Weitere Merkmale und Vorteile ergeben sich aus der folgenden Beschreibung einer bevorzugten Ausführungsform der Erfindung und aus der Zeichnung, auf die Bezug genommen wird. In der Zeichnung zeigen :
    • Fig. 1 eine Seitenansicht einer Drehschieber-Vakuumpumpe nach der Erfindung ;
    • Fig. 2 eine Draufsicht der in Fig. 1 gezeigten Pumpe ;
    • Fig. 3 eine Darstellung derselben Pumpe, in der zwei Pumpstufen, ein Kühlsystem, ein Zwischengehäuse und ein Übertragungsmechanismus schematisch im Längsschnitt gezeigt sind ;
    • Fig. 4 eine ähnliche Darstellung derselben Pumpe, wobei jedoch die Zuordnung der Pumpstufen zueinander durch einen schematischen Querschnitt verdeutlicht ist; und
    • Fig. 5 eine Explosionsansicht, die das Zwischengehäuse für die Aufnahme der Getriebe-und Anschlußeinheit und die zwei Pumpstufen der in den vorausgehenden Figuren gezeigten Pumpe zeigt.
  • Die in den Figuren 1 bis 5 der Zeichnung gezeigte Drehschieber-Vakuumpumpe umfaßt eine Grundplatte 10, die einen elektrischen Antriebsmotor 12 und eine zweistufige Drehschieberpumpe trägt, die allgemein mit 14 bezeichnet ist. Diese Pumpe 14 besitzt ein Kühlergehäuse 16 und ein Zwischengehäuse 18, das zwischen dem Kühlergehäuse 16 und dem Elektromotor 12 angeordnet und zur Aufnahme einer Getriebe- und Anschlußeinheit bestimmt ist. Das Kühlergehäuse 16 trägt einen Wärmetauscher 20 mit zugeordnetem Ventilator 22, wobei der Wärmetauscher 20 mit der im Inneren des Kühlergehäuses 16 gebildeten Kammer über obere Rohrleitungen 24 und untere Rohrleitungen 26 verbunden ist.
  • Eingangs- und Ausgangsanschluß 28, 30 befinden sind auf einer Seitenfläche des schmalen Zwischengehäuses 18, wie in Fig. 2 ersichtlich ist. In den Figuren 1 und 2 ist ein allgemein zylindrischer Ölabscheider 32 schematisch und gestrichelt eingezeichnet ; er ist an den Ausgangsanschluß 30 der Pumpe angeschlossen. Ein solcher Ölabscheider ist wahlweise vorgesehen.
  • Wie in den Figuren 3 und 4 gezeigt ist, enthält die Pumpe zwei Pumpstufen 34, 36, die auf dieselbe Seite des Zwischengehäuses 18 wie das Kühlergehäuse 16 angeflanscht sind. Das Kühlergehäuse 16 und die beiden Pumpstufen 34, 36 sind lösbar angebaut, z. B. an das Zwischengehäuse 18 angeschraubt. Die Kammer 38, welche zwischen dem Kühlergehäuse 16 und dem Zwischengehäuse 18 begrenzt ist, ist mit Wasser gefüllt, so daß die Gehäuse 40 und 42 der Pumpstufen 34 und 36 von Wasser umgeben sind. Die beiden Pumpstufen 34 und 36 sind übereinander und im Abstand voneinander angeordnet. Die untere, als Hochdruckstufe arbeitende Pumpstufe 36 ist kleiner dimensioniert als die obere Niederdruckstufe 34.
  • Das Zwischengehäuse 18 zur Aufnahme der Getriebe- und Anschlußeinheit ist zusammengesetzt aus einem mittleren Gehäuseteil 18a und zwei äußeren Deckeln, einem Getriebegehäusedeckel 18b und einem Anschlußdeckel 18c. Das Zwischengehäuse 18 ist hohl und mit Hohlräumen, Abteilen und Durchgängen ausgebildet. In Fig. 3 ist ein Abteil 44 zur Aufnahme eines Ölvorrats gezeigt. Das Abteil 44 steht mit Zonen der Pumpstufen 34, 36, die einer Schmierung bedürfen, in einer noch später im einzelnen beschriebenen Weise in Verbindung. Das Zwischengehäuse 18 weist ferner zwei Hohlräume 46, 48 auf, die sich axial durch alle drei Gehäuseteile hindurch erstrecken, um den Durchgang von formschlüssigen Kopplungsmechanismen 50 zu gestatten, durch welche die Rotoren 35, 37 an einen Übertragungsmechanismus bzw. ein Getriebe angekoppelt sind, der bzw. das in einem getrennten Abteil 52 des Getriebegehäusedeckels 18b enthalten ist. Der Übertragungsmechanismus umfaßt zwei miteinander kämmende Zahnräder 54, 56, von denen das Zahnrad 56 direkt an den Rotor 37 der unteren Pumpstufe 36 und an den Rotor des Elektromotors 12 über einem Kopplungsmechanismus 58 angekoppelt ist, während das obere Zahnrad 54 an den Rotor 35 der oberen Pumpstufe 34 einerseits und an eine Ölschmierpumpe 60 andererseits angekoppelt ist. Die Anschlüsse der Ölschmierpumpe 60 sind zur Vereinfachung nicht dargestellt. Die Ölschmierpumpe 60 kann mit dem Abteil 44 in Verbindung stehen, um aus diesem Öl abzusaugen und eine vorbestimmte Frischöl-Durchflußrate den Förderkammem zuzuführen, die zwischen dem Rotor und der zylindrischen Bohrung jeder Pumpstufe gebildet sind. Der untere Bereich des Abteils 52 ist mit Öl zur Schmierung des Übertragungsmechanismus angefüllt, zu dem die beiden Zahnräder 54, 56 gehören. Zwei weitere Ölabteile 62, 64 sind übereinander innerhalb des Zwischengehäuses 18 und angrenzend an dessen eine Seitenfläche angeordnet. Das Ölabteil 62 steht mit den Lagern des Rotors 35 der oberen Pumpstufe 34 in Verbindung, um diesem lediglich unter der Wirkung der Schwerkraft Öl zuzuführen. Das Abteil 64 steht mit den Lagern des Rotors 37 der unteren Pumpstufe 36 in Verbindung, um diesem lediglich unter der Wirkung der Schwerkraft Öl zuzuführen.
  • Wie in Fig. 4 gezeigt ist, sind die beiden Pumpstufen 34, 36 in Reihe geschaltet. Die Einfaßöffnung 66 der Stufe 34 steht mit dem Eingangsanschluß 28 über einen Kanal 68 in Verbindung, der im Inneren des Zwischengehäuses 18 gebildet ist. Die Auslaßöffnung 70 der Stufe 34 steht mit der Einlaßöffnung 72 der Stufe 36 über einen Kanal 74 in Verbindung, der ebenfalls im Innere des Zwischengehäuses 18 gebildet ist. Die Auslaßöffnung 76 der Stufe 36 steht mit dem Ausgangsanschluß 30 über einen Kanal 78 in Verbindung, welcher ebenfalls im Inneren des Zwischengehäuses 18 gebildet ist. Ein Überströmventil 80 ist ferner zwischen dem Kanal 74 und einer seitlichen Öffnung 82 des Kanals 78 gebildet ; das Überströmventil 80 ist bei Stillstand geschlossen.
  • Es ist ersichtlich, daß jede Pumpstufe 34, 36 auf die grundlegenden aktiven Teile einer Drehschieberpumpe reduziert ist, nämlich eine zylindrische Hülse oder Buchse und den exzentrisch darin gelagerten Rotor. Ferner ist jede Pumpstufe an ihren Antrieb und an ihre Eingangs- und Ausgangsanschlüsse sowie an ihre Ölzuführungen durch nur eine Seitenfläche ihres Gehäuses hindurch angeschlossen, und alle diese Anschlüsse werden gleichzeitig hergestellt, indem das Gehäuse der Pumpstufe lediglich an eine Fläche des die Getriebe- und Anschlußeinheit aufnehmenden Zwischengehäuses 18 angeflanscht wird.
  • Wie aus Fig. 4 ersichtlich ist, bildet der Kanal 74 eine gerade, vertikal verlaufende Verbindung zwischen den zwei senkrecht übereinander angeordneten Pumpstufen 34, 36. Weder in den Pumpstufen selbst, noch auf diesem Verbindungsweg befinden sich somit irgendwelche Zonen, in denen sich beim Stillstand der Pumpe Kondensat ansammeln könnte. Dieses fließt vielmehr unmittelbar über die untere Pumpstufe 36 und den Kanal 78 nach außen ab.
  • Besondere Einzelheiten, welche die konstruktive Ausgestaltung der bevorzugten Ausführungsform betreffen, sind in Fig. 5 ersichtlich.
  • In Fig. 5 sind die Gehäuseteile 18a, 18c der Getriebe- und Anschlußeinheit und die beiden Pumpstufen 34, 36 in Explosionsdarstellung gezeigt. Eine Dichtung 90 ist zwischen dem mittleren Gehäuseteil 18a und dem Anschlußdeckel 18c vorgesehen. Der hohle Innenraum des Gehäuseteils 18a ist durch Trennwände in Hohlräume und Abteile unterteilt, Beispielsweise sind die Ölabteile 64, 62 durch eine Trennwand 92 getrennt. Der Ölstand im Inneren der Ölabteile 62, 64 kann durch Ölaugen 96 in Bohrungen 94 überprüft werden. Über die Einfüllöffnungen 98, welche durch einen entfembaren Öleinfüllknopf 100 verschlossen sind, kann Öl nachgefüllt werden.
  • Der Anschlußdeckel 18c weist zwei zylindrische Hohlräume 102, 104 auf, durch die hindurch sich die zwei Bolzenkupplungen erstrecken können. Auf der Seite der Rotoren 35, 37 umfaßt jeder Kupplungsmechanismus 50 einen .kreisrunden Flansch 106 bzw. 108, der auf dem entsprechenden Ende der zugeordneten Rotorwelle festgekeilt und mit in Axialrichtung vorstehenden Zapfen 110 versehen ist, welche gleichmäßig entlang dem Umfang des jeweiligen Flansches beabstandet sind. Die Zapfen 110 können von passenden Bohrungen eines ähnlich ausgebildeten kreisrunden Flansches aufgenommen werden, der an das zugehörige Zahnrad 54 bzw. 56 angekoppelt ist, wie Fig. 3 zeigt.
  • Auf seiner den Pumpstufen zugewandten Fläche sind an dem Anschlußdeckel 18c ebene Flanschflächen 112, 114 gebildet, durch welche sich verschiedene Durchgänge hindurcherstrecken. Die Flanschfläche 112 besitzt eine Öffnung 116, welche mit dem Einlaßkanal 68 (Fig. 4) in Verbindung ist, und eine Öffnung 118, die mit dem Kanal 74 und über diesen mit einer Öffnung 120 der Flanschfläche 114 in Verbindung ist. Die Flanschfläche 114 weist eine weitere Öffnung 122 auf, die mit dem Auslaßkanal 78 (Fig. 4) in Verbindung steht. Die Ölabteile 44, 62 und 64 sind mit verschiedenen Öffnungen in Verbindung, die in den Flanschflächen 112, 114 gebildet sind. Die Kammer 62 ist mit einer bogenförmig gestalteten Rille 124 der Flanschfläche 112 in Verbindung, und eine Öffnung 126 der Flanschfläche 112 steht mit einem Auslaß der Ölschmierpumpe 60 in Verbindung.
  • Die obere Pumpstufe 34 besitzt ein Gehäuse 40, das einem seiner Enden durch einen Gehäusedeckel 130 verschlossen ist, der passend zu der Flanschfläche 112 ausgebildet und mit entsprechenden Öffnungen und Durchgängen versehen ist, welche sich durch ihn hindurch erstrecken. Zwischen der Flanschfläche 112 und dem Gehäusedeckel 130 ist eine Dichtung 132 vorgesehen, die mit durch sie hindurchführenden Öffnungen versehen ist, die den verschiedenen Öffnungen entsprechen, welche sich durch die Flanschfläche 112 hindurch erstrecken. Der Gehäusedeckel 130 ist lösbar an der Flanschfläche 112 befestigt, insbesondere durch Schrauben 134, die in Gewindelöcher 136 eingeschraubt sind, welche in der Flanschfläche 112 gebildet sind. Eine weitere Dichtung 138 ist zwischen dem Gehäusedeckel 130 und dem entsprechenden Ende des Gehäuses 40 vorgesehen. Das gegenüberliegende Ende des Gehäuses 40 ist durch einen weiteren Gehäusedeckel 140 unter Zwischenfügung einer Dichtung 142 verschlossen. Der Rotor 35 trägt mehrere Drehschieber 33, die gleitbeweglich in Schlitzen 31 aufgenommen sind, wie bei einer herkömmlichen Drehschieberpumpe.
  • Das Gehäuse 40 weist einen Einlaßkanal 41 und einen Auslaßkanal 43 auf, die sich allgemein in Axialrichtung längs der Außenseite der zylindrischen Hülse des Gehäuses 40 erstrecken, worin der Rotor 35 aufgenommen ist. Jeder Kanal 41, 43 steht über Öffnungen, die sich in Radialrichtung durch die zylindrische Hülse des Gehäuses 40 hindurch erstrecken, mit der Förderkammer in Verbindung, welche zwischen der Innenseite der Hülse und dem Rotor 35 gebildet ist. An ihrem dem Gehäusedeckel 140 zugewandten Ende sind die Kanäle 41, 43 durch diesen verschlossen. An ihren gegenüberliegenden Enden, die an den Gehäusedeckel 130 angrenzen, sind diese Kanäle mit entsprechenden Öffnungen in Verbindung, die sich durch diesen Gehäusedeckel hindurch erstrecken und mit den Öffnungen 116, 118 der Flanschfläche 112 fluchten.
  • Die Lager (nicht dargestellt) des Rotors 35 sind in Hohlräumen der Gehäusedeckel 130 bzw. 140 aufgenommen, und jeder dieser Hohlräume steht mit der Ölrille 124 in Verbindung, die in der Flanschfläche 112 gebildet ist. Während die Verbindung zwischen der Ölrille 124 und dem Lagerhohlraum des Gehäusedeckels 130 eine direkte Verbindung ist, welche durch die Dichtung 132 hindurch erfolgt, ist die Verbindung mit dem Lagerhohlraum des Gehäusedeckels 140 über zwei äußere Verbindungsleitungen 160, 162 hergestellt, die sich zwischen den Gehäusedeckeln 130 und 140 erstrecken und dort an Öffnungen 142 bzw. 146 angeschlossen sind. Die untere Verbindungsleitung 162 sorgt für den Zufluß des Öls, während die obere Verbindungsleitung 160 den Lagerraum im Gehäusedeckel 140 entlüftet.
  • Die zweite bzw. untere Pumpstufe und die ihr zugeordnete Flanschfläche 114 sind grundsätzlich ähnlich ausgebildet und werden daher nicht weiter im einzelnen beschrieben. Im Betrieb werden die Rotoren 35 und 37 durch den Elektromotor 12 und über die miteinander kämmenden Zahnräder 54, 56 gegensinnig angetrieben. Die Drehzahlen der Rotoren 35 und 37 können gleich oder unterschiedlich sein, je nach den besonderen Bedingungen, unter denen die Pumpe betrieben werden soll. Da die untere Pumpstufe 36 kleiner bemessen ist als die obere Pumpstufe 34 und daher ein geringeres Saugvermögen besitzt, wird sie zweckmäßigerweise in der Anfangsphase des Absaugens durch das Überströmventil 80 überbrückt, welches auf eine Druckdifferenz zwischen den Kanälen 74 und 78 anspricht, die dem normalen Druckgefälle an dieser Pumpstufe entgegengesetzt ist
  • Die durch den kontinuierlichen Betrieb der Pumpe erzeugte Wärme wird von den Gehäusen 40, 42 der beiden Pumpstufen durch das Wasser abgeführt, welches diese umgibt und in der Kammer 38 enthalten ist. Wie aus den Figuren 3 und 4 ersichtlich ist, sind die beiden Pumpstufen übereinander und im Abstand voneinander angeordnet, wobei die kleinere Stufe 36 sich unterhalb der größeren Stufe 34 befindet. Unter diesen Bedingungen kann sich eine ungehemmte Konvektionsströmung des Wassersautomatisch im Inneren der Kammer 38 entlang den Außenoberflächen der Gehäuse 42 und 40 zu den oberen Rohrleitungen 24 hin ausbilden, wobei die Strömung dann durch den Wärmetauscher 20 hindurch, durch die Rohrleitungen 27 und zurück zum Bodenbereich der Kammer 38 geführt wird. Eine Zwangsumwälzung des Kühlwassers ist nicht erforderlich, wodurch das Kühlsystem beträchtlich vereinfacht wird.
  • Unter harten Einsatzbedingungen, wenn also beispielsweise korrodierende oder aggressive Medien abgepumpt werden, können die Betriebsdaten der Pumpe aufgrund von Korrosion und Verschleiß der aktiven Pumpenteile unbefriedigend werden. In diesem Falle wird eine oder werden beide Pumpstufen 34, 36 leicht abgebaut und ersetzt, indem einfach das Wasser aus der Kammer 38 abgelassen und das Kühlergehäuse 16 vom Anschlußdeckel 18c abgebaut wird, die Schrauben 134 gelöst werden und das Gehäuse 40 bzw. 42 mit seinem zugehörigen Gehäusedeckel von dem Anschlußdeckel 18c abgezogen wird, dann die schadhafte Stufe durch eine neue ersetzt und schließlich das Kühlergehäuse 16 wieder an dem Anschlußdeckel 18c befestigt wird. Nach dem Auffüllen der Kammer 38 mit Wasser ist die Pumpe dann wieder betriebsbereit. Diese Handhabungen können innerhalb kurzer Zeit durchgeführt werden und erfordern kein besonders qualifiziertes Wartungspersonal.
  • Ein wichtiger Vorteil der Erfindung besteht darin, daß das Gehäuse jeder Pumpstufe eine sehr einfache Form und Struktur aufweist, so daß sie als Gußteil einfach herzustellen ist. Jede Pumpstufe bildet daher eine relativ kostengünstige Einheit, so daß eine Pumpe mit einem Satz Reservepumpeinheiten geliefert werden kann, ohne hohe zusätzliche Kosten zu verursachen.

Claims (9)

1. Drehschieber-Vakuumpumpe mit wenigstens einer Pumpstufe (34, 36), deren Rotor (35, 37) in einer allgemein zylindrischen Bohrung eines Gehäuses (40, 42) aufgenommen ist und Drehschieber (33) trägt, welche mit der zylindrischen Bohrung zusammenwirken, einem Drehantrieb (12, 54, 56) für den Rotor (35, 37) und einem Schmierölsystem für die Pumpstufe (34, 36), wobei die Pumpstufe (34, 36) als austauschbare Einheit ausgebildet ist, das Gehäuse (40, 42) über einen, sich in Radialrichtung erstreckenden Gehäusedeckel (130) lösbar an einer Flanschfläche (112, 114) eines eine Anschlußeinheit aufnehmenden Zwischengehäuses (18) befestigt ist, das eine formschlüssige Kopplungseinrichtung (50) zum lösbaren Anschließen des Rotors (35, 37) an den Drehantrieb (12, 54, 56) aufnimmt, und das Gehäuse (40, 42) in einer Kammer (38) angeordnet ist, welche durch das Zwischengehäuse (18) einerseits und ein Außengehäuse (16) andererseits begrenzt ist, welches lösbar auf der Seite der Flanschfläche (112, 114) des Zwischengehäuses an dieses angebaut ist, dadurch gekennzeichnet, daß die Kammer (38) wenigstens teilweise mit einer Kühlflüssigkeit wie Wasser angefüllt ist, die wenigstens einen wesentlichen Teil des Gehäuses (40, 42) der Pumpstufe (34, 36) umgibt und mit diesem in Berührung steht sowie in einem am Aussengehäuse angehängten Kühlsystem zirkuliert, daß sowohl die Einlaßöffnung (66, 72) als auch die Auslaßöffnung (70, 76) der Pumpstufe (34, 36) durch den Gehäusedeckel hindurch geführt sind und mit zugeordneten Kanälen (68, 74, 78) in Verbindung stehen, welche im Inneren des Zwischengehäuses (18) ausgebildet sind, und daß das Zwischengehäuse (18) wenigstens ein Abteil (44, 62, 64) zur Aufnahme eines Schmierölvorrats aufweist, das an eine zu schmierende Zone der Pumpstufe (34, 36) über einen Ölkanal (124) angeschlossen ist, der sich durch die Flanschfläche (112, 114) des Zwischengehäuses (18) und durch die daran angrenzende Fläche des Gehäuses (40, 42) der Pumpstufe (34, 36) hindurch erstreckt.
2. Drehschieber-Vakuumpumpe nach Anspruch 1, dadurch gekennzeichnet, daß das schmale Zwischengehäuse (18) zwei einander gegenüberliegende Hauptflächen aufweist und das Gehäuse (40, 42) der Pumpstufe (34, 36) an die eine dieser Flächen angebaut ist, während der Drehantrieb (12, 54, 56) an die andere Fläche angebaut ist, wobei die Kopplungseinrichtung (50) sich- durch das Zwischengehäuse (18) hindurch erstreckt.
3. Drehschieber-Vakuumpumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Zwischengehäuse (18) zwei getrennte Abteile (44; 62, 64) zur Aufnahme eines Schmierölvorrats aufweist, die an verschiedene zu schmierende Zonen der Pumpstufe angeschlossen sind, wobei eine dieser Zonen die Lager des Rotors (35, 37) in dem Gehäuse (40, 42) der Pumpstufe (34, 36) umfaßt und die andere dieser Zonen die Förderkammer der Pumpstufe (34, 36) ist.
4. Drehschieber-Vakuumpumpe nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß sie zwei in Reihe geschaltete Pumpstufen (34, 36) umfaßt, die jeweils mit ihrem eigenen Gehäuse (40, 42) und Rotor (35, 37) versehen sind und jeweils als austauschbare Einheit vorgesehen sind, die gegen dieselbe Seite des Zwischengehäuses (18) angebaut sind, und daß die Pumpstufen (34, 36) übereinander und im Abstand voneinander angeordnet sind und verschieden groß bemessene Gehäuse (40, 42) besitzen, von denen das kleinere (42) unterhalb des größeren (40) angeordnet ist.
5. Drehschieber-Vakuumpumpe nach Anspruch 4, dadurch gekennzeichnet, daß ein Getriebe aus zwei miteinander kämmenden Zahnrädem (54, 56) zwischen dem Motor des Drehantriebs (12) und den Rotoren (35, 37) der Pumpstufen (34, 36) angeordnet ist und daß die Zahnräder (54, 56) drehbar übereinander im Inneren eines Abteils (52) des Zwischengehäuses (18) gelagert sind, wobei das eine (56) der beiden Zahnräder direkt an den Drehantrieb (12) und an einen (37) der beiden Rotoren angekoppelt ist und das andere Zahnrad (54) den anderen Rotor (35) antreibt.
6. Drehschieber-Vakuumpumpe nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß jede Pumpstufe (34, 36) eine eigene Einlaßöffnung (66, 72) und eine eigene Auslaßöffnung (70, 76) in ihrem Gehäuse (40, 42) aufweist, welches mit einem anflanschbaren Gehäusedeckel (130) zum Anbauen des Gehäuses (40, 42) an das Zwischengehäuse (18) versehen ist, daß die Einlaßöffnungen (66, 72) und Auslaßöffnungen (70, 76) durch diesen Gehäusedeckel (130) hindurchführen und mit zugeordneten Kanälen (68, 74, 78) in Verbindung sind, die sich durch das Zwischengehäuse (18) hindurch erstrecken, daß einer dieser Kanäle (74) die Auslaßöffnung (70) der ersten (34) der beiden Pumpstufen mit der Einlaßöffnung (72) der zweiten (36) der beiden Pumpstufen verbindet und zwei weitere Kanäle (68, 78) vorgesehen sind, von denen der eine (68) einen Einlaßanschluß (28) der Vakuumpumpe mit der Eingangsöffnung (66) der ersten Pumpstufe (34) und der andere (78) einen Ausgangsanschluß (30) der Vakuumpumpe mit der Auslaßöffnung (76) der zweiten Pumpstufe (36) verbindet.
7. Drehschieber-Vakuumpumpe nach Anspruch 6, dadurch gekennzeichnet, daß der Eingangsanschluß (28) oberhalb des Ausgangsanschlusses (30) an einer Seitenfläche des Zwischengehäuses (18) angeordnet ist und daß der Verbindungsweg zwischen Eingangs- und Ausgangsanschluß (28, 30) frei ist von Zonen, in denen sich bei Stillstand Kondensat ansammeln kann.
8. Drehschieber-Vakuumpumpe nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Kopplungseinrichtung (50) formschlüssig nach Art einer Bolzenkupplung miteinander in Eingriff bringbare Kopplungselemente zwischen dem Rotor (35, 37) und dem Drehantrieb (12, 54, 56) umfaßt.
9. Drehschieber-Vakuumpumpe nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, daß die Einlaßöffnung (72) und die Auslaßöffnung (76) der zweiten Pumpstufe (36) durch ein Überströmventil (80) überbrückt sind, das eine direkte Verbindung zwischen diesen Öffnungen ansprechend auf eine zwischen den Öffnungen vorhandene Druckdifferenz herstellen kann, die entgegengesetzt der normalen Druckdifferenz ist, die durch den Betrieb der zweiten Pumpstufe (36) verursacht wird.
EP84111178A 1984-07-02 1984-09-19 Drehschieber-Vakuumpumpe Expired EP0166807B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/627,193 US4588358A (en) 1984-07-02 1984-07-02 Rotary vane evacuating pump
US627193 2000-07-27

Publications (3)

Publication Number Publication Date
EP0166807A2 EP0166807A2 (de) 1986-01-08
EP0166807A3 EP0166807A3 (en) 1987-01-14
EP0166807B1 true EP0166807B1 (de) 1989-12-13

Family

ID=24513615

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84111178A Expired EP0166807B1 (de) 1984-07-02 1984-09-19 Drehschieber-Vakuumpumpe

Country Status (3)

Country Link
US (1) US4588358A (de)
EP (1) EP0166807B1 (de)
DE (2) DE3480727D1 (de)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3545982A1 (de) * 1985-12-23 1987-07-02 Busch Gmbh K Drehschieber-vakuumpumpe
DE3603809A1 (de) * 1986-02-07 1987-08-13 Provac Gmbh & Co Zweistufige drehschieber-vakuumpumpe
US4708027A (en) * 1986-06-16 1987-11-24 Stenner Gustave H Gear motor housing
ES2030561T3 (es) 1988-06-24 1992-11-01 Siemens Aktiengesellschaft Grupo de bombas de vacio de varias fases.
DE3833663C2 (de) * 1988-10-04 2000-08-10 Konrad Ensslin Mit einem zylindrischen Hals versehener steifer wiederverwendbarer Spendebehälter
JPH0658278A (ja) * 1992-08-05 1994-03-01 Ebara Corp 多段スクリュー式真空ポンプ
US6729863B2 (en) 1999-03-22 2004-05-04 Werner Rietschle Gmbh & Co. Kg Rotary pump having high and low pressure ports in the housing cover
WO2002086220A1 (en) * 2001-04-24 2002-10-31 Dyson Limited Clothes dryer
GB2394011A (en) * 2002-10-10 2004-04-14 Compair Uk Ltd Oil sealed rotary vane compressor
US20050084392A1 (en) * 2003-10-20 2005-04-21 United Dominion Industries, Inc. Pump drive alignment apparatus and method
DE102006058843A1 (de) * 2006-12-13 2008-06-19 Pfeiffer Vacuum Gmbh Vakuumpumpe
DE102009037010A1 (de) * 2009-08-11 2011-02-17 Oerlikon Leybold Vacuum Gmbh Vakuumpumpensystem
US8162625B1 (en) * 2009-09-22 2012-04-24 Harry Soderstrom Nested motor, reduction motor reduction gear and pump with selectable mounting options
US8714130B2 (en) * 2009-10-19 2014-05-06 Nagesh S. Mavinahally Integrally cast block and upper crankcase
US8757918B2 (en) * 2009-12-15 2014-06-24 David R. Ramnarain Quick-connect mounting apparatus for modular pump system or generator system
DE102012220608B3 (de) * 2012-11-13 2013-11-14 Joma-Polytec Gmbh Pumpenvorrichtung
US10473096B2 (en) * 2013-03-15 2019-11-12 Agilent Technologies, Inc. Modular pump platform
PL2986821T3 (pl) * 2013-04-19 2021-07-26 Ateliers Busch S.A. Obrotowa łopatkowa pompa próżniowa
DE202014005521U1 (de) * 2014-07-08 2015-10-09 Joma-Polytec Gmbh Flügelzellenpumpe zum Erzeugen eines Unterdrucks
JP2018009580A (ja) * 2017-09-19 2018-01-18 アテリエ ビスク ソシエテ アノニムAtelier Busch SA ロータリベーン式真空ポンプ
CN108757579A (zh) * 2018-05-31 2018-11-06 株洲市荣达铁路机电有限公司 变压器油泵冷却系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20038C (de) * E. KAUFFMANN in Strafsburg-Neudorf Rotirender Schieber für Gasmotoren
US1476482A (en) * 1921-09-07 1923-12-04 Berrenberg Reinold High-vacua pump
GB335735A (en) * 1929-09-24 1930-10-02 William Herbert Sollors Improvements in or relating to rotary compressors or vacuum pumps
US1934155A (en) * 1930-06-27 1933-11-07 Frigidaire Corp Refrigerating apparatus
US2780406A (en) * 1953-04-21 1957-02-05 Worthington Corp Rotary compressor
US2936949A (en) * 1953-05-28 1960-05-17 Broom & Wade Ltd Air compressor
DE958690C (de) * 1953-09-25 1957-02-21 Herbert Buerger Drehkolben-Hochvakuumpumpenanlage
US2961151A (en) * 1955-08-12 1960-11-22 Westinghouse Air Brake Co Rotary compressor
US3008631A (en) * 1958-05-26 1961-11-14 Fred E Paugh Compressor
US3713426A (en) * 1971-02-18 1973-01-30 R Jensen Vaned rotor engine and compressor
US4123201A (en) * 1973-09-04 1978-10-31 Central Scientific Company, Inc. Modular vacuum pump assembly
US3948225A (en) * 1974-11-27 1976-04-06 Lester William M Rotary internal combustion engine with parallel coextensive rotors
GB1510962A (en) * 1975-07-18 1978-05-17 Wdm Ltd Vacuum pumps
DD136761A1 (de) * 1978-05-29 1979-07-25 Hans Spengler Hochdruckkreiselpumpenaggregat

Also Published As

Publication number Publication date
EP0166807A2 (de) 1986-01-08
DE8427615U1 (de) 1985-01-17
DE3480727D1 (de) 1990-01-18
EP0166807A3 (en) 1987-01-14
US4588358A (en) 1986-05-13

Similar Documents

Publication Publication Date Title
EP0166807B1 (de) Drehschieber-Vakuumpumpe
DE3721698C2 (de)
DE3048449C2 (de) Hilfsgerätebaugruppe
DE19963171A1 (de) Gekühlte Schraubenvakuumpumpe
WO1999019631A1 (de) Schraubenvakuumpumpe mit rotoren
DE102010011477A1 (de) Brennkraftmaschine mit Trockensumpfschmierung undmehrstufiger integrierter Ölpumpe
DE202010011626U1 (de) Drehkolbenpumpe
EP0290663B1 (de) Ein- oder mehrstufige Zweiwellenvakuumpumpe
DE3514317A1 (de) Vakuumpumpe
DE2833167A1 (de) Baueinheit, bestehend aus einer oelpumpe zur oelumlaufschmierung einer brennkraftmaschine und einer vakuumpumpe zur erzeugung eines vakuums fuer die bremskraftverstaerkung in kraftfahrzeugen
DE10219125A1 (de) Kompressor mit einem Kühldurchgang, der in diesem integriert ausgebildet ist
DE2048301C2 (de) Schmiermittel-Pumpeinrichtung
DE4030295C2 (de) Pumpeneinheit mit Steuerventil
DE2226921A1 (de) Geschmierte lagerung
EP3532729B1 (de) Horizontal geteilte schraubenspindelpumpe
DE1939717A1 (de) Waelzkolbenpumpe
DE3617889C2 (de)
DE1956571A1 (de) Zahnradpumpe
WO1984000409A1 (en) Hydrostatic driving device particularly for mixer drums of concrete-mixer trucks
DE1503336B2 (de) Rotationskolbenmotor oder -pumpe
EP0942172B1 (de) Mehrwellenvakuumpumpe
EP0107691B1 (de) Abdichtung für drehkolbenpumpe
DE102021205678A1 (de) Antriebsanordnung für ein Kraftfahrzeug
DE3209804A1 (de) Kreiselverdichter mit schieberartig in radialer richtung verstellbaren fluegeln
DE2936645B1 (de) Kreiselpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI

ITCL It: translation for ep claims filed

Representative=s name: STUDIO TORTA SOCIETA' SEMPLICE

EL Fr: translation of claims filed
PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB IT LI

17P Request for examination filed

Effective date: 19870714

17Q First examination report despatched

Effective date: 19880809

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3480727

Country of ref document: DE

Date of ref document: 19900118

ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA SOCIETA' SEMPLICE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: LEYBOLD AKTIENGESELLSCHAFT

Effective date: 19900903

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19920310

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970905

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970910

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970924

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19971002

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980919

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST