EP3608469B1 - Wäschetrockner und verfahren zum trocknen von wäsche mit einem wäschetrockner - Google Patents

Wäschetrockner und verfahren zum trocknen von wäsche mit einem wäschetrockner Download PDF

Info

Publication number
EP3608469B1
EP3608469B1 EP19186484.2A EP19186484A EP3608469B1 EP 3608469 B1 EP3608469 B1 EP 3608469B1 EP 19186484 A EP19186484 A EP 19186484A EP 3608469 B1 EP3608469 B1 EP 3608469B1
Authority
EP
European Patent Office
Prior art keywords
fan
air
drum
humidity
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19186484.2A
Other languages
English (en)
French (fr)
Other versions
EP3608469A2 (de
EP3608469A3 (de
Inventor
Mathias Bellm
Rebecca Grill
Uwe Schaumann
Kay Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EGO Elektro Geratebau GmbH
Original Assignee
EGO Elektro Geratebau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EGO Elektro Geratebau GmbH filed Critical EGO Elektro Geratebau GmbH
Publication of EP3608469A2 publication Critical patent/EP3608469A2/de
Publication of EP3608469A3 publication Critical patent/EP3608469A3/de
Application granted granted Critical
Publication of EP3608469B1 publication Critical patent/EP3608469B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/32Control of operations performed in domestic laundry dryers 
    • D06F58/34Control of operations performed in domestic laundry dryers  characterised by the purpose or target of the control
    • D06F58/36Control of operational steps, e.g. for optimisation or improvement of operational steps depending on the condition of the laundry
    • D06F58/38Control of operational steps, e.g. for optimisation or improvement of operational steps depending on the condition of the laundry of drying, e.g. to achieve the target humidity
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/20General details of domestic laundry dryers 
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/02Characteristics of laundry or load
    • D06F2103/08Humidity
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/28Air properties
    • D06F2103/32Temperature
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/28Air properties
    • D06F2103/34Humidity
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/28Air properties
    • D06F2103/36Flow or velocity
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/38Time, e.g. duration
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/44Current or voltage
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/52Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers related to electric heating means, e.g. temperature or voltage
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/54Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers related to blowers or fans
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/16Air properties
    • D06F2105/24Flow or velocity
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/28Electric heating
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/30Blowers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/32Air flow control means
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/14Arrangements for detecting or measuring specific parameters
    • D06F34/26Condition of the drying air, e.g. air humidity or temperature
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/02Domestic laundry dryers having dryer drums rotating about a horizontal axis
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/20General details of domestic laundry dryers 
    • D06F58/26Heating arrangements, e.g. gas heating equipment

Definitions

  • the invention relates to a tumble dryer and a method for drying laundry to be dried using a tumble dryer.
  • tumble dryers are known, with a tumble dryer quite commonly having a drum including a drive, air supply and air discharge. A fan is also provided to blow heated air into the tumble dryer via the air supply. Air discharged from the drum at the air outlet is then dehumidified in different ways. To dry laundry, the same amount of heat or equally warm air is often always introduced into the drum. A moisture measurement takes place either in the drum or in the air discharged from the drum. If a certain desired degree of drying is recognized, it is defined that the end of the drying process has been reached and the dryer stops.
  • a tumble dryer is known with a drum and a drum drive.
  • a discrete dry sensor is provided for this purpose. This can be used to determine the moisture content of the laundry in the drum.
  • a tumble dryer and a method for controlling is known, wherein a humidity sensor unit has a discrete humidity sensor, which is arranged adjacent to a drying drum. This allows the degree of moisture in the laundry in the drum to be determined directly.
  • a tumble dryer and a method for its operation are known in which a discrete moisture sensor is arranged next to a temperature sensor in an air duct away from the drum.
  • the humidity in the exhaust air can be determined using the discrete humidity sensor.
  • a fan which can heat conveyed air.
  • two induction heating coils are arranged on the valve housing, which are controlled accordingly can become.
  • You can inductively heat a part of the rotor of the fan, which is made of a suitable material, for example iron. This can be provided for a base plate of the rotor, for example.
  • the invention is based on the object of creating a tumble dryer as mentioned at the outset and a method as mentioned at the outset with which problems of the prior art can be solved and in particular it is possible to dry laundry quickly, efficiently and also as gently as possible.
  • a laundry dryer according to the invention has a drum for receiving laundry to be dried and a drive motor for the drum.
  • An air exhaust towards the drum as well as an air exhaust away from the drum are provided. These are advantageously channels with a large cross section, as is customary per se.
  • An airflow fan is provided to move the airflow toward the drum through the air duct. The same fan sucks air out of the drum or away from the drum through the mentioned air discharge.
  • the fan has its own fan drive, which in principle can be of a very general type.
  • heating means are provided for heating the air flow, which is essential for the drying function.
  • Temperature sensing means are provided to sense the temperature of the air fed into the drum or, alternatively, the air exhausted from the drum. Provision can also be made for detecting the temperature of the air in both cases.
  • Humidity detection means are also provided for correspondingly detecting a humidity of the air fed into the drum and/or the air discharged from the drum. According to the invention, the humidity of the air that is discharged from the drum is measured in any case, in order to obtain information about how much humidity is still present in the drum or how damp the laundry is. The temperature can be recorded in a similar way.
  • the tumble dryer has a control which, on the one hand, has a memory in which at least one default curve for the progression of temperature and/or humidity over time for a specific laundry drying program is stored.
  • This drying program can be adapted to the type of laundry or its main fiber content and to a user's preference as to whether drying should take place gently or quickly.
  • the controller also has arithmetic means that are designed to compare values for temperature and/or moisture currently recorded during a drying program, depending on the drying phase in the laundry, with an aforementioned default curve. In this way it can be determined at which operating point of the default curve the drying program is located. The currently recorded values for temperature and/or humidity are used for this purpose.
  • Either only one default curve is provided, in which case the working point can be determined directly within this default curve.
  • a number of different default curves can also be provided for this specific drying program, for example depending on the load quantity. Then the most suitable default curve can also be determined by comparison with the recorded values, and then the working point can be determined within this default curve.
  • the controller is designed to influence the further drying program or the further drying process on the basis of the operating point determined.
  • it can be optimized, for which purpose the temperature of the air flow can be adjusted or changed by influencing the heating means.
  • the strength of the air flow can be adjusted by influencing the fan, ie air can be supplied to the drum to a greater or lesser extent or blown into it.
  • the controller can also cause or control a drum movement or the drive motor for the drum separately and as desired. By adapting the drum movement, a named method for determining the temperature and/or humidity of the laundry can be optimally supported.
  • the invention influence the further course of the drying program with regard to the temperature and/or strength of the air flow in order to advantageously reduce the temperature of the air flow to the drum during the last quarter of the drying program below the average of the previously used temperature of the to reduce airflow.
  • the temperature can particularly advantageously be lowered at least 5°C below this average, possibly even lowered at least 15°C up to 20°C.
  • the air flow rate to the drum should be increased above the average of the previously used air flow rates, advantageously increased by at least 20%, most advantageously increased by at least 50%.
  • the knowledge can thus be implemented that during the last quarter of the drying program the laundry is already largely or largely dry and is very warm in the outer area or in the outer layers. Further or continued heating brings only little or nothing here, so that energy can be saved by lowering the temperature of the supplied air and the laundry can also be protected. Rather, the increased blowing in of air at the end of drying then removes the moisture from the already strongly heated laundry better.
  • Drying in a tumble dryer is mainly done by air drying.
  • temperature, air throughput and drum movement are coordinated in such a way that a consistently good drying result is achieved.
  • contact drying could possibly be provided, preferably by heating the drum.
  • the strength of the air flow can be reduced at the beginning of the drying program, in particular during the first third or the first quarter of the estimated duration, and its temperature can be increased for this purpose.
  • the laundry to be dried which is still very damp or has almost the initial moisture content, can be heated as quickly as possible so that the moisture on the material surface can then evaporate better.
  • the air supply In order to achieve the best possible effect for the air supply, it can be provided that it is provided at most 10% of the diameter of the drum below its highest point.
  • the air supply can even be provided at the highest point of the drum. This ensures that the air supply is not directly covered by laundry or unintentionally sealed. Furthermore, in the event that air is also sucked off at the air supply in order to record the temperature and/or the humidity of the air in the drum, this recording can be prevented as little as possible by laundry located close to it.
  • the fan direction or the direction of the air flow is reversed several times at intervals. Air can then be sucked out of the drum into the air supply, not at the air discharge but at the air supply. Information about the exhaust air or the air from the drum is obtained from this. According to the invention, this is information regarding the humidity of the exhaust air, which can be used for the aforementioned determination of the working point on a default curve or for determining the default curve itself. This is also information regarding the temperature of the exhaust air, if applicable. This is particularly advantageous when the temperature detection means and the humidity detection means are arranged in the air supply close to the drum. This is explained in more detail below.
  • the fan is preferably arranged close to the drum.
  • a distance can be a maximum of 50 cm from the drum, preferably a maximum of 30 cm or even only 20 cm.
  • the fan drive in an advantageous embodiment of the present invention is its own drive that only for the fan is provided.
  • the fan drive forms a structural unit together with the fan. Suitable power electronics are provided for controlling the fan drive, which can advantageously be steplessly adjusted.
  • this is known in the prior art and is not a problem.
  • the fan has an inductively heatable fan rotor, which thus forms a heating means for heating the air flow for the drum.
  • the fan rotor can have a plurality of fan blades, wherein at least one fan blade consists at least partially of material that can be heated by means of a magnetic field generating means or has such a material.
  • This material is preferably provided in a radially outer area of the fan rotor or the fan blades, as a result of which it can be arranged as close as possible to the magnetic field generation means mentioned. Provision can be made for a fan blade to be formed entirely from such a material. With inductive heating of this fan blade, the air conveyed by it can thus be heated as well as possible.
  • the magnetic field generating means are preferably arranged adjacent to the fan rotor and/or can at least partially surround it. They can also be arranged in or on a fan housing.
  • An example of such an inductively heatable fan is known from DE 102017210527.5 the same applicant with the filing date of June 22, 2017.
  • the at least one magnetic field generating means has at least one induction coil or is such an induction coil.
  • a single induction heating coil is advantageously provided for a fan.
  • it can be wound around the fan rotor radially outside of the fan rotor, so that its coil axis coincides with the axis of rotation of the fan rotor.
  • a plurality of induction coils may be arranged around the fan rotor adjacent to one another such that their coil axes are perpendicular to and point towards the axis of the fan rotor.
  • the temperature detection means to include the fan rotor and the magnetic field generation means in the form of the induction coil.
  • the temperature of the inductively heatable fan blade or of the inductively heatable fan rotor can be detected from the activation of the induction coil and thus also the temperature of the air flow generated by the fan or the conveyed air.
  • Such an inductive temperature measurement is generally known to those skilled in the art for induction heaters, for example in the field of induction hobs including induction heating coils.
  • the temperature of the air blown into the drum can thus be detected in order to regulate the heating means to a desired temperature.
  • the temperature of the air extracted directly from the drum can be measured. In this way, the temperature in the drum can be recorded almost directly, so to speak.
  • the heating means for heating the air flow can simultaneously form the temperature detection means.
  • a separate temperature sensor can be saved by using the fan or the fan rotor for temperature measurement.
  • any heating means can be provided; even inductive heating of the fan rotor can be provided in the embodiment described above by means of at least one permanent magnet. This can be arranged alone or together with other permanent magnets near the fan rotor in a form similar to the induction coils described above for inductive heating of the fan rotor.
  • a complex induction generator for the aforementioned induction coils can then be dispensed with, which significantly reduces the number of components.
  • a magnetic field generating means for an inductively heatable fan rotor can be arranged outside of a fan housing or outside of the air supply. In this way, an air flow is impaired as little as possible.
  • Such a magnetic field generating means can extend radially outside the fan rotor, preferably only at the axial level of the fan rotor and not above or below it.
  • the moisture detection means mentioned at the outset are implemented in or through the fan or comprise the fan and its drive. This is because the humidity of the conveyed air can be determined from the activation of the fan drive. This utilizes the fact that when there is high humidity in the air moved by the fan, a high torque has to be provided by the drive, while when there is low humidity in the air moved by the fan, a lower torque has to be provided. This is simply due to the fact that the specific density is higher in the first case than in the second case, so that in the first case more power or a higher torque has to be provided by the fan drive. During normal operation of the fan to draw air into the drum via the air duct, a such detection of humidity in the air is not necessary.
  • the humidity here will usually be relatively low. Rather, the moisture in the air sucked out of the drum is detected with this option when the fan direction or the direction of the air flow is reversed as mentioned above. Since a separate fan drive with its own control is provided anyway, this is also used as a moisture detection means. Then separate moisture detection means can be dispensed with.
  • a phase shift between current and voltage in the fan drive is advantageously monitored to evaluate whether a high or a low torque is to be produced by the fan drive. In this way, the level of said torque can be determined, this relationship being known in principle to a person skilled in the art.
  • the inside of the drum of the tumble dryer according to the invention is free of sensors. In this way, it can be designed in a simplified manner with increased operational reliability, since no sensors can break.
  • the drum may also not have any sensors on its outside, as a result of which it can also be designed in a simple and reliable manner in this regard.
  • a tumble dryer 11 can be basically constructed according to the invention.
  • the tumble dryer 11 has a housing 12 with a drum 14 which is arranged in a drum receptacle 18 .
  • the drum 14 can be driven by a drum drive 15 by means of a drive belt 16, as is basically known.
  • the drum 14 usually rotates at a single possible rotational speed, which then also remains constant. However, this can also be varied.
  • the drum 14 has no sensors or the like here. especially not for temperature or humidity.
  • a channel-like air supply 20 approaches the drum receptacle 18 at the top right, as is known per se from the prior art. This elevated position is important and beneficial, as previously explained.
  • a fan 21 together with a fan rotor 22 and a fan drive 24 is arranged in the air supply 20, advantageously as a structural unit.
  • the fan rotor 22 is made of inductively heatable material, especially the individual rotor blades. It can thus be inductively heated by two induction coils 26a and 26b arranged outside the air supply 20 opposite the fan rotor 22 and surrounding it. This is also known from the prior art. The heating can be varied depending on the strength of the magnetic field generated by the induction coils 26a and 26b and also depending on the speed of the fan rotor 22.
  • Such a fan 21, which can be heated inductively is known.
  • the drum drive 15, the fan drive 24 and the induction coils 26a and 26b are connected to a controller 28 of the tumble dryer 11. This carries out the method explained at the outset as well as the other operations of the tumble dryer.
  • the controller 28 advantageously has an appropriately designed processor.
  • an air discharge 40 is also arranged on the drum receptacle 18 at the top left, which leads to a condenser 42 in that water is separated from the moist air that is sucked out of the drum 14 in a known manner.
  • the drum 14, air discharge 40 and air supply 20 form a kind of circuit, the air in it being moved or circulated counterclockwise, so to speak. This ventilation direction corresponds to normal, customary dry operation.
  • the tumble dryer 11 can also use a heat pump or dehumidify the air sucked out of the drum 14 at the air discharge 40 in some other way.
  • the controller 28 is designed to determine the temperature of the fan rotor 22 or the inductively heatable parts present on it based on the activation of the induction coils 26a and 26b. The temperature of the air flowing past it can thus be recorded indirectly, which is also advantageous or even necessary in normal heating operation. Furthermore, the controller 28 controls the fan drive 24 of the fan 21 so that it knows or can determine the power to be applied. From this, as explained at the outset, conclusions can be drawn about the humidity in the transported air. Finally, the controller 28 can advantageously contain a converter or inverter for the fan drive 24 or can be designed as a structural unit therewith. It can also have an induction generator for driving the induction coils 26a and 26b or form a structural unit therewith. Thus, in one embodiment of the invention, a central control unit could be provided, which takes over the aforementioned control functions and a power supply.
  • the controller can also be a combination of an inverter and a controller or microcontroller and measuring means, for example a current measuring coil or a current shunt. A zero-crossing detection can also be provided.
  • an alternative tumble dryer 111 is shown as a variation in an enlarged view, which has an additional outlet 130 in its housing 112 .
  • This outlet 130 opens into a branch 132 which branches off at the top from the air supply 120 or is connected to it. It is closed by a branch flap 134, which can be opened downwards and closed upwards by a flap actuator 136, ie it can be moved.
  • the flap actuator 136 can be a rod drive, alternatively an electromagnet or the like.
  • a smaller second fan rotor 123 is attached to a fan 121 on the same shaft on which a larger first fan rotor 122 is also seated.
  • the second fan rotor 123 is designed to convey air in the opposite direction of rotation to the first fan rotor 122 . If the fan drive 124 rotates in its normal direction, then the first fan rotor 122 conveys air through the air supply 120 according to the large arrow into the drum receptacle 118 and thus also into the drum 114 according to normal operation. It can be heated in the manner described above by induction coils 126a and 126b in order to heat the conveyed air for dryer operation.
  • the second fan rotor 123 can also consist partially or entirely of inductively heatable material.
  • the fan drive 124 rotates in the opposite direction of rotation for which the second fan rotor 123 is designed, the air flow is generated according to the thinner arrow and air is sucked out of the drum 114 into the air supply 120 .
  • the branch flap 134 is open downwards and is shown in broken lines, this air flows upwards through the outlet 130, out of the housing 112 here by way of example.
  • it could also be routed back into the duct of the air discharge 40 via a return, as a result of which the escape of fluff can be reduced or avoided.
  • this air from the drum 114 does not have to be heated, here the heating function by means of the induction coils 126a and 126b serves to detect the temperature of this extracted air in this way.
  • the first fan rotor 122 can have no effect in this second opposite conveying direction; it may be able to contribute to the conveying of air in this direction, but this is not necessary.
  • the second fan rotor 123 is provided for this purpose.
  • Is according to the 1 only a single fan rotor 22 provided on the fan 21, it should be designed for operation in both directions. A significantly better degree of efficiency can be provided for blowing air through the air supply 20 into the drum 14, but it should also be possible, at least in principle, in the other direction.
  • the fan drive 24 or 124 which is independent of the drum drive 15, allows the fan 21 or 121 to be operated as desired and independently.
  • the extraction of air from the drum 114 to detect the temperature of this air does not have to be long, for example it can be as short as 2 seconds to 10 seconds.
  • the instantaneous power of the fan drive 124 can also generally be detected by monitoring the fan drive 124 and its operating values. From this, as explained above, the humidity of the extracted air and thus inside the drum 114 can be determined. The more power the fan drive 124 has to apply for suction at a specific speed, the more humid this air is. The wetter the laundry in drum 114 is then.
  • Determining the humidity of the air discharged from the drum, possibly also the air fed into the drum 114, is advantageously carried out by determining a phase shift in the fan drive 124, since the required torque changes with the dependency of the viscosity of the air on its moisture content. Air with a high moisture content is simply more difficult to transport than dry air. A corresponding reference in the controller or a previous "calibration" in dry air allows this determination. Such a measurement can be taken at the in 2 shown double fan 121 can be performed well. The difference between sucking the air out of the drum 114 and blowing air into the drum is measured. Useful information about this process can be obtained from the difference.
  • the heating of the air via the inductively heated fan rotor 22 or 122 or 123 allows the energy absorbed by the induction coils 126a and 126b to be evaluated in parallel.
  • the profile of the energy consumed can be seen on an induction generator (not shown) via corresponding control variables, which provides information about the temperature of the fan rotors, since a comparison with existing characteristic curves is possible.
  • a dynamic electromagnetic excitation of the induction coils 126a and 126b can provide further information about the temperature of the air.
  • the change compared to known characteristic curves can also Indicate the humidity of the air or its change.
  • the combination of the two pieces of information from the recording of moisture and temperature allows the process to be carried out independently of direct temperature measurement, since known characteristic values can be recorded and compared with those actually present in the process.
  • This enables process-oriented control of the humidity and ideal air temperature parameters.
  • Known parameters such as outside temperature and pressure, which are measured here with sensors, can also support the control.
  • the influences of the laundry which are very random due to their different composition, can be recognized more quickly, since other parameters such as drum movement and thus laundry movement can be included in the evaluation of the measurement results.
  • Curve 1 is the relative humidity or humidity of the laundry.
  • Parameter 2 in the diagram below is the mass flow of removed moisture, given in kg/(m 2 s).
  • the parameter of curve 3 is the surface temperature T WO of the laundry.
  • the course 4 of the corresponding Parameters shows the core temperature T WK of the laundry, and curve 5 is the temperature T L of the air supplied. All temperatures are given in °C.
  • section I the laundry is heated and the moisture on the material surface is evaporated.
  • the drying intensity is not great, because on the one hand the heat transferred is not only needed to evaporate the moisture, but above all to heat the entire laundry.
  • the thermal moisture conductivity which increases due to the temperature difference between the surface and the core, slows down the removal of moisture.
  • thermal moisture conductivity is that the moisture content of the laundry changes constantly during drying. This creates a concentration gradient between the textile surface, from which moisture is continuously removed, and the inner layers of the laundry items, which causes a moisture transport from places with higher to places with lower moisture concentration according to moisture diffusion, also known as moisture conductivity.
  • the moisture is therefore transported to the surface of the laundry or to the location of the evaporation limit, where it is converted into steam, which mixes with the heated air, and is discharged into the environment.
  • the evaporation limit moves from the surface of the laundry into the interior of the laundry.
  • the material to be dried is heated in addition to removing the moisture.
  • the heat supply via the surface creates a temperature difference between the surface and the inner layers or the core.
  • the drying rate decreases again. With increasing heating, the evaporation limit moves from the surface into the inner layers or the core of the laundry. The heat supplied via the air is no longer used only or mainly for evaporating the moisture, but increasingly for heating the laundry.
  • the partial pressure difference between the inner and outer layers of the laundry is crucial for the transport of moisture to the surface of the laundry.
  • the removal of moisture from the laundry is complete and the temperature of the laundry is approaching the temperature of the air.
  • the drying speed depends on the conditions of heat transfer at the laundry surface and the distance of the water vapor from the evaporation line.
  • the humidity f W still decreases, but this decrease flattens out. Accordingly, the humidity f L also decreases greatly.
  • the last phase 4 which lasts about 5 minutes, hardly any moisture can be removed into the air, but the laundry is dry or completely dry, since its moisture content f W reaches zero or even slightly below.
  • FIG 5 is accordingly closed 4 divided into the four phases a curve for the temperature T L of the discharged air shown with triangles during the same drying process.
  • a curve for the temperature T W of the laundry is also shown with rectangles. It roughly corresponds to the core temperature T WK of the curve 4 in 3 .
  • the temperature T W of the laundry like the moisture f W of the laundry, has been determined experimentally.
  • phase 1 the temperature T L is increased rapidly to around 40°C.
  • phase 2 the temperature T L is again increased to just over 50 °C.
  • phase 1 the temperature of the laundry T W , which is shown as a rectangle, increases with a delay. Then, during phase 2, a temperature rise is greatly reduced.
  • phase 1 it is recommended to accelerate the process of increasing the temperature of the laundry so that evaporation begins as quickly as possible.
  • the temperature T W is equal to the temperature T L , so that the energy supplied is used for evaporation.
  • phase 3 an increase in the temperature T L makes little or no sense, since this only leads to an increase in the temperature T W and not to an acceleration of evaporation due to the thermodynamic effects.
  • Phase 4 is necessary because of the non-uniform moisture distribution, which is more difficult to remove because it is "bound moisture".
  • the decisive factor here is the combination of heat output, air rate or convection and drum movement. Furthermore, the focus is on the heating capacity.
  • a combination of an air heating system with an integrated heater in the fan allows the measurement function to be optimized with fewer components and increased data acquisition.
  • the aim is to use indirect information from the process for the process.
  • parameters that are directly related to the convection and evaporation of water in the dryer should be recorded and used for process control.
  • a mentioned method for detecting parameters for the process control can be optimally supported by the mentioned possibility of any control of the drum movement or the drive motor for the drum.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Detail Structures Of Washing Machines And Dryers (AREA)
  • Control Of Washing Machine And Dryer (AREA)

Description

    Anwendungsgebiet und Stand der Technik
  • Die Erfindung betrifft einen Wäschetrockner und ein Verfahren zum Trocknen von zu trocknender Wäsche mit einem Wäschetrockner.
  • Es sind verschiedene Bauarten für Wäschetrockner bekannt, wobei ganz üblich ein Wäschetrockner eine Trommel samt Antrieb, Luftzuführung und Luftabführung aufweist. Des Weiteren ist ein Lüfter vorgesehen, um aufgeheizte Luft in den Wäschetrockner zu blasen über die Luftzuführung. An der Luftabführung aus der Trommel abgeführte Luft wird dann entfeuchtet auf unterschiedliche Art und Weise. Zum Trocknen von Wäsche wird häufig stets die gleiche Menge an Wärme bzw. gleich warmer Luft in die Trommel eingeführt. Eine Feuchtemessung findet entweder in der Trommel statt oder in der aus der Trommel abgeführten Luft. Wird ein bestimmter gewünschter Trocknungsgrad erkannt, so wird definiert, dass das Ende des Trocknungsprozesses erreicht ist, und der Trockner stoppt.
  • Verschiedene Trockner, auch mit induktiver Beheizung, sind aus der DE 10 2016 110 871 A1 , der EP 262 018 A2 , der EP 240 052 A1 , der DE 10 2016 110 883 A1 , der DE 10 2009 026 646 A1 und der DE 10 2016 110 859 A1 bekannt.
  • Aus der EP 3 067 459 A1 ist ein Wäschetrockner bekannt mit einer Trommel und einem Trommelantrieb. Hierzu ist ein diskret ausgebildeter Trockensensor vorgesehen. Anhand dessen kann die Feuchtigkeit der in der Trommel befindlichen Wäsche bestimmt werden.
  • Aus der DE 42 43 594 A1 sind ein Wäschetrockner sowie ein Verfahren zur Steuerung bekannt, wobei eine Feuchtigkeitssensoreinheit einen diskreten Feuchtigkeitssensor aufweist, der an eine Trockentrommel angrenzend angeordnet ist. Damit kann direkt der Feuchtigkeitsgrad der Wäsche in der Trommel bestimmt werden.
  • Aus der DE 10 2015 217 667 A1 sind ein Wäschetrockner und ein Verfahren zu seinem Betrieb bekannt, bei denen in einer Luftführung von der Trommel weg ein diskreter Feuchtesensor neben einem Temperatursensor angeordnet ist. So kann über den diskreten Feuchtesensor die Luftfeuchtigkeit in der Abluft bestimmt werden.
  • Aus der WO 2016/170881 A1 ist ein Ventilator bekannt, der geförderte Luft beheizen kann. Dazu sind am Ventilgehäuse zwei Induktionsheizspulen angeordnet, die entsprechend angesteuert werden können. Sie können einen Teil des Rotors des Ventilators induktiv beheizen, der aus entsprechend geeignetem Material ausgebildet ist, beispielsweise aus Eisen. Dies kann beispielsweise für eine Grundplatte des Rotors vorgesehen sein.
  • Aus der US 2013/0257331 A1 ist es für einen allgemeinen Motor bekannt, dass sich abhängig von der Luftfeuchtigkeit ein Bauteil des Elektromotors so verändert, dass sich eine Antriebscharakteristik ändert. Dies bezieht sich aber rein auf motorinterne Aspekte.
  • Aufgabe und Lösung
  • Der Erfindung liegt die Aufgabe zugrunde, einen eingangs genannten Wäschetrockner sowie ein eingangs genanntes Verfahren zu schaffen, mit denen Probleme des Standes der Technik gelöst werden können und es insbesondere möglich ist, das Trocknen von Wäsche schnell, effizient und auch möglichst wäscheschonend durchzuführen.
  • Gelöst wird diese Aufgabe durch einen Wäschetrockner mit den Merkmalen des Anspruchs 1 sowie durch ein Verfahren mit den Merkmalen des Anspruchs 13. Vorteilhafte sowie bevorzugte Ausgestaltungen der Erfindung sind Gegenstand der weiteren Ansprüche und werden im Folgenden näher erläutert. Dabei werden manche der Merkmale nur für den Wäschetrockner oder nur für das Verfahren erläutert. Sie sollen jedoch unabhängig davon sowohl für den Wäschetrockner als auch für das Verfahren selbständig und unabhängig voneinander gelten können. Der Wortlaut der Ansprüche wird durch ausdrückliche Bezugnahme zum Inhalt der Beschreibung gemacht.
  • Ein Wäschetrockner gemäß der Erfindung weist eine Trommel auf, um zu trocknende Wäsche aufzunehmen, sowie einen Antriebsmotor für die Trommel. Eine Luftabführung hin zu der Trommel sowie eine Luftabführung weg von der Trommel sind vorgesehen. Vorteilhaft sind dies Kanäle mit großem Querschnitt, wie dies an sich üblich ist. Ein Lüfter zur Erzeugung eines Luftstroms ist vorgesehen, um den Luftstrom zu der Trommel hinzubewegen durch die Luftzuführung. Derselbe Lüfter saugt dabei Luft aus der Trommel ab bzw. von der Trommel weg durch die genannte Luftabführung. Der Lüfter weist einen eigenen Lüfterantrieb auf, der grundsätzlich ganz allgemeiner Art sein kann.
  • Des Weiteren sind Heizmittel zum Aufheizen des Luftstroms vorgesehen, was für die Trockenfunktion ja essentiell ist. Es sind Temperaturerfassungsmittel vorgesehen, um die Temperatur der in die Trommel zugeführten Luft oder, alternativ, der aus der Trommel abgeführten Luft zu erfassen. Es kann auch vorgesehen sein, in beiden Fällen die Temperatur der Luft zu erfassen. Außerdem sind Feuchtigkeitserfassungsmittel vorgesehen, um entsprechend eine Feuchtigkeit der in die Trommel zugeführten Luft und/oder der aus der Trommel abgeführten Luft zu erfassen. Erfindungsgemäß wird auf alle Fälle die Feuchtigkeit von Luft gemessen, die aus der Trommel abgeführt wird, um so Informationen zu erhalten, wie viel Feuchtigkeit noch in der Trommel vorhanden ist bzw. wie feucht die Wäsche noch ist. In ähnlicher Form kann die Temperatur erfasst werden.
  • Der Wäschetrockner weist eine Steuerung auf, die einerseits einen Speicher aufweist, in dem mindestens eine Vorgabekurve für den Verlauf von Temperatur und/oder Feuchtigkeit über der Zeit für ein bestimmtes Trockenprogramm von Wäsche abgespeichert ist. Dieses Trockenprogramm kann an die Art der Wäsche bzw. deren hauptsächlichen Faseranteil angepasst sein sowie an einen Benutzerwunsch, ob ein Trocknen schonend oder schnell erfolgen soll. Andererseits weist die Steuerung auch Rechenmittel auf, die dazu ausgebildet sind, um während eines Trockenprogramms je nach Trocknungsphase in der Wäsche innerhalb dieses Trockenprogramms aktuell erfasste Werte für Temperatur und/oder Feuchtigkeit mit einer vorgenannten Vorgabekurve zu vergleichen. So kann bestimmt werden, an welchem Arbeitspunkt der Vorgabekurve sich das Trockenprogramm befindet. Dazu werden eben die aktuell erfassten Werte für Temperatur und/oder Feuchtigkeit verwendet. Entweder ist nur eine Vorgabekurve vorgesehen, dann kann direkt der Arbeitspunkt innerhalb dieser Vorgabekurve bestimmt werden. Alternativ können auch für dieses bestimmte Trockenprogramm mehrere unterschiedliche Vorgabekurven vorgesehen sein, beispielsweise abhängig von der Beladungsmenge. Dann kann ebenfalls durch Vergleichen mit den erfassten Werten die am besten passende Vorgabekurve ermittelt werden, und dann innerhalb dieser Vorgabekurve der Arbeitspunkt bestimmt werden.
  • Die Steuerung ist dazu ausgebildet, anhand des bestimmten Arbeitspunkts das weitere Trockenprogramm zu beeinflussen bzw. das weitere Trockenverfahren. Insbesondere kann es dabei optimiert werden, wozu die Temperatur des Luftstroms durch Beeinflussung der Heizmittel angepasst bzw. geändert werden kann. Zusätzlich oder alternativ kann die Stärke des Luftstroms durch Beeinflussung des Lüfters angepasst werden, also Luft stärker oder weniger stark zu der Trommel zugeführt bzw. darin eingeblasen werden.
  • Die Steuerung kann auch eine Trommelbewegung bzw. den Antriebsmotor für die Trommel separat und beliebig bewirken bzw. steuern. So kann durch Anpassen der Trommelbewegung ein genanntes Verfahren zur Ermittlung von Temperatur und/oder Feuchtigkeit der Wäsche optimal unterstützt werden.
  • Insbesondere ist es somit mit der Erfindung möglich, das Trockenprogramm im weiteren Verlauf hinsichtlich Temperatur und/oder Stärke des Luftstroms zu beeinflussen, um vorteilhaft während der Dauer des letzten Viertels des Trockenprogramms die Temperatur des Luftstroms zu der Trommel unter den Durchschnitt der bislang verwendeten Temperatur des Luftstroms zu senken. Dazu ist es eben von Bedeutung, zu wissen, an welchem Arbeitspunkt der Vorgabekurve sich das Trockenprogramm befindet. Die Temperatur kann besonders vorteilhaft mindestens 5°C unter diesen Durchschnitt gesenkt werden, möglicherweise sogar mindestens 15°C bis zu 20°C gesenkt werden. Des Weiteren sollte die Stärke des Luftstroms zu der Trommel über den Durchschnitt der bislang verwendeten Stärke des Luftstroms erhöht werden, vorteilhaft mindestens um 20 % erhöht werden, besonders vorteilhaft mindestens um 50 %. Damit kann in dieser Ausgestaltung der Erfindung die Erkenntnis umgesetzt werden, dass während des letzten Viertels des Trockenprogramms die Wäsche schon zu einem guten Teil oder weitgehend trocken ist und im äußeren Bereich bzw. in den Außenschichten sehr warm ist. Ein weiteres oder fortgesetztes Erwärmen bringt hier nur wenig oder nichts, so dass durch das Absenken der Temperatur der zugeführten Luft Energie gespart werden kann und zusätzlich die Wäsche geschont werden kann. Vielmehr wird dann durch das verstärkte Einblasen von Luft am Ende des Trocknens die Feuchtigkeit von der ohnehin stark erwärmten Wäsche besser abgeführt.
  • Bei der Lufttrocknung erfolgt das Verdunsten des Wassers bzw. der Feuchtigkeit aus der Wäsche mit Hilfe von warmer, trockener Luft. Diese wird zugeführt, gibt Wärme zum Verdunsten der Feuchtigkeit an die Wäsche ab und nimmt dabei die Feuchtigkeit aus der Wäsche auf. Anschließend wird die feuchte Luft abgeführt.
  • Das Trocknen im Wäschetrockner erfolgt vorwiegend durch Lufttrocknung. Im Wäschetrockner sind Temperatur, Luftdurchsatz und Trommelbewegung so aufeinander abgestimmt, dass ein gleichbleibend gutes Trocknungsergebnis erreicht wird. Zusätzlich könnte möglicherweise eine Kontakttrocknung vorgesehen sein, vorzugsweise durch Beheizung der Trommel.
  • In weiterer vorteilhafter Ausgestaltung der Erfindung kann zu Beginn des Trockenprogramms, insbesondere während des ersten Drittels oder des ersten Viertels der veranschlagten Dauer, die Stärke des Luftstroms abgesenkt werden und dafür dessen Temperatur erhöht werden. So kann die zu trocknende Wäsche, die noch sehr feucht ist bzw. nahezu die Anfangsfeuchte aufweist, möglichst rasch erwärmt werden, damit dann die Feuchtigkeit an der Materialoberfläche besser verdampfen kann.
  • Um für die Luftzuführung eine möglichst gute Wirkung zu erreichen, kann vorgesehen sein, dass sie maximal 10 % des Durchmessers der Trommel unterhalb deren höchster Stelle vorgesehen ist. Vorteilhaft kann die Luftzuführung sogar an der höchsten Stelle der Trommel vorgesehen sein. So ist sichergestellt, dass die Luftzuführung nicht direkt durch Wäsche verdeckt oder unabsichtlich abgedichtet wird. Des Weiteren kann für den Fall, dass an der Luftzuführung auch Luft abgesaugt wird zur Erfassung der Temperatur und/oder der Feuchtigkeit der Luft in der Trommel, diese Erfassung möglichst wenig von nahe daran befindlicher Wäsche behindert wird.
  • Bei der Erfindung wird mehrfach in zeitlichem Abstand die Lüfterrichtung bzw. die Richtung des Luftstroms umgekehrt. Dann kann Luft aus der Trommel in die Luftzuführung hinein abgesaugt werden, und zwar nicht an der Luftabführung, sondern an der Luftzuführung abgesaugt werden. Daraus werden Informationen über die Abluft bzw. die Luft aus der Trommel erhalten. Dies sind erfindungsgemäß Informationen bezüglich Feuchtigkeit der Abluft, was verwendet werden kann für die vorgenannte Bestimmung des Arbeitspunkts an einer Vorgabekurve bzw. für die Bestimmung der Vorgabekurve selbst. Ggf. sind dies auch Informationen bezüglich Temperatur der Abluft. Dies ist vor allem dann von Vorteil, wenn die Temperaturerfassungsmittel und die Feuchtigkeitserfassungsmittel in der Luftzuführung nahe zu der Trommel angeordnet sind. Dies wird nachfolgend noch näher erläutert.
  • Bevorzugt ist der Lüfter nahe an der Trommel angeordnet. Ein Abstand kann maximal 50 cm von der Trommel betragen, vorzugsweise maximal 30 cm oder sogar nur 20 cm.
  • Während im Stand der Technik der Lüfter üblicherweise vom Trommelantrieb angetrieben wird, und somit aufgrund einer vorgegebenen stets gleichen Drehzahl der Trommel auch der Lüfterantrieb stets gleich ist, was eine Variation der Stärke des Luftstroms verhindert, ist der Lüfterantrieb in vorteilhafter Ausgestaltung der vorliegenden Erfindung ein eigener Antrieb, der nur für den Lüfter vorgesehen ist. Besonders vorteilhaft bildet der Lüfterantrieb zusammen mit dem Lüfter eine Baueinheit. Für die Ansteuerung des Lüfterantriebs ist eine geeignete Leistungselektronik vorgesehen, die den Lüfterantrieb vorteilhaft stufenlos verstellen kann. Dies ist aber im Stand der Technik bekannt und keinerlei Problem.
  • In vorteilhafter Ausgestaltung der Erfindung weist der Lüfter einen induktiv beheizbaren Lüfterrotor auf, der so ein Heizmittel zum Aufheizen des Luftstroms für die Trommel bildet. Der Lüfterrotor kann dazu mehrere Lüfterschaufeln aufweisen, wobei mindestens eine Lüfterschaufel zumindest teilweise aus mittels eines Magnetfelderzeugungsmittels beheizbarem Material besteht oder solches Material aufweist. Dieses Material ist vorzugsweise in einem radial äußeren Bereich des Lüfterrotors bzw. der Lüfterschaufeln vorgesehen, wodurch es möglichst nahe zu den genannten Magnetfelderzeugungsmitteln angeordnet sein kann. Es kann vorgesehen sein, eine Lüfterschaufel vollständig aus einem solchen Material auszubilden. Bei induktiver Beheizung dieser Lüfterschaufel kann somit die davon geförderte Luft möglichst gut erwärmt werden.
  • Die Magnetfelderzeugungsmittel sind bevorzugt benachbart zum Lüfterrotor angeordnet und/oder können diesen zumindest teilweise umgeben. Dabei können sie auch in oder an einem Lüftergehäuse angeordnet sein. Ein Beispiel für einen solchen induktiv beheizbaren Lüfter ist bekannt aus der DE 102017210527.5 derselben Anmelderin mit Anmeldetag vom 22. Juni 2017. In einer vorteilhaften Ausgestaltung der Erfindung weist das mindestens eine Magnetfelderzeugungsmittel mindestens eine Induktionsspule auf oder ist eine solche Induktionsspule. Vorteilhaft ist für einen Lüfter eine einzige Induktionsheizspule vorgesehen. Sie kann je nach Ausbildung des Lüfters bzw. Lüfterrotors radial außerhalb des Lüfterrotors um den Lüfterrotor herum aufgewickelt sein, so dass ihre Spulenachse mit der Drehachse des Lüfterrotors zusammenfällt. Alternativ können mehrere Induktionsspulen um den Lüfterrotor herum benachbart zueinander angeordnet sein, so dass ihre Spulenachsen senkrecht zur Achse des Lüfterrotors verlaufen und auf diese zu weisen.
  • In diesem Fall ist es vorteilhaft möglich, dass die Temperaturerfassungsmittel den Lüfterrotor und die Magnetfelderzeugungsmittel in Form der Induktionsspule umfassen. Aus der Ansteuerung der Induktionsspule kann die Temperatur der induktiv beheizbaren Lüfterschaufel bzw. des induktiv beheizbaren Lüfterrotors erkannt werden und damit auch die Temperatur des vom Lüfter erzeugten Luftstroms bzw. der geförderten Luft. Eine solche induktive Temperaturmessung ist dem Fachmann allgemein für Induktionsheizungen bekannt, beispielsweise aus dem Bereich von Induktionskochfeldern samt Induktionsheizspulen. Zum einen kann somit die Temperatur von in die Trommel eingeblasener Luft erfasst werden zur Regelung der Heizmittel auf eine gewünschte Temperatur. Zum anderen kann bei Reversieren der Drehrichtung des Lüfterrotors und des Luftstroms die Temperatur der direkt aus der Trommel abgesaugten Luft gemessen werden. Somit kann sozusagen nahezu direkt die Temperatur erfasst werden, die in der Trommel herrscht.
  • Somit kann bei dieser Ausgestaltung das Heizmittel zum Aufheizen des Luftstroms gleichzeitig die Temperaturerfassungsmittel bilden. Durch das Verwenden des Lüfters bzw. des Lüfterrotors zur Temperaturmessung kann ein separater Temperatursensor eingespart werden.
  • Alternativ können separate diskrete Temperatursensoren vorgesehen sein, die vorteilhaft in der Luftzuführung nahe der Trommel angeordnet sind, damit die Temperatur der Luft möglichst schnell und unmittelbar nach Absaugen aus der Trommel gemessen werden kann. Diese diskreten Temperatursensoren können dann aber auch an der Luftabführung von der Trommel nahe an der Trommel vorgesehen sein. Dann können grundsätzlich beliebige Heizmittel vorgesehen sein, es kann sogar eine induktive Beheizung des Lüfterrotors in vorbeschriebener Ausgestaltung vorgesehen sein mittels mindestens eines Permanentmagneten. Dieser kann alleine oder zusammen mit weiteren Permanentmagneten nahe dem Lüfterrotor angeordnet sein in einer Form ähnlich den zuvor beschriebenen Induktionsspulen zur induktiven Beheizung des Lüfterrotors. Dann kann auf einen aufwendigen Induktionsgenerator für die vorgenannten Induktionsspulen verzichtet werden, was den Bauteilaufwand deutlich senkt.
  • Grundsätzlich kann ein Magnetfelderzeugungsmittel für einen induktiv beheizbaren Lüfterrotor außerhalb eines Lüftergehäuses bzw. außerhalb der Luftzuführung angeordnet sein. So wird ein Luftstrom möglichst wenig beeinträchtigt.
  • Ein solches Magnetfelderzeugungsmittel kann in radialer Erstreckung außerhalb des Lüfterrotors verlaufen, vorzugsweise nur auf axialer Höhe des Lüfterrotors und nicht darüber oder nicht darunter.
  • Bei der Erfindung sind die eingangs genannten Feuchtigkeitserfassungsmittel im oder durch den Lüfter realisiert bzw. umfassen den Lüfter und seinen Antrieb. Aus der Ansteuerung des Lüfterantriebs ist nämlich die Feuchtigkeit der geförderten Luft bestimmbar. Dabei wird der Umstand genutzt, dass bei hoher Feuchtigkeit in der vom Lüfter bewegten Luft ein hohes Drehmoment vom Antrieb erbracht werden muss, während bei geringer Feuchtigkeit in der vom Lüfter bewegten Luft ein geringeres Drehmoment erbracht werden muss. Dies liegt einfach daran, dass die spezifische Dichte im ersten Fall höher ist als im zweiten Fall, so dass im ersten Fall mehr Leistung bzw. ein höheres Drehmoment vom Lüfterantrieb zu erbringen ist. Bei normalem Betrieb des Lüfters zum Fördern von Luft über die Luftzuführung in die Trommel hinein ist eine solche Erfassung der Feuchtigkeit in der Luft nicht notwendig. Im Falle beispielsweise eines Kondensationstrockners wird hier die Feuchtigkeit üblicherweise relativ gering sein. Vielmehr wird mit dieser Möglichkeit beim vorgenannten Umkehren der Lüfterrichtung bzw. der Richtung des Luftstroms die Feuchtigkeit in der aus der Trommel abgesaugten Luft erfasst. Da ohnehin ein eigener Lüfterantrieb samt eigener Ansteuerung vorgesehen ist, wird dieser auch gleich als Feuchtigkeitserfassungsmittel verwendet. Dann kann auf separate Feuchtigkeitserfassungsmittel verzichtet werden. Zur Bewertung, ob ein hohes oder ein geringes Drehmoment vom Lüfterantrieb zu erbringen ist, wird vorteilhaft eine Phasenverschiebung zwischen Strom und Spannung im Lüfterantrieb überwacht. So kann die Höhe des genannten Drehmoments bestimmt werden, wobei dieser Zusammenhang grundsätzlich dem Fachmann bekannt ist.
  • In vorteilhafter Ausgestaltung der Erfindung ist die Trommel des erfindungsgemäßen Wäschetrockners innen frei von Sensoren. So kann sie vereinfacht ausgebildet werden mit erhöhter Betriebssicherheit, da eben keine Sensoren kaputt gehen können. Möglicherweise weist die Trommel auch an ihrer Außenseite keine Sensoren auf, wodurch sie auch diesbezüglich einfach und zuverlässig ausgebildet sein kann.
  • Diese und weitere Merkmale gehen außer aus den Ansprüchen auch aus der Beschreibung und den Zeichnungen hervor, wobei die einzelnen Merkmale jeweils für sich allein oder zu mehreren in Form von Unterkombinationen bei einer Ausführungsform der Erfindung und auf anderen Gebieten verwirklicht sein und vorteilhafte sowie für sich schutzfähige Ausführungen darstellen können, für die hier Schutz beansprucht wird. Die Unterteilung der Anmeldung in einzelnen Abschnitte sowie Zwischen-Überschriften beschränken die unter diesen gemachten Aussagen nicht in ihrer Allgemeingültigkeit.
  • Kurzbeschreibung der Zeichnungen
  • Ausführungsbeispiele der Erfindung sind in den Zeichnungen schematisch dargestellt und werden im Folgenden näher erläutert. In den Zeichnungen zeigen:
  • Fig. 1
    eine schematische Darstellung eines erfindungsgemäßen Wäschetrockners mit induktiv beheiztem Lüfter samt separatem Lüfterantrieb,
    Fig. 2
    eine vergrößerte Darstellung einer alternativen Ausgestaltung einer Luftzuführung mit Abzweig zu einem separaten Auslass aus einem Gehäuse,
    Fig. 3
    eine Darstellung von Verläufen von Trocknungsparametern über der Zeit,
    Fig. 4
    eine Darstellung von Verläufen der Feuchtigkeit der Luft und der Wäsche über der Zeit mit vier Phasen und
    Fig. 5
    eine Darstellung von Verläufen der Temperatur der in eine Trommel des Wäschetrockners eingebrachten Luft und der Wäsche über der Zeit mit vier Phasen.
    Detaillierte Beschreibung der Ausführungsbeispiele
  • In der Fig. 1 ist dargestellt, wie ein Wäschetrockner 11 gemäß der Erfindung grundsätzlich aufgebaut sein kann. Der Wäschetrockner 11 weist ein Gehäuse 12 auf mit einer Trommel 14, die in einer Trommelaufnahme 18 angeordnet ist. Die Trommel 14 kann von einem Trommelantrieb 15 mittels eines Antriebsriemens 16 angetrieben werden, wie dies grundsätzlich bekannt ist. Die Trommel 14 läuft dabei üblicherweise mit einer einzigen möglichen Umlaufgeschwindigkeit um, die dann auch konstant bleibt. Dies kann jedoch auch variiert werden. Die Trommel 14 weist hier keinerlei Sensoren odgl. auf, insbesondere nicht für Temperatur oder Feuchtigkeit.
  • Oben rechts geht eine kanalartige Luftzuführung 20 an die Trommelaufnahme 18 heran, wie dies an sich aus dem Stand der Technik bekannt ist. Diese hoch gelegene Position ist wichtig und vorteilhaft, wie zuvor erläutert worden ist. In der Luftzuführung 20 ist ein Lüfter 21 samt Lüfterrotor 22 und Lüfterantrieb 24 angeordnet, vorteilhaft als Baueinheit. Der Lüfterrotor 22 ist, wie eingangs erläutert worden ist, aus induktiv beheizbarem Material, vor allem die einzelnen Rotorblätter sind dies. Somit kann er von zwei außerhalb der Luftzuführung 20 dem Lüfterrotor 22 gegenüberliegend und diesen umgebend angeordneten Induktionsspulen 26a und 26b induktiv beheizt werden. Auch dies ist aus dem Stand der Technik bekannt. Die Beheizung kann variiert werden abhängig von der Stärke des von den Induktionsspulen 26a und 26b erzeugten Magnetfelds sowie auch abhängig von der Drehzahl des Lüfterrotors 22. Ein derartiger Lüfter 21, der induktiv beheizt werden kann, ist ja bekannt.
  • Der Trommelantrieb 15, der Lüfterantrieb 24 und die Induktionsspulen 26a und 26b sind mit einer Steuerung 28 des Wäschetrockners 11 verbunden. Diese führt das eingangs erläuterte Verfahren sowie den sonstigen Betrieb des Wäschetrockners durch. Die Steuerung 28 weist vorteilhaft einen entsprechend ausgebildeten Prozessor auf.
  • Außerdem ist an der Trommelaufnahme 18 links oben noch eine Luftabführung 40 angeordnet, die zu einem Kondensator 42 führt, indem auf bekannte Art und Weise Wasser aus der feuchten Luft abgeschieden wird, die aus der Trommel 14 abgesaugt wird. Es ist zu erkennen, dass Trommel 14, Luftabführung 40 und Luftzuführung 20 eine Art Kreislauf bilden, wobei die Luft darin entgegen dem Uhrzeigersinn sozusagen bewegt oder umgewälzt wird. Diese Lüftungsrichtung entspricht dem normalen üblichen Trockenbetrieb. Anstelle des Kondensators 42 in der Luftabführung 40 kann der Wäschetrockner 11 auch eine Wärmepumpe benutzen oder auf sonstige Art und Weise die aus der Trommel 14 an der Luftabführung 40 abgesaugte Luft entfeuchten.
  • Die Steuerung 28 ist dazu ausgebildet, anhand der Ansteuerung der Induktionsspulen 26a und 26b die Temperatur des Lüfterrotors 22 bzw. der daran vorhandenen induktiv beheizbaren Teile zu ermitteln. Damit kann indirekt die Temperatur von daran vorbeiströmender Luft erfasst werden, was auch im normalen Heizbetrieb von Vorteil oder sogar notwendig ist. Des Weiteren steuert die Steuerung 28 den Lüfterantrieb 24 des Lüfters 21 an, so dass sie dessen aufzubringende Leistung kennt oder ermitteln kann. Daraus kann, wie eingangs erläutert worden ist, auf die Feuchtigkeit in der transportierten Luft geschlossen werden. Schließlich kann die Steuerung 28 vorteilhaft einen Umrichter bzw. Inverter für den Lüfterantrieb 24 enthalten bzw. als Baueinheit damit ausgebildet sein. Ebenso kann sie zur Ansteuerung der Induktionsspulen 26a und 26b einen Induktionsgenerator aufweisen bzw. eine Baueinheit damit bilden. Somit könnte in einer Ausgestaltung der Erfindung eine zentrale Steuereinheit vorgesehen sein, die die vorgenannten Steuerfunktionen und eine Leistungsversorgung übernimmt.
  • Die Steuerung kann auch eine Kombination aus einem Inverter und einem Controller bzw. Mikrocontroller und Messmitteln sein, beispielsweise einer Strom-Messspule oder einem Strom-Shunt. Es kann auch eine Nulldurchgangs-Erkennung vorgesehen sein. In der Fig. 2 ist in Vergrößerung ein alternativer Wäschetrockner 111 als Variation dargestellt, der in seinem Gehäuse 112 einen zusätzlichen Auslass 130 aufweist. Dieser Auslass 130 mündet an einen Abzweig 132, der oben von der Luftzuführung 120 abgeht bzw. mit dieser verbunden ist. Er wird durch eine Abzweigklappe 134 verschlossen, die von einem Klappenaktor 136 nach unten geöffnet und nach oben geschlossen werden kann, also bewegt werden kann. Der Klappenaktor 136 kann ein Stangenantrieb sein, alternativ ein Elektromagnet odgl..
  • An einem Lüfter 121 ist auf derselben Welle, auf der auch ein größerer erster Lüfterrotor 122 sitzt, ein kleinerer zweiter Lüfterrotor 123 befestigt. Der zweite Lüfterrotor 123 ist zum Fördern von Luft bei entgegengesetzter Drehrichtung wie der erste Lüfterrotor 122 ausgebildet. Dreht der Lüfterantrieb 124 also in seiner normalen Richtung, so fördert der erste Lüfterrotor 122 Luft durch die Luftzuführung 120 gemäß dem großen Pfeil in die Trommelaufnahme 118 und somit auch in die Trommel 114 entsprechend dem normalen Betrieb. Durch Induktionsspulen 126a und 126b kann er auf vorbeschriebene Art und Weise beheizt werden, um so die geförderte Luft zu heizen für den Trocknerbetrieb. Der zweite Lüfterrotor 123 kann ebenfalls teilweise oder ganz aus induktiv beheizbarem Material bestehen. Wenn nämlich der Lüfterantrieb 124 in der entgegengesetzten Drehrichtung dreht, für die der zweite Lüfterrotor 123 ausgelegt ist, so wird der Luftstrom entsprechend dem dünneren Pfeil erzeugt und Luft wird aus der Trommel 114 in die Luftzuführung 120 abgesaugt. Bei nach unten geöffneter und gestrichelt dargestellter Abzweigklappe 134 strömt diese Luft nach oben durch den Auslass 130, hier beispielhaft aus dem Gehäuse 112 heraus. Alternativ könnte sie auch über eine Rückführung zurück in den Kanal der Luftabführung 40 geführt werden, wodurch der Austritt von Flusen reduziert bzw. vermieden werden kann. Diese Luft aus der Trommel 114 muss natürlich nicht beheizt werden, hier dient die Heizfunktion mittels der Induktionsspulen 126a und 126b dazu, auf diese Art und Weise die Temperatur dieser abgesaugten Luft zu erfassen. Dies erfolgt wie eingangs erläutert anhand der Betriebswerte der Induktionsspulen 126a und 126b. In dieser zweiten entgegengesetzten Förderrichtung kann der erste Lüfterrotor 122 wirkungslos sein, möglicherweise kann er zwar zur Luftförderung in dieser Richtung beitragen, es ist aber nicht notwendig. Hierfür ist schließlich der zweite Lüfterrotor 123 vorgesehen.
  • Ist entsprechend der Fig. 1 nur ein einziger Lüfterrotor 22 vorgesehen am Lüfter 21, so sollte dieser für einen Betrieb in beide Richtungen ausgebildet sein. Für das Einblasen von Luft durch die Luftzuführung 20 in die Trommel 14 kann ein erheblich besserer Wirkungsgrad vorgesehen sein, es sollte aber zumindest grundsätzlich auch in die andere Richtung möglich sein. Durch den jeweils von dem Trommelantrieb 15 unabhängigen Lüfterantrieb 24 bzw. 124 kann der Lüfter 21 bzw. 121 beliebig und eigenständig betrieben werden.
  • Das Absaugen von Luft aus der Trommel 114 zum Erfassen der Temperatur dieser Luft muss nicht lange dauern, es kann beispielsweise nur für 2 Sekunden bis 10 Sekunden vorgesehen sein.
  • Gleichzeitig mit dem Erfassen der Temperatur der abgesaugten oder abgeführten Luft aus der Trommel 114 kann durch Überwachen des Lüfterantriebs 124 und dessen Betriebswerten auch allgemein die Momentanleistung des Lüfterantriebs 124 erfasst werden. Aus dieser kann, wie zuvor erläutert worden ist, die Feuchtigkeit der abgesaugten Luft und somit innerhalb der Trommel 114 bestimmt werden. Je mehr Leistung der Lüfterantrieb 124 zum Absaugen aufbringen muss bei einer bestimmten Drehzahl, desto feuchter ist diese Luft. Desto feuchter ist dann wohl auch noch die Wäsche in der Trommel 114.
  • Eine Bestimmung der Feuchtigkeit der aus der Trommel abgeführten Luft, möglicherweise auch der in die Trommel 114 zugeführten Luft, erfolgt vorteilhaft mittels Bestimmung einer Phasenverschiebung im Lüfterantrieb 124, da sich das notwendige Drehmoment ändert mit der Abhängigkeit der Viskosität der Luft von ihrem Feuchtegehalt. Luft mit einem hohen Feuchtegehalt ist einfach schwerer zu fördern als trockene Luft. Eine entsprechende Referenz in der Steuerung oder eine vorherige "Kalibrierung" bei trockener Luft lässt diese Bestimmung zu. Eine solche Messung kann bei dem in Fig. 2 dargestellten doppelten Lüfter 121 gut durchgeführt werden. Dabei wird die Differenz zwischen Absaugen der Luft aus der Trommel 114 und Einblasen von Luft in die Trommel vermessen. Aus der Differenz können sich nützliche Informationen über diesen Vorgang gewinnen lassen.
  • Die Erwärmung der Luft über den induktiv erwärmten Lüfterrotor 22 bzw. 122 oder 123 erlaubt parallel eine Auswertung der Energie, die von den Induktionsspulen 126a und 126b aufgenommen wird. An einem nicht dargestellten Induktionsgenerator ist der Verlauf der aufgenommenen Energie über entsprechende Steuergrößen erkennbar, was einen Aufschluss über die Temperatur der Lüfterrotoren ergibt, da ein Vergleich mit vorhandenen Kennlinien möglich ist. Eine dynamische elektromagnetische Anregung der Induktionsspulen 126a und 126b kann weiteren Aufschluss über die Temperatur der Luft geben. Wird eine Regelung auf den Energieeintrag bzw. die Leistungsabgabe an die Induktionsspulen 126a und 126b vorgenommen mit dem Ziel, keine Erwärmung der Luft vorzunehmen, sondern den Lüfterrotor auf der Temperatur der geförderten Luft zu halten, dann kann die Änderung im Vergleich mit bekannten Kennlinien auch einen Hinweis auf die Feuchtigkeit der Luft bzw. deren Änderung geben.
  • Die Kombination der beiden Informationen der Erfassung der Feuchtigkeit und der Temperatur erlaubt eine Prozessführung unabhängig von einer direkten Temperaturmessung, da bekannte Kennwerte aufgenommen und mit den tatsächlichen im Prozess vorhandenen verglichen werden können. Somit ist eine prozessorientierte Regelung auf die Parameter Feuchtigkeit und ideale Lufttemperatur möglich. Bekannte Parameter wie Außentemperatur und Druck, die hier mit Sensoren gemessen werden, können die Regelung zusätzlich unterstützen. Insbesondere können die Einflüsse der Wäsche, die sehr zufällig sind aufgrund deren unterschiedlicher Zusammensetzung, schneller erkannt werden, da weitere Parameter wie Trommelbewegung und damit Wäschebewegung in die Bewertung der Messergebnisse einfliessen können.
  • In der Fig. 3 sind verschiedene Verläufe von Parametern über der Zeit t dargestellt. Der Verlauf 1 ist die relative Feuchtigkeit bzw. Feuchte der Wäsche. Der Parameter 2 im darunterliegenden Diagramm ist der Massestrom der entfernten Feuchtigkeit, angegeben in kg/(m2s). Der Parameter des Verlaufs 3 ist die Oberflächentemperatur TWO der Wäsche. Der Verlauf 4 des entsprechenden Parameters zeigt die Kerntemperatur TWK der Wäsche, und der Verlauf 5 ist die Temperatur TL der zugeführten Luft. Sämtliche Temperaturen sind in °C angegeben.
  • In Abschnitt I erfolgt die Erwärmung der Wäsche und Verdampfung der Feuchte an der Materialoberfläche. Die Trocknungsintensität ist nicht groß, denn einerseits wird die übertragene Wärme nicht nur zur Verdampfung der Feuchte, sondern vor allem auch zur Erwärmung der gesamten Wäsche benötigt. Andererseits bremst die durch die Temperaturdifferenz zwischen Oberfläche und Kern zunehmende Thermofeuchte-Leitfähigkeit die Entfernung der Feuchtigkeit.
  • Eine Definition der Thermofeuchte-Leitfähigkeit ist so, dass sich der Feuchtegehalt der Wäsche während des Trocknens ständig ändert. Es entsteht dadurch zwischen Textiloberfläche, von der Feuchte kontinuierlich entfernt wird, und den inneren Schichten der Wäschestücke ein Konzentrationsgefälle, welches in Folge einen Feuchtetransport von Orten größerer zu Orten niedriger Feuchtekonzentration entsprechend einer Feuchtediffusion, auch als Feuchteleitfähigkeit bezeichnet, bewirkt. Die Feuchte wird daher zur Oberfläche der Wäsche oder zum Ort der Verdampfungsgrenze transportiert, dort in Dampf überführt, der sich mit der erwärmten Luft vermischt, und in die Umgebung abgeführt. Dabei bewegt sich die Verdampfungsgrenze im Verlauf des Trocknungsprozesses oder Trockenprogramms von der Oberfläche der Wäsche in das Innere der Wäsche hinein.
  • Da für die Verdampfung Wärme zugeführt wird, erfolgt außer der Entfernung der Feuchte auch eine Erwärmung des zu trocknenden Materials. Durch die Wärmezufuhr über die Oberfläche entsteht eine Temperaturdifferenz zwischen Oberfläche und den inneren Schichten bzw. dem Kern.
  • Aufgrund von Effekten, die mit der Bindung von Flüssigkeiten in Kapillaren zusammenhängen, hat Feuchtigkeit die Tendenz, von Orten höherer zu Orten niedrigerer Temperatur zu wandern. Diese Erscheinung wird Thermo-Feuchtigkeit genannt. Ist die Oberflächentemperatur größer als die Kerntemperatur, haben die Vektoren der Feuchteleitfähigkeit und der Thermofeuchte-Leitfähigkeit unterschiedliche Vorzeichen, d.h. der Trocknungsprozess verlangsamt sich. Mit zunehmendem Durchwärmen des Trocknungsguts als Verringerung des Temperaturgradienten verringert sich der Einfluss der Thermofeuchte-Leitfähigkeit. Mit zunehmender Erwärmung der Wäsche verringert sich auch die Temperaturdifferenz über den Querschnitt der Wäsche, was zu einer Zunahme der Trocknungsgeschwindigkeit führt.
  • In Abschnitt II ist die Trocknungsgeschwindigkeit konstant. Die Temperatur von Oberfläche und inneren Schichten bzw. Kern unterscheiden sich nur wenig und unterliegen nur geringen Veränderungen. Es stellt sich ein stationärer Zustand ein, der Einfluss der Thermofeuchte-Leitfähigkeit entfällt, und der Trocknungsvorgang wird ausschließlich durch die Feuchteleitfähigkeit bestimmt.
  • In Abschnitt III nimmt die Trocknungsgeschwindigkeit wieder ab. Die Verdampfungsgrenze bewegt sich mit zunehmender Erwärmung von der Oberfläche in die inneren Schichten bzw. den Kern der Wäsche. Die über die Luft zugeführte Wärme wird nicht mehr nur oder überwiegend zur Verdampfung der Feuchte, sondern in zunehmendem Maße zur Erwärmung der Wäsche verwendet. In Abschnitt III ist die Partialdruckdifferenz zwischen den inneren und äußeren Schichten der Wäsche für den Feuchtetransport zur Wäscheoberfläche entscheidend. Am Ende von Abschnitt III ist die Entfernung der Feuchte aus der Wäsche beendet, die Wäschetemperatur nähert sich der Temperatur der Luft. Insgesamt hängt die Trocknungsgeschwindigkeit von den Bedingungen der Wärmeübertragung an der Wäscheoberfläche und der Entfernung des Wasserdampfes von der Verdampfungsgrenze ab.
  • In der Fig. 4 ist mit Dreiecken markiert der zeitliche Verlauf der Feuchtigkeit fL in der Luft wie er gemessen worden ist während eines Trocknungsprozesses. Während der Phase 1 für die ersten 9 Minuten steigt diese Feuchtigkeit der Luft stark an auf nahezu 100 %. Auf diesem hohen Wert verbleibt sie während der Phase 2 für noch einmal etwa 12 Minuten. Während der Phase 1 nimmt der durch Rechtecke markierte zeitliche Verlauf der Feuchtigkeit fW der Wäsche nur leicht ab. Diese Feuchtigkeit fW der Wäsche ist experimentell für dieselbe Zeit bestimmt worden und kann nicht direkt mit dem Wäschetrockner gemäß Fig. 1 oder Fig. 2 erfasst werden. Während der Phase 2 nimmt die Feuchtigkeit fW der Wäsche stark ab, was nicht verwundert, da ja die während dieser Phase abgeführte Luft maximal oder nahezu maximal gesättigt ist, siehe die Feuchtigkeit fL.
  • In der sich dann anschließenden Phase 3, die etwa 20 Minuten dauert, nimmt die Feuchtigkeit fW zwar noch ab, diese Abnahme flacht aber ab. Dementsprechend nimmt auch die Feuchtigkeit fL stark ab. Während der letzten Phase 4, die etwa 5 Minuten lang dauert, kann kaum noch Feuchtigkeit in die Luft abgeführt werden, die Wäsche ist aber trocken oder völlig trocken, da ihre Feuchtigkeit fW null erreicht oder sogar leicht darunter liegt.
  • In Fig. 5 ist entsprechend zu Fig. 4 in die vier Phasen aufgeteilt ein Verlauf für die Temperatur TL der abgeführten Luft mit Dreiecken dargestellt während desselben Trocknungsprozesses. Ebenso ist ein Verlauf für die Temperatur TW der Wäsche mit Rechtecken dargestellt. Er entspricht in etwa der Kerntemperatur TWK des Verlaufs 4 in Fig. 3. Die Temperatur TW der Wäsche ist wie zuvor die Feuchtigkeit fW der Wäsche experimentell bestimmt worden.
  • Es ist zu erkennen, dass in der Phase 1 die Temperatur TL schnell erhöht wird auf etwa 40 °C. In der Phase 2 wird die Temperatur TL nochmals erhöht auf etwas über 50 °C. In Phase 1 steigt dagegen die Temperatur der Wäsche TW, die rechteckig dargestellt ist, eher verzögert an. Dann wird während der Phase 2 ein Temperaturanstieg stark reduziert.
  • Erst zu Beginn der Phase 3 wiederum, wenn auch die Temperatur TL etwas erhöht worden ist, steigt die Temperatur TW wieder leicht an mit zwei kurzen Aussetzern nach unten, wenn auch die Temperatur TL entsprechende Einbrüche hat.
  • In der relativ kurzen Phase 4 steigt die Temperatur TW sogar noch weiter an, während die Temperatur TL geringer ist und eher gleich bleibt bzw. sogar etwas abfällt.
  • Sowohl die theoretische Betrachtung als auch die Überlegungen anhand von Experimenten weisen darauf hin, dass der Trocknungsprozess optimiert werden kann, wenn die Messung der Parameter für die Temperatur und Feuchte optimiert wird.
  • Im Detail wird empfohlen, in Phase 1 den Prozess der Temperaturerhöhung der Wäsche zu beschleunigen, damit die Verdunstung möglichst schnell beginnt. In der Phase 2 ist die Temperatur TW gleich der Temperatur TL, so dass die zugeführte Energie für die Verdunstung genutzt wird. In Phase 3 ist eine Erhöhung der Temperatur TL kaum oder gar nicht sinnvoll, da dies nur zur Erhöhung der Temperatur TW führt und nicht zu einer Beschleunigung der Verdunstung aufgrund der thermodynamischen Effekte. Die Phase 4 ist aufgrund der uneinheitlichen Feuchteverteilung notwendig, die schwerer zu entfernen ist, da es sich um "gebundene Feuchte" handelt. Entscheidend ist hier die Kombination von Heizleistung, Luftrate bzw. Konvektion und Trommelbewegung. Im Weiteren steht die Heizleistung im Fokus.
  • Zu den vier Phasen wird die Funktion unterschieden in:
    • Aufwärmen der Wäsche
    • Konstantes Wärmen der Wäsche
    • Konstante Trocknungsphase ohne Wärme oder mit wenig Wärme
    • Durchblasen der Wäsche ohne Wärme oder mit wenig Wärme Werden die aktuellen Heizsysteme verwendet, dann kann über die Regelung und Steuerung eine Verbesserung erzielt werden.
  • Parallel erlaubt eine Kombination von Luftheizsystem mit integrierter Heizung im Lüfter eine Optimierung der Messfunktion mit weniger Bauteilen und einer erhöhten Datenerfassung. Ziel ist es dabei indirekte Informationen aus dem Prozess für den Prozess zu nutzen. Letztlich sollen direkt Parameter erfasst und für die Prozessregelung verwendet werden, die einen direkten Zusammenhang zur Konvektion und Verdampfung von Wasser im Trockner haben. Durch die genannte Möglichkeit der beliebigen Steuerung der Trommelbewegung bzw. des Antriebsmotors für die Trommel kann ein genanntes Verfahren zur Erfassung von Parametern für die Prozessregelung optimal unterstützt werden.
  • Somit können bestehende Sensoren nicht unbedingt ersetzt aber ergänzt werden. Vor allem kann versucht werden, auf Sensoren in der Trommel selbst zu verzichten, da diese aufwendig anzubringen und auszuwerten sind.
  • Mit den Erkenntnissen dieser Verläufe über der Zeit entsprechend der Fig. 3 bis 5 kann man durch das Erfassen von Temperatur und Feuchtigkeit der Luft in der Trommel, was erfindungsgemäß ohne Sensoren in der Trommel erfolgen kann, darauf schließen, an welchem Punkt eines solchen Verlaufs sich der Trocknungsprozess befindet. Dann kann er optimiert werden, insbesondere dahingehend, dass zum Ende hin die Temperatur TL nicht mehr so hoch sein muss. Damit kann Energie eingespart werden und die zu trocknende Wäsche kann auch geschont werden. So ist eine Verbesserung des Trocknens von Wäsche mit einem Wäschetrockner, insbesondere dem zuvor beschriebenen erfindungsgemäßen Wäschetrockner, möglich.

Claims (15)

  1. Wäschetrockner (11, 111) mit:
    - einer Trommel (14, 114) für die Aufnahme von zu trocknender Wäsche,
    - einem Antriebsmotor (15) für die Trommel,
    - einer Luftzuführung (20, 120) zu der Trommel,
    - einer Luftabführung (40) von der Trommel,
    - einem Lüfter (21, 121) zur Erzeugung eines Luftstroms zu der Trommel (14, 114) hin durch die Luftzuführung (20, 120) und von der Trommel weg durch die Luftabführung (40),
    - einem Lüfterantrieb (24, 124) für den Lüfter (21, 121),
    - Heizmitteln (26a, 26b, 126a, 126b) zum Aufheizen des Luftstroms,
    - Temperaturerfassungsmitteln zur Erfassung der Temperatur der in die Trommel (14, 114) zugeführten Luft oder der aus der Trommel abgeführten Luft,
    - Feuchtigkeitserfassungsmitteln zur Erfassung der Feuchtigkeit der in die Trommel (14, 114) zugeführten Luft oder der aus der Trommel abgeführten Luft,
    - einer Steuerung (28) mit:
    ∘ einem Speicher, in dem mindestens eine Vorgabekurve für den Verlauf von Temperatur und/oder Feuchtigkeit über der Zeit für ein bestimmtes Trockenprogramm von Wäsche abgespeichert ist,
    ∘ Rechenmitteln, die dazu ausgebildet sind, um während eines Trockenprogramms je nach Trocknungsphase der Wäsche aktuell erfasste Werte für Temperatur und/oder Feuchtigkeit mit einer Vorgabekurve zu vergleichen und um zu bestimmen, an welchem Arbeitspunkt der Vorgabekurve sich das Trockenprogramm befindet,
    - wobei die Steuerung (28) dazu ausgebildet ist, dass sie anhand des Arbeitspunkts das weitere Trockenprogramm beeinflusst mit einer Anpassung der Temperatur des Luftstroms durch Beeinflussung der Heizmittel (26a, 26b, 126a, 126b) und/oder mittels einer Anpassung der Stärke des Luftstroms durch Beeinflussung des Lüfters (21, 121),
    dadurch gekennzeichnet, dass:
    - die Feuchtigkeitserfassungsmittel den Lüfter (21, 121) bzw. einen Lüfterantrieb (24, 124) umfassen,
    - aus der Ansteuerung des Lüfterantriebs (24, 124) des Lüfters (21, 121) die Feuchtigkeit bestimmbar ist derart, dass bei hoher Feuchtigkeit in der vom Lüfter bewegten Luft ein hohes Drehmoment vom Antrieb zu erbringen ist und bei geringer Feuchtigkeit in der vom Lüfter geförderten Luft ein geringes Drehmoment vom Lüfterantrieb zu erbringen ist,
    - die Steuerung (28) dazu ausgebildet ist, aus der Ansteuerung des Lüfterantriebs (24, 124) des Lüfters (21, 121) die Feuchtigkeit in der Luft zu bestimmen,
    - mehrfach in zeitlichem Abstand die Lüfterrichtung bzw. die Richtung des Luftstroms umgekehrt wird, um dann Luft aus der Trommel (14, 114) in die Luftzuführung (20, 120) hinein abzusaugen, um so Informationen über die Abluft zu erhalten, wobei die Informationen die Feuchtigkeit der Abluft umfassen.
  2. Wäschetrockner nach Anspruch 1, dadurch gekennzeichnet, dass die Luftzuführung (20, 120) maximal 10% unterhalb der höchsten Stelle der Trommel (14, 114) vorgesehen ist, insbesondere oberhalb der höchsten Stelle der Trommel.
  3. Wäschetrockner nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Lüfter (21, 121) nahe an der Trommel (14, 114) angeordnet ist, vorzugsweise maximal 50 cm von der Trommel entfernt ist, insbesondere maximal 30 cm.
  4. Wäschetrockner nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet dass der Lüfterantrieb (24, 124) ein eigener Antrieb ist nur für den Lüfter (21, 121), vorzugsweise als Baueinheit zusammen mit dem Lüfter.
  5. Wäschetrockner nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Lüfter (21, 121) einen induktiv beheizbaren Lüfterrotor (22, 122) als Heizmittel aufweist, wobei vorzugsweise der Lüfterrotor (22, 122) mehrere Lüfterschaufeln aufweist, wobei mindestens eine Lüfterschaufel zumindest teilweise aus mittels eines Magnetfelderzeugungsmittels (26a, 26b, 126a, 126b) beheizbarem Material besteht oder solches Material aufweist, insbesondere in einem radial äußeren Bereich, wobei vorzugsweise mindestens eine Lüfterschaufel vollständig aus diesem Material besteht.
  6. Wäschetrockner nach Anspruch 5, dadurch gekennzeichnet, dass das mindestens eine Magnetfelderzeugungsmittel (26a, 26b, 126a, 126b) benachbart zum Lüfterrotor (22, 122) angeordnet ist und/oder den Lüfterrotor zumindest teilweise umgibt und/oder an einem Lüftergehäuse angeordnet ist.
  7. Wäschetrockner nach Anspruch 6, dadurch gekennzeichnet, dass das mindestens eine Magnetfelderzeugungsmittel mindestens eine Induktionsspule (26a, 26b, 126a, 126b) aufweist oder ist, vorzugsweise eine einzige Induktionsspule, wobei insbesondere die Temperaturerfassungsmittel den Lüfterrotor (22, 122) und die Magnetfelderzeugungsmittel als Induktionsspule (26a, 26b, 126a, 126b) umfassen, wobei vorzugsweise aus der Ansteuerung der Induktionsspule die Temperatur der von der Trommel (14, 114) abgeführten oder zugeführten Luft bestimmbar ist.
  8. Wäschetrockner nach Anspruch 6, dadurch gekennzeichnet, dass das mindestens eine Magnetfelderzeugungsmittel mindestens einen Permanentmagneten aufweist, vorzugsweise mehrere Permanentmagnete.
  9. Wäschetrockner nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass das mindestens eine Magnetfelderzeugungsmittel (26a, 26b, 126a, 126b) außerhalb eines Lüftergehäuses bzw. außerhalb der Luftzuführung (20, 120) angeordnet ist.
  10. Wäschetrockner nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, dass das mindestens eine Magnetfelderzeugungsmittel (26a, 26b, 126a, 126b) in radialer Erstreckung außerhalb des Lüfterrotors (22, 122) verläuft, vorzugsweise nur auf axialer Höhe des Lüfterrotors und nicht darüber oder darunter, wobei insbesondere das mindestens eine Magnetfelderzeugungsmittel radial außerhalb des Lüfterrotors und umlaufend angeordnet ist als Induktionsspule (26a, 26b, 126a, 126b) mit einer Spulenmittelachse, die parallel zu einer Drehachse des Lüfterrotors (22, 122) verläuft oder mit der Drehachse des Lüfterrotors zusammenfällt.
  11. Wäschetrockner nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Drehmoment vom Lüfterantrieb (24, 124) durch Überwachen einer Phasenverschiebung zwischen Strom und Spannung im Lüfterantrieb bestimmbar ist.
  12. Wäschetrockner nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Trommel (14, 114) innen frei ist von Sensoren, wobei sie vorzugsweise auch an der Außenseite keine Sensoren aufweist.
  13. Verfahren zum Trocknen von zu trocknender Wäsche mit einem Wäschetrockner (11, 111), wobei der Wäschetrockner aufweist:
    - eine Trommel (14, 114) für die Aufnahme von zu trocknender Wäsche,
    - einen Antriebsmotor (15) für die Trommel,
    - eine Luftzuführung (20, 120) zu der Trommel,
    - eine Luftabführung (40) von der Trommel (14, 114),
    - einen Lüfter (21, 121) zur Erzeugung eines Luftstroms zu der Trommel (14, 114) hin durch die Luftzuführung (20, 120) und von der Trommel weg durch die Luftabführung (40),
    - einen Lüfterantrieb (24, 124) für den Lüfter,
    - Heizmittel (26a, 26b, 126a, 126b) zum Aufheizen des Luftstroms,
    - Temperaturerfassungsmittel zur Erfassung der Temperatur der in die Trommel (14, 114) zugeführten Luft oder der aus der Trommel abgeführten Luft,
    - Feuchtigkeitserfassungsmittel zur Erfassung der Feuchtigkeit der in die Trommel (14, 114) zugeführten Luft oder der aus der Trommel abgeführten Luft,
    - wobei die Feuchtigkeitserfassungsmittel den Lüfter (21, 121) bzw. einen Lüfterantrieb (24, 124) umfassen,
    - aus der Ansteuerung des Lüfterantriebs (24, 124) des Lüfters (21, 121) die Feuchtigkeit bestimmbar ist derart, dass bei hoher Feuchtigkeit in der vom Lüfter bewegten Luft ein hohes Drehmoment vom Antrieb zu erbringen ist und bei geringer Feuchtigkeit in der vom Lüfter geförderten Luft ein geringes Drehmoment vom Lüfterantrieb zu erbringen ist,
    - eine Steuerung (28) mit:
    ∘ einem Speicher, in dem mindestens eine Vorgabekurve für den Verlauf von Temperatur und/oder Feuchtigkeit über der Zeit für ein bestimmtes Trockenprogramm von Wäsche abgespeichert ist,
    ∘ Rechenmitteln, um während eines Trockenprogramms aktuell erfasste Werte für Temperatur und/oder Feuchtigkeit mit einer Vorgabekurve zu vergleichen und um zu bestimmen, an welchem Arbeitspunkt der Vorgabekurve sich das Trockenprogramm befindet,
    - die Steuerung (28) dazu ausgebildet ist, aus der Ansteuerung des Lüfterantriebs (24, 124) des Lüfters (21, 121) die Feuchtigkeit in der Luft zu bestimmen,
    mit den Schritten:
    - aktuelle Werte für Temperatur und/oder Feuchtigkeit während eines Trockenprogramms werden erfasst,
    - die aktuelle erfassten Werte für Temperatur und/oder Feuchtigkeit werden mit einer Vorgabekurve verglichen,
    - anhand des Vergleichs wird bestimmt, an welchem Arbeitspunkt der Vorgabekurve sich das Trockenprogramm befindet,
    - das weitere Trockenprogramm wird anhand des Arbeitspunkts beeinflusst hinsichtlich einer Anpassung der Temperatur des Luftstroms durch Beeinflussung der Heizmittel (26a, 26b, 126a, 126b) und/oder mittels einer Anpassung der Stärke des Luftstroms durch Beeinflussung des Lüfters (21, 121),
    - mehrfach wird in zeitlichem Abstand die Lüfterrichtung bzw. die Richtung des Luftstroms umgekehrt, um dann Luft aus der Trommel (14, 114) in die Luftzuführung (20, 120) hinein abzusaugen, um so Informationen über die Abluft zu erhalten, wobei die Informationen die Feuchtigkeit der Abluft umfassen.
  14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass das weitere Trockenprogramm beeinflusst wird hinsichtlich der Temperatur und/oder Stärke des Luftstroms, vorzugsweise vor allem während der Dauer des letzten Viertels des Trockenprogramms, wobei dann:
    - die Temperatur des Luftstroms zu der Trommel (14, 114) mindestens 5°C unter dem Durchschnitt der bislang verwendeten Temperatur des Luftstroms liegt, vorzugsweise mindestens 15°C,
    - die Stärke des Luftstroms zu der Trommel (14, 114) mindestens 20% über dem Durchschnitt der bislang verwendeten Stärke des Luftstroms liegt, vorzugsweise mindestens 50%.
  15. Verfahren nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass Informationen bzgl. Temperatur der Abluft durch Umkehrung der Lüfterrichtung bzw. der Richtung des Luftstroms erhalten werden.
EP19186484.2A 2018-08-06 2019-07-16 Wäschetrockner und verfahren zum trocknen von wäsche mit einem wäschetrockner Active EP3608469B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018213108.2A DE102018213108A1 (de) 2018-08-06 2018-08-06 Wäschetrockner und Verfahren zum Trocknen von Wäsche mit einem Wäschetrockner

Publications (3)

Publication Number Publication Date
EP3608469A2 EP3608469A2 (de) 2020-02-12
EP3608469A3 EP3608469A3 (de) 2020-05-06
EP3608469B1 true EP3608469B1 (de) 2023-08-30

Family

ID=67314643

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19186484.2A Active EP3608469B1 (de) 2018-08-06 2019-07-16 Wäschetrockner und verfahren zum trocknen von wäsche mit einem wäschetrockner

Country Status (4)

Country Link
US (1) US11021837B2 (de)
EP (1) EP3608469B1 (de)
DE (1) DE102018213108A1 (de)
PL (1) PL3608469T3 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10487443B1 (en) * 2015-10-30 2019-11-26 Cool Dry, Inc. Hybrid RF/conventional clothes dryer
DE102016000226A1 (de) * 2016-01-14 2017-07-20 Herbert Kannegiesser Gmbh Vorrichtung zum Mangeln von Wäschestücken
DE102018213108A1 (de) * 2018-08-06 2020-02-06 E.G.O. Elektro-Gerätebau GmbH Wäschetrockner und Verfahren zum Trocknen von Wäsche mit einem Wäschetrockner
KR20200085105A (ko) * 2019-01-04 2020-07-14 엘지전자 주식회사 의류처리장치 및 그 제어방법
CN115298379A (zh) * 2020-03-16 2022-11-04 Lg电子株式会社 衣物处理装置
DE102020111604A1 (de) 2020-04-29 2021-11-04 Miele & Cie. Kg Verfahren und Steuereinheit zum Einstellen einer Trockentemperatur für ein Trockengerät und Trockengerät
DE102022130372A1 (de) 2022-11-16 2024-05-16 Mewa Textil-Service Se & Co. Management Ohg Vorrichtung und Verfahren zur Trocknung von Wäsche

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4231166A (en) * 1979-10-09 1980-11-04 General Electric Company Automatic control for a clothes dryer
US4621438A (en) * 1980-12-04 1986-11-11 Donald M. Thompson Energy efficient clothes dryer
IT210788Z2 (it) 1986-04-04 1989-01-11 Danieli Off Mecc Procedimento di preriscaldo billette con recupero energetico.
FR2603706B1 (fr) 1986-09-05 1989-04-07 Commissariat Energie Atomique Systeme de traitement de signaux issus d'un dispositif de detection de rayonnements et sonde de detection de rayonnements, comportant ce systeme
KR940006250B1 (ko) 1991-12-23 1994-07-13 주식회사 금성사 복합 센서 방식 의류 건조기의 제어방법 및 그 회로
DE4447270A1 (de) * 1994-12-30 1996-07-04 Bosch Siemens Hausgeraete Verfahren zum Steuern von Trockenvorgängen in Haushalt-Wäschetrocknern
US5649372A (en) * 1996-03-14 1997-07-22 American Dryer Corporation Drying cycle controller for controlling drying as a function of humidity and temperature
US6047486A (en) * 1998-09-03 2000-04-11 Whirlpool Corporation Control system for a dryer
KR100955484B1 (ko) * 2003-04-30 2010-04-30 삼성전자주식회사 세탁기 및 그 건조 제어방법
US7005618B2 (en) * 2003-06-27 2006-02-28 General Electric Company Clothes dryer apparatus and method
KR101063701B1 (ko) * 2003-11-03 2011-09-07 엘지전자 주식회사 건조기의 부하 제어방법
KR100710215B1 (ko) * 2004-07-30 2007-04-20 엘지전자 주식회사 의류 건조기 및 그의 제어 방법
ES2368431T3 (es) * 2004-12-06 2011-11-17 Lg Electronics Inc. Secador de ropa.
EP1700944B1 (de) * 2005-03-08 2013-10-23 Electrolux Home Products Corporation N.V. Verfahren zur Desinfektion von Wäsche und Haushaltswäschetrockner mit Wäsche-Desinfizierungszyklus
US8104191B2 (en) * 2008-07-31 2012-01-31 Electrolux Home Products, Inc. Laundry dryer providing moisture application during tumbling and reduced airflow
DE102009026646A1 (de) * 2009-06-02 2010-12-09 BSH Bosch und Siemens Hausgeräte GmbH Verfahren zur Behandlung von Wäsche in einer Waschmaschine mittels einer Induktionsheizung sowie Waschmaschine hierfür
WO2012098625A1 (ja) * 2011-01-18 2012-07-26 パナソニック株式会社 電動機およびそれを搭載した電気機器
JP2013022225A (ja) * 2011-07-21 2013-02-04 Panasonic Corp 洗濯乾燥機
US20130145644A1 (en) * 2011-12-13 2013-06-13 Bsh Home Appliances Corporation Process for operating a washer dryer with a sensor placed between a tub and a heat exchanger, and related washer dryer
KR20140084950A (ko) * 2012-12-27 2014-07-07 동부대우전자 주식회사 세탁기용 건조장치 및 건조방법
MX2013015344A (es) * 2013-12-19 2015-06-18 Mabe Sa De Cv Sistema electronico inteligente para desvanecer las arrugas en prendas textiles y metodo para llevar a cabo dicho desvanecimiento.
JP2016107063A (ja) * 2014-11-28 2016-06-20 三星電子株式会社Samsung Electronics Co.,Ltd. 乾燥機
KR101613965B1 (ko) * 2014-12-08 2016-04-20 엘지전자 주식회사 배기식 의류 건조기의 제어방법
EP3067459A1 (de) * 2015-03-09 2016-09-14 LG Electronics Inc. Trocknungsmaschine
JP6330971B2 (ja) * 2015-04-20 2018-05-30 株式会社デンソー 送風装置
DE102015217667A1 (de) 2015-09-15 2017-03-16 E.G.O. Elektro-Gerätebau GmbH Verfahren zum Betrieb eines Wäschetrockners
US10487443B1 (en) * 2015-10-30 2019-11-26 Cool Dry, Inc. Hybrid RF/conventional clothes dryer
DE102016110883A1 (de) * 2016-05-19 2017-11-23 Miele & Cie. Kg Wäschetrockner
DE102016110871B4 (de) * 2016-05-19 2019-05-29 Miele & Cie. Kg Wäschetrockner
DE102016110859B3 (de) * 2016-05-19 2017-06-22 Miele & Cie. Kg Vorrichtung zum Waschen und bzw. oder zum Trocknen von Wäsche
EP3246454B1 (de) * 2016-05-19 2019-11-06 Miele & Cie. KG Wäschetrockner
KR20180065313A (ko) * 2016-12-07 2018-06-18 엘지전자 주식회사 의류처리장치의 제어방법
DE102017210527B4 (de) * 2017-06-22 2021-01-14 E.G.O. Elektro-Gerätebau GmbH Pumpe für ein Elektrogerät und Elektrogerät mit einer Fluidführung und einer solchen Pumpe
DE102018213108A1 (de) * 2018-08-06 2020-02-06 E.G.O. Elektro-Gerätebau GmbH Wäschetrockner und Verfahren zum Trocknen von Wäsche mit einem Wäschetrockner

Also Published As

Publication number Publication date
DE102018213108A1 (de) 2020-02-06
EP3608469A2 (de) 2020-02-12
US11021837B2 (en) 2021-06-01
US20200040515A1 (en) 2020-02-06
PL3608469T3 (pl) 2024-04-02
EP3608469A3 (de) 2020-05-06

Similar Documents

Publication Publication Date Title
EP3608469B1 (de) Wäschetrockner und verfahren zum trocknen von wäsche mit einem wäschetrockner
EP0467188B1 (de) Wäschetrockner mit einem Wärmepumpenkreis
EP3246454B1 (de) Wäschetrockner
EP2732090B1 (de) Abluft-wäschetrocknung mit zusatzheizung und wärmetauscheraggregat
EP3274499B1 (de) Verfahren zur durchführung eines hygieneprogrammes in einem trockner mit einer wärmepumpe und hierzu geeigneter trockner
EP3255204B1 (de) Verfahren zur ermittlung der endrestfeuchte in einem kondensationstrockner sowie hierfür geeigneter kondensationstrockner
DE102007016077A1 (de) Verfahren zum Betreiben eines Kondensationstrockners mit einem Wärmepumpenkreis, sowie entsprechender Kondensationstrockner
EP1813712A1 (de) Trockner sowie Verfahren zur Behandlung eines Gutes
DE102016110883A1 (de) Wäschetrockner
EP0679754B1 (de) Verfahren und Vorrichtung zur Behandlung von textilem Warengut während des Trocknungsprozesses
EP2847375B1 (de) Verfahren zum beladungsabhängigen betrieb eines trockners sowie hierzu geeigneter trockner
WO2014191247A1 (de) Verfahren zum betrieb eines trockners mit beladungserkennung sowie hierzu geeigneter trockner
EP4119713A1 (de) Verfahren zum betrieb einer waschmaschine und waschmaschine
DE60220169T2 (de) Verfahren zum Trocknen von Wäsche in einer Trocknungsvorrichtung
EP3784830A1 (de) Trockner und verfahren zum betrieb eines trockners
EP3064638B1 (de) Verfahren zum betrieb eines trockners mit einer wärmepumpe und hierzu geeigneter trockner
EP0358849B1 (de) Verfahren zum Trocknen von Wäschestücken
DE4204771B4 (de) Verfahren und Anordnung zum Betrieb eines dampfbeheizten Trockners
DE602004010877T2 (de) Trockungsverfahren und Wäschetrockner
EP0377193B1 (de) Wäschetrockner
EP0424781B1 (de) Haushalt-Wäschetrockner
EP1449953B1 (de) Trocknungseinrichtung für Wäsche und Verfahren zum Betrieb einer solchen
DE2543763A1 (de) Lufttrockner und verfahren zu seiner regelung
DE102018213432B3 (de) Wäschetrockner und Verfahren zum Betrieb eines Wäschetrockners
DE102018007678A1 (de) Verfahren und Vorrichtung zum Trocknen von Wäsche

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: D06F 103/38 20200101ALN20200328BHEP

Ipc: D06F 58/20 20060101AFI20200328BHEP

Ipc: D06F 103/00 20200101ALN20200328BHEP

Ipc: D06F 103/08 20200101ALN20200328BHEP

Ipc: D06F 105/28 20200101ALN20200328BHEP

Ipc: D06F 58/30 20200101ALI20200328BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201102

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210520

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502019009115

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: D06F0058260000

Ipc: D06F0058380000

Ref country code: DE

Free format text: PREVIOUS MAIN CLASS: D06F0058260000

RIC1 Information provided on ipc code assigned before grant

Ipc: D06F 34/26 20200101ALN20230116BHEP

Ipc: D06F 58/26 20060101ALN20230116BHEP

Ipc: D06F 58/02 20060101ALN20230116BHEP

Ipc: D06F 105/32 20200101ALN20230116BHEP

Ipc: D06F 105/30 20200101ALN20230116BHEP

Ipc: D06F 103/54 20200101ALN20230116BHEP

Ipc: D06F 103/52 20200101ALN20230116BHEP

Ipc: D06F 103/44 20200101ALN20230116BHEP

Ipc: D06F 103/34 20200101ALN20230116BHEP

Ipc: D06F 103/32 20200101ALN20230116BHEP

Ipc: D06F 105/28 20200101ALN20230116BHEP

Ipc: D06F 103/38 20200101ALN20230116BHEP

Ipc: D06F 103/08 20200101ALN20230116BHEP

Ipc: D06F 103/00 20200101ALN20230116BHEP

Ipc: D06F 58/38 20200101AFI20230116BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230227

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019009115

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231130

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231230

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231201

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240102

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830