EP3591333B1 - Tandem-ladung für einen flugkörper und schockabweisende kappe für eine hauptladung einer tandem-ladung - Google Patents

Tandem-ladung für einen flugkörper und schockabweisende kappe für eine hauptladung einer tandem-ladung Download PDF

Info

Publication number
EP3591333B1
EP3591333B1 EP19178924.7A EP19178924A EP3591333B1 EP 3591333 B1 EP3591333 B1 EP 3591333B1 EP 19178924 A EP19178924 A EP 19178924A EP 3591333 B1 EP3591333 B1 EP 3591333B1
Authority
EP
European Patent Office
Prior art keywords
charge
cap
tip
tandem
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19178924.7A
Other languages
English (en)
French (fr)
Other versions
EP3591333A1 (de
Inventor
Werner Arnold
Benedikt Mayr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDW Gesellschaft fuer Verteidigungstechnische Wirksysteme mbH
Original Assignee
TDW Gesellschaft fuer Verteidigungstechnische Wirksysteme mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDW Gesellschaft fuer Verteidigungstechnische Wirksysteme mbH filed Critical TDW Gesellschaft fuer Verteidigungstechnische Wirksysteme mbH
Publication of EP3591333A1 publication Critical patent/EP3591333A1/de
Application granted granted Critical
Publication of EP3591333B1 publication Critical patent/EP3591333B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/20Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type
    • F42B12/22Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type with fragmentation-hull construction
    • F42B12/32Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type with fragmentation-hull construction the hull or case comprising a plurality of discrete bodies, e.g. steel balls, embedded therein or disposed around the explosive charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/04Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of armour-piercing type
    • F42B12/10Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of armour-piercing type with shaped or hollow charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/04Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of armour-piercing type
    • F42B12/10Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of armour-piercing type with shaped or hollow charge
    • F42B12/16Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of armour-piercing type with shaped or hollow charge in combination with an additional projectile or charge, acting successively on the target
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/04Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of armour-piercing type
    • F42B12/10Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of armour-piercing type with shaped or hollow charge
    • F42B12/16Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of armour-piercing type with shaped or hollow charge in combination with an additional projectile or charge, acting successively on the target
    • F42B12/18Hollow charges in tandem arrangement

Definitions

  • the present invention relates to a tandem charge for a missile.
  • tandem charges contain a pre-charge and a main charge, which is used to combat hard target structures such as bunkers or the like.
  • the pre-charge which is usually provided as a pre-hollow charge, initially creates a deep crater in the target material, into which the main charge penetrates. This "pre-drilling" by means of the pre-hollow charge significantly increases the effective power of the main charge on the one hand and reduces the risk of slipping from the target at inclined angles of incidence ("ricochet" effect) on the other hand.
  • Such a pre-shaped charge is designed to be correspondingly large.
  • the DE 36 03 620 C1 describes a tandem shaped charge.
  • a fixed protective hood made of steel is proposed between a pre-hollow charge and a main hollow charge, which completely surrounds the main hollow charge and thus provides, on the one hand, a free space for spike formation and, on the other hand, protection from plumes and fragments as well as the shock wave in the event of detonation of the pre-hollow charge.
  • the DE 36 01 051 C1 describes a tandem charge with a pre-hollow charge and a main hollow charge, a vapor shield being provided between the pre-hollow charge and the main hollow charge.
  • a sleeve which can be displaced with respect to the main hollow charge is arranged on the vapor shield, the ignition device of the main hollow charge being triggered by the sleeve striking it.
  • the EP 2 327 952 A1 and the DE 41 26 793 C1 describe further tandem loads.
  • the present invention is based on the object of providing a tandem charge with improved shock properties.
  • this object is achieved by a tandem charge for a missile with the features of claim 1 or 8.
  • a tandem charge for a missile.
  • the tandem charge comprises a pre-charge, in particular a pre-shaped charge, and a main charge which has a shell with a tip aligned with the pre-charge.
  • a cap is provided which is placed on the tip and is designed to repel shock waves that arise when the subpoena detonates.
  • the idea on which the present invention is based consists in providing the tip of a shell of a main charge with an additional shock-repellent cap.
  • the properties of the tip can be freely modified without having to take into account the boundary conditions that apply to the design of the tip.
  • a shape or geometry and a material selection of the cap for shock repellency can be selected in an optimized manner.
  • coupling of the shock wave into the envelope is effectively reduced. This greatly reduces the load on components of the main charge that are arranged within the shell, in particular a safety device and / or an ignition system that is usually arranged on a rear side, as well as mechanical components such as threads and the like.
  • the main charge can have a wide variety of configurations.
  • the present invention is applicable to both main charged cargoes with a protective hood or shell as well as for penetrator main charges with a penetrator shell.
  • the cap is specially designed to accommodate the respective tip of a sheath, in particular with a recess which corresponds to the negative shape of the tip.
  • the solution according to the invention of a cap applied to the tip of the shell of the main charge advantageously requires only a small amount of space and does not require any change in the main charge per se.
  • the main charge is therefore not subject to any restrictions on the power side or in terms of functionality.
  • the cap according to the invention can also be retrofitted to existing tandem loads. In an existing system, this only needs to be placed on the tip of the shell of the main charge, which is made possible in a simple manner by the small installation space and without the need for other changes. Of course, a suitable fastening of the cap can be provided as required.
  • the main charge is designed as a penetrator charge and the shell is provided as a penetrator shell with a tip correspondingly shaped as a penetrator tip. Since the penetration performance of a penetrator depends essentially on the shape of the penetrator tip, this generally cannot be subjected to any geometric changes in order to repel shock. With the solution according to the invention, this can be counteracted in that the penetrator tip remains unchanged and yet an optimized one thanks to the cap Shock rejection in the event of detonation of the summons is enabled. This means that the shock wave can only get into the envelope to a greatly reduced extent.
  • the tip is bi-conical, the cap covering at least one front cone of the tip.
  • the cap is designed in two parts with an inner and an outer cap, the front cone being covered with the inner cap and the rear cone together with the inner cap being covered with the outer cap.
  • a cap that is specially designed for bi-conical penetrator tips and yet easy to manufacture and apply is advantageously provided.
  • different materials can be provided for the inner and the outer cap, in particular a plastic for the inner cap and copper or a heavy metal, for example tungsten heavy metal, for the outer cap, in order to achieve additional reflection of the shock wave at the material transition.
  • the cap has a pointed end with a shape that tapers at a more acute angle than an angle of the tip.
  • a significantly smaller part of an incident shock wave in particular corresponding to the product of the incident shock wave with the sine of the angle of incidence, is transmitted into the envelope than in the case of an obtuse angle, the sine of which would be significantly larger.
  • the remainder of the shock wave that is not transmitted into the shell then slides along the cap or shell without transmission.
  • the cap has a different material than the shell.
  • Different materials usually have different shock wave impedances. This is especially true for materials with different densities, because the shock wave impedance depends, among other things, on the density of a material. At material transitions, seams or the like, at which there is a density jump in the case of different materials, there are thus also impedance jumps. Such jumps in impedance lead to partial transmission and partial reflection of the shock wave.
  • Appropriate selection of the material for the cap, with the largest possible impedance difference between the cap and the shell, in particular with a higher density and shock wave impedance than the tip can therefore additionally reduce the shock wave transmission into the shell.
  • the cap contains a heavy metal.
  • it can be a tungsten heavy metal.
  • a high density and thus a shock wave impedance that is high compared to the usually metallic shell is provided, which advantageously creates an impedance jump at the material transition and thus contributes to reducing the transmission of a shock wave into the shell.
  • the cap has a multilayer structure made of materials of different shock wave impedance. In this way, the effect of only partial transmission and partial reflection at material transitions can already be used several times within the cap, so that an additional reduction in the transmission of a shock wave into the shell is made possible.
  • the multilayer structure contains at least one plastic layer and at least one metal layer, in particular a copper or heavy metal layer. Because of the very different densities, there is a high impedance difference between the plastic layer and the metal layer. Compared to plastic, copper already has a relatively high impedance (density of 8.9 g / cm 3 ). In the case of a heavy metal, however, this difference can be increased significantly, for example by using tungsten heavy metal (density of up to approx. 18 g / cm 3 ). This increases the impedance difference and thereby the degree of reflection.
  • the cap is designed in such a way that it breaks when a shock wave generated when the subpoena detonates is rejected, so that the tip of the casing is exposed.
  • This can be achieved, for example, by using a brittle material and / or one or more predetermined breaking points in the material.
  • the tip of the envelope is released.
  • this is particularly advantageous since the penetration performance, which is greatly increased per se by means of the precharge, is thus not impaired by the cap.
  • the cap contains a sintered material, in particular sintered heavy metal.
  • a sintered material in particular sintered heavy metal.
  • This can be provided both in the case of a solid cap and in the case of a multilayer structure of the cap.
  • This is preferably a tungsten heavy metal, which is designed to be so brittle that it is broken down in the event of a load occurring when the shock wave is rejected.
  • the material properties can be adjusted in the sintering process.
  • the material can be designed to be brittle in a targeted manner by setting the sinter matrix proportions and sintering times.
  • the proportion of tungsten material can be more than 90%, in particular in a range from 90% to 98%, and only the remainder can be provided as a matrix, for example containing nickel and / or iron.
  • suitable sintering times can range from 4 to 8 hours lie.
  • deviations are possible depending on the other conditions used, such as pressure and temperature, among others.
  • the recess is designed to taper conically in accordance with a shape of the tip, the tapering end of the second side tapering at an angle that is more acute than the recess.
  • the cap provides a geometry that tapers to a point compared to the tip of the shell, so that a portion of the shock wave transmitted into the shell is already reduced purely by the geometric configuration of the cap.
  • the cap contains a heavy metal.
  • it can be a tungsten heavy metal.
  • the cap has a multilayer structure made of materials of different shock wave impedance.
  • plastics come into consideration as the material of low shock wave impedance and, for example, copper or heavy metals, in particular tungsten heavy metal, as material of high shock wave impedance.
  • a multiplicity of impedance jumps is provided within the cap, the reflected portion of the shock wave increasing and the portion transmitted into the envelope advantageously further decreasing.
  • the cap is designed in such a way that it breaks when a shock wave generated when a subpoena detonates is rejected.
  • the tip of a sheath in particular in the case of a Penetrator sheath, to be released after rejection. In this way, an optimal penetrator performance is advantageously guaranteed.
  • the cap contains a sintered material which is designed to be so brittle that it is broken down in the event of a load occurring when the shock wave is rejected.
  • the material properties can advantageously be set in the sintering process.
  • it can be a sintered heavy metal, preferably a tungsten heavy metal.
  • the material can thus advantageously be designed to be brittle in a targeted manner by setting the sinter matrix proportions and sintering times. Furthermore, a high density and thus a high shock wave impedance are thus provided.
  • Fig. 1 shows a schematic representation of a tandem charge 1 according to the invention.
  • a missile 10 is shown here symbolized only in sections and can be implemented in a variety of ways. For example, it can be a guided missile of the most varied of types.
  • the tandem charge 1 has a pre-charge 2 and a main charge 3.
  • the only schematically shown pre-charge 2 is in particular a pre-hollow charge, but other types of pre-charge are also conceivable.
  • the main charge 3, shown only in sections and schematically, can be, for example, a main hollow charge or a penetrator main charge, but other types of main charge are also conceivable.
  • the main charge 3 has a casing 4 with a tip 5 aligned with the pre-charge 2.
  • a cap 6 is placed on the tip 5 and is designed to repel shock waves that occur when the summons 2 detonates.
  • Fig. 2 shows a schematic individual representation of a shock-repellent cap 6.
  • the cap 6 has a first side which is formed with a recess 8 for receiving a tip 5 of a casing 4 of a main charge 3. On a second side, the cap 6 has a tapered end 7 for repelling shock waves.
  • the cap 6 serves to reduce the transmission of shock waves into the shell 4 of the main charge 3, which occur when the precharge 2 detonates. In this way, a significantly smaller proportion of the shock waves are transmitted into the shell 4. Thus, a load on components arranged within the casing 4, in particular a safety device and / or an ignition system and mechanical components such as threads or the like of the main charge 3, is greatly reduced.
  • Different configurations of the cap 6 can be provided for shock wave repulsion, in particular different geometrical configurations and different material configurations, which in relation to FIG Figures 5 to 10 will be discussed in more detail.
  • FIG. 10 shows an exemplary tandem penetrator charge 100.
  • the penetrator tandem charge 100 shown here is designed without the cap 4 according to the invention.
  • a penetrator tip 105 is designed to be comparatively blunt, since this is necessary for optimal penetration performance.
  • a penetrator sheath 104 extends from the tip to a rear locking thread 106, in which a lock 109 with a safety device SE and an ignition system ZS are installed.
  • a compression element 101 for compressing the explosive is provided between the closure 109 and the explosive of the penetrator charge 103.
  • the pre-shaped charge 102 in this example is designed in a conventional manner with a shaped charge cone 110 and an explosive and ignition system 108 arranged behind it, as is known per se to the person skilled in the art and does not require any further explanation.
  • Fig. 4 shows a schematic representation of the transmission of shock waves 107 into the envelope when the pre-hollow charge 102 detonates.
  • shock waves 107 are coupled into the penetrator casing 104 via the air. These shock waves 107 run further back in the penetrator sheath 104, are reflected there and hit the thread 106 and the closure 109 or the safety device SE and the ignition system ZS several times.
  • the nose shape of the sheath 4, which contains the tip 5, has a strong influence on the shock wave transmission into the sheath material.
  • the shape of the nose also significantly influences the penetration capacity of a main penetrator charge 103, so that the shape of the tip 5 can hardly be changed, at least for main penetrator charges.
  • Fig. 5 shows a schematic representation of a section of a main charge 3 according to an embodiment.
  • the conflict of objectives of the nose shape of the main charge 3 can be resolved.
  • the cap 6 enables measures for shock wave damping in a novel way, which can include both geometric measures and measures in the combination of materials.
  • a cap 6, which is applied to the tip 5 of the casing 4 of the main charge 3 and which repels the shock waves from the casing 4 to a large extent, is therefore provided.
  • This inventive solution of a tandem charge or a shock-repellent cap 6 is not limited to penetrator main charges, but can be used for various types of main charges 3, for example also for main hollow charges with a protective cover.
  • Fig. 6 shows a detailed representation of the geometric measures achieved by the cap 6 for shock rejection.
  • a recess 8 which is designed to taper conically in accordance with the shape of the tip 5.
  • the tapering end 7 of the cap 6 tapers at an angle ⁇ that is more acute than that of the recess 8.
  • FIG. 5 and 6 An example is in Figures 5 and 6 a bi-conical tip 5 of the sheath 4 is sketched, the cap 6 only covering the first front cone 9A and the second rear cone 9B remaining free. In further embodiments, however, other shapes of the tip 5 and the cap 6 are also conceivable, with the cap 6 always producing a more acute angle.
  • Fig. 7 shows a schematic representation of a section of a main charge 3 according to a further embodiment.
  • the tip 5 is also designed bi-conically.
  • the cap 6 is formed in two parts here and has an inner cap 6A and an outer cap 6B.
  • the front cone 9A of the tip 5 is the same here as according to FIG Fig. 6 covered with the inner cap 6A.
  • the rear cone 9B together with the inner cap 6A is also covered with the outer cap 6B. In this way, an even more acute angle ⁇ is provided overall and thus an even smaller proportion of the shock wave is transmitted into the envelope 4.
  • other forms of the tip 5 and other forms of the cap 6, in particular adapted to different types of tips of a penetrator or a different type of main charge 3, are conceivable.
  • shock wave transmission into the shell 4 can thus optionally or in addition to geometric measures be further reduced.
  • the cap 6 therefore preferably has a material that differs from the sheath 4.
  • the cap can be a material with a higher density and have a higher shock wave impedance.
  • the cap 6 can contain copper or a heavy metal for this purpose.
  • WSM tungsten heavy metal
  • tungsten heavy metal has proven to be even more advantageous.
  • tungsten heavy metals have a much higher density than copper (density of 8.9 g / cm 3 ) of up to approx. 18 g / cm 3 .
  • they have another advantage that consists in the fact that tungsten heavy metal is produced by sintering. The sintering process can be used to set material properties that can be adapted to a large extent to the required conditions.
  • the cap 6 can therefore advantageously be designed in such a way that it breaks when a shock wave that occurs when the precharge 2 detonates is rejected, so that the tip 5 of the sheath 4 is exposed. In this way, an impairment of the penetration performance of a penetrator charge is avoided.
  • This can be adjusted, for example, if the cap 6 contains a sintered material, in particular sintered heavy metal, preferably tungsten heavy metal, which is designed to be so brittle that it is broken down when the shock wave is rejected.
  • tungsten heavy metal for example, by setting the sinter matrix proportions, in particular 90-98% tungsten in a matrix containing nickel, iron, etc.
  • the material can be made specifically brittle.
  • a large part of the shock wave caused thereby is rejected and reflected at the pointed cap 6 and then the cap 6 is broken down into small particles.
  • the penetration into a target is thus not influenced.
  • Fig. 8 shows a diagram of the shock wave pressure curve p over the particle speed up for different material compositions.
  • the shell 4 is assumed to be metal M, for which a metal curve M based on the impedance of metal is drawn.
  • the cap 6 is assumed to be a heavy metal SM, for which a heavy metal curve SM based on the impedance is also shown.
  • a material curve for plastic K is shown for the case of any material combinations.
  • An air shock wave hitting the material always has the same shock wave pressure and the same particle velocity as the material at the point of impact, so that with each material curve there is a hypothetical or actual point of intersection with the reflected air shock wave L '.
  • a reference shock wave pressure p-reference is drawn in the metal curve M, which represents a direct coupling of the air shock wave into the envelope 4 or its tip 5, as is the case, for example, in FIG Fig. 4 would be the case without cap 6.
  • transitions must also be taken into account, which are each marked by a reflection of the material curve into which the shock wave is coupled, marked with an apostrophe, up to an intersection with the material curve of the material following a transition.
  • Example 1 can be traced via the impedance jumps with the intersection points a -> b (SM '-> M). This results in a lower pressure p (1) coupled into the metal M at point b compared with the reference pressure p-reference.
  • the second example 2) with the additional plastic layer K results analogously to A -> B -> C (SM '-> K' -> M) with a pressure p (2) applied to the metal, which in comparison with p ( 1) is even lower.
  • the larger impedance jumps in the material transitions were used, here in particular the transitions A -> B between heavy metal SM and plastic K.
  • Fig. 9 shows a modification of the embodiment according to FIG Fig. 5 .
  • a possible configuration for example 2) is shown here only by way of example, in that the inner cap 6A is made of plastic and the outer cap 6B is made of heavy metal.
  • Fig. 10 shows a schematic representation of a portion of a main charge according to yet another embodiment.
  • the cap 6 here has a multilayer structure made of materials A, B of different shock wave impedances.
  • the multilayer structure in the material A also contains at least one plastic layer K and in the material B at least one metal layer, in particular a copper or heavy metal layer SM.
  • the individual layers are each applied in a cone-like manner, starting from the front conical shape 9A of the tip 5.
  • the cap 6 there is thus a comparison to Figures 5 and 6 same external geometry of the cap 6.
  • a different geometry of the cap 6 could also be implemented with a multilayer structure.
  • the inner and / or the outer cap 6A, 6B according to FIG Fig. 9 be formed with such a multilayer structure.
  • the shape of the tip 5 of the sheath 4 and, accordingly, also the shape of the recess 8 of the cap 6 are not restricted to the illustrated embodiments.
  • the invention can also provide a rounded tip 4 and a correspondingly shaped recess 8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Vibration Dampers (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Tandem-Ladung für einen Flugkörper.
  • Sogenannte Tandem-Ladungen enthalten eine Vorladung und eine Hauptladung, was der Bekämpfung von harten Zielstrukturen, wie Bunker oder dergleichen dient. Die Vorladung, welche meist als Vorhohlladung vorgesehen ist, erzeugt zunächst einen tiefen Krater im Zielmaterial, in welchen die Hauptladung vordringt. Durch diese "Vorbohrung" mittels der Vorhohlladung wird einerseits die Wirkleistung der Hauptladung deutlich erhöht und andererseits das Risiko einer Abgleitung vom Ziel bei schiefen Auftreffwinkeln ("Ricochet"-Effekt) reduziert. Entsprechend groß wird dafür eine derartige Vorhohlladung ausgelegt.
  • Die DE 36 03 620 C1 beschreibt eine Tandem-Hohlladung. Zwischen einer Vorhohlladung und einer Haupthohlladung wird hier eine feste Schutzhaube aus Stahl vorgeschlagen, welche die Haupthohladung komplett umgibt und so einerseits einen freien Raum zur Stachelbildung und andererseits einen Schutz vor Schwaden und Fragmenten sowie der Stoßwelle bei Detonation der Vorhohlladung bereitstellt.
  • Die DE 36 01 051 C1 beschreibt eine Tandem-Ladung mit einer Vorhohlladung und einer Haupthohlladung, wobei ein Schwadenschild zwischen der Vorhohlladung und der Haupthohlladung vorgesehen ist. An dem Schwadenschild ist eine gegenüber der Haupthohlladung verschiebbare Hülse angeordnet, wobei die Zündeinrichtung der Haupthohlladung durch Auftreffen der Hülse auslösbar ist. Die EP 2 327 952 A1 und die DE 41 26 793 C1 beschreiben weitere Tandem Ladungen.
  • Vor diesem Hintergrund liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine Tandem-Ladung mit verbesserten Schockeigenschaften bereitzustellen.
  • Erfindungsgemäß wird diese Aufgabe durch eine Tandem-Ladung für einen Flugkörper mit den Merkmalen des Patentanspruchs 1 oder 8 gelöst.
  • Demgemäß ist eine Tandem-Ladung für einen Flugkörper vorgesehen. Die Tandem-Ladung umfasst eine Vorladung, insbesondere Vorhohlladung, sowie eine Hauptladung, welche eine Hülle mit einer zu der Vorladung ausgerichteten Spitze aufweist. Darüber hinaus ist eine auf die Spitze aufgesetzte Kappe vorgesehen, welche zur Abweisung von bei Detonation der Vorladung entstehenden Schockwellen ausgebildet ist.
  • Die der vorliegenden Erfindung zugrunde liegende Idee besteht darin, die Spitze einer Hülle einer Hauptladung mit einer zusätzlichen schockabweisenden Kappe zu versehen. Auf diese Weise können die Eigenschaften der Spitze frei modifiziert werden, ohne dass dabei Rücksicht auf für die Ausgestaltung der Spitze geltende Randbedingungen genommen werden braucht. Insbesondere ist somit eine Formgebung bzw. Geometrie und eine Materialauswahl der Kappe für die Schockabweisung optimiert wählbar. Auf diese Weise wird eine Einkopplung der Schockwelle in die Hülle wirksam vermindert. Somit wird eine Belastung auf innerhalb der Hülle angeordnete Bauelemente der Hauptladung, insbesondere eine meist an einer Rückseite angeordneten Sicherungseinrichtung und/oder ein Zündsystem sowie mechanische Komponenten wie Gewinde und dergleichen, stark reduziert.
  • Die Hauptladung kann dabei unterschiedlichste Ausgestaltungen aufweisen. Insbesondere ist die vorliegende Erfindung sowohl für Haupthohladungen mit Schutzhaube bzw. -hülle als auch für Penetrator-Hauptladungen mit einer Penetratorhülle anwendbar. Die Kappe ist dabei speziell zur Aufnahme der jeweiligen Spitze einer Hülle ausgebildet, insbesondere mit einer Vertiefung, welche der Negativform der Spitze entspricht.
  • Die erfindungsgemäße Lösung einer auf die Spitze der Hülle der Hauptladung aufgebrachten Kappe benötigt vorteilhaft nur einen geringen Raum und erfordert keinerlei Änderung der Hauptladung an sich. Vorteilhaft wird die Hauptladung somit auf der Leistungsseite und hinsichtlich der Funktionalität keinerlei Einschränkungen unterworfen.
  • Zudem ist erfindungsgemäß auch eine Nachrüstbarkeit der erfindungsgemäßen Kappe an bestehenden Tandem-Ladungen ermöglicht. Diese braucht bei einem bestehenden System lediglich auf die Spitze der Hülle der Hauptladung aufgesetzt werden, was durch den geringen Bauraum und ohne Notwendigkeit von sonstigen Änderungen auf einfache Weise ermöglicht ist. Selbstverständlich kann dabei eine geeignete Befestigung der Kappe bedarfsgerecht vorgesehen werden.
  • Vorteilhafte Ausgestaltungen und Weiterbildungen ergeben sich aus den weiteren Unteransprüchen sowie aus der Beschreibung unter Bezugnahme auf die Figuren.
  • Gemäß einer Weiterbildung ist die Hauptladung als Penetratorladung ausgebildet und die Hülle als Penetratorhülle mit einer entsprechend als Penetratorspitze geformten Spitze vorgesehen. Da eine Penetrationsleistung eines Penetrators wesentlich von der Form der Penetratorspitze abhängt, kann diese in der Regel keinen geometrischen Änderungen zur Schockabweisung unterworfen werden. Mit der erfindungsgemäßen Lösung kann dem entgegengewirkt werden, indem die Penetratorspitze unverändert bleibt und dennoch durch die Kappe eine optimierte Schockabweisung bei Detonation der Vorladung ermöglicht ist. Somit wird erreicht, dass die Schockwelle nur in stark reduziertem Maße in die Hülle gelangen kann.
  • Gemäß einer Ausführungsform ist die Spitze bi-konisch ausgebildet, wobei die Kappe zumindest einen vorderen Konus der Spitze abdeckt. Insbesondere ist die Kappe zweiteilig mit einer inneren und einer äußeren Kappe ausgebildet, wobei der vordere Konus mit der inneren Kappe und der hintere Konus samt der inneren Kappe mit der äußeren Kappe abgedeckt ist. Vorteilhaft ist auf diese Weise eine speziell für bi-konische Penetratorspitzen ausgelegte und dennoch einfach herzustellende und aufzubringende Kappe bereitgestellt. Bei Bedarf können auch unterschiedliche Werkstoffe für die innere und die äußere Kappe vorgesehen werden, insbesondere ein Kunststoff für die innere Kappe und Kupfer oder ein Schwermetall, beispielsweise Wolfram Schwermetall, für die äußere Kappe, um zusätzliche Reflektion der Schockwelle an dem Materialübergang zu erreichen.
  • Gemäß einer Ausführungsform weist die Kappe ein spitzes Ende mit einer im Vergleich zu einem Winkel der Spitze in einem spitzeren Winkel zulaufenden Form auf. Auf diese Weise wird aus einer einfallenden Schockwelle ein deutlich kleinerer Teil, insbesondere entsprechend dem Produkt der einfallen Schockwelle mit dem Sinus des Auftreffwinkels, in die Hülle transmittiert als bei einem stumpferen Winkel, dessen Sinus deutlich größer wäre. Der nicht in die Hülle transmittierte Rest der Schockwelle gleitet sodann entlang der Kappe bzw. der Hülle ohne Transmission ab.
  • Erfindungsgemäß weist die Kappe ein zu der Hülle unterschiedliches Material auf. Unterschiedliche Materialien weisen in der Regel eine unterschiedliche Schockwellenimpedanz auf. Dies gilt insbesondere für Materialien mit unterschiedlicher Dichte, da die Schockwellenimpedanz unter anderem wesentlich von der Dichte eines Materials abhängt. An Materialübergängen, Nahtstellen oder dergleichen, an welchen sich im Falle unterschiedlicher Materialien ein Dichtesprung ergibt, ergeben sich somit auch Impedanzsprünge. Derartige Impedanzsprünge führen zu teilweiser Transmission und teilweiser Reflexion der Schockwelle. Eine entsprechend geschickte Materialauswahl der Kappe mit einem möglichst großen Impedanzunterschied der Kappe im Vergleich zu der Hülle, insbesondere mit einer höheren Dichte und Schockwellenimpedanz als die Spitze, kann daher die Schockwellenübertragung in die Hülle zusätzlich reduzieren.
  • Gemäß einer vorteilhaften Ausführungsform enthält die Kappe ein Schwermetall. Insbesondere kann es sich um ein Wolframschwermetall handeln. Auf diese Weise wird eine hohe Dichte und somit eine im Vergleich zur in der Regel metallischen Hülle hohe Schockwellenimpedanz bereitgestellt, welche vorteilhaft einen Impedanzsprung am Materialübergang schafft und so zur Reduktion der Übertragung einer Schockwelle in die Hülle beiträgt.
  • Gemäß einem ersten Aspekt der Erfindung weist die Kappe einen Mehrschichtaufbau aus Materialien unterschiedlicher Schockwellenimpedanz auf. Auf diese Weise kann der Effekt der lediglich teilweisen Transmission und teilweisen Reflexion an Materialübergängen bereits innerhalb der Kappe mehrfach genutzt werden, sodass eine zusätzliche Reduktion der Übertragung einer Schockwelle in die Hülle ermöglicht ist.
  • Gemäß einer Weiterbildung enthält der Mehrschichtaufbau zumindest eine Kunststoffschicht und zumindest eine Metallschicht, insbesondere Kupfer- oder Schwermetallschicht. Aufgrund der stark unterschiedlichen Dichten liegt ein hoher Impedanzunterschied zwischen der Kunststoffschicht und der Metallschicht vor. Kupfer hat bereits eine im Vergleich zu Kunststoff relativ hohe Impedanz (Dichte von 8,9 g/cm3). Im Falle eines Schwermetalls kann jedoch dieser Unterschied noch deutlich gesteigert werden, zum Beispiel durch den Einsatz von Wolfram Schwermetall (Dichte von bis zu ca. 18 g/cm3). Somit wird der Impedanzunterschied und dadurch der Reflektionsgrad erhöht.
  • Gemäß einem zweiten Aspekt der Erfindung ist die Kappe derart ausgelegt, dass sie bei Abweisung einer bei Detonation der Vorladung entstehenden Schockwelle zerbricht, sodass die Spitze der Hülle freigelegt wird. Dies kann beispielsweise durch Verwendung eines spröden Materials und/oder eine oder mehrere Sollbruchstellen des Materials realisiert werden. Somit wird nach Abweisung der Schockwelle die Spitze der Hülle freigegeben. Insbesondere im Falle einer Penetratorhülle ist dies besonders vorteilhaft, da die mittels der Vorladung an sich stark erhöhte Penetrationsleistung somit nicht durch die Kappe beeinträchtigt wird.
  • Gemäß einer Weiterbildung enthält die Kappe ein Sintermaterial, insbesondere gesintertes Schwermetall. Dies kann sowohl bei einer massiven Kappe als auch bei einem Mehrschichtaufbau der Kappe vorgesehen werden. Bevorzugt handelt es sich dabei um Wolframschwermetall, welches derart spröde ausgelegt ist, dass es bei einer bei Abweisung der Schockwelle auftretenden Belastung zerlegt wird. Diesbezüglich lassen sich die Materialeigenschaften im Sinterprozess einstellen. Beispielsweise kann bei Wolframschwermetall durch Einstellung der Sintermatrix-Anteile und Sinterdauern das Material gezielt spröde ausgestaltet werden. Dazu können beispielsweise die Anteile des Materials von Wolfram bei mehr als 90 %, insbesondere in einem Bereich von 90 % bis 98 %, liegen und lediglich der Rest als Matrix, beispielsweise enthaltend Nickel und/oder Eisen, vorgesehen sein. Beispielsweise können geeignete Sinterdauern in einem Bereich von 4 bis 8 Stunden liegen. Selbstverständlich sind dabei je nach eingesetzter weiterer Bedingungen, wie unter anderem Druck und Temperatur, Abweichungen möglich.
  • Gemäß einer Ausführungsform der schockabweisenden Kappe ist die Vertiefung entsprechend einer Form der Spitze konisch zulaufend ausgebildet, wobei das spitz zulaufende Ende der zweiten Seite mit einem im Vergleich zu der Vertiefung spitzeren Winkel zuläuft. Somit wird mittels der Kappe eine im Vergleich zu der Spitze der Hülle spitzer zulaufende Geometrie bereitgestellt, sodass bereits rein durch die geometrische Ausgestaltung der Kappe ein in die Hülle transmittierter Anteil der Schockwelle verringert wird.
  • Gemäß einer Ausführungsform enthält die Kappe ein Schwermetall. Insbesondere kann es sich um ein Wolframschwermetall handeln. Somit ist vorteilhaft eine hohe Schockwellenimpedanz der Kappe bereitgestellt, welche sich von dem Material der Spitze unterscheidet.
  • Gemäß dem ersten Aspekt der Erfindung weist die Kappe einen Mehrschichtaufbau aus Materialien unterschiedlicher Schockwellenimpedanz auf. Als Material niedriger Schockwellenimpedanz kommen beispielsweise Kunststoffe und als Material hoher Schockwellenimpedanz beispielsweise Kupfer oder Schwermetalle, insbesondere Wolframschwermetall, in Frage. Auf diese Weise wird innerhalb der Kappe eine Vielzahl von Impedanzsprüngen bereitgestellt, wobei sich der reflektierte Anteil der Schockwelle erhöht und sich der in die Hüllte transmittierte Anteil vorteilhaft weiter verringert.
  • Gemäß dem zweiten Aspekt der Erfindung ist die Kappe derart ausgelegt ist, dass sie bei Abweisung einer bei Detonation einer Vorladung entstehenden Schockwelle zerbricht. Vorteilhaft kann somit die Spitze einer Hülle, insbesondere im Falle einer Penetratorhülle, nach der Abweisung freigegeben werden. Somit bleibt vorteilhaft eine optimale Penetratorleistung gewährleistet.
  • Gemäß einer Weiterbildung enthält die Kappe ein Sintermaterial welches derart spröde ausgelegt ist, dass es bei einer bei Abweisung der Schockwelle auftretenden Belastung zerlegt wird. Vorteilhaft können bei Sinterwerkstoffen die Materialeigenschaften im Sinterprozess eingestellt werden. Insbesondere kann es sich um ein gesintertes Schwermetall, bevorzugt Wolframschwermetall, handeln. Vorteilhaft kann damit durch Einstellung der Sintermatrix-Anteile und Sinterdauern das Material gezielt spröde ausgestaltet werden. Ferner ist somit eine hohe Dichte und somit eine hohe Schockwellenimpedanz bereitgestellt.
  • Die obigen Ausgestaltungen und Weiterbildungen lassen sich, sofern sinnvoll, beliebig miteinander kombinieren. Insbesondere sind sämtliche die Kappe betreffenden Merkmale einer erfindungsgemäßen Tandem-Ladung auf eine schockabweisende Kappe übertragbar, und umgekehrt. Weitere mögliche Ausgestaltungen, Weiterbildungen und Implementierungen der Erfindung umfassen auch nicht explizit genannte Kombinationen von zuvor oder im Folgenden bezüglich der Ausführungsbeispiele beschriebenen Merkmale der Erfindung. Insbesondere wird dabei der Fachmann auch Einzelaspekte als Verbesserungen oder Ergänzungen zu der jeweiligen Grundform der vorliegenden Erfindung hinzufügen.
  • Die vorliegende Erfindung wird nachfolgend anhand der in den schematischen Figuren angegebenen Ausführungsbeispiele näher erläutert. Es zeigen dabei:
  • Fig. 1
    eine schematische Darstellung einer erfindungsgemäßen Tandemladung;
    Fig. 2
    eine schematische Einzeldarstellung einer schockabweisenden Kappe;
    Fig. 3
    eine beispielhafte Penetrator-Tandem-Ladung ohne Kappe;
    Fig. 4
    eine schematische Darstellung der Transmission von Schockwellen in die Hülle bei Detonation der Vorhohlladung.
    Fig. 5
    eine schematische Darstellung eines Abschnitts einer Hauptladung gemäß einer Ausführungsform;
    Fig. 6
    eine Detaildarstellung von durch die Kappe erzielten geometrischen Maßnahmen zur Schockabweisung;
    Fig. 7
    eine schematische Darstellung eines Abschnitts einer Hauptladung gemäß einer weiteren Ausführungsform;
    Fig. 8
    ein Diagramm des Schockwellendruckverlaufs über der Partikelgeschwindigkeit für unterschiedliche Werkstoffe;
    Fig. 9
    eine Abwandlung der Ausführungsform nach Fig. 5; und
    Fig. 10
    eine schematische Darstellung eines Abschnitts einer Hauptladung gemäß einer noch weiteren Ausführungsform.
  • Die beiliegenden Figuren sollen ein weiteres Verständnis der Ausführungsformen der Erfindung vermitteln. Sie veranschaulichen Ausführungsformen und dienen im Zusammenhang mit der Beschreibung der Erklärung von Prinzipien und Konzepten der Erfindung. Andere Ausführungsformen und viele der genannten Vorteile ergeben sich im Hinblick auf die Zeichnungen. Die Elemente der Zeichnungen sind nicht notwendigerweise maßstabsgetreu zueinander gezeigt.
  • In den Figuren der Zeichnung sind gleiche, funktionsgleiche und gleich wirkende Elemente, Merkmale und Komponenten - sofern nichts anderes ausgeführt ist - jeweils mit denselben Bezugszeichen versehen.
  • Fig. 1 zeigt eine schematische Darstellung einer erfindungsgemäßen Tandemladung 1.
  • Es handelt sich um eine Tandem-Ladung 1 für einen Flugkörper. Ein Flugkörper 10 ist hier lediglich abschnittsweise symbolisiert dargestellt und auf vielfältige Weise ausführbar. Beispielsweise kann es sich um einen Lenkflugkörper unterschiedlichsten Typs handeln.
  • Die Tandem-Ladung 1 weist eine Vorladung 2 und eine Hauptladung 3 auf. Bei der lediglich schematisch dargestellten Vorladung 2 handelt es sich insbesondere um eine Vorhohlladung, wobei aber auch andere Arten einer Vorladung denkbar sind. Bei der lediglich abschnittsweise und schematisch dargestellten Hauptladung 3 kann es sich beispielsweise um eine Haupthohlladung oder um eine Penetrator-Hauptladung handeln, wobei aber auch andere Arten einer Hauptladung denkbar sind.
  • Die Hauptladung 3 weist eine Hülle 4 mit einer zu der Vorladung 2 ausgerichteten Spitze 5 auf. Auf die Spitze 5 ist eine Kappe 6 aufgesetzt, welche zur Abweisung von bei Detonation der Vorladung 2 entstehenden Schockwellen ausgebildet ist.
  • Fig. 2 zeigt eine schematische Einzeldarstellung einer schockabweisenden Kappe 6.
  • Es handelt sich um eine schockabweisende Kappe 6 für eine Hauptladung 3 einer Tandem-Ladung 1 gemäß Fig. 1. Die Kappe 6 weist eine erste Seite auf, welche mit einer Vertiefung 8 zur Aufnahme einer Spitze 5 einer Hülle 4 einer Hauptladung 3 ausgebildet ist. An einer zweiten Seite weist die Kappe 6 ein spitz zulaufendes Ende 7 zur Abweisung von Schockwellen auf.
  • Die Kappe 6 dient der Verminderung der Transmission von bei einer Detonation der Vorladung 2 entstehenden Schockwellen in die Hülle 4 der Hauptladung 3. Auf diese Weise werden die Schockwellen zu einem deutlich geringeren Anteil in die Hülle 4 transmittiert. Somit wird eine Belastung auf innerhalb der Hülle 4 angeordnete Bauelemente, insbesondere eine Sicherungseinrichtung und/oder ein Zündsystem sowie mechanische Komponenten wie Gewinde oder dergleichen der Hauptladung 3, stark reduziert.
  • Zur Schockwellenabweisung können unterschiedliche Ausgestaltungen der Kappe 6 vorgesehen sein, insbesondere unterschiedliche geometrische Ausgestaltungen und unterschiedliche Werkstoff-Konfigurationen, worauf in Bezug auf die Figuren 5 bis 10 noch näher eingegangen wird.
  • Fig. 3 zeigt eine beispielhafte Penetrator-Tandem-Ladung 100.
  • Rein beispielhaft wird anhand dieser Tandem-Penetrator-Ladung 100 der Wirkmechanismus von Schockwellen bei Detonation einer Vorladung 2 erläutert. Die hier dargestellte Penetrator-Tandem-Ladung 100 ist ohne die erfindungsgemäße Kappe 4 ausgebildet. Eine Penetratorspitze 105 ist vergleichsweise stumpf ausgebildet, da dies für eine optimale Penetrationsleistung erforderlich ist. Eine Penetratorhülle 104 erstreckt sich von der Spitze bis zu einem hinteren Verschlussgewinde 106, in welchem ein Verschluss 109 mit einer Sicherungseinrichtung SE und ein Zündsystem ZS installiert sind. Zwischen dem Verschluss 109 und dem Sprengstoff der Penetratorladung 103 ist zudem ein Kompressionselement 101 zur Kompression des Sprengstoffes vorgesehen.
  • Die Vorhohlladung 102 bei diesem Beispiel ist in konventioneller Weise mit einem Hohlladungskegel 110 und dahinter angeordnetem Sprengstoff und Zündsystem 108 ausgebildet, wie sie dem Fachmann an sich bekannt ist und keiner näheren Erläuterung bedarf.
  • Fig. 4 zeigt eine schematische Darstellung der Transmission von Schockwellen 107 in die Hülle bei Detonation der Vorhohlladung 102.
  • Durch die Detonation der Vorhohlladung 102 werden als Nebeneffekt Schockwellen 107 über die Luft in die Penetratorhülle 104 eingekoppelt. Diese Schockwellen 107 laufen in der Penetratorhülle 104 weiter nach hinten, werden dort reflektiert und treffen dabei mehrfach auf das Gewinde 106 und den Verschluss 109 bzw. die Sicherungseinrichtung SE und das Zündsystem ZS.
  • Die Nasenform der Hülle 4, welche die Spitze 5 beinhaltet, beeinflusst stark die Schockwellentransmission in das Hüllenmaterial. Je spitzer die Nasenform ausgebildet ist, d. h. je spitzer der Winkel der Spitze 5 zuläuft, desto geringere Schockwellenamplituden gelangen in das Hüllenmaterial. Allerdings beeinflusst die Nasenform auch signifikant das Penetrationsvermögen einer Penetrator-Hauptladung 103, sodass die Form der Spitze 5 zumindest für Penetrator-Hauptladungen kaum veränderbar ist.
  • Fig. 5 zeigt eine schematische Darstellung eines Abschnitts einer Hauptladung 3 gemäß einer Ausführungsform.
  • Mit der erfindungsgemäßen Kappe 6 lässt sich der Zielkonflikt der Nasenform der Hauptladung 3 auflösen. Die Kappe 6 ermöglicht in neuartiger Weise Maßnahmen zur Schockwellen-Dämpfung welche sowohl geometrische Maßnahmen als auch Maßnahmen bei der Materialkombination umfassen können.
  • Bei der dargestellten Ausführungsform ist daher eine auf die Spitze 5 der Hülle 4 der Hauptladung 3 aufgebrachte Kappe 6 vorgesehen, welche die Schockwellen von der Hülle 4 zu einem großen Teil abweist. Diese erfindungsgemäße Lösung einer Tandem-Ladung bzw. einer schockabweisenden Kappe 6 ist dabei nicht auf Penetrator-Hauptladungen beschränkt, sondern für vielfältige Arten von Hauptladungen 3 anwendbar, beispielsweise auch für Haupthohlladungen mit einer Schutzhülle.
  • Fig. 6 zeigt eine Detaildarstellung von durch die Kappe 6 erzielten geometrischen Maßnahmen zur Schockabweisung.
  • Die Kappe 6 weist ein spitzes Ende 7 mit einer im Vergleich zu einem Winkel α der Spitze 5 der Hülle 4 in einem spitzeren Winkel β zulaufenden Form auf. Aufgrund der auf die Spitze 5 schräg auftreffenden Schockwellen SO wird nur ein der Teil der einfallenden Schockwelle in die Hülle 4 transmittiert. Der transmittierte Anteil entspricht dabei dem Sinus des Auftreffwinkels. Während bei der ursprünglichen stumpfen Spitze 5 ein vergleichsweise hoher Anteil Sα = S0*sinα die Hülle 4 transmittiert wird, wird dieser Anteil aufgrund des spitzeren Winkels β (und kleinerem sinβ) mit der Kappe 6 deutlich reduziert auf Sβ = S0*sinβ. Der Rest SR (SR = SO - Sβ), welcher den Hauptanteil der ursprünglichen Stoßwelle so ausmacht, gleitet nun an der spitzeren Geometrie ab. Der kleinere/spitzere äußerer Kappenwinkel β ist also förderlich für das Abweisen von Schockwellen.
  • An der anderen Seite der Kappe 6 weist diese, wie bereits in Bezug auf Fig. 2 erläutert und in Fig. 5 eingezeichnet, eine Vertiefung 8 auf, welche entsprechend der Form der Spitze 5 konisch zulaufend ausgebildet ist. Das spitz zulaufende Ende 7 der Kappe 6 läuft dabei mit einem im Vergleich zu der Vertiefung 8 spitzeren Winkel β zu.
  • Beispielhaft ist in Fig. 5 und 6 eine bi-konische Spitze 5 der Hülle 4 skizziert, wobei die Kappe 6 nur den ersten vorderen Kegel 9A abdeckt und der zweite hintere Kegel 9B frei bleibt. Bei weiteren Ausführungsformen sind aber auch andere Formen der Spitze 5 sowie der Kappe 6 denkbar, wobei mittels der Kappe 6 stets einen spitzerer Winkel hergestellt wird.
  • Fig. 7 zeigt eine schematische Darstellung eines Abschnitts einer Hauptladung 3 gemäß einer weiteren Ausführungsform.
  • Bei dieser Ausführungsform ist die Spitze 5 ebenfalls bi-konisch ausgebildet. Die Kappe 6 ist hier jedoch zweiteilig ausgebildet und weist eine innere Kappe 6 A und einer äußere Kappe 6B auf. Der vordere Konus 9A der Spitze 5 ist hier gleich wie gemäß Fig. 6 mit der inneren Kappe 6A abgedeckt. Zusätzlich ist hier jedoch auch der hinteren Konus 9B samt der innere Kappe 6A mit der äußeren Kappe 6B abgedeckt. Auf diese Weise wird insgesamt ein noch spitzerer Winkel γ bereitgestellt und somit ein noch geringerer Anteil der Stoßwelle in die Hülle 4 transmittiert. Darüber hinaus sind weitere Ausprägungen der Spitze 5 sowie weitere Ausprägungen der Kappe 6, insbesondere angepasst an andersartige Spitzen eines Penetrators oder einer andersartigen Hauptladung 3, denkbar.
  • Optional oder zusätzlich zu der Form der Kappe 6 kann eine Schockwellenabweisung auch durch eine geschickte Materialauswahl der Kappe 6 erreicht werden. Jedes Material hat eine intrinsische Schockwellen-Impedanz, welche wie folgt abgeleitet wird: I = ρ * Us
    Figure imgb0001
    Us = c + up
    Figure imgb0002
    • p = Materialdichte, Us = Schockwellengeschwindigkeit, c = Schallgeschwindigkeit,
    • up = Partikelgeschwindigkeit
  • Damit ergibt sich ein Schockwellendruck p zu: p = I * up
    Figure imgb0003
  • An Materialübergängen bzw.-Nahtstellen unterschiedlicher Materialien ergeben sich Dichtesprünge und somit auch Impedanzsprünge, was zu teilweisen Schockwellen-Transmissionen und -Reflexionen führt. Durch eine Materialauswahl mit hohen Impedanzsprüngen kann die Schockwellenübertragung in die Hülle 4 somit optional oder zusätzlich zu geometrischen Maßnahmen weiter reduziert werden.
  • Vorzugsweise weist die Kappe 6 daher ein zu der Hülle 4 unterschiedliches Material auf. Insbesondere kann die Kappe ein Material mit einer höheren Dichte und einer höheren Schockwellenimpedanz aufweisen. Beispielsweise kann die Kappe 6 dazu Kupfer oder ein Schwermetall enthalten.
  • Kupfer hat schon eine relative hohe Impedanz (Dichte, Schockwellen-Impedanz I = pUs) und wurde deshalb hier beispielhaft angeführt. Noch vorteilhafter aber erweist sich aber beispielsweise Wolframschwermetall (WSM). Zum einen haben Wolframschwermetalle gegenüber Kupfer (Dichte von 8.9 g/cm3) weitaus höhere Dichten von bis zu ca. 18 g/cm3. Zum anderen weisen sie einen weiteren Vorteil auf der darin besteht, dass Wolframschwermetall durch Sinterung hergestellt wird. Durch den Sinterprozess lassen sich Materialeigenschaften einstellen, die sich an geforderte Gegebenheiten in hohem Umfange anpassen lassen.
  • Vorteilhaft kann die Kappe 6 daher derart ausgelegt werden, dass sie bei Abweisung einer bei Detonation der Vorladung 2 entstehenden Schockwelle zerbricht, sodass die Spitze 5 der Hülle 4 freigelegt wird. Auf diese Weise wird eine Beeinträchtigung der Penetrationsleistung einer Penetrator-Ladung vermieden. Dies lässt sich beispielsweise einstellen, wenn die Kappe 6 ein Sintermaterial, insbesondere gesintertes Schwermetall, bevorzugt Wolframschwermetall, enthält, welches derart spröde ausgelegt ist, dass es bei einer bei Abweisung der Schockwelle auftretenden Belastung zerlegt wird. Bei Wolframschwermetall kann beispielsweise durch Einstellung der Sintermatrix-Anteile, insbesondere von 90 - 98 % Wolfram in einer Matrix enthaltend Nickel, Eisen, etc. und der Sinterdauern, insbesondere von 4 - 8 Stunden, das Material gezielt spröde ausgestaltet werden. Somit wird einerseits nach Detonation der Vorladung 2 ein Großteil der dadurch verursachten Schockwelle an der spitzen Kappe 6 abgewiesen und reflektiert und anschließend die Kappe 6 in kleine Partikel zerlegt. Insbesondere im Falle einer Penetrator-Hauptladung 103 wird somit die Penetration in ein Ziel nicht beeinflusst.
  • Darüber hinaus sind auch zusammengesetzte oder alternierende Materialzusammenstellungen möglich.
  • Fig. 8 zeigt ein Diagramm des Schockwellendruckverlaufs p über der Partikelgeschwindigkeit up für unterschiedliche Werkstoffzusammenstellungen.
  • Die Hülle 4 wird dabei als Metall M angenommen, wozu eine auf der Impedanz von Metall basierende Metallkurve M eingezeichnet ist. Die Kappe 6 wird als Schwermetall SM angenommen, wozu ebenfalls eine auf der Impedanz basierende Schwermetallkurve SM eingezeichnet ist. Ferner ist eine Materialkurve für Kunststoff K für den Fall etwaiger Materialkombinationen eingezeichnet.
  • Eine auf das Material treffende Luftschockwelle weist im Auftreffpunkt stets den gleichen Schockwellendruck und die gleiche Partikelgeschwindigkeit wie das Material auf, sodass mit jeder Materialkurve ein hypothetischer oder tatsächlicher Schnittpunkt mit der reflektierten Luftschockwelle L' existiert.
  • Zunächst ist ein Referenz-Schockwellendruck p-Referenz in die Metallkurve M eingezeichnet, welcher eine direkte Einkopplung der Luftschockwelle in die Hülle 4 bzw. deren Spitze 5 repräsentiert, wie dies beispielsweise bei Fig. 4 ohne Kappe 6 der Fall wäre.
  • Bei Materialkombinationen sind zusätzlich die Übergänge zu beachten, welche jeweils durch eine mit einem Apostroph (') gekennzeichnete Spiegelung derjenigen Materialkurve, in welche die Schockwelle einkoppelt, abgetragen werden und zwar bis zu einem Schnittpunkt mit der Materialkurve der des an einem Übergang folgenden Materials.
  • Beispielhaft sind in der Abbildung zwei Materialkombinationen aufgetragen:
    1. 1) Eine Kappe aus Schwermetall SM auf einer Spitze aus Metall M
    2. 2) Eine Kappe aus Schwermetall (SM) auf einer Spitze aus Metall (M) mit dazwischen angeordneter Kunststoffschicht (K)
  • Das Beispiel 1) lässt sich über die Impedanz-Sprünge mit den Schnittpunkten a -> b (SM' -> M) nachverfolgen. Es ergibt sich daraus an Punkt b ein niederer in das Metall M eingekoppelter Druck p(1) verglichen mit dem Referenzdruck p-Referenz.
  • Das zweite Beispiel 2) mit der zusätzlichen Kunststoffschicht K ergibt sich analog zu A -> B -> C (SM' -> K' -> M) mit einem an dem Metall anliegenden Druck p(2), der im Vergleich mit p(1) noch geringer ausfällt. Ausgenutzt wurden dabei die größeren Impedanz-Sprünge bei den Material-Übergängen, hier insbesondere die Übergänge A -> B zwischen Schwermetall SM und Kunststoff K.
  • Fig. 9 zeigt eine Abwandlung der Ausführungsform nach Fig. 5.
  • Hier ist lediglich beispielhaft eine mögliche Konfiguration für das Beispiel 2) dargestellt, indem die innere Kappe 6A aus Kunststoff und die äußere Kappe 6B aus Schwermetall gefertigt ist.
  • Fig. 10 zeigt eine schematische Darstellung eines Abschnitts einer Hauptladung gemäß einer noch weiteren Ausführungsform.
  • Die Kappe 6 weist hier einen Mehrschichtaufbau aus Materialien A, B unterschiedlicher Schockwellenimpedanz auf. Beispielsweise enthält der Mehrschichtaufbau in dem Material A ebenfalls zumindest eine Kunststoffschicht K und in dem Material B zumindest eine Metallschicht, insbesondere eine Kupfer- oder Schwermetallschicht SM.
  • Bei der dargestellten Ausführungsform sind die einzelnen Schichten ausgehend von der vorderen Konusform 9A der Spitze 5 jeweils konusartig aufgetragen. Insgesamt ergibt sich somit eine im Vergleich zu Fig. 5 und 6 gleiche äußere Geometrie der Kappe 6. Dies ist jedoch rein beispielhaft zu verstehen. Selbstverständlich könnte auch eine andere Geometrie der Kappe 6 mit einem Mehrschichtaufbau realisiert werden. Insbesondere könnten auch die innere und/oder die äußere Kappe 6A, 6B gemäß Fig. 9 mit einem solchen Mehrschichtaufbau ausgebildet sein.
  • Obwohl die vorliegende Erfindung anhand bevorzugter Ausführungsbeispiele vorstehend vollständig beschrieben wurde, ist sie darauf nicht beschränkt, sondern auf vielfältige Art und Weise modifizierbar.
  • Insbesondere ist die Form der Spitze 5 der Hülle 4 und dementsprechend auch die Form der Vertiefung 8 der Kappe 6 nicht auf die dargestellten Ausführungsformen festgelegt. Beispielsweise kann die Erfindung anstatt einer Konusform oder Bi-Konusform der Spitze 5 auch eine gerundet zulaufende Spitze 4 und entsprechend geformte Vertiefung 8 vorsehen.
  • Bezugszeichenliste
  • 1
    Tandem-Ladung
    2
    Vorladung
    3
    Hauptladung
    4
    Hülle
    5
    Spitze
    6
    Kappe
    7
    spitzes Ende
    8
    Vertiefung
    9A, 9B
    Konus
    10
    Flugkörper
    100
    Penetrator-Tandem-Ladung
    101
    Kompressionselement
    102
    Vorhohlladung
    103
    Sprengladung
    104
    Penetratorhülle
    105
    Penetratorspitze
    106
    Verschlussgewinde
    107
    Schockwellen
    108
    Zündsystem
    109
    Verschluss
    110
    Hohlladungskegel
    α, β, γ
    Winkel
    A, B
    Materialien
    K
    Kunststoffkurve
    L'
    Reflektierte Luftschockwelle
    M
    Metallkurve
    p
    Schockwellendruck
    SM
    Schwermetallkurve
    u, up
    Partikelgeschwindigkeit

Claims (10)

  1. Tandem-Ladung (1) für einen Flugkörper, mit:
    einer Vorladung (2), insbesondere Vorhohlladung;
    einer Hauptladung (3), welche eine Hülle (4) mit einer zu der Vorladung (2) ausgerichteten Spitze (5) aufweist; und
    einer auf die Spitze (5) aufgesetzten Kappe (6), welche zur Abweisung von bei Detonation der Vorladung (2) entstehenden Schockwellen ausgebildet ist, wobei die Kappe (6) ein zu der Hülle (4) unterschiedliches Material aufweist, und wobei die Kappe (6) einen Mehrschichtaufbau aus Materialien (A, B) unterschiedlicher Schockwellenimpedanz aufweist.
  2. Tandem-Ladung nach Anspruch 1, wobei die Hauptladung (3) als Penetratorladung (103) ausgebildet und die Hülle (4) als Penetratorhülle (104) mit einer entsprechend als Penetratorspitze (105) geformten Spitze (5) vorgesehen ist.
  3. Tandem-Ladung nach Anspruch 2, wobei die Spitze (5) bi-konisch ausgebildet ist und die Kappe (6) zumindest einen vorderen Konus (9A) der Spitze (5) abdeckt, insbesondere zweiteilig mit einer inneren und einer äußeren Kappe (6A, 6B) ausgebildet ist und den vorderen Konus (9A) mit der inneren Kappe (6A) und den hinteren Konus (9B) samt der innere Kappe (6A) mit der äußeren Kappe (6B) abdeckt.
  4. Tandem-Ladung nach einem der Ansprüche 1 bis 3, wobei die Kappe (6) ein spitzes Ende (7) mit einer im Vergleich zu einem Winkel (α) der Spitze (5) in einem spitzeren Winkel (β) zulaufenden Form aufweist.
  5. Tandem-Ladung nach einem der vorangehenden Ansprüche, wobei die Kappe (6) ein zu der Hülle(4) unterschiedliches Material mit einer höheren Dichte und einer höheren Schockwellenimpedanz aufweist.
  6. Tandem-Ladung nach Anspruch 5, wobei die Kappe (6) ein Schwermetall enthält.
  7. Tandem-Ladung nach Anspruch 1, wobei der Mehrschichtaufbau zumindest eine Kunststoffschicht (K) und zumindest eine Metallschicht (SM), insbesondere Kupfer- oder Schwermetallschicht, enthält.
  8. Tandem-Ladung (1) für einen Flugkörper, mit:
    einer Vorladung (2), insbesondere Vorhohlladung;
    einer Hauptladung (3), welche eine Hülle (4) mit einer zu der Vorladung (2) ausgerichteten Spitze (5) aufweist; und
    einer auf die Spitze (5) aufgesetzten Kappe (6), welche zur Abweisung von bei Detonation der Vorladung (2) entstehenden Schockwellen ausgebildet ist, wobei die Kappe (6) ein zu der Hülle(4) unterschiedliches Material aufweist und, wobei die Kappe (6) derart ausgelegt ist, dass sie bei Abweisung einer bei Detonation der Vorladung (2) entstehenden Schockwelle zerbricht, sodass die Spitze (5) der Hülle (4) freigelegt wird.
  9. Tandem-Ladung nach Anspruch 8, wobei die Kappe (6) ein zu der Hülle(4) unterschiedliches Material mit einer höheren Dichte und einer höheren Schockwellenimpedanz aufweist.
  10. Tandem-Ladung nach Anspruch 8, wobei die Kappe (6) ein Sintermaterial, insbesondere gesintertes Schwermetall, bevorzugt Wolframschwermetall, enthält, welches derart spröde ausgelegt ist, dass es bei einer bei Abweisung der Schockwelle auftretenden Belastung zerlegt wird.
EP19178924.7A 2018-07-02 2019-06-07 Tandem-ladung für einen flugkörper und schockabweisende kappe für eine hauptladung einer tandem-ladung Active EP3591333B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018005258.4A DE102018005258B4 (de) 2018-07-02 2018-07-02 Tandem-Ladung für einen Flugkörper und schockabweisende Kappe für eine Hauptladung einer Tandem-Ladung

Publications (2)

Publication Number Publication Date
EP3591333A1 EP3591333A1 (de) 2020-01-08
EP3591333B1 true EP3591333B1 (de) 2021-11-24

Family

ID=66793798

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19178924.7A Active EP3591333B1 (de) 2018-07-02 2019-06-07 Tandem-ladung für einen flugkörper und schockabweisende kappe für eine hauptladung einer tandem-ladung

Country Status (2)

Country Link
EP (1) EP3591333B1 (de)
DE (1) DE102018005258B4 (de)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3601051C1 (en) * 1986-01-16 1987-06-11 Messerschmitt Boelkow Blohm Warhead
DE3603610C1 (de) 1986-02-06 1997-07-10 Daimler Benz Aerospace Ag Flugkörper mit einer Tandemladung
DE3934850C1 (de) * 1989-10-19 2000-09-28 Daimlerchrysler Aerospace Ag Gefechtskopf
US5003883A (en) 1990-07-23 1991-04-02 The United States Of America As Represented By The Secretary Of The Army Lightweight blast shield
US5107766A (en) 1991-07-25 1992-04-28 Schliesske Harold R Follow-thru grenade for military operations in urban terrain (MOUT)
DE4126793C1 (de) * 1991-08-14 1994-05-11 Deutsche Aerospace Tandemgefechtskopf
DE4135392C2 (de) 1991-10-26 1995-05-18 Deutsche Aerospace Gefechtskopf
FR2953009A1 (fr) * 2009-11-26 2011-05-27 Nexter Munitions Tete militaire a charges en tandem

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102018005258B4 (de) 2023-02-02
EP3591333A1 (de) 2020-01-08
DE102018005258A1 (de) 2020-01-02

Similar Documents

Publication Publication Date Title
DE3209594C2 (de)
WO2001067030A1 (de) Schadstoffreduziertes deformationsgeschoss, vorzugsweise für faustfeuerwaffen
DE2703638C2 (de)
EP1214560B2 (de) Teilzerlegungsgeschoss im penetrator als geschossheck
DE3037560C2 (de)
DE3802002C2 (de)
DE2913103A1 (de) Flachkegelladung
EP3507565B1 (de) Geschoss mit penetrator
WO2001018483A1 (de) Bleireduziertes oder bleifreies jagdbüchsengeschoss mit verbesserter haltekraft des kerns im mantel
EP1196734B1 (de) Teilzerlegungsgeschoss mit penetrator im geschossbug
DE1910779C3 (de) Hohlladung
EP3591333B1 (de) Tandem-ladung für einen flugkörper und schockabweisende kappe für eine hauptladung einer tandem-ladung
DE3117091C2 (de)
DE68924336T2 (de) Geschoss für Panzerbekämpfung mit Stacheln bildendem Kern.
WO2001002792A2 (de) Teilzerlegungsgeschoss
DE102020104217A1 (de) Penetrator und Verwendung eines Penetrators
EP3742106A1 (de) Penetrator, verwendung eines penetrators und geschoss
DE102018006741B4 (de) Tandem-Ladung für einen Flugkörper
DE10201191B4 (de) System zur Erzeugung der Reaktion einer Munition
DE102011011478A1 (de) Zerlegegeschoss
EP1656533B1 (de) Teilzerlegungsgeschoss mit massivem kern und kern aus gepresstem pulver
DE3301148A1 (de) Hohlladung
DE3111921C1 (de) Hohlladungsauskleidung
EP3845853B1 (de) Projektil und munition
DE102009013931B4 (de) Bezeichnung: Verfahren für einen Richtungsgefechtskopf und Gefechtskopf für dasselbe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200707

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: F42B 12/16 20060101ALI20201116BHEP

Ipc: F42B 12/32 20060101AFI20201116BHEP

Ipc: F42B 12/10 20060101ALI20201116BHEP

Ipc: F42B 12/18 20060101ALI20201116BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210701

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019002818

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1450167

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220324

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220324

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220224

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220225

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019002818

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

26N No opposition filed

Effective date: 20220825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220607

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220607

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20190607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240628

Year of fee payment: 6