EP3507497B1 - Rotor à vis de pompe à vide - Google Patents
Rotor à vis de pompe à vide Download PDFInfo
- Publication number
- EP3507497B1 EP3507497B1 EP17749704.7A EP17749704A EP3507497B1 EP 3507497 B1 EP3507497 B1 EP 3507497B1 EP 17749704 A EP17749704 A EP 17749704A EP 3507497 B1 EP3507497 B1 EP 3507497B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- vacuum pump
- screw
- displacer
- elements
- recess
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011295 pitch Substances 0.000 claims description 31
- 238000004519 manufacturing process Methods 0.000 claims description 21
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 230000006835 compression Effects 0.000 claims description 6
- 238000007906 compression Methods 0.000 claims description 6
- 229910000838 Al alloy Inorganic materials 0.000 claims description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 239000011265 semifinished product Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 claims 5
- -1 AlSi17Cu4Mg Chemical compound 0.000 claims 1
- 239000011800 void material Substances 0.000 claims 1
- 238000004804 winding Methods 0.000 claims 1
- 238000006073 displacement reaction Methods 0.000 description 78
- 238000003801 milling Methods 0.000 description 11
- 230000007547 defect Effects 0.000 description 6
- 238000005086 pumping Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/08—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C18/12—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
- F04C18/14—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
- F04C18/18—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with similar tooth forms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/08—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C18/12—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
- F04C18/14—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
- F04C18/16—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C25/00—Adaptations of pumps for special use of pumps for elastic fluids
- F04C25/02—Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2210/00—Fluid
- F04C2210/10—Fluid working
- F04C2210/1005—Air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2210/00—Fluid
- F04C2210/22—Fluid gaseous, i.e. compressible
- F04C2210/221—Air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2220/00—Application
- F04C2220/10—Vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2230/00—Manufacture
- F04C2230/10—Manufacture by removing material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/20—Rotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/30—Casings or housings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2250/00—Geometry
- F04C2250/20—Geometry of the rotor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
- F04C23/001—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2210/00—Working fluid
- F05B2210/10—Kind or type
- F05B2210/12—Kind or type gaseous, i.e. compressible
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2210/00—Working fluid
- F05B2210/16—Air or water being indistinctly used as working fluid, i.e. the machine can work equally with air or water without any modification
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2230/00—Manufacture
- F05B2230/10—Manufacture by removing material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/20—Rotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2280/00—Materials; Properties thereof
- F05B2280/10—Inorganic materials, e.g. metals
- F05B2280/102—Light metals
- F05B2280/1021—Aluminium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2280/00—Materials; Properties thereof
- F05B2280/10—Inorganic materials, e.g. metals
- F05B2280/1073—Aluminium alloy, e.g. AlCuMgPb
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2201/00—Metals
- F05C2201/02—Light metals
- F05C2201/021—Aluminium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2201/00—Metals
- F05C2201/90—Alloys not otherwise provided for
- F05C2201/903—Aluminium alloy, e.g. AlCuMgPb F34,37
Definitions
- the invention relates to a vacuum pump screw rotor.
- Screw vacuum pumps such as in EP1 890 039 described, have two rotor elements in a pumping chamber formed by a housing.
- the rotor elements have a helical contour and are rotated in opposite directions to convey gases.
- the displacement element of the rotor element i.e. the helical contour
- the pitch On the inlet side or suction side, the pitch is large and the volume of the chambers formed per turn is also large. The pitch decreases in the direction of the outlet, so that on the outlet or pressure side there is a small pitch and also small chamber volumes per turn.
- the object of the invention is to create a vacuum pump screw rotor that can be produced cost-effectively with low power consumption and low thermal load on the pump. Furthermore, the object of the invention is to create a corresponding screw vacuum pump and a suitable manufacturing method.
- the object is achieved according to the invention by a vacuum pump screw rotor according to claim 1, a vacuum pump according to claim 10, and a manufacturing method according to claim 14.
- the vacuum pump screw rotor according to the invention has at least two helical displacement elements arranged on a rotor shaft.
- the rotor element is formed by the displacement elements.
- the at least two displacement elements have different pitches, with the pitch being constant for each displacement element.
- the vacuum pump screw rotor according to the invention has two displacement elements, with a first suction-side displacement element having a larger constant pitch and a second pressure-side displacement element having a smaller constant pitch.
- each displacement element has at least one helical recess which has the same contour over its entire length.
- the contours are preferably different for each displacement element.
- the individual displacement element therefore preferably has a constant pitch and a consistent contour. This simplifies production considerably, so that production costs can be greatly reduced.
- the contour of the helical recess of the suction-side displacement element i.e. in particular the first displacement element in the pumping direction, is asymmetrical. Due to the asymmetrical design of the contour or profile, the flanks can be designed in such a way that the leakage areas, the so-called blow holes, in particular disappear completely or at least have a small cross-section.
- a particularly suitable asymmetrical profile is the so-called "Quimby profile". Although such a profile is relatively difficult to produce, it has the advantage that there is no continuous blow hole. A short circuit only occurs between two adjacent chambers. Since this is an asymmetrical profile with different profile flanks, at least two work steps are required for production, since the two flanks have to be produced in different work steps due to their asymmetry.
- the pressure-side displacement element in particular the last displacement element in the pumping direction, is provided with a symmetrical contour of the helical recess.
- the symmetrical contour has the particular advantage that it is easier to manufacture.
- both flanks with a symmetrical contour can be manufactured in one work step using a rotating end mill or a rotating disk mill.
- Such symmetrical profiles only have small blow holes, but these are continuous, i.e. not just provided between two adjacent chambers. The size of the blow hole decreases when the pitch is reduced.
- such symmetrical profiles can be provided in particular in the pressure-side displacement element, since in a preferred embodiment this has a smaller pitch than the suction-side displacement element and preferably also than the displacement elements arranged between the suction-side and pressure-side displacement elements.
- the tightness of such symmetrical profiles is somewhat lower, they have the advantage that they are significantly easier to manufacture.
- a particularly suitable symmetrical profile is the so-called "cycloid profile".
- the provision of at least two such displacement elements means that the corresponding screw vacuum pump can generate low inlet pressures with low power consumption.
- the thermal load is also low.
- the arrangement of at least two displacement elements designed according to the invention with a constant pitch and consistent contour in a vacuum pump leads to essentially the same results as with a vacuum pump with a displacement element with a changing pitch. With high installed volume ratios, three or four displacement elements can be provided per rotor.
- a pressure-side displacement element i.e. in particular the last displacement element in the pumping direction, has a large number of turns.
- a large number of turns means that a larger gap between the screw rotor and the housing can be accepted while maintaining the same performance.
- the gap can have a cold gap width of 0.1 - 0.3 mm.
- a large number of outlet turns or number of turns in the pressure-side displacement element can be produced inexpensively because, according to the invention, this displacement element has a constant pitch and in particular also a symmetrical contour. This enables simple and inexpensive production, so that the provision of a larger number of turns is acceptable.
- This pressure-side or last displacement element preferably has more than 8, in particular more than 10 and particularly preferably more than 12 turns.
- the use of symmetrical profiles has the advantage in a particularly preferred embodiment that both flanks of the profile can be cut simultaneously with one milling cutter. In this case, the Milling cutter through the opposite flank, so that deformation or bending of the milling cutter during the milling process and the resulting inaccuracies are avoided.
- displacement elements and the rotor shaft are formed in one piece.
- the change in pitch between adjacent displacement elements is discontinuous or abrupt.
- the two displacement elements are arranged at a distance from one another in the longitudinal direction, so that a circumferential cylindrical ring-shaped chamber is formed between two displacement elements, which serves as a tool outlet. This is particularly advantageous in the case of rotors formed in one piece, since the tool producing the helical line can be easily guided out in this area. If the displacement elements are manufactured independently of one another and then mounted on a shaft, the provision of a tool outlet, in particular such an annular cylindrical area, is not necessary.
- no tool outlet is provided between two adjacent displacement elements at the pitch change.
- both flanks preferably have a defect or recess in order to be able to guide the tool out.
- Such a defect has no significant influence on the compression performance of the pump, since it is a very localized defect or recess.
- the vacuum pump screw rotor according to the invention has in particular several displacement elements. These can each have the same or different diameters. It is preferred that the The pressure-side displacement element has a smaller diameter than the suction-side displacement element.
- displacement elements manufactured independently of the rotor shaft, these are mounted on the shaft using press fits, for example. It is preferred to provide elements such as dowel pins to determine the angular position of the displacement elements relative to one another.
- the screw rotor in the case of a one-piece design of the screw rotor, but also in the case of a multi-piece design, it is preferred to manufacture it from aluminum or an aluminum alloy. It is particularly preferred to manufacture the rotor from aluminum or an aluminum alloy, in particular AlSi7Mg or AISi17Cu4Mg.
- the alloy preferably has a high silicon content of preferably more than 15% in order to reduce the coefficient of expansion.
- the aluminum used has a low coefficient of expansion. It is preferred if the material has a coefficient of expansion of less than 18 * 10 -6 / K.
- the surface of the displacement elements is coated, in particular a coating against wear and/or corrosion is provided. In this case, it is preferred to provide an anodic or another suitable coating depending on the area of application.
- the invention further relates to a screw vacuum pump.
- This has two intermeshing vacuum pump screw rotors as described above.
- the two screw rotors are arranged in a suction chamber formed by a pump housing.
- one of the two screw rotors is connected to a drive device such as an electric motor.
- the two screw rotors can be connected to one another via gears, which are arranged in particular on the rotor shafts. This also results in synchronization of the counter-rotating screw rotors.
- Such a high internal compression is possible in particular due to the design of the two rotors with at least two compression elements, each with a constant pitch and in particular also a constant contour, with a high number of turns of the pressure-side displacement element.
- This is particularly possible although large gaps are permitted in the area of the pressure-side displacement element.
- the large gaps have the particular advantage that the thermal load is distributed more evenly over the pressure-side displacement element.
- the thermal expansion of the corresponding displacement element and thus the risk of the displacement element touching the inside of the housing is also avoided.
- the screw rotors have a lower expansion coefficient than the housing.
- the expansion coefficient of the housing is at least 5%, and particularly preferably at least 10% greater than that of the screw rotors.
- the housing is made of an aluminum alloy with a lower silicon content than the silicon content in the material of the screw rotors. This ensures a higher thermal expansion of the housing compared to the screw rotors. This ensures in particular that during operation, i.e. with increasing thermal load, the gap can become smaller, but that a sufficient gap always remains between the outside of the displacement elements and the inside of the suction chamber.
- the invention relates to a method for producing a screw rotor as described above.
- the production takes place in particular such that the displacement elements and the rotor shaft are formed in one piece.
- a base body for the screw rotor is provided.
- the helical recesses for producing the displacement element are produced using a form milling cutter such as a finger milling cutter or disc milling cutter. This is done in a separate step for each displacement element, since the pitch and in particular the contour of the helical recesses are different for each displacement element.
- the recess is made with a single tool, in particular in a single operation. Furthermore, it is preferred that the tool reproduces the outer contour of the recess so that the production of preferably both flanks can be carried out in one work step. In the case of the asymmetrical part, the flanks must be machined by two different tools.
- a tool run-out is produced before the helical recesses are produced.
- a ring-cylindrical recess can be produced by milling or turning.
- no such tool run-out is provided. Instead, a recess or defect is provided in a flank of an adjacent displacement element. The defect or recess is created when the milling cutter is guided out.
- the base body used is in particular cylindrical, so that the rotor shaft with any shaft journals connected to it and in particular the displacement elements can be manufactured from a single base body. It is also possible to use a base body that is designed as a semi-finished product and already has recesses and/or bearing journals.
- the base body can be manufactured using a casting process, for example.
- the rotor has two displacement elements 10, 12.
- a first suction-side displacement element 10 has a large pitch of approximately 50 - 150 mm/revolution. The pitch is constant over the entire displacement element 10.
- the contour of the helical recess is also constant.
- the second pressure-side displacement element 12 has a constant pitch and a constant contour of the recess over its length.
- the pitch of the pressure-side displacement element 12 is preferably in the range of 10 - 30 mm/revolution.
- a ring-cylindrical recess 14 is provided between the two displacement elements. This serves to ensure that the one-piece design of the Fig.1 A tool run-out is realized in the screw rotor shown.
- the one-piece screw rotor has two bearing seats 16 and a shaft end 18.
- a gear wheel for driving, for example, is connected to the shaft end 18.
- the two displacement elements 10, 12 are manufactured separately and then fixed to a rotor shaft 20, for example by pressing. This manufacture is somewhat more complex, but the cylindrical distance 14 between two adjacent displacement elements 10, 12 is not required as a tool run-out.
- the bearing seats 16 and the shaft ends 18 can be an integral part of the displacement elements.
- a continuous shaft 20 can be manufactured from a different material than the displacement elements 10, 12.
- Fig.3 shows a schematic sectional view of an asymmetrical profile (e.g. a Quimby profile).
- the asymmetrical profile shown is a so-called "Quimby profile”.
- the sectional view shows two screw rotors that mesh with each other and whose longitudinal direction is perpendicular to the plane of the drawing.
- the opposing rotation of the rotors is indicated by the two arrows 15.
- the profiles of the flanks 19 and 21 are designed differently for each rotor.
- the opposing flanks 19, 21 must therefore be manufactured independently of each other. Although this is somewhat more complex and difficult to manufacture, it has the advantage that there is no continuous blow hole, but rather just a short circuit between two adjacent chambers.
- Such an asymmetrical profile is preferably provided in the suction-side displacement element 10.
- FIG.4 shows a cross-section of two displacement elements or two screw rotors, which in turn rotate in opposite directions (arrows 15).
- the flanks 23 of each displacement element are symmetrical.
- the preferred embodiment of a symmetrically designed contour shown is a cycloid profile.
- a symmetrical profile, as in Fig.4 shown, is preferably provided on the pressure-side displacement elements 12.
- FIG.5 The embodiment shown is again a one-piece design.
- a recess or defect is provided in the flank of the displacement element 12 to guide the tool, such as a milling cutter, out.
- displacement elements can also have different head diameters and corresponding foot diameters. It is preferred that a displacement element with a larger head diameter is arranged at the inlet, i.e. on the suction side, in order to achieve a greater suction capacity in this area and/or to increase the built-in volume ratio. Combinations of the embodiments described above are also possible.
- one or more displacement elements can be manufactured in one piece with the shaft or an additional displacement element can be manufactured independently of the shaft and then mounted on the shaft.
- a schematic sectional view of a vacuum pump ( Fig.5 ) shows two vacuum pump screw rotors 26 arranged in a suction chamber 24 in a housing 22.
- the two rotors are mounted in the housing via bearings 28.
- Gears 32 are connected to each of the two shaft ends 18. These mesh with each other so that synchronization of the two shafts is ensured.
- One of the two gears 32 is connected to a drive device such as an electric motor.
- the gas is sucked in in the area of the suction-side displacement elements 10, as shown by an arrow 34.
- the gas is expelled accordingly as shown by an arrow 36 at the end of the second, pressure-side displacement element 12.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Rotary Pumps (AREA)
Claims (19)
- Rotor à vis de pompe à vide comprenant au moins deux éléments de déplacement (10, 12) de forme hélicoïdale agencés sur un arbre de rotor, lesdits au moins deux éléments de déplacement (10, 12) ayant des pas différents mais constants pour chaque élément de déplacement etles éléments de déplacement (10, 12) ayant chacun au moins un évidement de forme hélicoïdale à contour constant sur toute sa longueur,caractérisé en ce quel'évidement de forme hélicoïdal d'un élément de déplacement côté aspiration (10) a un contour asymétrique, etl'évidement de forme hélicoïdale d'un élément de déplacement côté pression (12) a un contour symétrique.
- Rotor à vis de pompe à vide selon la revendication 1, caractérisé en ce qu'au moins deux éléments de rotor sont prévus, comprenant des éléments de déplacement de forme hélicoïdale, les éléments de déplacement ayant des pas différents mais constants pour chaque élément de déplacement.
- Rotor à vis de pompe à vide selon la revendication 1 ou 2, caractérisé en ce que l'élément de déplacement côté aspiration (10) comprend plus de 8, en particulier plus de 10 et de manière particulièrement préférée plus de 12 spires.
- Rotor à vis de pompe à vide selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'un élément de déplacement côté pression est réalisé à pas simple.
- Rotor à vis de pompe à vide selon l'une quelconque des revendications 1 à 4, caractérisé en ce que l'arbre de rotor et les éléments de déplacement (10, 12) sont formés d'un seul tenant.
- Rotor à vis de pompe à vide selon l'une quelconque des revendications 1 à 5, caractérisé en ce que ledit au moins un changement de pas entre des éléments de déplacement (10, 12) voisins est discontinu (par sauts).
- Rotor à vis de pompe à vide selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le profil de l'élément de déplacement (10) côté aspiration est réalisé sans trou de soufflage au moins sur l'un des flancs.
- Rotor à vis de pompe à vide selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'une sortie d'outil est prévue entre deux éléments de déplacement (10, 12) au changement de pas et/ou en ce qu'un point de défaillance dans au moins l'un des flancs de l'élément de déplacement (10, 12) est prévu entre deux éléments de déplacement (10, 12) au changement de pas.
- Rotor à vis de pompe à vide selon l'une quelconque des revendications 1 à 8, caractérisé en ce que l'ensemble du rotor à vis de pompe à vide est fabriqué en aluminium ou en un alliage d'aluminium, en particulier en AISi17Cu4Mg, l'aluminium ayant un coefficient de dilatation inférieur à 18*10-61/K et en particulier une teneur élevée en silicium d'au moins 15 % étant prévue.
- Pompe à vide à vis, comprenantdeux rotors à vis selon l'une quelconque des revendications 1 à 9 engrenant l'un avec l'autre,un boîtier (22) entourant les rotors à vis, etune direction d'entraînement liée à l'un des deux rotors à vis.
- Pompe à vide à vis selon la revendication 10, caractérisée en ce que la compression interne de la pompe à vide à vis est d'au moins 2, en particulier d'au moins 4.
- Pompe à vide à vis selon la revendication 10 ou 11, caractérisée en ce que les rotors à vis ont un coefficient de dilatation inférieur à celui du boîtier (22), le coefficient de dilatation du boîtier (22) étant en particulier supérieur d'au moins 5 % et de manière particulièrement préférée d'au moins 10 % à celui des rotors à vis, le boîtier (22) étant de préférence en aluminium ou en un alliage d'aluminium.
- Pompe à vide à vis selon l'une quelconque des revendications 10 à 12, caractérisée en ce qu'un espace entre les éléments de déplacement côté aspiration et le boîtier est d'une hauteur de 0,05 mm à 0,5 mm, de préférence de 0,1 mm à 0,3 mm.
- Procédé de fabrication d'un rotor à vis selon l'une quelconque des revendications 1 à 9, comprenant les étapes consistant à :- fournir un corps de base du rotor à vis,- fabriquer un évidement de forme hélicoïdale d'un premier élément de déplacement au moyen d'une fraise à profiler ou d'une meule, et- fabriquer un évidement de forme hélicoïdale supplémentaire d'un élément de déplacement supplémentaire au moyen d'une fraise à profiler ou meule supplémentaire.
- Procédé selon la revendication 14, caractérisé en ce que la fabrication d'éléments de déplacement à profil symétrique s'effectue avec un seul outil, en particulier en une seule opération.
- Procédé selon la revendication 14 ou 15, caractérisé en ce qu'un évidement en particulier en forme d'anneau cylindrique est réalisé en tant que sortie d'outil entre des éléments de déplacement voisins avant la fabrication des évidements de forme hélicoïdale.
- Procédé selon l'une quelconque des revendications 14 à 16, caractérisé en ce qu'un évidement est formé entre deux éléments de déplacement voisins pour faire sortir l'outil dans au moins un flanc.
- Procédé selon l'une quelconque des revendications 14 à 17, caractérisé en ce qu'un outil représentant le contour extérieur de l'évidement de forme hélicoïdale est utilisé pour chaque élément de déplacement pour la fabrication de l'évidement de forme hélicoïdale.
- Procédé selon l'une quelconque des revendications 14 à 18, caractérisé en ce que le corps de base est réalisé de manière cylindrique, le corps de base étant réalisé de préférence sous la forme d'un produit semi-fini comprenant un évidement et/ou un axe de support déjà partiellement pré-profilé(s).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016216279.9A DE102016216279A1 (de) | 2016-08-30 | 2016-08-30 | Vakuumpumpen-Schraubenrotor |
PCT/EP2017/070065 WO2018041556A1 (fr) | 2016-08-30 | 2017-08-08 | Rotor à vis de pompe à vide |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3507497A1 EP3507497A1 (fr) | 2019-07-10 |
EP3507497B1 true EP3507497B1 (fr) | 2024-04-17 |
Family
ID=59569319
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17749704.7A Active EP3507497B1 (fr) | 2016-08-30 | 2017-08-08 | Rotor à vis de pompe à vide |
Country Status (9)
Country | Link |
---|---|
US (1) | US11293435B2 (fr) |
EP (1) | EP3507497B1 (fr) |
JP (1) | JP6983872B2 (fr) |
KR (1) | KR102390690B1 (fr) |
CN (1) | CN109642575B (fr) |
BR (1) | BR112019002011A2 (fr) |
CA (1) | CA3032345A1 (fr) |
DE (1) | DE102016216279A1 (fr) |
WO (1) | WO2018041556A1 (fr) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202016005209U1 (de) * | 2016-08-30 | 2017-12-01 | Leybold Gmbh | Schraubenvakuumpumpe |
CN109372746B (zh) * | 2018-12-26 | 2023-11-24 | 中国石油大学(华东) | 一种双螺杆真空泵的正态螺线型螺杆转子 |
KR102172863B1 (ko) | 2020-07-30 | 2020-11-02 | 심재만 | 오일 펌프 |
DE102022103992A1 (de) | 2022-02-21 | 2023-08-24 | ELMA Immobilien- und Vermögensverwaltungsgesellschaft mbH | Drehkolbenmaschine |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT454201A (fr) * | 1947-07-16 | |||
SE302815B (fr) * | 1965-01-13 | 1968-08-05 | Svenska Rotor Maskiner Ab | |
CH635403A5 (de) * | 1978-09-20 | 1983-03-31 | Edouard Klaey | Schraubenspindelmaschine. |
SE505358C2 (sv) | 1996-10-22 | 1997-08-11 | Lysholm Techn Ab | Axeltapp för lättmetalrotor |
DE19745616A1 (de) * | 1997-10-10 | 1999-04-15 | Leybold Vakuum Gmbh | Gekühlte Schraubenvakuumpumpe |
JP4138085B2 (ja) * | 1998-07-29 | 2008-08-20 | 樫山工業株式会社 | スクリュー式真空ポンプ |
DK1070848T3 (da) | 1999-07-19 | 2004-08-09 | Sterling Fluid Sys Gmbh | Fortrængningsmaskine til kompressible medier |
JP4380847B2 (ja) | 1999-07-21 | 2009-12-09 | 東京自動機工株式会社 | 伝動機の伝達体加圧制御装置 |
DE19963172A1 (de) | 1999-12-27 | 2001-06-28 | Leybold Vakuum Gmbh | Schraubenpumpe mit einem Kühlmittelkreislauf |
TW420255U (en) * | 2000-05-26 | 2001-01-21 | Ind Tech Res Inst | Composite double helical rotor device |
CH694339A9 (de) * | 2000-07-25 | 2005-03-15 | Busch Sa Atel | Zwillingsschraubenrotoren und solche enthaltende Ve rdraengermaschinen. |
DE20013338U1 (de) * | 2000-08-02 | 2000-12-28 | Werner Rietschle GmbH + Co. KG, 79650 Schopfheim | Verdichter |
DE10102341A1 (de) | 2001-01-19 | 2002-08-08 | Ralf Steffens | Profilkontur einer Schraubenspindelpumpe |
DE10129341A1 (de) | 2001-06-19 | 2003-01-02 | Ralf Steffens | Profilkontur einer Spindelpumpe |
DE10156180B4 (de) | 2001-11-15 | 2015-10-15 | Oerlikon Leybold Vacuum Gmbh | Gekühlte Schraubenvakuumpumpe |
KR20050010753A (ko) * | 2002-06-24 | 2005-01-28 | 호쿠에츠 고교 가부시키가이샤 | 스크류 로터 |
WO2004031585A1 (fr) * | 2002-10-04 | 2004-04-15 | Ebara Densan Ltd. | Pompe a vis et procede de mise en oeuvre |
JP4218756B2 (ja) | 2003-10-17 | 2009-02-04 | 株式会社荏原製作所 | 真空排気装置 |
CN100538078C (zh) * | 2005-02-16 | 2009-09-09 | 阿特里尔斯布希股份有限公司 | 具有非对称轮廓转子的容积转动机器 |
KR101184716B1 (ko) * | 2005-08-22 | 2012-09-20 | 가시야마고교가부시끼가이샤 | 스크류 로터 및 진공 펌프 |
KR100647012B1 (ko) * | 2006-07-28 | 2006-11-23 | (주)엘오티베큠 | 루츠 로터와 스크루 로터 복합건식진공펌프 |
TWI438342B (zh) * | 2006-07-28 | 2014-05-21 | Lot Vacuum Co Ltd | 具有魯式與螺旋轉子之複合型乾式真空幫浦 |
JP4779868B2 (ja) * | 2006-08-11 | 2011-09-28 | 株式会社豊田自動織機 | スクリューポンプ |
DE102006039529A1 (de) | 2006-08-23 | 2008-03-06 | Oerlikon Leybold Vacuum Gmbh | Verfahren zur Abreaktion selbstentzündlicher Stäube in einer Vakuumpumpvorrichtung |
JP2010159740A (ja) * | 2008-12-11 | 2010-07-22 | Toyota Industries Corp | 回転式真空ポンプ |
CN201368025Y (zh) | 2009-03-16 | 2009-12-23 | 台州市星光真空设备制造有限公司 | 螺杆真空泵的改进结构 |
DE102010019402A1 (de) | 2010-05-04 | 2011-11-10 | Oerlikon Leybold Vacuum Gmbh | Schrauben-Vakuumpumpe |
CN202140315U (zh) * | 2011-06-13 | 2012-02-08 | 浙江佳力科技股份有限公司 | 分段式变螺距转子结构 |
DE102011118050A1 (de) | 2011-11-05 | 2013-05-08 | Ralf Steffens | Spindelverdichter-Profilkontur |
EP2615307B1 (fr) * | 2012-01-12 | 2019-08-21 | Vacuubrand Gmbh + Co Kg | Pompe à vide à vis |
CN102974990B (zh) | 2012-12-18 | 2015-04-15 | 中国石油集团济柴动力总厂成都压缩机厂 | 一种适用于双螺杆压缩机的转子型线结构的加工方法 |
JP2015183572A (ja) | 2014-03-24 | 2015-10-22 | 樫山工業株式会社 | 真空ドライポンプのローターアセンブリおよびドライスクリューポンプ |
-
2016
- 2016-08-30 DE DE102016216279.9A patent/DE102016216279A1/de active Pending
-
2017
- 2017-08-08 CA CA3032345A patent/CA3032345A1/fr active Pending
- 2017-08-08 EP EP17749704.7A patent/EP3507497B1/fr active Active
- 2017-08-08 CN CN201780051854.4A patent/CN109642575B/zh active Active
- 2017-08-08 KR KR1020197005814A patent/KR102390690B1/ko active IP Right Grant
- 2017-08-08 WO PCT/EP2017/070065 patent/WO2018041556A1/fr unknown
- 2017-08-08 BR BR112019002011-0A patent/BR112019002011A2/pt active Search and Examination
- 2017-08-08 JP JP2019511599A patent/JP6983872B2/ja active Active
- 2017-08-08 US US16/326,838 patent/US11293435B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2019528400A (ja) | 2019-10-10 |
US20190211822A1 (en) | 2019-07-11 |
KR102390690B1 (ko) | 2022-04-26 |
CA3032345A1 (fr) | 2018-03-08 |
CN109642575B (zh) | 2021-02-26 |
DE102016216279A1 (de) | 2018-03-01 |
EP3507497A1 (fr) | 2019-07-10 |
WO2018041556A1 (fr) | 2018-03-08 |
JP6983872B2 (ja) | 2021-12-17 |
US11293435B2 (en) | 2022-04-05 |
CN109642575A (zh) | 2019-04-16 |
BR112019002011A2 (pt) | 2019-05-14 |
KR20190043138A (ko) | 2019-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3507497B1 (fr) | Rotor à vis de pompe à vide | |
EP0552443B1 (fr) | Machine à engrenages | |
EP2532926B1 (fr) | Engrenage excentrique et cycloïdal | |
EP3507496B1 (fr) | Pompe à vide à compression sèche | |
DE60024070T2 (de) | Verfahren zum walzen von zahnrädern | |
DE102012009103A1 (de) | Spindelverdichter | |
EP3507495B1 (fr) | Pompe à vide à vis | |
WO2002057044A1 (fr) | Contour profile d'une pompe a broche helicoidale | |
DE3034299A1 (de) | Schraubenverdichter bzw. -motor | |
DE1117529B (de) | Zahnradartiges Werkzeug zur Erzeugung von Zaehnen am Umfang zylindrischer Werkstuecke durch Walzen | |
EP2530359A1 (fr) | Engrenage excentrique et cycloïdal de profils à dents (variantes) | |
EP1967307B1 (fr) | Procédé de fabrication d'un élément de moyeu de rotor pourvu de rainures | |
DE102012206699B4 (de) | Zahnradmaschine mit wannenartiger Vertiefung an der Außenoberfläche des Gehäuses | |
EP2711552B1 (fr) | Machine à roue dentée pourvue d'un raccord basse pression déviant de la forme circulaire | |
DE10309116A1 (de) | Kombinationswerkzeug zur Bearbeitung von Zahnradzähnen | |
DE102015218679B4 (de) | Schraubenspindelpumpe | |
DE2234777B2 (de) | Verdichter | |
DE10052779A1 (de) | Füllstücklose Innenzahnradpumpe | |
DE4030789B4 (de) | Verfahren und Vorrichtung zur Herstellung eines Hauptrotors | |
WO2021198403A1 (fr) | Procédé de meulage de pièces à usiner dotées d'un profilé hélicoïdal et machine à meuler pour produire lesdites pièces à usiner | |
EP0077031B1 (fr) | Compresseur à pistons rotatifs | |
DE2315503C2 (de) | Außenachsige Rotationskolben-Verdichtungs-oder Expansionsmaschine | |
DE19650350C2 (de) | Werkzeug und Verfahren zum Drückwalzen eines Werkstücks mit Verzahnung | |
EP1437512A2 (fr) | Pompe à vide à deux arbres | |
CH109955A (de) | Zahnräder-Rotationsmaschine. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190315 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20211220 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20231113 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20240109 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017016048 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20240417 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240417 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240417 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240817 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240417 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240417 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240417 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240828 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240819 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240827 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240826 Year of fee payment: 8 |