EP3507496A1 - Pompe à vide à compression sèche - Google Patents

Pompe à vide à compression sèche

Info

Publication number
EP3507496A1
EP3507496A1 EP17751770.3A EP17751770A EP3507496A1 EP 3507496 A1 EP3507496 A1 EP 3507496A1 EP 17751770 A EP17751770 A EP 17751770A EP 3507496 A1 EP3507496 A1 EP 3507496A1
Authority
EP
European Patent Office
Prior art keywords
toothed belt
rotor
vacuum pump
dry
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17751770.3A
Other languages
German (de)
English (en)
Other versions
EP3507496B1 (fr
Inventor
Thomas Dreifert
Dirk Schiller
Wolfgang Giebmanns
Roland Müller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leybold GmbH
Original Assignee
Leybold GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold GmbH filed Critical Leybold GmbH
Publication of EP3507496A1 publication Critical patent/EP3507496A1/fr
Application granted granted Critical
Publication of EP3507496B1 publication Critical patent/EP3507496B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C29/0071Couplings between rotors and input or output shafts acting by interengaging or mating parts, i.e. positive coupling of rotor and shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/082Details specially related to intermeshing engagement type pumps
    • F04C18/084Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/126Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially from the rotor body extending elements, not necessarily co-operating with corresponding recesses in the other rotor, e.g. lobes, Roots type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/10Fluid working
    • F04C2210/1005Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/22Fluid gaseous, i.e. compressible
    • F04C2210/221Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum
    • F04C2220/12Dry running
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/60Assembly methods
    • F04C2230/602Gap; Clearance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/12Kind or type gaseous, i.e. compressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/16Air or water being indistinctly used as working fluid, i.e. the machine can work equally with air or water without any modification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/402Transmission of power through friction drives
    • F05B2260/4021Transmission of power through friction drives through belt drives

Definitions

  • the invention relates to a dry-running vacuum pump, in particular a screw pump.
  • Dry-compressing vacuum pumps such as screw pumps
  • the rotor elements are designed as helical displacement elements. Each rotor element is supported by a rotor shaft.
  • the two rotor elements are arranged in a pump in the pump chamber formed by the pump chamber.
  • the two rotor shafts protrude through a housing wall, which limits the suction space. Toothed wheels are connected to the two shaft ends.
  • the two gears mesh with each other. As a result, on the one hand synchronizing the two counter-rotating shafts, as well as on the other hand, driving the two shafts. By providing the meshing gears, only one of the two shafts needs to be driven.
  • an enlarged effective diameter of typically 0.2 to 0.4 mm would have to be provided with toothed belt wheels. This results in a forced split error that degrades synchronization.
  • increased effective diameter considerably shortens the service life of the toothed belts used. This is not accepted in dry compressing vacuum pumps in the market.
  • the object of the invention is to provide a dry-compressing vacuum pump which is driven by a toothed belt and does not have the above disadvantages.
  • the dry-compressing vacuum pump has a suction chamber formed by a pump housing.
  • two rotor elements are arranged, wherein it is in particular a screw pump in the vacuum pump.
  • Each rotor element is supported by a rotor shaft.
  • the two rotor shafts protrude through a housing wall delimiting the pump chamber so that one shaft end protrudes from the pump chamber per rotor shaft.
  • On the two shaft ends a toothed belt wheel is arranged in each case. Since the drive of the two rotor shafts takes place via a toothed belt, the two toothed belt wheels do not mesh with one another.
  • a drive device such as an electric motor is provided.
  • a pulley is arranged in particular on a drive shaft of the electric motor.
  • the toothed belt is connected to the two toothed belt wheels and the drive device, in particular the pulley of the drive device.
  • a circumferential backlash between the two rotor elements of more than ⁇ 0.75 °, in particular more than ⁇ 1 °, is provided. Only due to the provision of such a large backlash is the use of timing belt possible.
  • the displacers arranged on the rotor shaft are preferred, wherein the displacement elements can of course also be formed integrally with the rotor shaft.
  • the two screw rotors have a plurality of rotor or displacement elements or displacement stages.
  • at least two displacement elements or displacement stages are provided.
  • Such a vacuum pump screw rotor preferably has at least two helical displacement elements arranged on a rotor shaft.
  • the at least two displacement elements preferably have different pitches, wherein the pitch is constant per displacement element.
  • the vacuum pump screw rotor has two displacement elements, wherein a first suction-side displacement element has a larger constant pitch and a second pressure-side displacement element has a smaller constant pitch.
  • each displacement element has at least one helical recess which has the same contour over its entire length.
  • the contours are preferably different per displacement element.
  • the single displacement element thus preferably has a constant pitch and a constant contour. This simplifies the production considerably, so that the production costs can be greatly reduced.
  • the contour of the suction-side displacement element is asymmetrical.
  • the flanks can be configured in such a way that the leakage surfaces, the so-called blow holes, in particular, completely disappear or at least have a small cross section.
  • a particularly suitable asymmetric profile is the so-called "Quirn by profile”. Although such a profile is relatively difficult to manufacture, it has the advantage that there is no continuous blow hole. A short circuit is only given between two adjacent chambers. Since it is an asymmetric profile with different profile flanks, At least two steps are required for the production, since the two flanks must be prepared in different steps due to their asymmetry.
  • the pressure-side displacement element in particular the last displacement element in the pumping direction, is preferably provided with a symmetrical contour.
  • the symmetrical contour has the particular advantage that the production is easier.
  • both flanks can be produced with a symmetrical contour by a rotating end mill or by a rotating side milling cutter in one step.
  • Such symmetrical profiles have only small blowholes, but these are continuous, ie. not just between two adjacent chambers. The size of the blow hole decreases as the slope decreases.
  • such symmetrical profiles can be provided in particular in the pressure-side displacement element, since in a preferred embodiment, this has a smaller pitch than the suction-side displacement element and preferably also as the displacement elements arranged between the suction-side and pressure-side displacement elements.
  • the provision of at least two such displacement elements means that the corresponding screw vacuum pump can generate low inlet pressures with low power consumption.
  • the thermal load is low.
  • Arranging at least two such preferably configured displacement elements with constant pitch and constant contour in a vacuum pump leads to substantially same results as in a vacuum pump with a variable displacement displacement element. At high built volume ratios can be provided per rotor three or four Vedrteilungs institute.
  • a pressure-side that is in particular in the pumping last displacement element on a large number of turns on. Due to a high number of turns, a larger gap between the screw rotor and the housing can be accepted with consistent performance.
  • the gap can have a cold gap width of 0.05-0.3 mm.
  • a large number of outlet turns or number of turns in the pressure-side displacement element is inexpensive to produce, since this displacement element has a constant pitch and in particular a symmetrical contour. As a result, a simple and inexpensive production is possible, so that the provision of a larger number of turns is acceptable.
  • this pressure-side or last displacement element has more than 6, in particular more than 8 and particularly preferably more than 10 turns.
  • the use of symmetrical profiles in a particularly preferred embodiment has the advantage that both flanks of the profile can be cut simultaneously with a milling cutter.
  • the milling cutter is additionally supported by the respectively opposite flank, so that deformation or bending of the milling cutter during the milling process and thus caused inaccuracies are avoided.
  • the displacement elements and the rotor shaft are formed in one piece.
  • the change in pitch between adjacent displacement elements is discontinuous or erratic educated.
  • the two displacement elements are arranged in the longitudinal direction at a distance from each other, so that between two displacement elements, a circumferential cylindrical chamber is formed, which serves as a tool outlet. This is particularly advantageous in integrally formed rotors, since the helix producing tool can be brought out in this area in a simple manner. If the displacement elements are manufactured independently of each other and then mounted on a shaft, the provision of a tool outlet, in particular of such a ring-cylindrical region is not required.
  • no tool outlet is provided between two adjacent displacement elements on the pitch change.
  • both flanks preferably have a defect or recess in order to be able to lead out the tool.
  • Such a defect has no appreciable influence on the compression capacity of the pump, since it is a locally very limited defect or recess.
  • the vacuum pump screw rotor preferably has a plurality of displacement elements. These may each have the same or different diameters. It is preferred here that the pressure-side displacement element has a smaller diameter than the suction-side displacement element.
  • displacement elements which are produced independently of the rotor shaft, they are mounted on the shaft, for example by press fits. In this case, it is preferable to provide elements such as dowel pins for fixing the angular position of the displacement elements to one another.
  • the screw rotor in the one-piece design of the screw rotor but also in a multi-piece configuration, it is preferable to this Aluminum or aluminum alloy. It is particularly preferred to produce the rotor from aluminum or an aluminum alloy, in particular AISi9Mg or AISi 17Cu4Mg.
  • the alloy preferably has a high silicon content of preferably more than 9%, in particular more than 15%, in order to reduce the expansion coefficient.
  • the aluminum used for the rotors has a low expansion coefficient in a further preferred development of the invention. It is preferred if the material has an expansion coefficient of less than 22 * 10 -6 / K, in particular of less than 20 * 10 -6 / K.
  • the surface of the displacement elements is coated, wherein in particular a coating against wear and / or corrosion is provided. In this case, it is preferable to provide an anodic coating or another suitable coating depending on the field of application.
  • the vacuum pump has at least two stages of compression.
  • the vacuum pump has a maximum delivery of at least 75%, in particular at least 85%.
  • the delivery rate is the quotient of the real maximum achieved volume flow and the theoretically possible volume flow in a lossless pump based on the pump chamber geometry and the operating speed.
  • the maximum delivery rate is usually achieved in the range of 1 to 10 mbar.
  • the toothed belt used is preferably not only for driving but also for synchronizing the rotor shafts.
  • the rotor shafts rotate counter-clockwise in screw pumps.
  • the toothed belt is therefore formed in a preferred embodiment as a double-sided toothed belt. In plan view, therefore, the toothed belt preferably extends between the two connected to the shaft ends of the toothed belt wheels.
  • backlashes of the two toothed belt wheels of more than 0.10 mm can be accepted.
  • the gapping is defined here by the combination of the tooth shape of the toothed belt wheels used and the tooth shape and size of the teeth of the toothed belt. Due to the relatively large tooth gap clearance, the service life of the toothed belt is significantly increased.
  • the effective diameter is not increased and thus no forced pitch error arises.
  • a toothed belt for driving and synchronizing the two rotor shafts in particular has the advantage that no oil lubrication must be provided. This has the particular advantage that the sealing of the shaft ends relative to the pump chamber can be designed significantly cheaper. Furthermore, it is possible to provide grease-lubricated bearings.
  • the two shafts are mounted in the housing wall through which the shaft ends are guided, wherein these bearings can be grease-lubricated bearings.
  • the opposite shaft ends, which are arranged in the region of the inlet side, are preferably mounted on grease-lubricated bearings, but also oil-lubricated bearings can be used.
  • a belt tensioning device may be provided to keep the belt constantly tensioned.
  • This is preferably an automatic clamping device, in which the voltage is generated for example by means of a spring or the like, or a fixed bias is applied during assembly. It is also possible to tension the belt by holding the drive motor in a displaceable manner.
  • Another advantage of the drive according to the invention by means of a toothed belt is that it is possible in a simple manner to change the speed of the vacuum pump. For this purpose, only the connected to the drive device toothed belt pulley must be replaced. When replacing the timing belt pulley, the timing belt may need to be replaced.
  • FIG. 3 shows a schematic representation of a combination of toothed belt and toothed belt pulley with tooth space
  • Fig. 5 is a schematic plan view of a first preferred embodiment
  • Fig. 6 is a schematic plan view of a second preferred embodiment
  • Fig. 7 is a schematic sectional view of displacement elements with asymmetric profile
  • Fig. 8 is a schematic sectional view of displacement elements with symmetrical profile.
  • Fig. 1 is greatly simplified schematically a pump housing 10 is shown.
  • a pump chamber is formed in which two rotor elements 14 are arranged.
  • the rotor elements 14 are screw rotors.
  • the screw rotors 14 have helical compression elements that intermesh.
  • the two screw rotors 14 are driven in opposite directions.
  • the two screw rotors 14 have in the illustrated embodiment, two pumping stages 16, 18.
  • the two rotor elements are each arranged on a rotor shaft 22.
  • the two rotor shafts 22 are mounted on the suction side in a housing cover 24 via bearing elements 26.
  • shaft ends 28 protrude through a housing wall 30.
  • the two rotor shafts 22 are mounted on grease-lubricated bearings 32.
  • the dry compacting vacuum pump delivers fluid through an inlet 34 to an outlet 36.
  • the two shaft ends 28 are each connected to a toothed belt wheel 38, wherein the two toothed belt wheels 38 do not mesh with each other.
  • the synchronization is effected by a toothed belt 40, not shown in FIG. 1 (FIG. 2).
  • the toothed belt is designed as a double-sided toothed belt and for the synchronization of the two toothed belt wheels 38 and the two connected to the toothed belt wheels shaft ends 28 passed between them.
  • a drive device 42 is provided, the drive shaft 44 is connected to a toothed belt pulley 46.
  • FIG. 3 schematically shows teeth of a toothed belt pulley 38 or 46 in conjunction with a toothed belt 40.
  • a tooth 48 of a toothed belt 40 is designed in such a way that a gap hatched is formed in relation to a tooth space 50 between two adjacent teeth 52 of the toothed belt wheel 38.
  • the synchronization of the two rotor shafts 22 is somewhat deteriorated, but the life of the toothed belt 48 is increased.
  • a toothed belt as shown schematically in Figure 4, may be provided. This has as a so-called zero gap no distances between the tooth space 50 and the tooth 48 of the belt 40.
  • the rotor has two displacement elements 110, 112, which form the two pump stages 16, 18.
  • a first suction-side displacement element 110 has a large pitch of approximately 50-150 mm / revolution. The slope is constant over the entire displacement element 110. The contour of the helical recess is constant.
  • the second pressure-side displacement element 112 again has a constant pitch over its length and a constant contour of the recess. The pitch of the pressure-side displacement element 112 is preferably in the range of 10 - 30 mm / revolution.
  • a ring-cylindrical recess 114 is provided between the two displacement elements. This serves to realize a tool outlet due to the one-piece design of the screw rotor shown in FIG.
  • the integrally formed screw rotor has two bearing seats 116 and a shaft end 118. With the shaft end 118, for example, a gear is connected to the drive.
  • the two displacement elements 110, 112 are made separately and then fixed on a rotor shaft 120, for example by pressing. Although this production is somewhat more complicated, the cylindrical distance 114 between two adjacent displacement elements 110, 112 is not required as a tool outlet.
  • the bearing seats 116 and the shaft ends 118 may be integral with the shaft 120.
  • a continuous shaft 120 be made of another, different from the displacement elements 110, 112 material.
  • Fig. 7 is a schematic sectional view of an asymmetrical profile (e.g., a Quimby profile).
  • the illustrated asymmetrical profile is a so-called "Quimby profile”.
  • the sectional view shows two screw rotors that mesh with each other and whose longitudinal direction is perpendicular to the plane of the drawing. The opposite rotation of the rotors is indicated by the two arrows 115.
  • the profiles of the flanks 119 and 121 per rotor are configured differently.
  • the opposing edges 119, 121 must therefore be made independently. However, therefore, although somewhat more complex and difficult production has the advantage that no continuous blow hole is present, but only between two adjacent chambers is a short circuit.
  • Such an asymmetrical profile is preferably provided in the suction-side displacement element 110.
  • FIG. 8 again shows a cross section of two displacement elements or two screw rotors, which in turn rotate in opposite directions (arrows 115). Relative to the axis of symmetry 117, the flanks 123 are designed to be symmetrical per displacement element. At the in Fig. 8 illustrated preferred embodiment of a symmetrically designed contour is a cycloid profile.
  • a symmetrical profile, as shown in FIG. 8, is preferably provided at the pressure-side displacement elements 112.
  • displacement elements are provided. These may possibly also have different head diameters and corresponding foot diameters. In this case, it is preferred that a displacement element with a larger head diameter at the inlet, i. is arranged on the suction side in order to realize a greater pumping speed in this area and / or to increase the built-in volume ratio. Furthermore, combinations of the embodiments described above are possible. For example, one or more displacement elements may be made integral with the shaft or an additional displacement element independent of the shaft and then mounted on the shaft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

L'invention concerne une pompe à vide à compression sèche, en particulier une pompe à vis, comprenant deux éléments de rotor (14) placés dans une chambre d'aspiration (12) et portés chacun par un arbre de rotor (22) respectif. Deux bouts d'arbre des arbres de rotor (22) font saillie à travers une paroi latérale (28) du corps de pompe (10). Une poulie crantée (38) est disposée sur chacun des deux bouts d'arbre (28). Ladite pompe comporte également un dispositif d'entraînement ainsi qu'un moteur électrique pour l'entraînement de l'arbre de rotor (22). Selon l'invention, l'entraînement des arbres de rotor (22) s'effectue par l'intermédiaire d'une courroie crantée (40). Pour permettre de recourir à une courroie crantée afin d'assurer l'entraînement, un jeu primitif entre les deux éléments de rotor (14) est supérieur à ± 0,75, en particulier supérieur à ±1°.
EP17751770.3A 2016-08-30 2017-08-14 Pompe à vide à compression sèche Active EP3507496B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202016005208.0U DE202016005208U1 (de) 2016-08-30 2016-08-30 Trockenverdichtende Vakuumpumpe
PCT/EP2017/070626 WO2018041620A1 (fr) 2016-08-30 2017-08-14 Pompe à vide à compression sèche

Publications (2)

Publication Number Publication Date
EP3507496A1 true EP3507496A1 (fr) 2019-07-10
EP3507496B1 EP3507496B1 (fr) 2020-07-15

Family

ID=59593115

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17751770.3A Active EP3507496B1 (fr) 2016-08-30 2017-08-14 Pompe à vide à compression sèche

Country Status (9)

Country Link
US (1) US20190186493A1 (fr)
EP (1) EP3507496B1 (fr)
JP (1) JP2019526738A (fr)
KR (1) KR20190043139A (fr)
CN (1) CN109642574B (fr)
BR (1) BR112019002903A2 (fr)
CA (1) CA3034112A1 (fr)
DE (1) DE202016005208U1 (fr)
WO (1) WO2018041620A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202017003046U1 (de) * 2017-06-09 2018-09-14 Leybold Gmbh Trockenverdichtende Vakuumpumpe
EP3499041B1 (fr) * 2017-12-15 2020-07-01 Pfeiffer Vacuum Gmbh Pompe à vide à vis
DE202018000178U1 (de) * 2018-01-12 2019-04-15 Leybold Gmbh Kompressor
DE102018210922A1 (de) * 2018-07-03 2020-01-09 Leybold Gmbh Zwei- oder Mehrwellen-Vakuumpumpe
TW202040004A (zh) * 2019-04-19 2020-11-01 亞台富士精機股份有限公司 轉子及螺旋式幫浦
CN111120324A (zh) * 2019-12-30 2020-05-08 浙江思科瑞真空技术有限公司 一种具有多个吸入腔和排气口的螺杆真空泵

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62248801A (ja) * 1986-04-23 1987-10-29 Hitachi Ltd 無給油式スクリユ−流体機械
DE3706588C2 (de) * 1987-02-26 1993-12-02 Mannesmann Ag Antriebseinrichtung für Rotationskolbenverdichter
GB2207190A (en) * 1987-07-18 1989-01-25 Boc Group Plc Pump drive arrangement
DE69123898T3 (de) * 1990-08-01 2004-08-05 Matsushita Electric Industrial Co., Ltd., Kadoma Drehanlage für flüssige Medien
JP3074845B2 (ja) * 1991-10-08 2000-08-07 松下電器産業株式会社 流体回転装置
DE4318707A1 (de) * 1993-06-04 1994-12-08 Sihi Gmbh & Co Kg Verdrängermaschine mit elektronischer Motorsynchronisation
SE501889C2 (sv) * 1993-10-18 1995-06-12 Opcon Autorotor Ab Anordning för koppling av en skruvrotormaskin till en drivande eller driven remskiva
CN2363091Y (zh) * 1998-03-19 2000-02-09 机械工业部郑州机械研究所 圆弧及修正渐开线齿形高粘度齿轮泵
JP2000161277A (ja) * 1998-11-27 2000-06-13 Toyota Autom Loom Works Ltd ポンプ装置
CN2397284Y (zh) * 1999-07-16 2000-09-20 大连理工大学 双螺杆压缩机螺杆转子新齿形
JP2003336656A (ja) * 2002-05-20 2003-11-28 Teijin Seiki Co Ltd 回転軸固定機構
DE10334481A1 (de) * 2003-07-29 2005-03-17 Steffens, Ralf, Dr. Antrieb einer Spindelvakuumpumpe
DE202009003981U1 (de) * 2009-03-24 2010-08-19 Vacuubrand Gmbh + Co Kg Antrieb für eine Vakuumpumpe
US20100322806A1 (en) * 2009-06-18 2010-12-23 Aregger Markus Arrangement including a gear pump
JP6079052B2 (ja) * 2012-08-24 2017-02-15 株式会社島津製作所 真空ポンプ

Also Published As

Publication number Publication date
CA3034112A1 (fr) 2018-03-08
US20190186493A1 (en) 2019-06-20
CN109642574A (zh) 2019-04-16
EP3507496B1 (fr) 2020-07-15
CN109642574B (zh) 2020-08-04
JP2019526738A (ja) 2019-09-19
DE202016005208U1 (de) 2017-12-01
BR112019002903A2 (pt) 2019-05-21
WO2018041620A1 (fr) 2018-03-08
KR20190043139A (ko) 2019-04-25

Similar Documents

Publication Publication Date Title
EP3507496B1 (fr) Pompe à vide à compression sèche
EP0552443B1 (fr) Machine à engrenages
EP1979618B1 (fr) Groupe de compresseurs à vis à plusieurs étages
CH495509A (de) Schneckenmaschine
DE102013009040A1 (de) Spindelkompressor mit hoher innerer Verdichtung
DE10208408A1 (de) Zahnradverzahnung
EP3507497B1 (fr) Rotor à vis de pompe à vide
DE3938346C1 (fr)
EP1252444B1 (fr) Systeme d'entrainement de pompe a vis
EP2867532A1 (fr) Pompe à vis
DE69928172T2 (de) Vacuumpumpe
WO2018224409A1 (fr) Pompe à vide à compression sèche
EP3507495B1 (fr) Pompe à vide à vis
DE2234777B2 (de) Verdichter
EP0607497B1 (fr) Pompe à engrenages internes avec joint d'étanchéité incorporé dans les dents
DE4134965A1 (de) Spiralverdichter mit modifizierter kopfnut
DE1428270C3 (fr)
DE2134241C3 (de) Zweistufige außenachsige Rotationskolbenmaschine
DE4403649A1 (de) Lagerung und Antrieb der Rotoren eines Schraubenrotorverdichters
EP1722104B1 (fr) Paire de rotors pour un compresseur à vis
WO2019137852A1 (fr) Compresseur
EP1437512A2 (fr) Pompe à vide à deux arbres
DE19717697B4 (de) Innenzahnradmaschine
DE2308195A1 (de) Drehkolbenmaschine, insbesondere schraubenkompressor, mit einzelnen rotorabschnitten
EP2690252A1 (fr) Trochoid internal gear machine

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190320

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200207

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017006238

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1291323

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201116

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201015

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201016

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201015

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017006238

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200814

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

26N No opposition filed

Effective date: 20210416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200814

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230424

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1291323

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220814

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230824

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230821

Year of fee payment: 7

Ref country code: DE

Payment date: 20230829

Year of fee payment: 7