EP3469119A4 - MANIPULATED SUBSTRATE STRUCTURE FOR POWER AND HF APPLICATIONS - Google Patents
MANIPULATED SUBSTRATE STRUCTURE FOR POWER AND HF APPLICATIONS Download PDFInfo
- Publication number
- EP3469119A4 EP3469119A4 EP17813933.3A EP17813933A EP3469119A4 EP 3469119 A4 EP3469119 A4 EP 3469119A4 EP 17813933 A EP17813933 A EP 17813933A EP 3469119 A4 EP3469119 A4 EP 3469119A4
- Authority
- EP
- European Patent Office
- Prior art keywords
- applications
- power
- substrate structure
- engineered substrate
- engineered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
- H01L33/0075—Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/36—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/14—Feed and outlet means for the gases; Modifying the flow of the reactive gases
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
- C30B25/183—Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02293—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process formation of epitaxial layers by a deposition process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/0242—Crystalline insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02488—Insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02491—Conductive materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02494—Structure
- H01L21/02496—Layer structure
- H01L21/02505—Layer structure consisting of more than two layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02587—Structure
- H01L21/0259—Microstructure
- H01L21/02595—Microstructure polycrystalline
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/3003—Hydrogenation or deuterisation, e.g. using atomic hydrogen from a plasma
- H01L21/3006—Hydrogenation or deuterisation, e.g. using atomic hydrogen from a plasma of AIIIBV compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/32055—Deposition of semiconductive layers, e.g. poly - or amorphous silicon layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/7624—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
- H01L21/76251—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
- H01L21/76254—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/823437—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/26—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys
- H01L29/267—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys in different semiconductor regions, e.g. heterojunctions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
- H01L33/0066—Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
- H01L33/007—Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/16—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02441—Group 14 semiconducting materials
- H01L21/0245—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/2003—Nitride compounds
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Plasma & Fusion (AREA)
- Inorganic Chemistry (AREA)
- Recrystallisation Techniques (AREA)
- Peptides Or Proteins (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662350084P | 2016-06-14 | 2016-06-14 | |
US201662350077P | 2016-06-14 | 2016-06-14 | |
PCT/US2017/037252 WO2017218536A1 (en) | 2016-06-14 | 2017-06-13 | Engineered substrate structure for power and rf applications |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3469119A1 EP3469119A1 (en) | 2019-04-17 |
EP3469119A4 true EP3469119A4 (en) | 2020-02-26 |
Family
ID=60664230
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17813933.3A Pending EP3469119A4 (en) | 2016-06-14 | 2017-06-13 | MANIPULATED SUBSTRATE STRUCTURE FOR POWER AND HF APPLICATIONS |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP3469119A4 (zh) |
JP (4) | JP6626607B2 (zh) |
KR (1) | KR102361057B1 (zh) |
CN (2) | CN114256068A (zh) |
SG (1) | SG11201810919UA (zh) |
TW (4) | TWI839076B (zh) |
WO (1) | WO2017218536A1 (zh) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10297445B2 (en) | 2016-06-14 | 2019-05-21 | QROMIS, Inc. | Engineered substrate structure for power and RF applications |
KR102361057B1 (ko) * | 2016-06-14 | 2022-02-08 | 큐로미스, 인크 | 전력 및 rf 애플리케이션을 위한 가공된 기판 구조체 |
US10622468B2 (en) | 2017-02-21 | 2020-04-14 | QROMIS, Inc. | RF device integrated on an engineered substrate |
US10734303B2 (en) * | 2017-11-06 | 2020-08-04 | QROMIS, Inc. | Power and RF devices implemented using an engineered substrate structure |
US10586844B2 (en) * | 2018-01-23 | 2020-03-10 | Texas Instruments Incorporated | Integrated trench capacitor formed in an epitaxial layer |
TWI692869B (zh) * | 2019-05-03 | 2020-05-01 | 世界先進積體電路股份有限公司 | 基底及其製造方法 |
CN111987140A (zh) * | 2019-05-21 | 2020-11-24 | 世界先进积体电路股份有限公司 | 基底及其制造方法 |
JP7319227B2 (ja) | 2020-05-11 | 2023-08-01 | 信越化学工業株式会社 | Iii-v族化合物結晶用ベース基板及びその製造方法 |
EP4163424A4 (en) | 2020-06-09 | 2024-06-12 | Shin-Etsu Chemical Co., Ltd. | SUBSTRATE FOR EPITATICAL GROWTH OF GROUP III NITRIDES AND PRODUCTION METHOD THEREOF |
JP2022012558A (ja) | 2020-07-01 | 2022-01-17 | 信越化学工業株式会社 | 大口径iii族窒化物系エピタキシャル成長用基板とその製造方法 |
KR102446604B1 (ko) * | 2021-01-04 | 2022-09-26 | 한국과학기술원 | 스트레인드 채널 성장 구조, 및 그를 이용한 스트레인드 채널 및 소자 제조 방법 |
WO2022168572A1 (ja) | 2021-02-05 | 2022-08-11 | 信越半導体株式会社 | 窒化物半導体基板及びその製造方法 |
JP7549549B2 (ja) | 2021-02-26 | 2024-09-11 | 信越半導体株式会社 | 窒化物半導体基板およびその製造方法 |
EP4306689A1 (en) * | 2021-03-10 | 2024-01-17 | Shin-Etsu Chemical Co., Ltd. | Seed substrate for epitaxial growth use and method for manufacturing same, and semiconductor substrate and method for manufacturing same |
CN117413345A (zh) | 2021-06-08 | 2024-01-16 | 信越半导体株式会社 | 氮化物半导体基板及其制造方法 |
JP2023025432A (ja) * | 2021-08-10 | 2023-02-22 | 信越半導体株式会社 | 窒化物半導体基板及びその製造方法 |
EP4407657A1 (en) * | 2021-09-21 | 2024-07-31 | Shin-Etsu Handotai Co., Ltd. | Nitride semiconductor substrate and method for producing same |
JP7533794B2 (ja) * | 2021-10-15 | 2024-08-14 | 信越半導体株式会社 | 窒化物半導体基板の製造方法 |
WO2023063046A1 (ja) * | 2021-10-15 | 2023-04-20 | 信越半導体株式会社 | 窒化物半導体基板及びその製造方法 |
JP2023065227A (ja) | 2021-10-27 | 2023-05-12 | 信越化学工業株式会社 | エピタキシャル成長用種基板およびその製造方法、ならびに半導体基板およびその製造方法 |
WO2023119916A1 (ja) | 2021-12-21 | 2023-06-29 | 信越半導体株式会社 | 窒化物半導体基板および窒化物半導体基板の製造方法 |
JP2023098137A (ja) | 2021-12-28 | 2023-07-10 | 信越化学工業株式会社 | 高特性エピタキシャル成長用基板とその製造方法 |
JP2023138130A (ja) | 2022-03-18 | 2023-09-29 | 信越化学工業株式会社 | 高特性エピ用種基板、高特性エピ用種基板の製造方法、半導体基板、および半導体基板の製造方法 |
JP2024070722A (ja) * | 2022-11-11 | 2024-05-23 | 信越半導体株式会社 | 高周波デバイス用基板およびその製造方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7732301B1 (en) * | 2007-04-20 | 2010-06-08 | Pinnington Thomas Henry | Bonded intermediate substrate and method of making same |
US20120052635A1 (en) * | 2010-08-30 | 2012-03-01 | Pil-Kyu Kang | Conductive layer buried-type substrate, method of forming the conductive layer buried-type substrate, and method of fabricating semiconductor device using the conductive layer buried-type substrate |
US20130234148A1 (en) * | 2012-03-09 | 2013-09-12 | Soitec | Methods of forming semiconductor structures including iii-v semiconductor material using substrates comprising molybdenum, and structures formed by such methods |
WO2017069962A1 (en) * | 2015-10-19 | 2017-04-27 | Quora Technology, Inc. | Lift off process for chip scale package solid state devices on engineered substrate |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4430149A (en) * | 1981-12-30 | 1984-02-07 | Rca Corporation | Chemical vapor deposition of epitaxial silicon |
US7238595B2 (en) * | 2003-03-13 | 2007-07-03 | Asm America, Inc. | Epitaxial semiconductor deposition methods and structures |
US6972255B2 (en) * | 2003-07-28 | 2005-12-06 | Freescale Semiconductor, Inc. | Semiconductor device having an organic anti-reflective coating (ARC) and method therefor |
US7420226B2 (en) * | 2005-06-17 | 2008-09-02 | Northrop Grumman Corporation | Method for integrating silicon CMOS and AlGaN/GaN wideband amplifiers on engineered substrates |
US20060284167A1 (en) * | 2005-06-17 | 2006-12-21 | Godfrey Augustine | Multilayered substrate obtained via wafer bonding for power applications |
CN100424878C (zh) * | 2006-11-21 | 2008-10-08 | 华中科技大学 | 铁电存储器用铁电薄膜电容及其制备方法 |
CN101192533B (zh) * | 2006-11-28 | 2010-06-16 | 中芯国际集成电路制造(上海)有限公司 | 一种半导体器件及其制造方法、蚀刻阻挡层的形成方法 |
FR2912552B1 (fr) * | 2007-02-14 | 2009-05-22 | Soitec Silicon On Insulator | Structure multicouche et son procede de fabrication. |
CN101669193B (zh) * | 2007-04-27 | 2012-02-15 | 株式会社半导体能源研究所 | Soi衬底及其制造方法和半导体器件 |
US20090278233A1 (en) * | 2007-07-26 | 2009-11-12 | Pinnington Thomas Henry | Bonded intermediate substrate and method of making same |
CN101621005B (zh) * | 2008-07-02 | 2012-08-22 | 中芯国际集成电路制造(上海)有限公司 | Tft monos或sonos存储单元结构 |
US7915645B2 (en) * | 2009-05-28 | 2011-03-29 | International Rectifier Corporation | Monolithic vertically integrated composite group III-V and group IV semiconductor device and method for fabricating same |
CN102044473B (zh) * | 2009-10-13 | 2013-03-06 | 中芯国际集成电路制造(上海)有限公司 | 半导体器件的形成方法 |
US9012253B2 (en) * | 2009-12-16 | 2015-04-21 | Micron Technology, Inc. | Gallium nitride wafer substrate for solid state lighting devices, and associated systems and methods |
CN102456721A (zh) * | 2010-10-17 | 2012-05-16 | 金木子 | 陶瓷衬底的氮化镓基芯片及制造方法 |
US8546165B2 (en) * | 2010-11-02 | 2013-10-01 | Tsmc Solid State Lighting Ltd. | Forming light-emitting diodes using seed particles |
US8766274B2 (en) * | 2010-12-14 | 2014-07-01 | Hexatech, Inc. | Thermal expansion engineering for polycrystalline aluminum nitride sintered bodies |
JP2012142385A (ja) * | 2010-12-28 | 2012-07-26 | Sumitomo Electric Ind Ltd | 半導体デバイスの製造方法 |
JP6152548B2 (ja) | 2012-08-06 | 2017-06-28 | 並木精密宝石株式会社 | 酸化ガリウム基板及びその製造方法 |
US9082692B2 (en) * | 2013-01-02 | 2015-07-14 | Micron Technology, Inc. | Engineered substrate assemblies with epitaxial templates and related systems, methods, and devices |
US9650723B1 (en) * | 2013-04-11 | 2017-05-16 | Soraa, Inc. | Large area seed crystal for ammonothermal crystal growth and method of making |
JP6176069B2 (ja) * | 2013-11-13 | 2017-08-09 | 住友電気工業株式会社 | Iii族窒化物複合基板およびその製造方法、積層iii族窒化物複合基板、ならびにiii族窒化物半導体デバイスおよびその製造方法 |
JP6488917B2 (ja) * | 2014-07-04 | 2019-03-27 | 三菱マテリアル株式会社 | 放熱板付パワーモジュール用基板及びパワーモジュール |
JP2016058693A (ja) * | 2014-09-12 | 2016-04-21 | 株式会社東芝 | 半導体装置、半導体ウェーハ、及び、半導体装置の製造方法 |
CN108541335B (zh) * | 2015-12-04 | 2023-07-18 | 克罗米斯有限公司 | 工程化衬底上的宽带隙器件集成电路架构 |
KR102361057B1 (ko) * | 2016-06-14 | 2022-02-08 | 큐로미스, 인크 | 전력 및 rf 애플리케이션을 위한 가공된 기판 구조체 |
JP6580267B2 (ja) | 2016-07-26 | 2019-09-25 | 三菱電機株式会社 | 半導体装置および半導体装置の製造方法 |
CN109671612B (zh) | 2018-11-15 | 2020-07-03 | 中国科学院上海微系统与信息技术研究所 | 一种氧化镓半导体结构及其制备方法 |
-
2017
- 2017-06-13 KR KR1020197000184A patent/KR102361057B1/ko active IP Right Grant
- 2017-06-13 TW TW112101490A patent/TWI839076B/zh active
- 2017-06-13 JP JP2018565352A patent/JP6626607B2/ja active Active
- 2017-06-13 TW TW113110045A patent/TW202429726A/zh unknown
- 2017-06-13 TW TW110133509A patent/TWI793755B/zh active
- 2017-06-13 SG SG11201810919UA patent/SG11201810919UA/en unknown
- 2017-06-13 EP EP17813933.3A patent/EP3469119A4/en active Pending
- 2017-06-13 WO PCT/US2017/037252 patent/WO2017218536A1/en unknown
- 2017-06-13 CN CN202111369484.3A patent/CN114256068A/zh active Pending
- 2017-06-13 TW TW106119602A patent/TWI743136B/zh active
- 2017-06-13 CN CN201780049691.6A patent/CN109844184B/zh active Active
-
2019
- 2019-12-01 JP JP2019217661A patent/JP7001660B2/ja active Active
-
2021
- 2021-12-24 JP JP2021210164A patent/JP7416556B2/ja active Active
-
2023
- 2023-09-25 JP JP2023161626A patent/JP2023182643A/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7732301B1 (en) * | 2007-04-20 | 2010-06-08 | Pinnington Thomas Henry | Bonded intermediate substrate and method of making same |
US20120052635A1 (en) * | 2010-08-30 | 2012-03-01 | Pil-Kyu Kang | Conductive layer buried-type substrate, method of forming the conductive layer buried-type substrate, and method of fabricating semiconductor device using the conductive layer buried-type substrate |
US20130234148A1 (en) * | 2012-03-09 | 2013-09-12 | Soitec | Methods of forming semiconductor structures including iii-v semiconductor material using substrates comprising molybdenum, and structures formed by such methods |
WO2017069962A1 (en) * | 2015-10-19 | 2017-04-27 | Quora Technology, Inc. | Lift off process for chip scale package solid state devices on engineered substrate |
Also Published As
Publication number | Publication date |
---|---|
TW202322418A (zh) | 2023-06-01 |
JP2019523994A (ja) | 2019-08-29 |
EP3469119A1 (en) | 2019-04-17 |
JP2022058405A (ja) | 2022-04-12 |
JP7001660B2 (ja) | 2022-01-19 |
JP2023182643A (ja) | 2023-12-26 |
SG11201810919UA (en) | 2019-01-30 |
KR102361057B1 (ko) | 2022-02-08 |
TW202203473A (zh) | 2022-01-16 |
CN109844184B (zh) | 2021-11-30 |
KR20190019122A (ko) | 2019-02-26 |
CN109844184A (zh) | 2019-06-04 |
TWI839076B (zh) | 2024-04-11 |
TW201807839A (zh) | 2018-03-01 |
CN114256068A (zh) | 2022-03-29 |
TWI743136B (zh) | 2021-10-21 |
TWI793755B (zh) | 2023-02-21 |
TW202429726A (zh) | 2024-07-16 |
JP2020074399A (ja) | 2020-05-14 |
WO2017218536A1 (en) | 2017-12-21 |
JP6626607B2 (ja) | 2019-12-25 |
JP7416556B2 (ja) | 2024-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3469119A4 (en) | MANIPULATED SUBSTRATE STRUCTURE FOR POWER AND HF APPLICATIONS | |
EP3504730A4 (en) | ELECTRONIC POWER DEVICES INTEGRATED IN A TECHNICAL SUBSTRATE | |
EP3707757A4 (en) | POWER AND RF DEVICES IMPLEMENTED USING A WORKED SUBSTRATE STRUCTURE | |
EP3433865A4 (en) | DEVICES AND METHODS FOR HIGH VOLTAGE AND SOLAR APPLICATIONS | |
EP3394892A4 (en) | FABRICATION OF SEMICONDUCTOR DEVICES BY ALLOY BONDING AND SUBSTRATE REMOVAL | |
EP3480844A4 (en) | BODY ASSEMBLED IN COPPER-CERAMIC AND INSULATION CIRCUIT SUBSTRATE | |
EP3375008A4 (en) | REAGENTS OF ETCHING AND METHODS OF PLASMA-FREE OXIDE ETCHING USING THE SAME | |
EP3122559A4 (en) | Methods, devices, and systems for the fabrication of materials and tissues utilizing electromagnetic radiation | |
EP3507846A4 (en) | DEVICES INCLUDING A CARBON-BASED MATERIAL AND ASSOCIATED MANUFACTURING | |
EP3314658A4 (en) | GAN DEVICES ON MODIFIED SILICON SUBSTRATES | |
EP3350201A4 (en) | MANIPULATED PHYTASES AND METHOD OF USE THEREOF | |
EP3207633A4 (en) | High power rf/microwave amplifier having multiple amplifier units and automatic failure protection | |
EP3586355A4 (en) | RF DEVICE INTEGRATED ON A TECHNICAL SUBSTRATE | |
EP2913354A4 (en) | Circuit substrate and preparation method thereof | |
EP3041043A4 (en) | Assembly and power-module substrate | |
EP3194329A4 (en) | Stacked microlattice materials and fabrication processes | |
EP3542461A4 (en) | HIGHLY EFFICIENT AMPLIFIER ARCHITECTURE FOR HF APPLICATIONS | |
EP3252188A4 (en) | Silver-plated member and method for manufacturing same | |
EP3489990A4 (en) | SEMICONDUCTOR SUBSTRATE | |
EP3810190A4 (en) | ENGINEERED CELLS AND THEIR USES | |
EP3391427A4 (en) | SINGLE JUNCTION ORGANIC PHOTOVOLTAIC DEVICE HAVING HIGH OPEN CIRCUIT VOLTAGES AND APPLICATIONS THEREOF | |
EP3041045A4 (en) | Assembly and power-module substrate | |
EP3389189A4 (en) | Microwave module and high-frequency module | |
EP3194165A4 (en) | Low voc and high solid fluoropolymer for coating applications | |
EP3106447A4 (en) | Copper/ceramic bond and power module substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190109 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20200127 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01L 21/20 20060101ALI20200121BHEP Ipc: H01L 33/00 20100101ALI20200121BHEP Ipc: H01L 29/36 20060101ALI20200121BHEP Ipc: H01L 29/12 20060101AFI20200121BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20210713 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |