EP3414355B1 - Aluminiumbasierte beschichtung für stahlbleche oder stahlbänder und verfahren zur herstellung hierzu - Google Patents

Aluminiumbasierte beschichtung für stahlbleche oder stahlbänder und verfahren zur herstellung hierzu Download PDF

Info

Publication number
EP3414355B1
EP3414355B1 EP17703386.7A EP17703386A EP3414355B1 EP 3414355 B1 EP3414355 B1 EP 3414355B1 EP 17703386 A EP17703386 A EP 17703386A EP 3414355 B1 EP3414355 B1 EP 3414355B1
Authority
EP
European Patent Office
Prior art keywords
steel
aluminum
coating
cover layer
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17703386.7A
Other languages
English (en)
French (fr)
Other versions
EP3414355A1 (de
Inventor
Thomas Koll
Marc Debeaux
Friedrich Luther
Matthias Graul
Jan-Frederik LASS
Haucke-Frederik Hartmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Salzgitter Flachstahl GmbH
Original Assignee
Volkswagen AG
Salzgitter Flachstahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG, Salzgitter Flachstahl GmbH filed Critical Volkswagen AG
Publication of EP3414355A1 publication Critical patent/EP3414355A1/de
Application granted granted Critical
Publication of EP3414355B1 publication Critical patent/EP3414355B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • C21D8/0284Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/16Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/42Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions only one element being applied
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/026Anodisation with spark discharge
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/08Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing inorganic acids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/10Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing organic acids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • Y10T428/12757Fe

Definitions

  • the invention relates to a process for producing press-hardened components from steel sheets or steel strips with an aluminum-based coating for steel sheets or steel strips, the coating comprising an aluminum-based coating applied by hot-dip coating and an aluminum oxide and / or hydroxide-containing cover layer being arranged on the coating .
  • the invention relates to a press-hardened component made of steel sheets or steel strips with an aluminum-based coating, which is produced by the aforementioned method.
  • press hardening enables high-strength components to be produced that are mainly used in the area of the body.
  • Press hardening can in principle be carried out by means of two different process variants, namely by means of the direct or indirect process. While in indirect processes the process steps of forming and hardening take place separately from one another, in direct processes they take place together in one tool. However, only the direct method is considered below.
  • a steel sheet blank is heated to the so-called austenitizing temperature (Ac3), then the blank heated in this way is transferred to a molding tool and formed into the finished component in a one-step forming step, and at the same time by the cooled molding tool at a speed that is above the critical cooling rate of the steel is cooled, so that a hardened component is produced.
  • Ac3 austenitizing temperature
  • Known hot-formable steels for this area of application are, for example, the manganese-boron steel "22MnB5" and more recently also air-hardenable steels according to the European patent EP 2 449 138 B1 .
  • a steel strip coated with aluminum by a hot-dip process is known that after the hot-dip process, which is carried out in a hot-dip bath with a low Si content of 1.5% by weight to at most 6% by weight, a heat treatment at 300 to 460 ° C. is subjected, which promotes the diffusion of Si in the coating. It is believed that a native oxide layer is formed during this treatment.
  • the steel strip produced in this way is said to have excellent total reflection properties and improved corrosion resistance. It is also an object that the appearance of the steel strip, despite an anodizing treatment, is comparable to the appearance of an ordinary aluminum-coated steel strip.
  • the European patent application EP 0 575 926 A1 describes an aluminum-based coating for metallic products, especially for metal sheets.
  • the aluminum-based coating is applied by means of a hot-dip process, the aluminum bath containing Si: ⁇ 10%, Fe: ⁇ 1%, Mn: 0.5-2% and the rest Al.
  • the coated products are cooled in air to 300 ° C and with water to about 40 ° C. It can be assumed that a native oxide layer is formed during this treatment.
  • the coating ensures that the products are more resistant to hot oxidation and wet corrosion.
  • European patent application EP 0 204 423 A2 discloses a process for the production of aluminum-coated, iron-based foils, wherein a steel strip is provided with an aluminum coating by the hot-dip process and the coated steel strip is subsequently reduced to foil thickness.
  • the film coated in this way is then subjected to a heat treatment at 600 ° C. to 1200 ° C. under an oxidation atmosphere. This promotes the diffusion of aluminum into the base steel layer and creates a porous one Aluminum oxide layer, which has a matt, gray appearance.
  • the following (alloy) coatings applied by hot-dip coating are currently known for press hardening: aluminum-silicon (AS), zinc-aluminum (Z), zinc-aluminum-iron (ZF / galvannealed), zinc-magnesium-aluminum-iron (ZM), as well as electrodeposited coatings made of zinc-nickel or zinc, the latter being converted into an iron-zinc alloy layer before hot forming.
  • AS aluminum-silicon
  • Z zinc-aluminum
  • ZF / galvannealed zinc-magnesium-aluminum-iron
  • ZM zinc-magnesium-aluminum-iron
  • electrodeposited coatings made of zinc-nickel or zinc the latter being converted into an iron-zinc alloy layer before hot forming.
  • German published application DE 197 26 363 A1 describes a clad metal strip with a base body made of a carbon-containing steel, which is provided on one or both sides with a covering material made of a non-ferrous metal.
  • Aluminum or an aluminum alloy are proposed as the covering material.
  • the overlay material is also subjected to nitriding or anodic oxidation in order to increase the wear resistance and the corrosion resistance of the surface of the overlay material.
  • a sheet metal plate previously heated above the austenitizing temperature to 800 - 1200 ° C and possibly provided with a metallic coating of zinc or based on zinc is formed into a component in a tool that is occasionally cooled by hot forming, during the forming by rapid heat removal
  • Sheet metal or component in the forming tool undergoes quench hardening (press hardening) and the required martensitic hardness structure achieves the required strength properties.
  • the advantage of aluminum-based coatings is that, in addition to a larger process window (e.g. with regard to the heating parameters), the finished components do not have to be blasted before further processing.
  • a difficulty with the use of aluminum-based coatings is that when a steel plate is heated in the roller hearth furnace, the coating can react with the ceramic transport rollers before the hot forming, which significantly reduces the life of the furnace rollers.
  • the wear of the tools during press hardening is caused by the heating with iron alloyed aluminum-silicon coating very high.
  • an uneven formation of the surface structure or the thickness of the coating leads to welding problems in the course of the heating, in particular in the case of resistance spot welding, which is frequently used in the automotive industry, due to locally varying electrical resistances on the component surface.
  • the object of the invention is therefore to provide a method for producing press-hardened components from steel sheets or steel strips and a press-hardened component from such steel plates or steel strips.
  • a method for the press hardening of components according to the invention from the steel sheets or steel strips provided with an aluminum-based coating, a method is provided, characterized in that the steel sheets or steel strips are at least partially heated to a temperature above Ac3 with the aim of hardening, then reshaped at this temperature and thereafter cooled at a rate that is at least in regions above the critical cooling rate, the aluminum-based coating being a hot-dip coating, the coating after the hot-dip process and before heating to the forming temperature of a treatment under anodizing conditions and / or plasma oxidation and / or or is subjected to a hot water treatment and / or a treatment in steam, in which the coating on the surface is oxidized to form oxides or hydroxides and the practice in a molten bath with an Si content of 8 to 12% by weight, an Fe content of 1 to 4% by weight, the remainder being aluminum.
  • the teaching of the invention includes an aluminum-based coating for steel sheets or steel strips, the coating being an Melt-dip applied coating comprises, on the coating an aluminum oxide and / or hydroxide-containing cover layer is arranged, which by plasma oxidation and / or hot water treatment at temperatures of at least 90 ° C, advantageously at least 95 ° C and / or a treatment in water vapor Temperatures of at least 90 ° C, advantageously at least 95 ° C was produced.
  • the coating can advantageously be produced in a molten bath with an Si content of 8 to 12% by weight, an Fe content of 1 to 4% by weight, the rest being aluminum.
  • aluminum-based coatings are understood to mean metallic coatings in which aluminum is the main component in mass percent.
  • examples of possible aluminum-based coatings are aluminum, aluminum-silicon (AS), aluminum-zinc-silicon (AZ), as well as the same coatings with admixtures of additional elements, such as magnesium, manganese, titanium and rare earths.
  • the teaching of the invention comprises an aluminum-based coating for steel sheets or steel strips, the coating comprising an aluminum-based coating which has been applied by hot-dip coating and wherein an aluminum oxide and / or hydroxide-containing cover layer, which has been produced by anodic oxidation, is arranged on the coating characterized in that the coating was produced in a molten bath with an Si content of 8 to 12% by weight, an Fe content of 1 to 4% by weight, the balance aluminum.
  • an aluminum oxide and / or hydroxide-containing cover layer which has been produced by anodic oxidation
  • cover layers containing aluminum oxide and / or hydroxide act during hot forming as a separating layer between the coating and the ceramic furnace rollers. This effectively prevents metallic material from being transferred to the furnace rollers. Furthermore, the cover layer containing aluminum oxide and / or hydroxide separates the iron-based, aluminum-based coating of the steel strip from the metal tool surface of the forming tool and thus serves as a separating aid. This reduces welding and abrasion and thus tool wear and maintenance, since the layers are changed significantly less by press hardening and thus become significantly less abrasive than in the prior art. This is shown in the Figures 1 a) to d) .
  • a comparison is shown of exemplary scanning electron microscopic surface images of an AS coating a) untreated initial state without press hardening, b) anodized state without press hardening, c) untreated state after press hardening, d) anodized state after press hardening.
  • An alkaline pretreatment preceding the generation of the cover layer with occasional subsequent acidic removal for example with sulfuric acid or nitric acid and subsequent rinsing of the steel sheet or steel strip provided with an aluminum-based coating, advantageously removes the arbitrarily formed layer already created by atmospheric oxidation and thereby creates a layer defined initial state for the cover layer subsequently generated.
  • the production of defined cover layers containing aluminum oxide and / or hydroxide on a steel strip with an aluminum-based coating is a challenge for large-scale production.
  • the cover layer containing aluminum oxide and / or hydroxide is therefore generated by means of plasma oxidation.
  • a hot water treatment at temperatures of at least 90 ° C, advantageously at least 95 ° C or a treatment in steam at temperatures of at least 90 ° C, advantageously at least 95 ° C can be carried out.
  • This type of treatment of the coating or the top layer is also called compaction.
  • the cover layer containing aluminum oxide and / or hydroxide is produced in an anodic process.
  • the coating is produced in a molten bath with an Si content of 8 to 12% by weight, an Fe content of 1 to 4% by weight, the rest being aluminum.
  • the anodic process is significantly more versatile than a chemical oxidation process. It is particularly advantageous to carry out this method in a continuous process on a coated steel strip.
  • the anodic oxidation of an aluminum (alloy) layer can be carried out using both direct current and alternating current methods.
  • the negatively charged sulfate anions of sulfuric acid and the OH ions of the water migrate to the anode in the electrical field that forms. At the anode they react with Al 3 + ions to form aluminum oxide.
  • the layer thickness depends on the amount of charge that has flowed. This makes it possible to set the thickness of the oxide layer in a defined manner so that it can be tailored to the respective purpose.
  • a layer thickness of approximately 20 ⁇ m is formed in the literature with a current passage of 1 Ah / dm 2 .
  • Different electrolyte systems can be used for the anodic oxidation of aluminum and aluminum alloys (e.g. based on boric acid, citric acid, sulfuric acid, oxalic acid, chromic acid, alkylsulfonic acids, carboxylic acids, alkali carbonates, alkali phosphates, phosphoric acid, hydrofluoric acid).
  • Typical current densities for the process are between 1-50 A / dm 2 depending on the electrolyte system. Since the process works with constant current, a voltage arises. This is typically in a range of 10-120 V.
  • the electrolyte temperature is between 0-65 ° C.
  • the hardness of the layer can be influenced, for example, by choosing the electrolyte temperature. In electrolytes based on sulfuric acid or oxalic acid obtain particularly hard layers at low electrolyte temperatures (e.g. 0-10 ° C).
  • a nanoporous oxide layer covering the entire surface is formed from densely assembled oxide cells with hexagonal cross sections. These pores are open towards the electrolyte side. The pore diameter depends on the type of electrolyte used.
  • the oxide layer can form locally in different phases (see Figure 1b ). Tests have shown in a sulfuric acid direct current process that the phases contained in an AS alloy coating behave differently during the anodic treatment in terms of oxide layer thickness and pore size at the microscopic level. This creates a microstructure that is different from the original, metallic surface. At the macroscopic level, the layer formation takes place very homogeneously.
  • Figure 2 shows an example of a scanning electron micrograph of the nanoporous surface structure of an anodized AS coating.
  • dyes organic or inorganic
  • functional pigments e.g. conductive, metallic particles, fullerenes, nanostructured particles
  • the coloring and properties of the layer such as the electrical conductivity, hardness, corrosion protection , antibacterial properties, can be tailored.
  • the advantageously subsequent compression step also called sealen, closes the pore structure by absorbing water of crystallization and prevents e.g. a further absorption of dyes or functional pigments.
  • the compression can be achieved by steam or hot water treatment. Temperatures of at least 90 ° C., particularly advantageously at least 95 ° C., have proven to be advantageous for this.
  • the compression time depends on the oxide layer thickness. Here, the compression time is increased as the oxide layer thickness increases. Additives such as Metal salts improve the corrosion resistance and color stability during compression.
  • the aluminum-based coating is particularly well suited for hot or cold forming.
  • the method according to the invention comprises the production of a steel sheet or steel strip with an aluminum-based coating, an aluminum-based coating being applied to the steel sheet or steel strip as a coating, characterized in that the coated steel sheet or steel strip with the coating after the hot-dip process and before the forming process the hot or cold forming is subjected to a plasma oxidation and / or a hot water treatment and / or a treatment in water vapor, an aluminum oxide and / or hydroxide covering layer being formed on the surface of the coating with the formation of oxides or hydroxides.
  • the coating can advantageously be produced in a molten bath with an Si content of 8 to 12% by weight, an Fe content of 1 to 4% by weight, the rest being aluminum.
  • the optional hot water treatment or the treatment under steam is advantageously carried out at temperatures of at least 90 ° C., particularly advantageously at least 95 ° C.
  • Another method according to the invention comprises the production of a steel sheet or steel strip with an aluminum-based coating, wherein an aluminum-based coating is applied to the steel sheet or steel strip as a coating, the steel sheet or steel strip with the coating after the hot-dip process and before the forming process of anodic oxidation is subjected to, wherein on the surface of the coating with formation of oxides or hydroxides an aluminum oxide and / or hydroxide-containing top layer is formed, characterized in that the coating in a molten bath with an Si content of 8 to 12% by weight, a Fe content of 1 to 4% by weight, rest of aluminum is produced.
  • the cover layer is applied to the surface of the coating in a continuous process.
  • the anodic oxidation according to the invention is advantageously carried out in a medium based on boric acid, citric acid, sulfuric acid, oxalic acid, chromic acid, alkylsulfonic acids, carboxylic acids, alkali metal carbonates, alkali metal phosphates, phosphoric acid or hydrofluoric acid.
  • the aluminum-based coating produced by the method according to the invention is particularly suitable for hot or cold forming.
  • the invention comprises a press-hardened component made of the steel sheets or steel strips provided with an aluminum-based coating, produced by the previously described method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electrochemistry (AREA)
  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung von pressgehärteten Bauteilen aus Stahlblechen oder Stahlbändern mit einer aluminiumbasierten Beschichtung für Stahlbleche oder Stahlbänder, wobei die Beschichtung einen im Schmelztauchverfahren aufgebrachten, aluminiumbasierten Überzug umfasst und wobei auf dem Überzug eine Aluminiumoxid und/oder -hydroxid enthaltene Deckschicht angeordnet ist. Zusätzlich betrifft die Erfindung ein pressgehärtetes Bauteil aus Stahlblechen oder Stahlbändern mit einer aluminiumbasierten Beschichtung, das nach dem vorgenannten Verfahren hergestellt ist.
  • Es ist bekannt, dass warmumgeformte Stahlbleche insbesondere im Automobilbau immer häufiger Verwendung finden. Durch den auch als Presshärten bezeichneten Prozess können hochfeste Bauteile erzeugt werden, die vorwiegend im Bereich der Karosserie eingesetzt werden. Das Presshärten kann grundsätzlich mittels zwei verschiedener Verfahrensvarianten durchgeführt werden, nämlich mittels des direkten oder indirekten Verfahrens. Während bei indirekten Verfahren die Prozessschritte des Umformens und Härtens getrennt voneinander ablaufen, finden sie beim direkten Verfahren in einem Werkzeug gemeinsam statt. Im Folgenden wird aber nur das direkte Verfahren betrachtet.
  • Beim direkten Verfahren wird eine Stahlblechplatine über die sogenannte Austenitisierungstemperatur (Ac3) aufgeheizt, anschließend wird die so erhitzte Platine in ein Formwerkzeug überführt und in einem einstufigen Umformschritt zum fertigen Bauteil umgeformt und hierbei durch das gekühlte Formwerkzeug gleichzeitig mit einer Geschwindigkeit, die über der kritischen Abkühlgeschwindigkeit des Stahls liegt, abgekühlt, so dass ein gehärtetes Bauteil erzeugt wird.
  • Bekannte warmumformbare Stähle für diesen Einsatzbereich sind zum Beispiel der Mangan-Bor-Stahl "22MnB5" und neuerdings auch luftvergütbare Stähle gemäß des europäischen Patentes EP 2 449 138 B1 .
  • Neben unbeschichteten Stahlblechen werden auch Stahlbleche mit einem Verzunderungsschutz für das Presshärten von der Automobilindustrie eingesetzt. Die Vorteile liegen hier neben der erhöhten Korrosionsbeständigkeit des fertigen Bauteils darin, dass die Platinen oder Bauteile im Ofen nicht verzundern, wodurch der Verschleiß der Pressenwerkzeuge durch abgeplatzten Zunder reduziert wird und die Bauteile vor der Weiterverarbeitung oft nicht aufwendig gestrahlt werden müssen.
  • Aus der kanadischen Offenlegungsschrift CA 2 918 863 A1 ist ein durch ein Schmelztauchverfahren aluminiumbeschichtetes Stahlband bekannt, dass nach dem Schmelztauchprozess, welcher in einem Schmelztauchbad mit einem niedrigen Si-Gehalt von 1,5 Gew.-% bis höchstens 6 Gew.-% durchgeführt wird, einer Wärmebehandlung bei 300 bis 460°C unterzogen wird, die die Diffusion von Si in der Beschichtung fördert. Es ist anzunehmen, dass während dieser Behandlung eine native Oxidschicht gebildet wird. Das so hergestellte Stahlband soll exzellente Eigenschaften bei Totalreflexion und eine verbesserte Korrosionsbeständigkeit aufweisen. Außerdem ist eine Aufgabe, dass das Aussehen des Stahlbandes trotz einer Anodisierungsbehandlung vergleichbar ist mit dem Aussehen eines gewöhnlichen aluminiumbeschichteten Stahlbandes.
  • Die europäische Patentanmeldung EP 0 575 926 A1 beschreibt eine aluminiumbasierte Beschichtung für metallische Produkte, insbesondere für Metallbleche. Die aluminiumbasierte Beschichtung wird mittels eines Schmelztauchverfahrens aufgebracht, wobei das Aluminiumbad Si: <10%, Fe: <1%, Mn: 0,5-2% und Rest Al enthält. Die beschichteten Produkte werden an Luft auf 300 °C und mit Wasser weiter auf ca. 40°C abgekühlt. Es kann angenommen werden, dass während dieser Behandlung eine native Oxidschicht gebildet wird. Die Beschichtung sorgt für eine verbesserte Beständigkeit der Produkte gegen Warm-Oxidation und Nass-Korrosion.
  • Auch die europäische Patentanmeldung EP 0 204 423 A2 offenbart ein Verfahren zur Herstellung aluminiumbeschichteter, eisenbasierter Folien, wobei ein Stahlband im Schmelztauchverfahren mit einer Aluminiumbeschichtung versehen wird und wobei das beschichtete Stahlband anschließend auf Foliendicke reduziert wird. Anschließend wird die derart beschichtete Folie einer Wärmebehandlung bei 600 °C bis 1200 °C unter Oxidationsatmosphäre unterzogen. Hierbei wird die Diffusion von Aluminium in die Basisstahlschicht gefördert und es entsteht eine poröse Aluminiumoxidschicht, die eine matte, graue Erscheinung aufweist.
  • In der Patentanmeldung GB 2 159 839 wird eine schmelztauchaluminiumbeschichtete Stahlfolie beschrieben, welche dazu geeignet ist, dass auf ihr eine dicke Schicht von dornartigen Nadelkristallen aus Aluminiumoxid wächst. Eine derart beschichtete Folie kann in der Automobilindustrie in Katalysatoren zur Abgasreinigung eingesetzt werden.
  • Verfahren zu Herstellung von beschichteten Stahlbändern werden auch in der europäischen Patentanmeldung EP 2 843 081 A1 und in der Offenlegungsschrift WO 2014/059476 A1 beschrieben.
  • Für das Presshärten sind derzeit die folgenden, durch Schmelztauchen aufgebrachten (Legierungs-) Beschichtungen bekannt: Aluminium-Silizium (AS), Zink-Aluminium (Z), Zink-Aluminium-Eisen (ZF/ Galvannealed), Zink-Magnesium-Aluminium-Eisen (ZM), sowie elektrolytisch abgeschiedene Beschichtungen aus Zink-Nickel oder Zink, wobei letztere vor der Warmumformung in eine Eisen-Zink-Legierungsschicht umgewandelt wird. Diese Korrosionsschutzbeschichtungen werden üblicherweise in kontinuierlichen Durchlaufverfahren auf das Warm- oder Kaltband aufgebracht.
  • Die deutsche Offenlegungsschrift DE 197 26 363 A1 beschreibt ein plattiertes Metallband mit einem Grundkörper aus einem kohlenstoffhaltigen Stahl, der ein oder beidseitig mit einem Auflagematerial aus einem Nichteisenmetall versehen ist. Als Auflagematerial werden Aluminium- oder eine Aluminiumlegierung vorgeschlagen. Auch wird das Auflagematerial einem Nitrieren oder einer anodischen Oxidation unterworfen, um die Verschleißfestigkeit und die Korrosionsbeständigkeit der Oberfläche des Auflagematerials zu erhöhen.
  • Aus der Patentschrift DE 10 2014 109 943 B3 ist die Herstellung eines Stahlprodukts mit einer metallischen Korrosionsschutzbeschichtung aus einer Aluminiumlegierung bekannt. Das kalt- oder warmgewalzte Stahlprodukt wird nach Aktivieren der Oberfläche, also der Entfernung einer passiven Oxidschicht von der Oberfläche, durch Eintauchen in ein schmelzflüssiges Beschichtungsbad beschichtet. Dieses schmelzflüssige Beschichtungsbad enthält neben Al und unvermeidbaren Verunreinigungen Mn und/oder Mg, Fe, Ti und/ oder Zr. Dies soll gegenüber AISi-Legierungen die Korrosionsbeständigkeit erhöhen. Diese Korrosionsschutzbeschichtung kann zusätzlich eloxiert werden. Die Herstellung von Bauteilen mittels Abschrecken von Vorprodukten aus presshärtbaren Stählen durch Warmumformen in einem Umformwerkzeug ist aus dem deutschen Patent DE 601 19 826 T2 bekannt. Hier wird eine zuvor oberhalb der Austenitisierungstemperatur auf 800 - 1200 °C erwärmte und ggf. mit einem metallischen Überzug aus Zink oder auf Basis von Zink versehene Blechplatine in einem fallweise gekühlten Werkzeug durch Warmumformung zu einem Bauteil umgeformt, wobei während des Umformens durch schnellen Wärmeentzug das Blech bzw. Bauteil im Umformwerkzeug eine Abschreckhärtung (Presshärtung) erfährt und durch das entstehende martensitische Härtegefüge die geforderten Festigkeitseigenschaften erreicht.
  • Die Herstellung von Bauteilen mittels Abschrecken von mit einer Aluminiumlegierung beschichteten Vorprodukten aus presshärtbaren Stählen durch Warmumformen in einem Umformwerkzeug ist aus dem deutschen Patent DE 699 33 751 T2 bekannt. Hier wird ein mit einer Aluminiumlegierung beschichtetes Blech vor einem Umformen auf über 700 °C erwärmt, wobei eine intermetallisch legierte Verbindung auf Basis von Eisen, Aluminium und Silizium auf der Oberfläche entsteht und nachfolgend das Blech umgeformt und mit einer Geschwindigkeit oberhalb der kritischen Abkühlgeschwindigkeit abkühlt.
  • Der Vorteil bei den aluminiumbasierten Überzügen liegt darin, dass neben einem größeren Prozessfenster (z.B. hinsichtlich der Erwärmungsparameter) die fertigen Bauteile vor der Weiterverarbeitung nicht gestrahlt werden müssen. Darüber hinaus besteht bei aluminiumbasierten Überzügen nicht die Gefahr von Flüssigmetallversprödung und es können sich keine Mikrorisse im oberflächennahen Substratbereich an den ehemaligen Austenitkorngrenzen ausbilden, die bei Tiefen über 10 µm einen negativen Effekt auf die Dauerfestigkeit haben können.
  • Eine Schwierigkeit bei der Verwendung von aluminiumbasierten Überzügen ist jedoch, dass der Überzug beim Aufheizen einer Stahlplatine im Rollenherdofen vor der Warmumformung mit den keramischen Transportrollen reagieren kann, was die Lebensdauer der Ofenrollen signifikant reduziert. Darüber hinaus ist der Verschleiß der Werkzeuge beim Presshärten durch den im Zuge der Erwärmung mit Eisen durchlegierten Aluminium-Silizium-Überzug sehr hoch. Zudem führt eine ungleichmäßige Ausbildung der Oberflächenstruktur oder der Dicke des Überzugs im Zuge der Erwärmung zu Schweißproblemen, insbesondere beim in der Automobilindustrie häufig verwendeten Widerstandspunktschweißen, bedingt durch lokal variierende elektrische Widerstände an der Bauteiloberfläche.
  • Aber auch beim Kaltumformen von aluminiumbasierten Überzügen treten Probleme auf. Zum Beispiel ist der Abrieb bei der Umformung im Werkzeug gegenüber Standard Zinküberzügen deutlich höher, was den Werkzeugverschleiß und Wartungsaufwand erhöht und zu Fehlern bei Folgeteilen durch das Einpressen des Abriebs führen kann.
  • Aufgabe der Erfindung ist es deshalb, ein Verfahren zur Herstellung von pressgehärteten Bauteilen aus Stahlblechen oder Stahlbändern und ein pressgehärtetes Bauteil aus derartigen Stahlblechen oder Stahlbändern anzugeben.
  • Für das erfindungsgemäße Presshärten von Bauteilen aus den mit einer aluminiumbasierten Beschichtung versehenen Stahlblechen oder Stahlbändern wird ein Verfahren bereitgestellt, dadurch gekennzeichnet, dass die Stahlbleche oder Stahlbänder mit dem Ziel einer Härtung zumindest bereichsweise auf eine Temperatur über Ac3 erhitzt werden, anschließend bei dieser Temperatur umgeformt und danach mit einer Geschwindigkeit abgekühlt werden, die zumindest bereichsweise oberhalb der kritischen Abkühlgeschwindigkeit liegt, wobei die aluminiumbasierte Beschichtung ein im Schmelztauchverfahren aufgebrachter Überzug ist, wobei die Beschichtung nach dem Schmelztauchprozess und vor der Erwärmung auf Umformtemperatur einer Behandlung unter anodisierenden Bedingungen und/oder Plasmaoxidation und/oder einer Heißwasserbehandlung und/oder einer Behandlung in Wasserdampf unterzogen wird, bei der die Beschichtung an der Oberfläche unter Ausbildung von Oxiden oder Hydroxiden oxidiert und der Überzug in einem Schmelzbad mit einem Si-Gehalt von 8 bis 12 Gewichts-%, einem Fe-Gehalt von 1 bis 4 Gewichts-%, Rest Aluminium hergestellt wird.
  • Die Lehre der Erfindung umfasst eine aluminiumbasierte Beschichtung für Stahlbleche oder Stahlbänder, wobei die Beschichtung einen im Schmelztauchverfahren aufgebrachten Überzug umfasst, auf dem Überzug eine Aluminiumoxid und/oder -hydroxid enthaltene Deckschicht angeordnet ist, welche durch eine Plasmaoxidation und/oder eine Heißwasserbehandlung bei Temperaturen von mindestens 90 °C, vorteilhaft mindestens 95 °C und/oder eine Behandlung in Wasserdampf bei Temperaturen von mindestens 90 °C, vorteilhaft mindestens 95 °C hergestellt wurde. Hierbei kann vorteilhafter Weise der Überzug in einem Schmelzbad mit einem Si-Gehalt von 8 bis 12 Gewichts-%, einem Fe-Gehalt von 1 bis 4 Gewichts-%, Rest Aluminium hergestellt werden.
  • Als aluminiumbasierte Überzüge werden nachfolgend metallische Überzüge verstanden, bei denen Aluminium der Hauptbestandteil in Massenprozent ist. Beispiele für mögliche aluminiumbasierte Überzüge sind Aluminium, Aluminium-Silizium (AS), Aluminium-Zink-Silizium (AZ), sowie dieselben Überzüge mit Beimischungen zusätzlicher Elemente, wie z.B. Magnesium, Mangan, Titan und seltenen Erden.
    Außerdem umfasst die Lehre der Erfindung eine aluminiumbasierte Beschichtung für Stahlbleche oder Stahlbänder, wobei die Beschichtung einen im Schmelztauchverfahren aufgebrachten, aluminiumbasierten Überzug umfasst und wobei auf dem Überzug eine Aluminiumoxid und/oder -hydroxid enthaltene Deckschicht angeordnet ist, welche durch anodische Oxidation hergestellt wurde, dadurch gekennzeichnet, dass der Überzug in einem Schmelzbad mit einem Si-Gehalt von 8 bis 12 Gewichts-%, einem Fe-Gehalt von 1 bis 4 Gewichts-%, Rest Aluminium hergestellt wurde.
    Durch die Ausbildung einer definierten Aluminiumoxid und/oder-hydroxid enthaltenen Deckschicht auf der aluminiumbasierten Beschichtung können die vorgenannten negativen Aspekte von aluminiumbasierten Beschichtungen jedoch deutlich reduziert oder sogar ganz verhindert werden.
  • Die Aluminiumoxid und/oder -hydroxid enthaltenen Deckschichten wirken dabei bei der Warmumformung als Trennschicht zwischen Überzug und den keramischen Ofenrollen. Somit wird ein Übertrag metallischen Materials auf die Ofenrollen wirksam vermieden. Weiterhin trennt die Aluminiumoxid und/oder -hydroxid enthaltene Deckschicht den mit Eisen auflegierten, aluminiumbasierten Überzug des Stahlbandes von der metallischen Werkzeugoberfläche des Umformwerkzeugs und dient so als trennende Umformhilfe. Dies reduziert Verschweißungen und Abrasion und damit Werkzeugverschleiß und -wartung, da die Schichten durch das Presshärten deutlich weniger verändert und damit deutlich weniger abrasiv werden, als beim Stand der Technik. Dargestellt wird dies in den Figuren 1 a) bis d). Dargestellt ist ein Vergleich beispielhafter, rasterelektronenmikroskopischer Oberflächenaufnahmen eines AS-Überzugs a) unbehandelter Ausgangszustand ohne Presshärten, b) anodisierter Zustand ohne Presshärten, c) unbehandelter Zustand nach Presshärten, d) anodisierter Zustand nach Presshärten.
  • Eine vor der Erzeugung der Deckschicht vorgeschaltete alkalische Vorbehandlung mit sich fallweiser anschließender saurer Dekapierung beispielsweise mit Schwefelsäure oder Salpetersäure und abschließendem Spülen des mit einer aluminiumbasierten Beschichtung versehenen Stahlbleches oder Stahlbandes, entfernt dabei vorteilhaft die bereits durch atmosphärische Oxidation entstandene, willkürlich ausgebildete Schicht und schafft dadurch einen definierten Ausgangszustand für die nachfolgend erzeugte Deckschicht.
    Die Erzeugung von definierten, Aluminiumoxid und/oder -hydroxid enthaltenen Deckschichten auf einem Stahlband mit einem aluminiumbasierten Überzug ist jedoch großserientechnisch eine Herausforderung.
  • Erfindungsgemäß wird die Aluminiumoxid und/oder-hydroxid enthaltene Deckschicht daher mittels Plasmaoxidation erzeugt. Zusätzlich oder alternativ kann eine Heißwasserbehandlung bei Temperaturen von mindestens 90 °C, vorteilhaft mindestens 95 °C oder eine Behandlung in Wasserdampf bei Temperaturen von mindestens 90 °C, vorteilhaft mindestens 95 °C erfolgen. Diese Art der Behandlung des Überzugs oder der Deckschicht wird auch Verdichtung genannt.
    Des Weiteren wird die Aluminiumoxid und/oder -hydroxid enthaltende Deckschicht in einem anodischen Verfahren erzeugt. Hierbei wird der Überzug in einem Schmelzbad mit einem Si-Gehalt von 8 bis 12 Gewichts-%, einem Fe-Gehalt von 1 bis 4 Gewichts-%, Rest Aluminium hergestellt. Das anodische Verfahren ist im Vergleich zu einem chemischen Oxidationsverfahren erheblich vielseitiger. Besonders vorteilhaft ist es, dieses Verfahren in einem kontinuierlichen Prozess an einem beschichteten Stahlband durchzuführen.
  • Die anodische Oxidation einer Aluminium(legierungs)schicht kann sowohl im Gleichstrom- als auch im Wechselstromverfahren durchgeführt werden.
  • Werden Aluminium oder Aluminiumschichten z.B. in einem Schwefelsäure-Elektrolyten anodisch behandelt, so wandern in dem sich bildenden elektrischen Feld die negativ geladenen Sulfat-Anionen der Schwefelsäure und die OH--Ionen des Wassers zur Anode. An der Anode reagieren diese mit Al3+-Ionen unter Bildung von Aluminiumoxid. Die Schichtdicke ist gemäß der Faraday'schen Gesetze abhängig von der geflossenen Ladungsmenge. Dadurch wird es ermöglicht, die Dicke der Oxidschicht definiert einzustellen, um sie so maßgeschneidert für den jeweiligen Verwendungszweck anzupassen.
  • Für die anodische Oxidation von Aluminium wird in der Literatur bei einem Stromdurchgang von 1 Ah/dm2 eine Schichtdicke von etwa 20 µm gebildet.
  • Als vorteilhaft haben sich in Versuchen Schichten erwiesen, die dick genug sind, um eine Trennung zwischen Ofenrolle und Überzug zu gewährleisten. Beispielhaft haben sich mittlere Schichtdicken von mindestens 0,05 µm und höchstens 4,0 µm als vorteilhaft erwiesen, die gleichzeitig noch eine gute Schweißbarkeit, insbesondere Punktschweißbarkeit, ermöglichen.
  • Als besonders vorteilhaft haben sich Schichten erwiesen, die im Mittel zwischen 0,1 und 1,0 µm liegen, da hier ein deutlich positiver Effekt im Hinblick auf eine Verringerung des Werkzeugverschleißes gefunden wurde und noch keinerlei Einschränkung im Hinblick auf die Schweißeignung existiert.
  • Für die anodische Oxidation von Aluminium und Aluminiumlegierungen kommen unterschiedliche Elektrolytsysteme in Frage (z.B. auf Basis von Borsäure, Zitronensäure, Schwefelsäure, Oxalsäure, Chromsäure, Alkylsulfonsäuren, Carbonsäuren, Alkalicarbonate, Alkaliphosphate, Phosphorsäure, Flusssäure).
  • Typische Stromdichten für den Prozess liegen je nach Elektrolytsystem zwischen 1-50 A/dm2. Da bei dem Prozess mit konstantem Strom gearbeitet wird, stellt sich eine Spannung ein. Diese liegt typischerweise in einem Bereich von 10-120 V. Die Elektrolyttemperatur beträgt ja nach Elektrolytsystem zwischen 0-65 °C. Über die Wahl der Elektrolyttemperatur kann beispielhaft die Härte der Schicht beeinflusst werden. In Elektrolyten auf Basis von Schwefelsäure oder Oxalsäure werden besonders harte Schichten bei geringen Elektrolyttemperaturen (z.B. 0-10 °C) erhalten.
  • Während der anodischen Oxidation bildet sich eine die gesamte Oberfläche überdeckende, nanoporöse Oxidschicht aus dicht zusammen gesetzten Oxidzellen mit hexagonalen Querschnitten. Diese Poren sind zur Elektrolytseite hin geöffnet. Der Porendurchmesser hängt von der Art des verwendeten Elektrolyten ab. Je nach lokaler, chemischer Zusammensetzung des darunter liegenden Überzugs kann sich die oxidische Schicht lokal in verschiedenen Phasen ausbilden (s. Figur 1b). In Versuchen wurde in einem Schwefelsäure-Gleichstrom-Verfahren gezeigt, dass sich die in einem AS-Legierungsüberzug enthaltenen Phasen während der anodischen Behandlung in Bezug auf Oxidschichtdicke und Porengröße auf mikroskopischer Ebene unterschiedlich verhalten. Damit bildet sich eine von der ursprünglichen, metallischen Oberfläche unterschiedliche Mikrostruktur aus. Auf makroskopischer Ebene erfolgt die Schichtbildung sehr homogen.
    Figur 2 zeigt beispielhaft eine rasterelektronenmikroskopische Aufnahme der nanoporösen Oberflächenstruktur eines anodisierten AS-Überzugs. In die nanoporöse Schicht, die gebildet wird, können Farbstoffe (organisch oder anorganisch) oder Funktionspigmente (z.B. leitfähige, metallische Partikel, Fullerene, nanostrukturierte Partikel) eingelagert werden, mit denen Färbung und Eigenschaften der Schicht wie zum Beispiel die elektrische Leitfähigkeit, Härte, Korrosionsschutz, antibakterielle Eigenschaften, maßgeschneidert werden können.
  • Der sich vorteilhaft anschließende Verdichtungsschritt, auch Sealen genannt, schließt die Porenstruktur durch Kristallwasseraufnahme und verhindert z.B. eine weitere Aufnahme von Farbstoffen oder Funktionspigmenten. Die Verdichtung kann durch eine Wasserdampf- oder eine Heißwasserbehandlung erreicht werden. Als vorteilhaft haben sich hierfür Temperaturen von mindestens 90 °C, besonders vorteilhaft mindestens 95 °C, herausgestellt. Die Verdichtungszeit ist abhängig von der Oxidschichtdicke. Hierbei wird bei zunehmender Oxidschichtdicke auch die Verdichtungszeit erhöht. Vorteilhaft können Zusätze wie z.B. Metallsalze während der Verdichtung die Korrosionsbeständigkeit und Farbbeständigkeit verbessern.
  • Im Allgemeinen stört die Gegenwart von Eisen die anodische Oxidation von Aluminium- und Aluminiumlegierungen. Deshalb muss sichergestellt werden, dass Eisen aus dem Stahlsubstrat nicht mit dem Elektrolyten in Kontakt kommt. Bei beschichteten Platinen müssen die Schnittkanten deshalb aufwändig geschützt werden (z.B. durch Flansche, Kantenmasken, Beschichtungen, Anstriche, Folien). Bei der Anodisierung von beschichtetem (unbesäumtem) Stahlband liegt kein Stahl an den Bandkanten frei, da diese beim Schmelztauchprozess mit beschichtet werden. Das vereinfacht den Prozess der anodischen Oxidation erheblich und sichert zugleich seine Stabilität.
  • Darüber hinaus wäre es denkbar, nur eine einseitige erfindungsgemäße Oberflächenbehandlung der aluminiumbasierten Schicht durchzuführen, um z.B. nur einen positiven Effekt im Hinblick auf die Beständigkeit der Ofenrollen zu erzielen. Auch eine auf beiden Seiten unterschiedliche erfindungsgemäße Oberflächenbehandlung ist vorstellbar.
  • Bei Versuchen wurde gezeigt, dass bei Proben, die einer Wasserdampfbehandlung zum Zwecke des Verdichtens unterzogen wurden, auch ohne vorhergehende Anodisierung oder Plasmaoxidation eine dünne Oxidschicht erzielt wurde, die erfindungsgemäß verwendet werden kann.
  • Vorteilhaft ist der aluminiumbasierte Überzug mit besonderer Eignung zum Warm- oder Kaltumformen ausgestattet.
  • Das erfindungsgemäße Verfahren umfasst die Herstellung eines Stahlbleches oder Stahlbandes mit einer aluminiumbasierten Beschichtung, wobei als Beschichtung ein aluminiumbasierter Überzug im Schmelztauchverfahren auf das Stahlblech oder Stahlband aufgebracht wird, dadurch gekennzeichnet, dass das beschichtete Stahlblech oder Stahlband mit dem Überzug nach dem Schmelztauchprozess und vor dem Umformprozess des Warm- oder Kaltumformens einer Plasmaoxidation und/oder einer Heißwasserbehandlung und/oder einer Behandlung in Wasserdampf unterzogen wird, wobei auf der Oberfläche des Überzugs unter Ausbildung von Oxiden oder Hydroxiden eine Aluminiumoxid und/oder -hydroxid enthaltene Deckschicht ausgebildet wird. Hierbei kann vorteilhafter Weise der Überzug in einem Schmelzbad mit einem Si-Gehalt von 8 bis 12 Gewichts-%, einem Fe-Gehalt von 1 bis 4 Gewichts-%, Rest Aluminium hergestellt werden.
  • Vorteilhaft erfolgt die optionale Heißwasserbehandlung oder die Behandlung unter Wasserdampf bei Temperaturen von wenigstens 90 °C, besonders vorteilhaft wenigstens 95 °C.
  • Ein weiteres erfindungsgemäßes Verfahren umfasst die Herstellung eines Stahlbleches oder Stahlbandes mit einer aluminiumbasierten Beschichtung, wobei als Beschichtung ein aluminiumbasierter Überzug im Schmelztauchverfahren auf das Stahlblech oder Stahlband aufgebracht wird, wobei das Stahlblech oder Stahlband mit dem Überzug nach dem Schmelztauchprozess und vor dem Umformprozess einer anodischen Oxidation unterzogen wird, wobei auf der Oberfläche des Überzugs unter Ausbildung von Oxiden oder Hydroxiden eine Aluminiumoxid und/oder -hydroxid enthaltene Deckschicht ausgebildet wird, dadurch gekennzeichnet, dass der Überzug in einem Schmelzbad mit einem Si-Gehalt von 8 bis 12 Gewichts-%, einem Fe-Gehalt von 1 bis 4 Gewichts-%, Rest Aluminium hergestellt wird.
  • In einer vorteilhaften Ausgestaltung der Erfindung wird die Deckschicht in einem kontinuierlichen Prozess auf die Oberfläche des Überzugs aufgebracht.
  • Die erfindungsgemäße anodische Oxidation erfolgt vorteilhaft in einem Medium auf Basis von Borsäure, Zitronensäure, Schwefelsäure, Oxalsäure, Chromsäure, Alkylsulfonsäuren, Carbonsäuren, Alkalicarbonate, Alkaliphosphate, Phosphorsäure oder Flusssäure.
  • Als vorteilhafte Verfahrensparameter für die Anodisierung haben sich Stromdichten zwischen 1-50 A/dm2, eine Spannung von 10-120 V und eine Elektrolyttemperatur zwischen 0-65 °C herausgestellt.
  • In einer vorteilhaften Weiterbildung der Erfindung ist vorgesehen, dass nach dem Schritt der Anodisierung und/oder Plasmaoxidation der Beschichtung und vor einer Verdichtung des Überzugs durch Heißwasserbehandlung und/oder einer Behandlung in Wasserdampf, in die Deckschicht der Beschichtung Farbpigmente und/oder die Funktion der Deckschicht beeinflussende Pigmente eingebracht werden. Hierdurch ist eine freie Farbgestaltung der Oberfläche des beschichteten Stahlblechs oder des Stahlbandes möglich oder es können die funktionalen Eigenschaften der Beschichtung im Hinblick auf die gestellten Anforderungen wie oben beschrieben gezielt eingestellt werden.
  • In einer weiteren vorteilhaften Weiterbildung der Erfindung ist der durch das erfindungsgemäße Verfahren hergestellte aluminiumbasierte Überzug mit besonderer Eignung zum Warm- oder Kaltumformen ausgestattet.
  • Des Weiteren umfasst die Erfindung ein pressgehärtetes Bauteil aus den mit einer aluminiumbasierten Beschichtung versehenen Stahlblechen oder Stahlbändern, hergestellt nach dem zuvor beschriebenen Verfahren.
  • Während der Untersuchungen haben sich weitere, auch für kaltumgeformte Bauteile, oder die Kaltumformung selbst betreffende, vorteilhafte Eigenschaften herausgestellt:
    1. a) Die Aluminiumoxid und/oder -hydroxid enthaltene Deckschicht trennt den metallischen, aluminiumbasierten Überzug des Stahlbandes von der metallischen Werkzeugoberfläche des Umformwerkzeugs und dient so als trennende Umformhilfe. Dies reduziert Verschweißungen und erweitert den Umformbereich durch Absenkung des Reibwiderstandes und Vermeidung des sogenannten Stick-Slip Effektes. Dieses Problem tritt insbesondere bei langsamen Umformgeschwindigkeiten und sehr hochfesten Werkstoffen auf und kann das Prozessfenster stark begrenzen. Durch die Schicht wird das Prozessfenster erheblich zu kleineren Geschwindigkeiten und höheren Umformkräften geöffnet und damit der Umformprozess wesentlich robuster. Weiterhin kommt dem Umformprozess zugute, dass aufgrund der lateral heterogenen Ausbildung der Aluminiumoxid und/oder -hydroxid enthaltene Deckschicht kein flächiger, sondern ein reduzierter Kontakt zwischen Werkstück und Werkzeug zustande kommt.
    2. b) Gleichzeitig kann die porige Oberfläche der Aluminiumoxid und/oder -hydroxid enthaltenen Deckschicht das Ölaufnahmevermögen der Oberfläche vergrößern und den Effekt der Ölverschiebung stark reduzieren. Stahlcoils, das heißt, zu Rollen aufgewickelte Stahlbänder, werden bereits beim Hersteller geölt, damit zum einen ein Korrosionsschutz vor der Verarbeitung beim Kunden gewährleistet ist, und zum anderen eine Vorbeölung für nachfolgende Umformprozesse gegeben ist. Bei einer längeren Zwischenlagerung und erhöhten Temperaturen kann dieses Öl aus den Coilwindungen heraus laufen. Damit fehlt es auf der Blechoberfläche, was zur Notwendigkeit einer aufwändigen Nachbeölung führt. Mit der ausgebildeten Deckschicht kann dies verhindert werden.
    3. c) Die größere Härte der Aluminiumoxid und/oder -hydroxid enthaltenen Deckschicht von bis zu 350HV 0,025 gegenüber dem metallischen Überzug ermöglicht die Verwendung dieses Systems für Anwendungen, bei denen es auf glatte, rollwiderstandminimierte Oberflächen ankommt, wie Lagerflächen, Laufbuchsen oder Auszüge von z.B. Schubladen. Auch hier besteht bei metallischen Überzügen die Gefahr der Kaltverschweißung und damit des Aufbaus von Material auf Lageroberflächen, das die Funktion eines Gleit- oder Wälzlagers erheblich beeinflusst.
    4. d) Die Aluminiumoxid und/oder -hydroxid enthaltene Deckschicht erzeugt unter korrosiver Belastung eine Barrierewirkung, die den metallischen Korrosionsüberzug selbst schützt. Metallische Überzüge schützen das Stahlfeinblech durch a) Abdeckung und b) kathodischen Korrosionsschutz bei Verletzung der Oberfläche. In Verbindung mit einer weiteren Barriereschicht (z.B. Lack) spricht man von sogenannten Duplexschichtsystemen. Lacke besitzen zwar eine hohe Dampfsperre gegenüber Wasser, sind jedoch i.d.R. nicht sehr abriebfest. Die Aluminiumoxid und/oder -hydroxid enthaltene Deckschicht löst dieses Problem durch Kombination einer Barrierewirkung mit einer hohen Abriebfestigkeit. Weiterhin sind die Schichten deutlich temperaturbeständiger, als alle bekannten Lacke und ermöglichen so den Einsatz in korrosiven Umgebungen auch bei erhöhter Temperatur.
    5. e) Darüber hinaus wird Oxidwachstum bei hohen Temperaturen sehr stark reduziert, da der zum Wachstum einer Oxidschicht notwendige lonenaustausch durch die Oberfläche aufgrund der atomar kompakten Ausbildung der Schicht unterbunden wird. Ebenso wird ein Abdampfen des Überzuges effizient unterbunden.
    6. f) Ein weiterer Vorteil gegenüber einer rein metallischen Oberfläche besteht in der erhöhten Beständigkeit gegenüber sauren und insbesondere alkalischen Medien. Hier wirkt die Aluminiumoxid und/oder -hydroxid enthaltene Deckschicht wie eine Trennschicht, die vor der beizenden Wirkung dieser Medien schützt.
    7. g) Gleichzeitig ist die Deckschicht auch ohne vorhergehende Phosphatierung sehr gut lackierbar, da sie aufgrund ihrer anorganischen Natur eine ideale chemische und aufgrund der großen Oberfläche (bei Entfall des Verdichtungsschrittes) sehr gute physikalische Vernetzung ermöglichen.
    8. h) Die Aluminiumoxid und/oder -hydroxid enthaltene Deckschicht erhöht den elektrischen Widerstand der Oberfläche effizient, so dass je nach Schichtdicke (auch über 20 µm) elektrische Durchschlagsspannungen von bis zu 2 kV ohne Schutzlack erzielt werden.
    9. i) Aufgrund der Porosität der Aluminiumoxid und/oder -hydroxid enthaltenen Deckschichten besteht vor dem Verdichtungsprozess die Möglichkeit, Pigmente einzubetten. Im Bereich dekorativer Eloxalschichten auf Aluminiumbauteilen sind bunt eingefärbte Aluminiumoberflächen bekannt und stark verbreitet. Neben Farbinformationen können mittels solcher Pigmente aber auch andere, technische Eigenschaften maßgeschneidert werden, wie z.B. elektrische Leitfähigkeit oder antibakterielle Wirkung.
  • Nachfolgend werden einige mögliche Prozessrouten für die Herstellung von aluminiumbasierten Stahlblechen oder Stahlbändern für den Warm- oder Kaltumformprozess beschrieben. Diese ergeben sich aus dem allgemeinen Prozessschema gemäß Figur 3.
  • Beispielprozess I:
    1. A) Schmelztauchveredlung (aluminiumbasierter Überzug)
    2. B) Anodisierung
      1. 1. Alkalische Vorbehandlung (mit / ohne Tensiden)
      2. 2. Saure Dekapierung (z.B. Schwefelsäure, Salpetersäure...)
      3. 3. Spülen
      4. 4. Anodisierungsprozess
      5. 5. Spülen
      6. 6. Färben / Applikation von Funktionspigmenten
      7. 7. Spülen
      8. 8. Thermische Wasser- / Wasserdampfbehandlungsprozess (Verdichtungsprozess)
      9. 9. Trocknen
    3. C) Warmumformprozess
    Beispielprozess II:
    1. A) Schmelztauchveredlung (aluminiumbasierter Überzug)
    2. B) Anodisierung
      1. 1. Alkalische Vorbehandlung (mit / ohne Tensiden)
      2. 2. Saure Dekapierung (z.B. Schwefelsäure, Salpetersäure...)
      3. 3. Spülen
      4. 4. Anodisierungsprozess
      5. 5. Spülen
      6. 6. Färben / Applikation von Funktionspigmenten
      7. 7. Spülen
      8. 8. Thermische Wasser- / Wasserdampfbehandlungsprozess (Verdichtungsprozess)
      9. 9. Trocknen
    3. C) Kaltumformprozess
    Beispielprozess III:
    1. A) Schmelztauchveredlung (aluminiumbasierter Überzug)
    2. B) Plasmaoxidation
      1. 1. Alkalische Vorbehandlung (mit / ohne Tensiden)
      2. 2. Saure Dekapierung (z.B. Schwefelsäure, Salpetersäure...)
      3. 3. Spülen
      4. 4. Trocknen
      5. 5. Plasmaätzen
      6. 6. Plasmaoxidationsprozess
    3. C) Warmumformprozess oder Kaltumformprozess
    Beispielprozess IV:
    1. A) Schmelztauchveredlung (aluminiumbasierter Überzug)
    2. B) Thermische Wasser- / Wasserdampfbehandlung
      1. 1. Alkalische Vorbehandlung (mit / ohne Tensiden)
      2. 2. Saure Dekapierung (z.B. Schwefelsäure, Salpetersäure...)
      3. 3. Spülen
      4. 4. Thermischer Wasser- / Wasserdampfbehandlungsprozess
      5. 5. Trocknen
    3. C) Warmumformprozess oder Kaltumformprozess

Claims (12)

  1. Verfahren zur Herstellung von pressgehärteten Bauteilen aus Stahlblechen oder Stahlbändern mit einer aluminiumbasierten Beschichtung, wobei als Beschichtung ein aluminiumbasierter Überzug im Schmelztauchverfahren auf das Stahlblech oder Stahlband aufgebracht wird, wobei das Stahlblech oder Stahlband mit dem Überzug nach dem Schmelztauchprozess und vor dem Umformprozess einer Plasmaoxidation und/oder einer Heißwasserbehandlung und/oder einer Behandlung in Wasserdampf und/oder einer anodischen Oxidation unterzogen wird, wobei auf der Oberfläche des Überzugs unter Ausbildung von Oxiden oder Hydroxiden eine Aluminiumoxid und/oder -hydroxid enthaltene Deckschicht ausgebildet wird, wobei die Stahlbleche oder Stahlbänder mit dem Ziel einer Härtung zumindest bereichsweise auf eine Temperatur über Ac3 erhitzt werden, anschließend bei dieser Temperatur umgeformt und danach mit einer Geschwindigkeit abgekühlt werden, die zumindest bereichsweise oberhalb der kritischen Abkühlgeschwindigkeit liegt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Überzug in einem Schmelzbad mit einem Si-Gehalt von 8 bis 12 Gewichts-%, einem Fe-Gehalt von 1 bis 4 Gewichts-%, Rest Aluminium hergestellt wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Heißwasserbehandlung oder die Behandlung unter Wasserdampf bei Temperaturen von wenigstens 90 °C, vorteilhaft wenigstens 95 °C, erfolgt.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Deckschicht in einem kontinuierlichen Prozess auf die Oberfläche des Überzugs aufgebracht wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Deckschicht mit einer mittleren Schichtdicke kleiner als 4 µm und größer als 0,05 µm aufgebracht wird.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Deckschicht mit einer mittleren Schichtdicke kleiner als 1,0 µm und größer als 0,1 µm aufgebracht wird.
  7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die anodische Oxidation in einem Medium auf Basis von Borsäure, Zitronensäure, Schwefelsäure, Oxalsäure, Chromsäure, Alkylsulfonsäuren, Carbonsäuren, Alkalicarbonate, Alkaliphosphate, Phosphorsäure, Flusssäure erfolgt.
  8. Verfahren nach Anspruch 1 oder 7, dadurch gekennzeichnet, dass die Anodisierung bei Stromdichten zwischen 1-50 A/dm2 und einer Spannung von 10-120 V und einer Elektrolyttemperatur zwischen 0-65 °C erfolgt.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass nach dem Schritt der Anodisierung und/oder Plasmaoxidation des Überzugs und vor einer Heißwasserbehandlung und/oder einer Behandlung in Wasserdampf, in die Deckschicht Farbpigmente und/oder die Funktion der Deckschicht beeinflussende Pigmente eingebracht werden.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass als funktionsbeeinflussende Pigmente, die elektrische Leitfähigkeit und/oder die antibakteriellen Eigenschaften der Deckschicht beeinflussende Elemente eingebracht werden.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass als funktionsbeeinflussende Pigmente leitfähige, metallische Partikel, Fullerene, nanostrukturierte Partikel eingebracht werden.
  12. Pressgehärtetes Bauteil aus Stahlblechen oder Stahlbändern mit einer aluminiumbasierten Beschichtung, hergestellt nach einem Verfahren gemäß mindestens einem der Ansprüche 1 bis 11.
EP17703386.7A 2016-02-08 2017-02-02 Aluminiumbasierte beschichtung für stahlbleche oder stahlbänder und verfahren zur herstellung hierzu Active EP3414355B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102016102172 2016-02-08
DE102016102504.6A DE102016102504A1 (de) 2016-02-08 2016-02-12 Aluminiumbasierte Beschichtung für Stahlbleche oder Stahlbänder und Verfahren zur Herstellung hierzu
PCT/EP2017/052266 WO2017137304A1 (de) 2016-02-08 2017-02-02 Aluminiumbasierte beschichtung für stahlbleche oder stahlbänder und verfahren zur herstellung hierzu

Publications (2)

Publication Number Publication Date
EP3414355A1 EP3414355A1 (de) 2018-12-19
EP3414355B1 true EP3414355B1 (de) 2020-04-08

Family

ID=59382252

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17703386.7A Active EP3414355B1 (de) 2016-02-08 2017-02-02 Aluminiumbasierte beschichtung für stahlbleche oder stahlbänder und verfahren zur herstellung hierzu

Country Status (7)

Country Link
US (1) US10876195B2 (de)
EP (1) EP3414355B1 (de)
KR (1) KR102186771B1 (de)
CN (1) CN108699665B (de)
DE (1) DE102016102504A1 (de)
RU (1) RU2704340C1 (de)
WO (1) WO2017137304A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120116265A1 (en) 2010-11-05 2012-05-10 Houser Kevin L Surgical instrument with charging devices
KR102285532B1 (ko) 2017-02-21 2021-08-04 잘쯔기터 플래시슈탈 게엠베하 강판 또는 강 스트립을 코팅하기 위한 방법 및 그로부터 프레스 경화된 부품을 제조하는 방법
WO2018236785A1 (en) * 2017-06-20 2018-12-27 Board Of Trustees Of The University Of Arkansas PROCESS FOR FORMATION OF LARGE AREA METAL OXIDE NANOSTRUCTURES AND ITS APPLICATIONS
WO2019171157A1 (en) * 2018-03-09 2019-09-12 Arcelormittal A manufacturing process of press hardened parts with high productivity
DE102019100140A1 (de) * 2019-01-04 2020-07-09 Salzgitter Flachstahl Gmbh Aluminiumbasierte Beschichtung für Stahlflachprodukte zur Pressformhärtung von Bauteilen und Verfahren zur Herstellung hierzu
DE102019217496B4 (de) * 2019-11-13 2022-02-24 Volkswagen Aktiengesellschaft Verfahren zur Herstellung eines warmumgeformten und pressgehärteten Stahlblechbauteils
KR20210074910A (ko) * 2019-12-12 2021-06-22 삼성전자주식회사 누설 전류에 의한 진동 감소용 금속 하우징을 갖는 전자 장치 및 상기 금속 하우징을 제조하는 방법
CN111261743B (zh) * 2020-01-21 2023-09-19 太仓巨仁光伏材料有限公司 一种低温光伏焊带
US11441039B2 (en) * 2020-12-18 2022-09-13 GM Global Technology Operations LLC High temperature coatings to mitigate weld cracking in resistance welding
CN117396627A (zh) * 2021-07-14 2024-01-12 日本制铁株式会社 镀Al钢板、镀Al钢板的制造方法及热冲压成型体的制造方法
CN113441701B (zh) * 2021-07-16 2023-05-16 上海涟屹轴承科技有限公司 厚壁铝基双金属轴承的制造方法及厚壁铝基双金属轴承
CN114807806B (zh) * 2022-06-13 2023-03-17 常州市嘉瑞化工有限公司 一种三氟氯乙烯包装碳钢瓶的表面钝化工艺

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4624895A (en) * 1984-06-04 1986-11-25 Inland Steel Company Aluminum coated low-alloy steel foil
US4686155A (en) * 1985-06-04 1987-08-11 Armco Inc. Oxidation resistant ferrous base foil and method therefor
DE69128982T2 (de) * 1990-06-07 1998-08-27 Applied Materials Inc Verfahren zur Herstellung eines korrosionsbeständigen Schutzüberzugs auf Aluminiumsubstrat
IL99216A (en) * 1991-08-18 1995-12-31 Yahalom Joseph Protective coating for metal parts to be used at high temperatures
IT1254402B (it) * 1992-06-23 1995-09-14 Sviluppo Materiali Spa Rivestimento a base di alluminio per manufatti metallici.
JPH06116737A (ja) * 1992-10-05 1994-04-26 Kawasaki Steel Corp スポット抵抗溶接性、耐食性および加工性に優れたアルミニウム材料
DE19726363A1 (de) * 1997-06-21 1998-12-24 Schaeffler Waelzlager Ohg Verbundwerkstoff
FR2787735B1 (fr) 1998-12-24 2001-02-02 Lorraine Laminage Procede de realisation d'une piece a partir d'une bande de tole d'acier laminee et notamment laminee a chaud
FR2807447B1 (fr) 2000-04-07 2002-10-11 Usinor Procede de realisation d'une piece a tres hautes caracteristiques mecaniques, mise en forme par emboutissage, a partir d'une bande de tole d'acier laminee et notamment laminee a chaud et revetue
EP1651789B1 (de) 2003-07-29 2010-08-25 Voestalpine Stahl GmbH Verfahren zum herstellen von geharteten bauteilen aus stahlblech
ES2656070T3 (es) * 2007-02-23 2018-02-23 Tata Steel Ijmuiden Bv Procedimiento de conformación termomecánica de un producto final con muy alta resistencia y un producto producido por el mismo
KR101008042B1 (ko) 2009-01-09 2011-01-13 주식회사 포스코 내식성이 우수한 알루미늄 도금강판, 이를 이용한 열간 프레스 성형 제품 및 그 제조방법
JP2010263037A (ja) 2009-05-01 2010-11-18 Fujifilm Corp 金属複合基板およびその製造方法
DE102010024664A1 (de) 2009-06-29 2011-02-17 Salzgitter Flachstahl Gmbh Verfahren zum Herstellen eines Bauteils aus einem lufthärtbaren Stahl und ein damit hergestelltes Bauteil
DE102009053260B4 (de) 2009-11-05 2011-09-01 Salzgitter Flachstahl Gmbh Verfahren zum Beschichten von Stahlbändern und beschichtetes Stahlband
DE102011053634B3 (de) 2011-09-15 2013-03-21 Benteler Automobiltechnik Gmbh Verfahren sowie Vorrichtung zur Erwärmung einer vorbeschichteten Platine aus Stahl
DE102012002079B4 (de) 2012-01-30 2015-05-13 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines kalt- oder warmgewalzten Stahlbandes aus einem höchstfesten Mehrphasenstahl
DE102013004905A1 (de) 2012-03-23 2013-09-26 Salzgitter Flachstahl Gmbh Zunderarmer Vergütungsstahl und Verfahren zur Herstellung eines zunderarmen Bauteils aus diesem Stahl
DE102012006941B4 (de) 2012-03-30 2013-10-17 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines Bauteils aus Stahl durch Warmumformen
JP5341270B1 (ja) * 2012-04-25 2013-11-13 日新製鋼株式会社 黒色めっき鋼板の製造方法および黒色めっき鋼板の成形体の製造方法
WO2014037627A1 (fr) 2012-09-06 2014-03-13 Arcelormittal Investigación Y Desarrollo Sl Procede de fabrication de pieces d'acier revêtues et durcies a la presse, et tôles prerevêtues permettant la fabrication de ces pieces
TWI653362B (zh) * 2012-10-17 2019-03-11 澳大利亞商布魯史寇普鋼鐵有限公司 金屬被覆鋼帶的製造方法
DE102013005301A1 (de) 2013-03-21 2014-09-25 Salzgitter Flachstahl Gmbh Verfahren zur Verbesserung der Schweißbarkeit von hochmanganhaltigen Stahlbändern und beschichtetes Stahlband
JP6125313B2 (ja) * 2013-04-26 2017-05-10 新日鐵住金株式会社 めっき鋼板の熱間プレス方法
JP5873465B2 (ja) * 2013-08-14 2016-03-01 日新製鋼株式会社 全反射特性と耐食性に優れたAl被覆鋼板およびその製造法
DE102013015032A1 (de) 2013-09-02 2015-03-05 Salzgitter Flachstahl Gmbh Zinkbasierte Korrosionsschutzbeschichtung für Stahlbleche zur Herstellung eines Bauteils bei erhöhter Temperatur durch Presshärten
EP3070187B1 (de) 2013-12-25 2019-10-30 Nippon Steel Corporation Hochfeste fahrzeugkomponente und verfahren zur herstellung einer hochfestigen fahrzeugkomponente
DE102014109943B3 (de) * 2014-07-16 2015-11-05 Thyssenkrupp Ag Stahlprodukt mit einer Korrosionsschutzbeschichtung aus einer Aluminiumlegierung sowie Verfahren zu dessen Herstellung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2017137304A1 (de) 2017-08-17
RU2704340C1 (ru) 2019-10-28
KR102186771B1 (ko) 2020-12-07
CN108699665B (zh) 2020-04-24
EP3414355A1 (de) 2018-12-19
US20190040513A1 (en) 2019-02-07
US10876195B2 (en) 2020-12-29
CN108699665A (zh) 2018-10-23
KR20180112799A (ko) 2018-10-12
DE102016102504A1 (de) 2017-08-10

Similar Documents

Publication Publication Date Title
EP3414355B1 (de) Aluminiumbasierte beschichtung für stahlbleche oder stahlbänder und verfahren zur herstellung hierzu
EP3041969B1 (de) Zinkbasierte korrosionsschutzbeschichtung für stahlbleche zur herstellung eines bauteils bei erhöhter temperatur durch presshärten
EP1660693B1 (de) Verfahren zum herstellen eines gehärteten profilbauteils
EP2848709B1 (de) Verfahren zum Herstellen eines mit einem metallischen, vor Korrosion schützenden Überzug versehenen Stahlbauteils und Stahlbauteil
EP3215656B1 (de) Verfahren zum herstellen einer korrosionsschutzbeschichtung für härtbare stahlbleche und korrosionsschutzschicht für härtbare stahlbleche
EP2848715B1 (de) Verfahren zum herstellen eines mit einem metallischen, vor korrosion schützenden überzug versehenen stahlbauteils
DE102011001140A1 (de) Stahlflachprodukt, Verfahren zum Herstellen eines Stahlflachprodukts und Verfahren zum Herstellen eines Bauteils
EP3250727B1 (de) Bauteil aus pressformgehärtetem, auf basis von aluminium beschichtetem stahlblech und verfahren zur herstellung eines solchen bauteils
EP2832898A1 (de) Plasmaelektrolytisch veredeltes Bauteil und Verfahren zu seiner Herstellung
EP3056591A1 (de) Verfahren zum herstellen eines erzeugnisses aus gewalztem bandmaterial
EP1200647B1 (de) Verfahren zur herstellung von tiefzieh- oder abstreckziehfähigem, veredeltem kaltband sowie kaltband, vorzugsweise zur herstellung von zylindrischen behältern und insbesondere batteriebehältern
DE102015113878B4 (de) Verfahren zur thermischen Behandlung eines mit einer Konversionsschicht beschichteten Schwarzblechs
DE2153831A1 (de) Verfahren zum verformen von eisen-, bunt- oder leichtmetallwerkstoffen
DE69027428T2 (de) Verzinktes stahlblech mit ausgezeichneter pressverformung, chemischer oberflächenumwandlung und ähnlichen eigenschaften sowie herstellung eines solchen bleches
EP3947754B1 (de) Verfahren zur herstellung eines stahlbandes mit verbesserter haftung metallischer schmelztauchüberzüge
EP3585917B1 (de) Verfahren zum beschichten von stahlblechen oder stahlbändern und verfahren zur herstellung von pressgehärteten bauteilen hieraus
DE102012109855B4 (de) Verfahren zum Herstellen eines mit einer metallischen Korrosionsschutzschicht beschichteten Stahlprodukts
WO2018114498A1 (de) Vergraute oberfläche zum zwecke einer verkürzten aufheizung
DE2114333A1 (de) Beschichtetes Metall und Verfahren zum Beschichten von Metalloberflaechen
WO2021148312A1 (de) Stahlbauteil mit einer manganhaltigen korrosionsschutzschicht
DE102017011557A1 (de) Beschichtung für ein Karosserieteil mit einer Legierung aus Zink und Mangan, Karosserieteil mit einer solchen Beschichtung und Verfahren zum Herstellen eines beschichteten Karosserieteils mit einer solchen Beschichtung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180904

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191002

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200110

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1254479

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200415

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017004634

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200408

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200709

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200817

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017004634

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

26N No opposition filed

Effective date: 20210112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210202

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210202

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210202

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1254479

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240219

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240221

Year of fee payment: 8