EP3363921B1 - Matériau de moule de coulée et matière première d'alliage cu-cr-zr-al - Google Patents

Matériau de moule de coulée et matière première d'alliage cu-cr-zr-al Download PDF

Info

Publication number
EP3363921B1
EP3363921B1 EP16855325.3A EP16855325A EP3363921B1 EP 3363921 B1 EP3363921 B1 EP 3363921B1 EP 16855325 A EP16855325 A EP 16855325A EP 3363921 B1 EP3363921 B1 EP 3363921B1
Authority
EP
European Patent Office
Prior art keywords
mass
precipitates
casting mold
less
electrical conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16855325.3A
Other languages
German (de)
English (en)
Other versions
EP3363921A1 (fr
EP3363921A4 (fr
Inventor
Shoichiro Yano
Shinobu Satou
Toshio Sakamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Publication of EP3363921A1 publication Critical patent/EP3363921A1/fr
Publication of EP3363921A4 publication Critical patent/EP3363921A4/fr
Application granted granted Critical
Publication of EP3363921B1 publication Critical patent/EP3363921B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/059Mould materials or platings
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/06Permanent moulds for shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/06Permanent moulds for shaped castings
    • B22C9/061Materials which make up the mould
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Definitions

  • the present invention relates to a casting mold material capable of being used in casting metal such as steel materials.
  • the depth of penetration ⁇ of a magnetic field is represented by the following expression where the magnetic permeability is represented by ⁇ , the frequency of the applied magnetic field is represented by f, and the electrical conductivity is represented by ⁇ .
  • 1 / ⁇ ⁇ ⁇ ⁇ f ⁇ ⁇ 0.5
  • the electrical conductivity ⁇ of the mold material is preferably low in order to increase the depth ⁇ of the magnetic field.
  • an excess decrease in the electrical conductivity ⁇ may decrease the thermal conductivity and cause insufficient cooling.
  • PTL 1 discloses a mold material for precipitation hardening-type continuous casting which contains Cr: 0.3% to 1.5% and Zr: 0.03% to 0.6% in terms of mass ratio and to which Al and an element such as Si, Ni, Sn, Zn, or Mn are further added.
  • PTL 2 discloses a mold material for metal casting which contains Cr: 0.3 to 1.2 wt% and Zr: 0.05 to 0.25 wt% and to which Sn, Al, Ag, Ni, Ti, Co, Fe, and the like are further added.
  • PTL 3 describes a Cu alloy for a continuous casting mold consisting of 0.4 to 1.5 mass% Cr, 0.01 to 0.30 mass% Zr, 0.05 to 0.80 mass% Al, optionally 0.05 to 1.0 mass% of one or more of Fe, Ni and Co, optionally 0.01 to 0.60 mass% of one or two of Ti and Si and a balance being Cu and unavoidable impurities.
  • casting mold materials are used after the durability is improved by thermal spraying a Ni-Cr alloy or the like having excellent thermal resistance and wear resistance on the surface thereof.
  • thermal spraying treatment since the casting mold materials are slowly cooled instead of water cooling or the like after a thermal treatment is carried out in a high temperature range of, for example, approximately 1,000°C, there has been a problem in that the strength (hardness) or the electrical conductivity does not sufficiently improve even when an aging treatment is carried out after the thermal spraying treatment.
  • the present invention has been made in consideration of the above-described circumstances, and an object of the present invention is to provide a casting mold material capable of sufficiently improving the strength (hardness) and the electrical conductivity by means of the subsequent aging treatment even in a case where the casting mold material is slowly cooled after a thermal spraying treatment.
  • the casting mold material of the present invention capable of being used in casting a metal material, the casting mold material having a composition consisting of: 0.3 mass% or more and less than 0.5 mass% of Cr; 0.01 mass% or more and 0.15 mass% or less of Zr; 0.1 mass% or more and less than 2.0 mass% of Al; optionally 0.01 mass% or more and 0.15 mass% or less of one or more elements selected from Fe, Si, Co, and P as a total; and a Cu balance including inevitable impurities, wherein the casting mold material comprises precipitates in a needle shape or precipitates in a plate shape, and granular precipitates are suppressed.
  • the composition includes 0.3 mass% or more and less than 0.5 mass% of Cr, 0.01 mass% or more and 0.15 mass% or less of Zr, 0.1 mass% or more and less than 2.0 mass% of Al, and a Cu balance including inevitable impurities, it is possible to improve the strength (hardness) and the electrical conductivity by precipitating fine precipitates by means of an aging treatment. In addition, it is possible to adjust the electrical conductivity to approximately 30% to 60%IACS, and the casting mold material is particularly suitable for mold materials in electromagnetic stirring uses.
  • the casting mold material of the present invention has precipitates in a needle shape or precipitates in a plate shape containing Cr, granular precipitates being formed during slow cooling after a thermal spraying treatment are suppressed. Therefore, in the aging treatment after the thermal spraying treatment, Cr and Zr being precipitated around granular precipitates as nuclei are suppressed, it is possible to sufficiently disperse the fine precipitates, and it is possible to sufficiently improve the strength (hardness) and the electrical conductivity by means of the precipitation strengthening mechanism.
  • a maximum size of the precipitates in a needle shape or the precipitates in a plate shape is preferably 100 ⁇ m or less.
  • the maximum size of the precipitates in a needle shape or the precipitates in a plate shape refers to the diameter of the minimum circumscribed circle drawn for the observed precipitates.
  • the maximum size of the precipitates in a needle shape or the precipitates in a plate shape is set to be as relatively small as 100 ⁇ m or less, and thus Cr sufficiently forms a solid solution in the parent phase of Cu, it is possible to sufficiently disperse the fine precipitates during the subsequent aging treatment, and it is possible to sufficiently improve the strength (hardness) and the electrical conductivity by means of a precipitation strengthening mechanism.
  • composition of the casting mold material according to the present invention preferably further includes 0.01 mass% or more and 0.15 mass% or less of one or more elements selected from Fe, Si, Co, and P as a total.
  • the casting mold material includes elements of Fe, Si, Co, and P in the above-described range, granular precipitates being formed during slow cooling after the thermal spraying treatment are suppressed, and the generation of the precipitates in a needle shape or precipitates in a plate shape containing Cr is accelerated. Therefore, it is possible to sufficiently precipitate fine Cr-based and Zr-based precipitates by means of the aging treatment after the thermal spraying treatment, and it is possible to reliably improve the strength (hardness) and the electrical conductivity.
  • a Cu-Cr-Zr-Al alloy material suitable for the casting mold material according to the present invention consists of: 0.3 mass% or more and less than 0.5 mass% of Cr; 0.01 mass% or more and 0.15 mass% or less of Zr; 0.1 mass% or more and less than 2.0 mass% of Al; optionally 0.01 mass% or more and 0.15 mass% or less of one or more elements selected from Fe, Si, Co, and P as a total; and a Cu balance including inevitable impurities, wherein the Cu-Cr-Zr-Al alloy material satisfies a relationship of B/A>1.1 where an electrical conductivity (%IACS) after the Cu-Cr-Zr-Al alloy material is maintained at 1,000°C for one hour and is then cooled from 1,000°C to 600°C at a cooling rate of 10°C/min is defined by A and an electrical conductivity (%IACS) after the Cu-Cr-Zr-Al alloy material is further maintained at 500°C for three hours is defined by B.
  • the Cu-Cr-Zr-Al alloy material having the above-described constitution, since the Cu-Cr-Zr-Al alloy material satisfies a relationship of B/A>1.1 where the electrical conductivity (%IACS) after the Cu-Cr-Zr-Al alloy material is maintained at 1,000°C for one hour and is then cooled from 1,000°C to 600°C at a cooling rate of 10°C/min is defined by A and the electrical conductivity (%IACS) after the Cu-Cr-Zr-Al alloy material is further maintained at 500°C for three hours is defined by B, even in a case where the Cu-Cr-Zr-Al alloy material is slowly cooled from 1,000°C to 600°C at a cooling rate of 10°C/min, the electrical conductivity is improved by the subsequent thermal treatment at 500°C for three hours, and it becomes possible to improve the strength by means of precipitation hardening.
  • the electrical conductivity is improved by the subsequent thermal treatment at 500°C for three hours, and it becomes possible to
  • the Cu-Cr-Zr-Al alloy material is particularly suitable for the above-described casting mold material.
  • composition of the Cu-Cr-Zr-Al alloy material preferably further includes 0.01 mass% or more and 0.15 mass% or less of one or more elements selected from Fe, Si, Co, and P as a total.
  • the Cu-Cr-Zr-Al alloy material includes elements of Fe, Si, Co, and P in the above-described range, even in a case where the Cu-Cr-Zr-Al alloy material is heated to a high temperature range of, for example, approximately 1,000°C and is then slowly cooled, it is possible to suppress unnecessary precipitation of Cr and Zr and thus ensure the solid solution amount of Cr and Zr. Therefore, it is possible to sufficiently precipitate fine precipitates by means of the aging treatment after the slow cooling, and it is possible to reliably improve the strength (hardness) and the electrical conductivity.
  • the present invention it is possible to provide a casting mold material capable of sufficiently improving the strength (hardness) and the electrical conductivity by means of the subsequent aging treatment even in a case where the casting mold material is slowly cooled after a thermal spraying treatment.
  • the casting mold material that is the present embodiment is used as a continuous casting die for continuously casting steel materials and the like.
  • the Cu-Cr-Zr-Al alloy material is used as a material for the casting mold material.
  • the casting mold material according to the present embodiment and the Cu-Cr-Zr-Al alloy material have a composition including 0.3 mass% or more and less than 0.5 mass% of Cr, 0.01 mass% or more and 0.15 mass% or less of Zr, 0.1 mass% or more and less than 2.0 mass% of Al, and a Cu balance including inevitable impurities, and further including 0.01 mass% or more and 0.15 mass% or less of one or more elements selected from Fe, Si, Co, and P as a total.
  • Cr is an element having an action effect that improves strength (hardness) and electrical conductivity by finely precipitating Cr-based precipitates in crystal grains of the parent phase by means of an aging treatment.
  • the precipitation amount during the aging treatment becomes insufficient, and there is a concern that the strength (hardness) improvement effect cannot be sufficiently obtained.
  • the content of Cr is 0.5 mass% or more, for example, when the casting mold material and the Cu-Cr-Zr-Al alloy material are slowly cooled from a high temperature range of approximately 1,000°C to a temperature of 800°C or lower at a cooling rate of 25°C/min or lower, granular Cr-based and Zr-based precipitates are precipitated, these granular precipitates further grow in the aging treatment after a slow cooling, and thus there is a concern that it may become impossible to ensure fine precipitates that contribute to the precipitation strengthening mechanism.
  • the content of Cr is set in a range of 0.3 mass% or more and less than 0.5 mass%. Meanwhile, in order to reliably exhibit the above-described action effect, the lower limit of the content of Cr is preferably set to 0.35 mass% or more, and the upper limit of the content of Cr is preferably set to 0.45 mass% or less.
  • Zr is an element having an action effect that improves strength (hardness) and electrical conductivity by finely precipitating Zr-based precipitates in the crystal grain boundaries of the parent phase by means of the aging treatment.
  • the precipitation amount during the aging treatment becomes insufficient, and there is a concern that the strength (hardness) improvement effect cannot be sufficiently obtained.
  • the content of Zr exceeds 0.15 mass%, there is a concern that electrical conductivity and thermal conductivity may decrease.
  • an additional strength improvement effect cannot be obtained.
  • the content of Zr is set in a range of 0.01 mass% or more and 0.15 mass% or less. Meanwhile, in order to reliably exhibit the above-described action effect, the lower limit of the content of Zr is preferably set to 0.05 mass% or more, and the upper limit of the content of Zr is preferably set to 0.13 mass% or less.
  • Al 0.1 mass% or more and less than 2.0 mass%
  • A1 is an element having an action effect that decreases electrical conductivity by forming a solid solution in copper alloys. Therefore, it is possible to adjust the electrical conductivity of the casting mold material to approximately 30% to 60%IACS by controlling the amount of Al added, and the casting mold material becomes particularly suitable for mold materials in electromagnetic stirring uses.
  • the content of Al is less than 0.1 mass%, it becomes difficult to suppress the electrical conductivity at a low level, and there is a concern that it may become impossible to ensure the depth of penetration of a magnetic field.
  • the content of Al is 2.0 mass% or more, there is a concern that the electrical conductivity may significantly decrease and the thermal conductivity may become insufficient.
  • the content of Al is set in a range of 0.1 mass% or more and less than 2.0 mass%. Meanwhile, in order to reliably exhibit the above-described action effect, the lower limit of the content of Al is preferably set to 0.5 mass% or more, and the upper limit of the content of Al is preferably set to 1.5 mass% or less.
  • Elements of Fe, Si, Co, and P have an action effect that suppresses granular Cr-based and Zr-based precipitates being precipitated and accelerates the precipitation of precipitates in a needle shape or precipitates in a plate shape containing Cr when, for example, the casting mold material and the Cu-Cr-Zr-Al alloy material are slowly cooled from a high temperature range of approximately 1,000°C to a temperature of 800°C or lower at a cooling rate of 25°C/min or lower.
  • the total content of one or more elements selected from Fe, Si, Co, and P is set in a range of 0.01 mass% or more and 0.15 mass% or less. Meanwhile, in order to reliably exhibit the above-described action effect, the lower limit of the total content of one or more elements selected from Fe, Si, Co, and P is preferably set to 0.02 mass% or more, and the upper limit of the total content of one or more elements selected from Fe, Si, Co, and P is preferably set to 0.1 mass% or less.
  • examples of the inevitable impurities other than Cr, Zr, Al, P, Fe, Si, and Co described above include B, Ag, Sn, Zn, Ti, Ca, Te, Mn, Ni, Sr, Ba, Sc, Y, Ti, Hf, V, Nb, Ta, Mo, W, Re, Ru, Os, Se, Rh, Ir, Pd, Pt, Au, Cd, Ga, In, Li, Ge, As, Sb, TI, Pb, Be, N, H, Hg, Tc, Na, K, Rb, Cs, Po, Bi, lanthanides, O, S, C, and the like. Since there is a concern that these inevitable impurities may decrease the electrical conductivity and the thermal conductivity, the total amount thereof is preferably set to 0.05 mass% or less.
  • the casting mold material that is the present embodiment has precipitates in a needle shape or precipitates in a plate shape containing Cr in the parent phase of Cu.
  • the maximum size of these precipitates in a needle shape or precipitates in a plate shape is set to 100 ⁇ m or less.
  • An observation sample is taken from the casting mold material, structural observation is carried out on a polished cross section after a polishing treatment using a scanning electron microscope, and the presence or absence of precipitates in a needle shape or precipitates in a plate shape containing Cr is confirmed.
  • the precipitates are precipitates in a needle shape or precipitates in a plate shape
  • the longest diameter of the precipitates is obtained as the longitudinal direction size from the shapes of the precipitates.
  • the longest diameter of the precipitates is obtained as the transverse direction size.
  • fine Cr-based and Zr-based precipitates having a grain size of 5 ⁇ m or smaller are dispersed. Meanwhile, these fine Cr-based and Zr-based precipitates are precipitated in the aging treatment after the slow cooling.
  • the precipitates in a needle shape or the precipitates in a plate shape are formed during the slow cooling after a thermal spraying treatment in which a Ni-Cr alloy having excellent thermal resistance or wear resistance is thermal sprayed in the manufacturing of the casting mold material.
  • the precipitates in a needle shape or the plate-like precipitate containing Cr are precipitated when a copper alloy containing 0.3 mass% or more and less than 0.5 mass% of Cr, 0.01 mass% or more and 0.15 mass% or less of Zr, 0.1 mass% or more and less than 2.0 mass% of Al, and a Cu balance including inevitable impurities is heated to, for example, 1,000°C or higher during the thermal spraying treatment and is then slowly cooled from a high temperature region of approximately 1,000°C to a temperature of 600°C or lower at a cooling rate of 10°C/min or less. Therefore, granular Cr-based and Zr-based precipitates being precipitated during the slow cooling are suppressed.
  • the Cu-Cr-Zr-Al alloy material has the same composition as the casting mold material and satisfies a relationship of B/A>1.1 where the electrical conductivity (%IACS) after the Cu-Cr-Zr-Al alloy material is maintained at 1,000°C for one hour and is then cooled from 1,000°C to 600°C at a cooling rate of 10°C/min is defined by A and the electrical conductivity (%IACS) after the Cu-Cr-Zr-Al alloy material is further maintained at 500°C for three hours is defined by B.
  • the electrical conductivity is improved by the subsequent thermal treatment of maintaining the Cu-Cr-Zr-Al alloy material at 500°C for three hours.
  • a copper raw material made of oxygen-free copper having a copper purity of 99.99 mass% or higher is loaded into a carbon crucible and is melted using a vacuum melting furnace, thereby obtaining molten copper.
  • the above-described additive elements are added to the obtained molten metal so as to obtain a predetermined concentration, and components are formulated, thereby obtaining a molten copper alloy.
  • raw materials of Cr, Zr, and Al which are the additive elements Cr, Zr, and Al having a high purity are used, and, for example, Cr having a purity of 99.99 mass% or higher is used as a raw material of Cr, Zr having a purity of 99.95 mass% or higher is used as a raw material of Zr, and, Al having a purity of 99.95 mass% or higher is used as a raw material of Al.
  • Fe, Si, Co, and P are added thereto as necessary.
  • parent alloys with Cu may also be used as raw materials of Cr, Zr, Fe, Si, Co, and P.
  • the component-formulated molten copper alloy is injected into a die, thereby obtaining an ingot.
  • a homogenization treatment is carried out on the ingot in the atmosphere under conditions of 950°C or higher and 1,050°C or lower for one hour or longer.
  • hot rolling with a working percentage of 50% or higher and 99% or lower is carried out on the ingot in a temperature range of 900°C or higher and 1,000°C or lower, thereby obtaining a rolled material.
  • the method of the hot working may be hot forging. After this hot working, the rolled material is immediately cooled by means of water cooling.
  • a heating treatment is carried out on the rolled material obtained in the hot working step S03 under conditions of 920°C or higher and 1,050°C or lower for 0.5 hours or longer and five hours or shorter, thereby carrying out a solution treatment.
  • the heating treatment is carried out, for example, in the atmosphere or an inert gas atmosphere, and as cooling after the heating, water cooling is carried out.
  • a first aging treatment is carried out, and precipitates such as Cr-based precipitates and Zr-based precipitates are finely precipitated, thereby obtaining a first aging treatment material.
  • the first aging treatment is carried out under conditions of, for example, 400°C or higher and 530°C or lower for 0.5 hours or longer and five hours or shorter.
  • the thermal treatment method during the aging treatment is not particularly limited, but the thermal treatment is preferably carried out in an inert gas atmosphere.
  • the cooling method after the heating treatment is not particularly limited, but water cooling is preferably carried out.
  • the Cu-Cr-Zr-Al alloy material is manufactured.
  • a Ni-Cr alloy or the like is thermal sprayed onto predetermined places on the surface of the Cu-Cr-Zr-Al alloy material, thereby forming a coating layer on the predetermined places on the surface of the Cu-Cr-Zr-Al alloy material.
  • a thermal treatment is carried out on the Cu-Cr-Zr-Al alloy material on which the coating layer is formed at 900°C or higher and 1,000°C or lower for 15 minutes or longer and 180 minutes or shorter.
  • This thermal treatment is carried out in order for the diffusion joining between the Cu-Cr-Zr-Al alloy material and the coating layer.
  • slow cooling having a relatively low cooling rate, for example, furnace cooling
  • the cooling rate in the slow cooling the cooling rate in a range from the thermal treatment temperature to 800°C or lower is 5°C/minute or higher and 70°C/minute or lower.
  • the aging treatment is carried out under conditions of, for example, 400°C or higher and 530°C or lower for 0.5 hours or longer and five hours or shorter.
  • the thermal treatment method during the aging treatment is not particularly limited, but the thermal treatment is preferably carried out in an inert gas atmosphere.
  • the cooling method after the thermal treatment is not particularly limited, but water cooling is preferably carried out.
  • the casting mold material that is the present embodiment is manufactured.
  • the casting mold material of the present invention provided with the above-described constitution, since the casting mold material is provided with a composition including 0.3 mass% or more and less than 0.5 mass% of Cr, 0.01 mass% or more and 0.15 mass% or less of Zr, 0.1 mass% or more and less than 2.0 mass% of Al, and a Cu balance including inevitable impurities, in the second aging treatment step S07, Cr-based and Zr-based precipitates are finely precipitated, whereby it is possible to improve the strength (hardness) and the electrical conductivity.
  • Al is included in a range of 0.1 mass% or more and less than 2.0 mass%, it is possible to adjust the electrical conductivity to approximately 30% to 60%IACS, and the casting mold material is particularly suitable for mold materials in electromagnetic stirring uses.
  • the casting mold material according to the present embodiment has the precipitates in a needle shape or the precipitates in a plate shape containing Cr, granular precipitates being formed during the slow cooling after the thermal spraying treatment step S06 are suppressed, it is possible to sufficiently disperse the fine precipitates by means of the second aging treatment step S07 after the thermal spraying treatment step S06, and it is possible to sufficiently improve the strength (hardness) by means of the precipitation strengthening mechanism.
  • the maximum size of the precipitates in a needle shape or the precipitates in a plate shape containing Cr is set to be as relatively small as 100 ⁇ m or less, and thus Cr sufficiently forms a solid solution in the parent phase of Cu, it is possible to sufficiently disperse the fine precipitates by means of the second aging treatment step S07 after the thermal spraying treatment step S06, and it is possible to sufficiently improve the strength (hardness) and the electrical conductivity by means of a precipitation strengthening mechanism.
  • composition of the casting mold material according to the present embodiment further includes 0.01 mass% or more and 0.15 mass% or less of one or more elements selected from Fe, Si, Co, and P as a total, granular precipitates being formed during the slow cooling after the thermal spraying treatment step S06 are suppressed, and the generation of the precipitates in a needle shape or the precipitates in a plate shape containing Cr is accelerated. Therefore, it is possible to sufficiently precipitate the fine precipitates by means of the second aging treatment step S07 after the thermal spraying treatment step S06, and it is possible to reliably improve the strength (hardness) and the electrical conductivity.
  • the Cu-Cr-Zr-Al alloy material satisfies a relationship of B/A>1.1 where the electrical conductivity (%IACS) after the Cu-Cr-Zr-Al alloy material is maintained at 1,000°C for one hour and is then cooled from 1,000°C to 600°C at a cooling rate of 10°C/min is defined by A and the electrical conductivity (%IACS) after the Cu-Cr-Zr-Al alloy material is further maintained at 500°C for three hours is defined by B, even in a case where the Cu-Cr-Zr-Al alloy material is heated to a high temperature range of, for example, approximately 1,000°C and is then slowly cooled in the thermal spraying treatment step S06, in the second aging treatment step S07 after the slow cooling, the electrical conductivity improves, and it is possible to improve the strength (hardness) by means of precipitation hardening.
  • the total content of one or more elements selected from Fe, Si, Co, and P is described to be 0.01 mass% or more and 0.15 mass% or less, but is not limited thereto, and these elements may not be added thereto intentionally.
  • a copper raw material made of oxygen-free copper having a copper purity of 99.99 mass% or higher was prepared, was loaded into a carbon crucible, and was melted using a vacuum melting furnace (with a degree of vacuum of 10 -2 Pa or lower), thereby obtaining molten copper.
  • a variety of additive elements were added to the obtained molten copper so as to formulate a component composition shown in Table 1, the component composition was maintained for five minutes, and then the molten copper alloy was injected into a cast iron die, thereby obtaining an ingot.
  • the sizes of the ingot were set to a width of approximately 80 mm, a thickness of approximately 50 mm, and a length of approximately 130 mm.
  • a homogenization treatment was carried out in the atmosphere under conditions of 1,000°C for one hour, and then hot rolling was carried out.
  • the rolling reduction in the hot rolling was set to 80%, thereby obtaining a hot-rolled material having a width of approximately 100 mm, a thickness of approximately 10 mm, and a length of approximately 520 mm.
  • a solution treatment was carried out on this hot-rolled material under conditions of 1,000°C for 1.5 hours, and then water cooling was carried out.
  • the Vickers hardness (rolled surface) and the electrical conductivity were evaluated.
  • the Vickers hardness (rolled surface) and the electrical conductivity were evaluated. Furthermore, structural observation was carried out, and the presence or absence of precipitates in a needle shape or precipitates in a plate shape containing Cr was evaluated.
  • the component compositions of the obtained Cu-Cr-Zr-Al alloy material and the obtained casting mold material were measured by means of an ICP-MS analysis. The measurement results are shown in Table 1.
  • the minimum circumscribed circle was drawn, and the diameter of the minimum circumscribed circle was considered as the maximum size of the precipitates.
  • Vickers hardness was measured using a Vickers hardness tester manufactured by Akashi Co., Ltd. at nine places in a test specimen as illustrated in FIG. 4 according to JIS Z 2244, and the average value of seven measurement values excluding the maximum value and the minimum value was obtained.
  • the measurement results after the first aging treatment and after the thermal spraying treatment and the second aging treatment are shown in Table 2.
  • the cross-sectional center portion of a 10 ⁇ 15 mm sample was measured three times using SIGMA TEST D2.068 (having a probe diameter ⁇ of 6 mm) manufactured by Foerster Japan Limited, and the average value thereof was obtained.
  • the measurement results after the first aging treatment and after the thermal spraying treatment and the second aging treatment are shown in Table 2.
  • Invention Example 3 as illustrated in FIG. 2 , precipitates in a needle shape or precipitates in a plate shape containing Cr were observed in the test specimen which had been slowly cooled after the thermal spraying treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Continuous Casting (AREA)

Claims (2)

  1. Matériau de moule de coulée apte à être utilisé lors du coulage d'un matériau métallique, le matériau de moule de coulée présentant une composition consistant en :
    0,3 % en masse ou plus et moins de 0,5 % en masse de Cr ;
    0,01 % en masse ou plus et 0,15 % en masse ou moins de Zr ;
    0,1 % en masse ou plus et moins de 2,0 % en masse d'Al ;
    éventuellement 0,01% en masse ou plus et 0,15% en masse ou moins d'un ou plusieurs éléments sélectionnés parmi Fe, Si, Co, et P au total ; et
    le reste étant du Cu incluant des impuretés inévitables,
    dans lequel le matériau de moule de coulée comprend des précipités en forme d'aiguilles ou des précipités en forme de plaques, et
    des précipités granulaires sont éliminés.
  2. Matériau de moule de coulée selon la revendication 1,
    dans lequel la dimension maximale des précipités en forme d'aiguilles ou des précipité en forme de plaques est inférieure ou égale à 100 µm.
EP16855325.3A 2015-10-15 2016-10-05 Matériau de moule de coulée et matière première d'alliage cu-cr-zr-al Active EP3363921B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015203581A JP6693078B2 (ja) 2015-10-15 2015-10-15 鋳造用モールド材
PCT/JP2016/079641 WO2017065071A1 (fr) 2015-10-15 2016-10-05 Matériau de moule de coulée et matière première d'alliage cu-cr-zr-al

Publications (3)

Publication Number Publication Date
EP3363921A1 EP3363921A1 (fr) 2018-08-22
EP3363921A4 EP3363921A4 (fr) 2019-04-03
EP3363921B1 true EP3363921B1 (fr) 2022-05-25

Family

ID=58518068

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16855325.3A Active EP3363921B1 (fr) 2015-10-15 2016-10-05 Matériau de moule de coulée et matière première d'alliage cu-cr-zr-al

Country Status (6)

Country Link
US (1) US20180297109A1 (fr)
EP (1) EP3363921B1 (fr)
JP (1) JP6693078B2 (fr)
KR (1) KR102500630B1 (fr)
CN (1) CN108138262B (fr)
WO (1) WO2017065071A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6488951B2 (ja) * 2014-09-25 2019-03-27 三菱マテリアル株式会社 鋳造用モールド材及びCu−Cr−Zr合金素材
JP7035478B2 (ja) * 2017-11-21 2022-03-15 三菱マテリアル株式会社 鋳造用モールド材
CN113333696B (zh) * 2021-06-01 2023-02-17 西峡龙成特种材料有限公司 一种CuAlFeNi结晶器铜板背板及其母材与加工方法
CN118326201B (zh) * 2024-06-17 2024-09-17 上海理工大学 铜基合金接触线及其连续生产方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946699B2 (ja) * 1979-03-27 1984-11-14 日立造船株式会社 連続鋳造設備の鋳型材
JPS6058772B2 (ja) * 1981-11-16 1985-12-21 日本鋼管株式会社 連続鋳造用鋳型材料
JPS58107459A (ja) * 1981-12-21 1983-06-27 Chuetsu Gokin Chuko Kk 析出硬化型連続鋳造用鋳型材料
JPS58107462A (ja) * 1981-12-21 1983-06-27 Chuetsu Gokin Chuko Kk 析出硬化型連続鋳造用鋳型材料
JPS58212839A (ja) * 1982-06-03 1983-12-10 Mitsubishi Metal Corp 連続鋳造鋳型用Cu合金
JPS6050161A (ja) * 1983-08-30 1985-03-19 Mitsubishi Metal Corp 拡散浸透処理による表面硬化層を有するCu合金部材
JPS60221151A (ja) * 1984-04-18 1985-11-05 Kawasaki Steel Corp 連続鋳造用鋳型および鋳型内面溶射皮膜形成方法
JPS6241302A (ja) 1985-08-09 1987-02-23 ユニ・チヤ−ム株式会社 使い捨て吸収性パンツおよびその製法
JP2738130B2 (ja) * 1990-05-25 1998-04-08 三菱マテリアル株式会社 高冷却能を有する高強度Cu合金製連続鋳造鋳型材およびその製造法
JPH05339688A (ja) * 1992-06-05 1993-12-21 Furukawa Electric Co Ltd:The 金属鋳造用鋳型材の製造方法
JP3479470B2 (ja) * 1999-03-31 2003-12-15 日鉱金属株式会社 ハードディスクドライブサスペンション用銅合金箔及びその製造方法
JP2001131656A (ja) * 1999-11-04 2001-05-15 Mitsubishi Shindoh Co Ltd 圧延性および曲げ加工性にすぐれたCu合金で構成された電子電気機器のコネクター材
JP4158337B2 (ja) * 2000-12-20 2008-10-01 三菱マテリアル株式会社 連続鋳造鋳型用クロム・ジルコニウム系銅合金の製造方法
JP4244380B2 (ja) * 2003-09-26 2009-03-25 三菱マテリアル株式会社 トロリ線
KR101291012B1 (ko) * 2009-01-09 2013-07-30 미쓰비시 신도 가부시키가이샤 고강도 고도전 동합금 압연판 및 그 제조 방법
KR101364542B1 (ko) * 2011-08-11 2014-02-18 주식회사 풍산 연속주조 몰드용 동합금재 및 이의 제조 방법

Also Published As

Publication number Publication date
CN108138262A (zh) 2018-06-08
EP3363921A1 (fr) 2018-08-22
US20180297109A1 (en) 2018-10-18
JP2017075371A (ja) 2017-04-20
WO2017065071A1 (fr) 2017-04-20
KR20180070545A (ko) 2018-06-26
JP6693078B2 (ja) 2020-05-13
KR102500630B1 (ko) 2023-02-15
CN108138262B (zh) 2021-07-09
EP3363921A4 (fr) 2019-04-03

Similar Documents

Publication Publication Date Title
EP3199651B1 (fr) Matériau de moule de coulée d'alliage cu-cr-zr et procédé de sa production
EP2570505B1 (fr) Alliage de cuivre et matériau d'alliage de cuivre laminé pour dispositif électronique et procédé pour la production de cet alliage
EP3363921B1 (fr) Matériau de moule de coulée et matière première d'alliage cu-cr-zr-al
EP3375898B1 (fr) Matériau d'alliage de cuivre
EP3375897B1 (fr) Matériau d'alliage de cuivre
WO2019102716A1 (fr) Matériau de moule pour coulée et matériau d'alliage de cuivre
US5639317A (en) High strength, low thermal expansion alloy wire and method of making the wire
KR102385768B1 (ko) 주조용 몰드재 및 Cu-Cr-Zr 합금 소재
Fisher-Bühner Hardening of High Carat Gold Alloys

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180406

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602016072431

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C22C0009010000

Ipc: C22C0009000000

A4 Supplementary search report drawn up and despatched

Effective date: 20190306

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 9/00 20060101AFI20190227BHEP

Ipc: B22D 11/059 20060101ALI20190227BHEP

Ipc: C22C 9/01 20060101ALI20190227BHEP

Ipc: C22F 1/08 20060101ALI20190227BHEP

Ipc: B22C 9/06 20060101ALI20190227BHEP

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MITSUBISHI MATERIALS CORPORATION

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200103

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220202

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016072431

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1494285

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220926

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220825

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220826

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016072431

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1494285

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221005

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231020

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231026

Year of fee payment: 8

Ref country code: FR

Payment date: 20231026

Year of fee payment: 8

Ref country code: DE

Payment date: 20231020

Year of fee payment: 8

Ref country code: AT

Payment date: 20231020

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525