EP3330016A1 - Verfahren zur herstellung eines heissgepressten elements - Google Patents
Verfahren zur herstellung eines heissgepressten elements Download PDFInfo
- Publication number
- EP3330016A1 EP3330016A1 EP16830013.5A EP16830013A EP3330016A1 EP 3330016 A1 EP3330016 A1 EP 3330016A1 EP 16830013 A EP16830013 A EP 16830013A EP 3330016 A1 EP3330016 A1 EP 3330016A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- steel sheet
- zinc
- hot
- coated steel
- pressed member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 29
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 122
- 239000010959 steel Substances 0.000 claims abstract description 122
- 239000011701 zinc Substances 0.000 claims abstract description 73
- 238000000034 method Methods 0.000 claims abstract description 62
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 61
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 59
- 239000011247 coating layer Substances 0.000 claims abstract description 42
- 238000010438 heat treatment Methods 0.000 claims abstract description 41
- 238000004140 cleaning Methods 0.000 claims abstract description 34
- 238000007731 hot pressing Methods 0.000 claims abstract description 33
- 238000001816 cooling Methods 0.000 claims abstract description 20
- 230000009466 transformation Effects 0.000 claims abstract description 15
- 239000011248 coating agent Substances 0.000 claims abstract description 14
- 238000000576 coating method Methods 0.000 claims abstract description 14
- 229910000990 Ni alloy Inorganic materials 0.000 claims abstract description 13
- 239000000203 mixture Substances 0.000 claims abstract description 10
- 239000000126 substance Substances 0.000 claims abstract description 10
- 238000003825 pressing Methods 0.000 claims abstract description 9
- 239000012535 impurity Substances 0.000 claims abstract description 7
- 238000005238 degreasing Methods 0.000 description 46
- 230000007547 defect Effects 0.000 description 34
- 230000001680 brushing effect Effects 0.000 description 27
- 230000000052 comparative effect Effects 0.000 description 22
- 239000010410 layer Substances 0.000 description 21
- 230000000694 effects Effects 0.000 description 17
- 239000002699 waste material Substances 0.000 description 15
- 239000004744 fabric Substances 0.000 description 14
- 239000002904 solvent Substances 0.000 description 14
- 230000006866 deterioration Effects 0.000 description 11
- 238000005260 corrosion Methods 0.000 description 10
- 230000007797 corrosion Effects 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 229910052729 chemical element Inorganic materials 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 238000002844 melting Methods 0.000 description 8
- 230000008018 melting Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 238000009713 electroplating Methods 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 239000002585 base Substances 0.000 description 5
- 238000005098 hot rolling Methods 0.000 description 5
- 230000002401 inhibitory effect Effects 0.000 description 5
- 239000003973 paint Substances 0.000 description 5
- 238000009834 vaporization Methods 0.000 description 5
- 230000008016 vaporization Effects 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000010960 cold rolled steel Substances 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- 239000002344 surface layer Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 238000005246 galvanizing Methods 0.000 description 3
- 238000005244 galvannealing Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 229910000611 Zinc aluminium Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- HXFVOUUOTHJFPX-UHFFFAOYSA-N alumane;zinc Chemical compound [AlH3].[Zn] HXFVOUUOTHJFPX-UHFFFAOYSA-N 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 238000010422 painting Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 241000219307 Atriplex rosea Species 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 229910001335 Galvanized steel Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910007567 Zn-Ni Inorganic materials 0.000 description 1
- 229910007614 Zn—Ni Inorganic materials 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000008397 galvanized steel Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 1
- 239000004312 hexamethylene tetramine Substances 0.000 description 1
- 238000011086 high cleaning Methods 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N hydrochloric acid Substances Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0278—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/20—Deep-drawing
- B21D22/208—Deep-drawing by heating the blank or deep-drawing associated with heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/20—Deep-drawing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/20—Deep-drawing
- B21D22/26—Deep-drawing for making peculiarly, e.g. irregularly, shaped articles
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F17/00—Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/48—After-treatment of electroplated surfaces
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/48—After-treatment of electroplated surfaces
- C25D5/50—After-treatment of electroplated surfaces by heat-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D53/00—Making other particular articles
- B21D53/88—Making other particular articles other parts for vehicles, e.g. cowlings, mudguards
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/22—Electroplating: Baths therefor from solutions of zinc
Definitions
- the present invention relates to a method for manufacturing a hot-pressed member which can preferably be used for, for example, chassis and body structure members of an automobile.
- chassis and body structure members of an automobile have usually been manufactured by performing press working on steel sheets having a specified strength.
- efforts are being made to reduce the thickness of a steel sheet which is used for an automobile body by increasing the strength of the steel sheet.
- an increase in the strength of steel sheets causes a deterioration in press workability, and therefore there is an increase in the number of cases where it is difficult to form a steel sheet into desired shapes of the members.
- Patent Literature 1 proposes a working technique called hot pressing which makes it possible to realize an improvement in workability and an increase in strength at the same time by performing working and rapid cooling at the same time on a heated steel sheet by using a mold which is composed of a die and a punch.
- this hot pressing since a steel sheet is heated to a high temperature of about 950°C before hot pressing is performed, scale (iron oxide) is generated on the surface of the steel sheet, and the flaking of the scale occurs when hot pressing is performed, which results in a problem in that a mold is damaged or the surface of a member is damaged after the hot pressing. Also, scale which remained on the surface of a member causes a deterioration in surface appearance and paint adhesiveness. Therefore, scale which is present on the surface of a member is usually removed by performing a treatment such as pickling or shot blasting. However, such a treatment makes a manufacturing process complex, and thus there is a decrease in productivity.
- chassis and body structure members of an automobile are also required to have excellent corrosion resistance.
- a hot-pressed member which is manufactured by using the process described above, is not provided with an anti-corrosion film such as a coating layer, the member is very poor in terms of corrosion resistance.
- a hot-pressing technique is desired with which the generation of scale can be inhibited when heating is performed before hot pressing and with which the corrosion resistance of a hot-pressed member can be improved, and thus a steel sheet to be hot-pressed whose surface is coated with a film such as a coating layer and a method for hot pressing which utilizes the steel sheet have been proposed.
- Patent Literature 2 discloses a method for manufacturing a hot-pressed member excellent in terms of corrosion resistance whose surface is coated with a Zn-Fe-based compound or a Zn-Fe-Al-based compound by performing hot pressing on a steel sheet, which is coated with Zn or a Zn-based alloy.
- Patent Literature 3 discloses a hot-pressed member excellent in terms of scale resistance, paint adhesiveness, after-painting corrosion resistance, and hydrogen entry resistance which is manufactured by forming a Ni diffusion region, a layer of an intermetallic compound, which is equivalent to the ⁇ phase of a Zn-Ni alloy, and a ZnO layer in the surface layer of a steel sheet.
- Patent Literature 4 discloses a steel sheet to be hot-pressed which is manufactured by forming a ZnO layer, which inhibits the vaporization of Zn, in the surface layer of a Zn-based coating layer in advance, and indicates that it is possible to obtain a hot-pressed product having good surface appearance, excellent paint adhesiveness, and excellent after-painting corrosion resistance by using the steel sheet.
- a hot-pressed member which is manufactured by using the method described in Patent Literature 2
- a zinc-coated steel sheet or a zinc-aluminum-coated steel sheet, whose coating layer has a low melting point is used, the melting of the coating layer or the vaporization of zinc which occurs in a heating process before hot pressing is significant.
- a hot-pressed member, which is finally obtained has, for example, a spotty inhomogeneous surface appearance or many white or black point-like defects. Therefore, it is difficult to obtain a hot-pressed member having a homogeneous and good surface appearance.
- Patent Literature 3 which is manufactured by using a steel sheet coated with a Zn-Ni-alloy coating layer, which has a melting point higher than that of Zn
- a hot-pressed member described in Patent Literature 3 which is manufactured by using a steel sheet coated with a Zn-Ni-alloy coating layer, which has a melting point higher than that of Zn
- Patent Literature 4 In the case where a steel sheet to be hot-pressed described in Patent Literature 4 is used, there is an improvement in the surface appearance of a hot-pressed member to some extent through the effect of a ZnO layer which is formed in the surface layer of the steel sheet. However, there is still a problem in that local point-like defects are generated in a portion in which the result of a treatment for forming a ZnO layer is inhomogeneous.
- the present invention has been completed in order to solve the problems of the conventional techniques described above, and an object of the present invention is to provide a method for manufacturing a hot-pressed member excellent in terms of surface appearance with which it is possible to stably manufacture a hot-pressed member having a homogeneous and good surface appearance without causing a significant increase in cost.
- the present inventors in order to solve the problems described above, diligently conducted investigations regarding a method for manufacturing a hot-pressed member excellent in terms of surface appearance. First, investigations regarding a state in which point-like defects are generated on the surface of a hot-pressed member were conducted. As a result, it was found that the position or number of point-like defects is not necessarily the same even if the same kind of zinc-based coated steel sheet is heated under the same condition.
- % used when describing the chemical composition of steel or a coating layer always means mass%.
- the hot-pressed member which is manufactured by using the present invention can preferably be used for the chassis and body structure members of an automobile.
- a zinc-based coated steel sheet having a zinc-based coating layer on one or both sides thereof is used.
- a zinc-based coating layer include, but are not limited to, a galvanizing layer, a galvannealing layer, a hot-dip zinc-aluminum-alloy coating layer, a hot-dip zinc-aluminum-magnesium-alloy coating layer, a zinc electroplating layer, and a zinc-nickel-alloy electroplating layer, and all of the known zinc-based coating layers containing zinc may be used.
- the coating weight on the surface of such a zinc-based coated steel sheet be 10 g/m 2 to 90 g/m 2 per side.
- the coating weight per side (hereinafter, also simply referred to as "coating weight") is 10 g/m 2 or more, the corrosion resistance does not become insufficient.
- the coating weight is 90 g/m 2 or less, there is no increase in cost.
- the coating weight be 20 g/m 2 to 80 g/m 2 .
- the coating weight of the coating layer should be derived from the amount of decrease in mass at this time.
- the zinc-based coated steel sheet described above be a Zn-Ni-alloy-coated steel sheet having a coating layer on one or both sides thereof, in which the coating layer having a chemical composition containing 10 mass% to 25 mass% of Ni and the balance being Zn and inevitable impurities.
- the Ni content in the coating layer is 10 mass% to 25 mass%, since the structure of the coating layer becomes a ⁇ phase structure, and since this ⁇ phase has a high melting point of 881°C, there is an increase in the effect of inhibiting the generation of point-like defects to a higher level.
- a ⁇ phase has one of the crystal structures of Ni 2 Zn 11 , NiZn 3 , and Ni 5 Zn 21 , and it is possible to identify the structure by using an X-ray diffraction method.
- an underlying coating layer such as a coating layer mainly containing, for example, Ni may be formed under the above-described coating layer.
- a hot-rolled steel sheet or a cold-rolled steel sheet having a chemical composition containing, by mass%, C: 0.15% to 0.50%, Si: 0.05% to 2.00%, Mn: 0.5% to 3.0%, P: 0.10% or less, S: 0.05% or less, Al: 0.10% or less, N: 0.010% or less, and the balance being Fe and inevitable impurities may be used as a base steel sheet for a zinc-based coating layer.
- a hot-rolled steel sheet or a cold-rolled steel sheet having such a chemical composition is used as a base steel sheet, it is possible to obtain a hot-pressed member having a desired high strength of, for example, 980 MPa or more.
- C is a chemical element which increases the strength of steel, and it is necessary that the C content be 0.15% or more in order to control the tensile strength (hereinafter, also referred to as "TS") of a hot-pressed member to be 980 MPa or more.
- TS tensile strength
- the C content be 0.15% to 0.50%.
- Si is, like C, a chemical element which increases the strength of steel, and it is necessary that the Si content be 0.05% or more in order to control the TS of a hot-pressed member to be 980 MPa or more.
- the Si content is more than 2.00%, there is a significant increase in the amount of a surface defect, which is called red scale, generated when hot rolling is performed, there is an increase in rolling load, and there is a deterioration in the ductility of a hot-rolled steel sheet.
- the Si content is more than 2.00%, there may be a negative effect on coatability when a coating treatment is performed in order to form a coating film containing mainly Zn and Al on the surface of a steel sheet. Therefore, it is preferable that the Si content be 0.05% to 2.00%.
- Mn is a chemical element which is effective for improving hardenability by inhibiting ferrite transformation and which is effective for decreasing a heating temperature before hot pressing is performed, because Mn decreases the Ac 3 transformation temperature. It is necessary that the Mn content be 0.5% or more in order to realize such effects. On the other hand, in the case where the Mn content is more than 3.0%, since Mn is segregated, there is a deterioration in the homogeneity of the properties of a steel sheet as a material and a hot-pressed member. Therefore, it is preferable that the Mn content be 0.5% to 3.0%.
- the P content is more than 0.10%, since P is segregated, there is a deterioration in the homogeneity of the properties of a steel sheet as a material and a hot-pressed member, and there is a significant decrease in toughness. Therefore, it is preferable that the P content be 0.10% or less.
- the S content is more than 0.05%, there is a decrease in the toughness of a hot-pressed member. Therefore, it is preferable that the S content be 0.05% or less.
- the Al content is more than 0.10%, there is a deterioration in the blanking performance and hardenability of a steel sheet as a material. Therefore, it is preferable that the Al content be 0.10% or less.
- the N content is more than 0.010%, since nitrides of AlN are formed when hot rolling is performed or when heating is performed before hot pressing work is performed, there is a deterioration in the blanking performance and hardenability of a steel sheet as a material. Therefore, it is preferable that the N content be 0.010% or less.
- the remainder is Fe and inevitable impurities.
- at least one selected from Cr: 0.01% to 1.0%, Ti: 0.01% to 0.20%, and B: 0.0005% to 0.0800% and Sb: 0.003% to 0.030% be added separately or at the same time in addition to the chemical composition described above for the reasons described below.
- Cr is a chemical element which is effective for increasing the strength of steel and improving hardenability of steel. It is preferable that the Cr content be 0.01% or more in order to realize such effects. On the other hand, in the case where the Cr content is more than 1.0%, there is a significant increase in cost. Therefore, it is preferable that the upper limit of the Cr content be 1.0%.
- Ti is a chemical element which is effective for increasing the strength of steel and which is effective for increasing toughness by decreasing a crystal grain size.
- Ti is a chemical element which is effective for realizing the effect of improving hardenability through the use of solid solution B by forming nitrides more readily than B, which will be described below. Therefore, it is preferable that the Ti content be 0.01% or more. However, in the case where the Ti content is more than 0.20%, there is a significant increase in rolling load when hot rolling is performed, and there is a decrease in the toughness of a hot-pressed member. Therefore, it is preferable that the upper limit of the Ti content be 0.20%.
- B is a chemical element which is effective for improving hardenability when hot pressing is performed and for increasing toughness after the hot pressing. It is preferable that the B content be 0.0005% or more in order to realize such effects. On the other hand, in the case where the B content is more than 0.0800%, there is a significant increase in rolling load when hot rolling is performed, and, for example, cracking occurs in a steel sheet due to the formation of a martensite phase and a bainite phase after the hot rolling. Therefore, it is preferable that the upper limit of the B content be 0.0800%.
- Sb is effective for inhibiting the formation of a decarburized layer in the surface layer of a steel sheet in a process in which a zinc-based coated steel sheet is subjected to heating followed by hot pressing work and cooling. It is necessary that the Sb content be 0.003% or more in order to realize such an effect. On the other hand, in the case where the Sb content is more than 0.030%, since there is an increase in rolling load, there is a decrease in productivity. Therefore, it is preferable that the Sb content be 0.003% to 0.030%.
- a hot-pressed member is manufactured by using one of the processes in the two embodiments described below as a hot pressing process.
- the first embodiment is a method for manufacturing a hot-pressed member and is a hot pressing process called direct process in which a zinc-based coated steel sheet is subjected to heating to a temperature range from the Ac3 transformation temperature to 1000°C followed by hot pressing work and cooling.
- the heating temperature is lower than the Ac3 transformation temperature, since there is an insufficient degree of quenching of a steel sheet, there may be a case where it is not possible to achieve the desired strength.
- the heating temperature is higher than 1000°C, there is an economic disadvantage from the viewpoint of energy, and it is difficult to manufacture a hot-pressed member having a homogeneous and good surface appearance due to the significant generation of point-like defects.
- cooling after hot pressing work may be performed by using a mold at the same time as hot pressing work, or the cooling may be performed by using a coolant such as water at the same time as hot pressing work or immediately after the hot pressing work.
- the second embodiment is a method for manufacturing a hot-pressed member and is a hot pressing process called indirect process in which a zinc-based coated steel sheet is subjected to cold pressing work followed by heating to a temperature range from the Ac3 transformation temperature to 1000°C and cooling.
- cold pressing work is first performed before a zinc-based coated steel sheet is heated.
- the cold-pressed member is subjected to heating followed by cooling.
- the heating temperature is set to be in a temperature range from the Ac3 transformation temperature to 1000°C for the reasons described above.
- Cooling may be performed by using a mold which is used for cooling a member or by using a coolant such as water.
- work may be added by performing hot pressing.
- heating temperature means the maximum end-point temperature of a steel sheet.
- examples of a method for performing the heating described above include heating which utilizes, for example, an electric furnace or a gas furnace, direct-fired heating, electrical heating, high-frequency heating, and induction heating.
- a surface-cleaning treatment is performed on a zinc-based coated steel sheet before the zinc-based coated steel sheet is heated in order to remove stains due to, for example, dirt, dust, and fingerprint which are adhered to the surface of a coating layer.
- This surface-cleaning treatment is an important requirement in the present invention.
- point-like defects are generated as illustrated in Fig. 1(b) .
- a surface-cleaning treatment it is possible to manufacture a product having a good surface appearance as illustrated in Fig. 1(a) .
- examples of point-like defects include a white defect illustrated in Fig.
- a surface-cleaning treatment according to the present invention is a treatment which removes the origins of point-like defects.
- a surface-cleaning treatment may be performed on a steel sheet in the form of a coiled steel sheet or in the form of a cut steel sheet or a steel sheet blank, which has been cut out of the coiled steel sheet, or on a cold-pressed member after cold pressing work.
- the period of time from the end of a surface-cleaning treatment to the beginning of heating be as short as possible.
- a surface-cleaning treatment be performed on a steel sheet in the form of a steel sheet blank, because this facilitates the treatment with a high level of surface-cleaning effect.
- a method for performing a surface-cleaning treatment includes one in which the surface of a steel sheet is wiped with waste cloth, one in which the surface of a steel sheet is brushed by using, for example, a nylon brush, one in which the surface of a steel sheet is brushed after a liquid such as a wash oil, which has no negative effect on a steel sheet, has been applied to the surface, and one in which alkaline degreasing or solvent degreasing is performed.
- a method in which a liquid is in contact with the surface of a steel sheet such as a combined method of wash-oil application and brushing, an alkaline degreasing method, or a solvent degreasing method has a higher cleaning effect than a physical method such as one in which wiping with waste cloth or brushing is performed, it is preferable that a method in which a liquid be in contact with the surface of a steel sheet be performed to clean the surface of a steel sheet completely.
- alkaline degreasing is performed as a surface-cleaning treatment by using an alkaline degreasing liquid having a pH of 12.5 or more
- the pH of the alkaline degreasing liquid is set to be less than 12.5.
- the process of a surface-cleaning treatment have a low cost.
- apparatuses for cold pressing work has an apparatus for performing the combination of wash-oil application and brushing, such equipment can preferably be used for hot pressing work, because it is possible to perform a treatment at low cost with a high cleaning effect by using such equipment.
- This cold-rolled steel sheet was coated with one of a galvanizing layer, a hot-dip Zn-Al-alloy coating layer (Al content: 55 mass%), a galvannealing layer (Fe content: 10 mass%), a Zn electroplating layer, and a Zn-Ni-alloy electroplating layer (Ni content: 12 mass%) and cut into a sample having a size of 200 mm ⁇ 300 mm.
- a surface-cleaning treatment was performed by using one of A: a wiping method with waste cloth, B: a brushing method, C: a combined method of wash-oil application and brushing, D: an alkaline degreasing method (pH: 12.0), and E: a solvent degreasing method.
- a surface-cleaning treatment was performed by using one of A: a wiping method with waste cloth, B: a brushing method, C: a combined method of wash-oil application and brushing, D: an alkaline degreasing method (pH: 12.0), and E: a solvent degreasing method.
- F strong alkaline degreasing (pH: 13.0) and samples which had not been subjected to a surface-cleaning treatment were also prepared.
- Wiping with waste cloth was performed by using waste cloth (Cleaning White Stockinet Waste (Cotton) produced by Nihon Waste Co., Ltd.) and by wiping the surface of a sample twice with a reciprocating movement of a hand.
- Brushing was performed by using a nylon-fiber plant brush (SK-type Straight Brush produced by Showa Kogyo Co., Ltd.) and by brushing the surface of a sample twice with a reciprocating movement of a hand.
- SK-type Straight Brush produced by Showa Kogyo Co., Ltd.
- wash-oil application and brushing were performed by performing brushing as described above after having applied a wash rust-prevention oil (PRETON R352L produced by Sugimura Chemical Industrial Co., Ltd.) to the surface of a sample so that the amount of oil applied was 2.0 g/m 2 .
- a wash rust-prevention oil PRETON R352L produced by Sugimura Chemical Industrial Co., Ltd.
- Alkaline degreasing was performed by spraying a sample with an alkaline degreasing liquid (CL-N364S, 20g/L, 60°C, produced by Nihon Parkerizing Co., LTD.) for 10 seconds, and thereafter performing water washing followed by drying.
- an alkaline degreasing liquid (CL-N364S, 20g/L, 60°C, produced by Nihon Parkerizing Co., LTD.) for 10 seconds, and thereafter performing water washing followed by drying.
- the pH of the alkaline degreasing liquid was 12.0.
- Solvent degreasing was performed by immersing a sample in a combined solvent of toluene and ethanol having a mixture ratio of 1:1, and thereafter performing ultrasonic cleaning for one minute and drying.
- Strong alkaline degreasing which was performed as a comparative example, was performed by immersing a sample in a strong alkaline degreasing liquid (NaOH aqueous solution, pH: controlled to be 13.0, 50°C) for 5 seconds, and thereafter performing water washing followed by drying.
- a strong alkaline degreasing liquid NaOH aqueous solution, pH: controlled to be 13.0, 50°C
- the sample was heated in an electric furnace at a temperature of 950°C so that duration of the sample in the electric furnace was 8 minutes, the sample was taken out of the furnace immediately after completion of heating, and then held in a flat mold made of Al in order to perform a rapid cooling treatment (cooling rate: 50°C/s).
- Ten samples were each prepared under the same condition in order to increase the judgment accuracy of surface appearance. After having performed a visual test regarding the state of point-like defects of the samples, surface appearance was judged on the basis of the judgment criteria below, and the case of ⁇ or ⁇ was judged as satisfactory.
- the effect of the present invention was evaluated on the basis of the evaluation of the surface appearance after having heated and cooled a flat sheet as described above without performing practical press forming which utilized a direct process or an indirect process
- the results of the present evaluation are the same as those of the evaluation of the surface appearance after having performed practical press forming which utilizes the above-mentioned two processes, because the surface appearance after having performed heating and cooling depends on whether or not stain components exist on the surface of the sample and on the effect of removing the stain components.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electrochemistry (AREA)
- Coating With Molten Metal (AREA)
- Electroplating Methods And Accessories (AREA)
- Heat Treatment Of Articles (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Chemically Coating (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015149092 | 2015-07-29 | ||
JP2016029871 | 2016-02-19 | ||
PCT/JP2016/003196 WO2017017905A1 (ja) | 2015-07-29 | 2016-07-05 | 熱間プレス部材の製造方法 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3330016A1 true EP3330016A1 (de) | 2018-06-06 |
EP3330016A4 EP3330016A4 (de) | 2018-06-27 |
EP3330016B1 EP3330016B1 (de) | 2023-09-06 |
Family
ID=57884668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16830013.5A Active EP3330016B1 (de) | 2015-07-29 | 2016-07-05 | Verfahren zur herstellung eines heissgepressten elements |
Country Status (7)
Country | Link |
---|---|
US (1) | US20180216219A1 (de) |
EP (1) | EP3330016B1 (de) |
JP (1) | JP6409878B2 (de) |
KR (1) | KR102050175B1 (de) |
CN (1) | CN107921509A (de) |
MX (1) | MX2018001125A (de) |
WO (1) | WO2017017905A1 (de) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019160106A1 (ja) * | 2018-02-15 | 2019-08-22 | 日本製鉄株式会社 | Fe-Al系めっきホットスタンプ部材及びFe-Al系めっきホットスタンプ部材の製造方法 |
CN111618146A (zh) * | 2020-05-12 | 2020-09-04 | 首钢集团有限公司 | 一种锌基镀层涂覆钢材热冲压方法及热冲压成型构件 |
CN114029699B (zh) * | 2021-10-22 | 2022-08-30 | 广东中辉绿建移动房屋科技有限公司 | 一种镀锌顶板的制备方法及集成房屋顶 |
CN114525389A (zh) * | 2022-02-16 | 2022-05-24 | 南京钢铁股份有限公司 | 一种镍系钢板表面质量的控制方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4849186A (de) | 1971-10-23 | 1973-07-11 | ||
JPS582511A (ja) | 1981-06-26 | 1983-01-08 | Sanyo Electric Co Ltd | 芯上下式石油燃焼器 |
JPH01152296A (ja) * | 1987-12-10 | 1989-06-14 | Kawasaki Steel Corp | 鋼板へのZn−Ni合金の電気めっき方法 |
FR2807447B1 (fr) | 2000-04-07 | 2002-10-11 | Usinor | Procede de realisation d'une piece a tres hautes caracteristiques mecaniques, mise en forme par emboutissage, a partir d'une bande de tole d'acier laminee et notamment laminee a chaud et revetue |
US7650547B2 (en) | 2007-02-28 | 2010-01-19 | Verigy (Singapore) Pte. Ltd. | Apparatus for locating a defect in a scan chain while testing digital logic |
WO2008153183A1 (ja) * | 2007-06-15 | 2008-12-18 | Sumitomo Metal Industries, Ltd. | 成形品の製造方法 |
CN101508854B (zh) * | 2009-03-24 | 2011-03-23 | 机械科学研究总院先进制造技术研究中心 | 一种超高强度钢板热冲压件高温抗氧化润滑涂料 |
PT2290133E (pt) * | 2009-08-25 | 2012-06-19 | Thyssenkrupp Steel Europe Ag | Método para a produção de um componente de aço com um revestimento metálico anti-corrosão e um componente de aço |
JP5884151B2 (ja) * | 2010-11-25 | 2016-03-15 | Jfeスチール株式会社 | 熱間プレス用鋼板およびそれを用いた熱間プレス部材の製造方法 |
JP5472531B2 (ja) * | 2011-04-27 | 2014-04-16 | 新日鐵住金株式会社 | ホットスタンプ部材用鋼板およびその製造方法 |
US10100381B2 (en) * | 2011-06-07 | 2018-10-16 | Jfe Steel Corporation | Steel sheet for hot pressing and process for manufacturing hot pressed member using the steel sheet |
JP5880321B2 (ja) * | 2012-07-09 | 2016-03-09 | 新日鐵住金株式会社 | 高強度鋼成形部材の製造方法 |
JP6264818B2 (ja) * | 2013-10-03 | 2018-01-24 | 新日鐵住金株式会社 | ホットスタンプ鋼材の製造方法、ホットスタンプ用鋼板の製造方法及びホットスタンプ用鋼板 |
JP6171872B2 (ja) * | 2013-11-12 | 2017-08-02 | 新日鐵住金株式会社 | ホットスタンプ鋼材の製造方法、ホットスタンプ用鋼板の製造方法及びホットスタンプ用鋼板 |
JP6191420B2 (ja) * | 2013-12-02 | 2017-09-06 | 新日鐵住金株式会社 | ホットスタンプ鋼材の製造方法及びホットスタンプ鋼材 |
-
2016
- 2016-07-05 EP EP16830013.5A patent/EP3330016B1/de active Active
- 2016-07-05 WO PCT/JP2016/003196 patent/WO2017017905A1/ja active Application Filing
- 2016-07-05 CN CN201680044284.1A patent/CN107921509A/zh active Pending
- 2016-07-05 KR KR1020187002274A patent/KR102050175B1/ko active IP Right Grant
- 2016-07-05 MX MX2018001125A patent/MX2018001125A/es unknown
- 2016-07-05 JP JP2016562278A patent/JP6409878B2/ja active Active
- 2016-07-05 US US15/747,880 patent/US20180216219A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
CN107921509A (zh) | 2018-04-17 |
KR20180021125A (ko) | 2018-02-28 |
JPWO2017017905A1 (ja) | 2017-07-27 |
KR102050175B1 (ko) | 2019-11-28 |
MX2018001125A (es) | 2018-05-23 |
EP3330016A4 (de) | 2018-06-27 |
JP6409878B2 (ja) | 2018-10-24 |
US20180216219A1 (en) | 2018-08-02 |
WO2017017905A1 (ja) | 2017-02-02 |
EP3330016B1 (de) | 2023-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5650222B2 (ja) | 腐食に対する保護を与える金属コーティングが施された鋼部材を製造する方法、および鋼部材 | |
JP5482968B2 (ja) | 酸洗後の鋼板表面の黄変防止方法 | |
CN103038398B (zh) | 热压用钢板及使用了热压用钢板的热压部件的制造方法 | |
CN100552073C (zh) | 镀层粘附性和扩孔性均优异的热浸镀锌高强度钢板及其制造方法 | |
JP6137089B2 (ja) | 冷延鋼板の製造方法および冷延鋼板の製造設備 | |
EP1707645A1 (de) | Feuerverzinkte hochfeste stahlplatte mit hervorragender überzugshaftung und hervorragenden lochexpansionseigenschaften | |
EP1724371A1 (de) | Feuerverzinktes hochfestes verbundstahlblech mit hervorragender formbarkeit und bohrungsaufweitbarkeit und herstellungsverfahren dafür | |
EP3330016B1 (de) | Verfahren zur herstellung eines heissgepressten elements | |
EP3017892A1 (de) | Verfahren zur herstellung eines heisspresselements | |
KR101361227B1 (ko) | 열간 프레스부재 및 그 제조 방법 | |
US10927441B2 (en) | High-strength galvanized hot-rolled steel sheet and method for manufacturing same | |
JP2019026893A (ja) | 耐遅れ破壊特性と耐食性に優れた高強度鋼板 | |
WO2017007036A1 (ja) | 冷延鋼帯の製造方法及び製造設備 | |
JP5896165B2 (ja) | 酸洗後の鋼板表面の黄変防止方法 | |
JP2008266685A (ja) | 外観に優れた高張力合金化溶融亜鉛めっき鋼板の製造方法 | |
JP2019026864A (ja) | 塗装後耐食性と耐遅れ破壊特性に優れた高強度冷延鋼板及びその製造方法 | |
JP6160655B2 (ja) | 熱延鋼板及びその製造方法 | |
JP2007246951A (ja) | 成形性、化成処理性および塗装後耐食性に優れた高強度冷延鋼板およびその製造方法 | |
WO2015133077A1 (ja) | 冷延鋼板およびその製造方法、ならびに自動車部材 | |
KR101647221B1 (ko) | 우수한 표면품질과 밀착성을 갖는 열연 용융아연도금강판의 제조방법 | |
JP6123754B2 (ja) | 化成処理性に優れるSi含有熱延鋼板およびその製造方法 | |
JP2020041177A (ja) | 熱間プレス用鋼板 | |
US20230183832A1 (en) | Method for producing hardened steel components with a conditioned zinc alloy anti-corrosive layer | |
JP3718906B2 (ja) | 溶融金属めっき熱間圧延鋼板の製造方法 | |
JP2007126747A (ja) | 成形性および塗装後耐食性に優れた高強度冷延鋼板およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180129 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20180525 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C25D 5/26 20060101ALI20180518BHEP Ipc: C23C 2/26 20060101ALI20180518BHEP Ipc: B21D 22/26 20060101ALI20180518BHEP Ipc: C21D 9/46 20060101ALI20180518BHEP Ipc: C23C 2/40 20060101ALI20180518BHEP Ipc: C23C 2/06 20060101ALI20180518BHEP Ipc: C25D 5/48 20060101ALI20180518BHEP Ipc: C21D 8/02 20060101ALI20180518BHEP Ipc: B21D 22/20 20060101AFI20180518BHEP |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200507 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20230313 |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: JFE STEEL CORPORATION |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602016082613 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20230906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231206 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231207 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1607823 Country of ref document: AT Kind code of ref document: T Effective date: 20230906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240106 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240106 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240108 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602016082613 Country of ref document: DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240530 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240611 Year of fee payment: 9 |
|
26N | No opposition filed |
Effective date: 20240607 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240529 Year of fee payment: 9 |