EP3311875A1 - Systèmes et procédés permettant de retirer un matériau indésirable à l'intérieur d'un système circulatoire - Google Patents

Systèmes et procédés permettant de retirer un matériau indésirable à l'intérieur d'un système circulatoire Download PDF

Info

Publication number
EP3311875A1
EP3311875A1 EP17196915.7A EP17196915A EP3311875A1 EP 3311875 A1 EP3311875 A1 EP 3311875A1 EP 17196915 A EP17196915 A EP 17196915A EP 3311875 A1 EP3311875 A1 EP 3311875A1
Authority
EP
European Patent Office
Prior art keywords
cannula
distal end
undesirable material
site
funnel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP17196915.7A
Other languages
German (de)
English (en)
Inventor
Lishan Aklog
Michael Glennon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Angiodynamics Inc
Original Assignee
Angiodynamics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Angiodynamics Inc filed Critical Angiodynamics Inc
Publication of EP3311875A1 publication Critical patent/EP3311875A1/fr
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3616Batch-type treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22031Gripping instruments, e.g. forceps, for removing or smashing calculi
    • A61B17/22032Gripping instruments, e.g. forceps, for removing or smashing calculi having inflatable gripping elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22079Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with suction of debris
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22094Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for for crossing total occlusions, i.e. piercing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2217/00General characteristics of surgical instruments
    • A61B2217/002Auxiliary appliance
    • A61B2217/005Auxiliary appliance with suction drainage system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/71Suction drainage systems
    • A61M1/77Suction-irrigation systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/71Suction drainage systems
    • A61M1/79Filters for solid matter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/84Drainage tubes; Aspiration tips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/75General characteristics of the apparatus with filters
    • A61M2205/7545General characteristics of the apparatus with filters for solid matter, e.g. microaggregates

Definitions

  • the present invention relates to systems and methods for removing undesirable materials from a site of interest within the circulatory system. More particularly, the present invention relates to systems and methods for removing substantially en bloc clots, thrombi, and emboli, among others, from within heart chambers, as well as medium to large vessels, while reinfusing fluid removed from the site of interest back into the patient to minimize fluid loss.
  • the circulatory system can be disrupted by the presence of undesirable material, most commonly blood clots, but also tumor, infective vegetations, and foreign bodies, etc.
  • Blood clots can arise spontaneously within the blood vessel or heart chamber (thrombosis) or be carried through the circulation from a remote site and lodge in a blood vessel (thromboemboli).
  • Obstructing a systemic artery interferes with the delivery of oxygen-rich blood to organs and tissues (arterial ischemia) and can ultimately lead to tissue death or infarction.
  • Obstructing a systemic vein interferes with the drainage of oxygen-poor blood and fluid from organs and tissues (venous congestion) resulting in swelling (edema) and can occasionally lead to tissue infarction.
  • Heart disease results from thrombosis of a coronary artery following disruption of a cholesterol plaque.
  • the most common causes of stroke include obstruction of a cerebral artery either from local thrombosis or thromboemboli, typically from the heart. Obstruction of the arteries to abdominal organs by thrombosis or thromboemboli can result in catastrophic organ injury, most commonly infarction of the small and large intestine. Obstruction of the arteries to the extremities by thrombosis or thromboemboli can result in gangrene.
  • DVT deep venous thrombosis
  • DVT causes harm by (1) obstructing drainage of venous blood from the legs leading to swelling, ulcers, pain and infection and (2) serving as a reservoir for blood clot to travel to other parts of the body including the heart, lungs (pulmonary embolism) and across a opening between the chambers of the heart (patent foramen ovale) to the brain (stroke), abdominal organs or extremities.
  • the undesirable material can cause harm by obstructing pulmonary arteries, a condition known as pulmonary embolism.
  • the obstruction If the obstruction is upstream, in the main or large branch pulmonary arteries, it can severely compromise total blood flow within the lungs and therefore the entire body, resulting in low blood pressure and shock.
  • the obstruction If the obstruction is downstream, in large to medium pulmonary artery branches, it can prevent a significant portion of the lung from participating in the exchange of gases to the blood resulting low blood oxygen and build up of blood carbon dioxide. If the obstruction is further downstream, it can cut off the blood flow to a smaller portion of the lung, resulting in death of lung tissue or pulmonary infarction.
  • the presence of the undesirable material within the heart chambers can cause harm by obstructing flow or by serving as a reservoir for emboli to other organs in the body.
  • the most common site for obstruction within the heart is in the heart valves. Infective vegetations, a condition known as endocarditis, can cause partial obstruction to flow across a valve before destroying the valve. Patients with prosthetic valves, especially mechanical valves, are particularly prone to valve thrombosis and obstruction.
  • the heart chambers are the most common source of emboli (cardioemboli) to the systemic circulation, including stroke. Emboli tend to arise from areas that are prone to stagnation of blood flow under pathologic conditions.
  • the left atrial appendage in patients with atrial fibrillation is prone to thrombosis, as well as the left ventricular apex in patients with acute myocardial infarction or dilated cardiomyopathy.
  • Infected vegetations or thrombi on the heart valves are also common sources of emboli.
  • Undesirable material such as blood clots and infected vegetations can reside in the chambers of the right heart (atrium and ventricle), often associated with prosthetic material such as pacemaker leads or long-term indwelling catheters.
  • the most effective treatment for conditions resulting from the presence of blood clots or other undesirable materials within the circulation is, of course, to stabilize or eliminate the material before it has embolized.
  • the material can be eliminated by utilizing biologic or mechanical means.
  • Biologic treatments involve the delivery of agents to the material, which either dissolve the material or, at a minimum, stabilize it until the body can eliminate it.
  • antimicrobial agents can, over time, decrease the chances of embolization.
  • the agents include 1) anticoagulant agents (heparin, warfarin, etc.) which prevent propagation of blood clots; and 2) more potent thrombolytic agents (streptokinase, urokinase, tPA, etc,) which actively dissolve clots.
  • the agents are usually delivered systemically, i.e., into a peripheral or central vein and allowed to circulate throughout the body.
  • Thrombolytic agents can also be delivered through a catheter directly to the blood clot which can increase its effectiveness by increasing local concentrations but this does not completely eliminate the absorption into systemic circulation throughout the body.
  • thrombolytic agents have been shown to increase survival in patients with hemodynamically significant pulmonary embolism as documented by echocardiographic evidence of right ventricular strain.
  • the use of thrombolytic agents is the standard of care in this subgroup of patients with a high 20-25% early mortality. They are commonly used in to dissolve clots in other blood vessels including arteries to heart, abdominal organs and extremities.
  • thrombolytic agents There are two primary disadvantages to thrombolytic agents. First, every cell in the body is exposed to the agent which can lead to serious and often life threatening bleeding complications in remote areas such as the brain and stomach. The risk of major bleeding complications can be as high as 25% and the risk of often fatal bleeding into the brain can go up to 3%. Second, blood clots undergo a process called organization where the soft gel-like red/purple clot is transformed into a firmer, whitish clot by the cross-linking of proteins such as fibrin. Organized clots are much less amenable to treatment with thrombolytic agents.
  • Thromboemboli such as pulmonary emboli
  • thrombus frequently developed at its original site (e.g., the deep veins of the legs) over a long period of time prior to embolizing to the remote site (e.g., the lungs).
  • Mechanical treatments involve the direct manipulation of the material to eliminate the obstruction. This can involve aspiration, maceration, and compression against the vessel wall, or other types of manipulation.
  • the distinct advantage of mechanical treatment is that it directly attacks the offending material and eliminates the vascular obstruction independent of the specific content of the offending material.
  • Mechanical treatments if feasible, can usually prove to be superior to biologic treatments for vascular obstruction. Procedural success rates tend to be higher.
  • the best example of this advantage is in the treatment of acute myocardial infarction. Although thrombolytic therapy has had a major impact on the management of patient with myocardial infarction, this option is now relegated to a distant second choice.
  • Surgical pulmonary embolectomy involves opening the pulmonary artery and removing the offending clot under direct vision. This operation has been performed for nearly 100 years, but did not become practical until the introduction of the heart lung machine. Even then, it was generally relegated to a salvage procedure in moribund patients in whom all other options had been exhausted because of the inherent danger in the surgery and the recovery period. While surgical pulmonary embolectomy is very effective in completely evacuating pulmonary emboli whether soft-fresh and firm-organized clot, it is an invasive procedure.
  • Catheter-based removal of blood clots from larger blood vessels (e.g., pulmonary arteries) and heart chambers has had limited success, at least compared to smaller blood vessels (e.g., coronary arteries).
  • Catheter pulmonary embolectomy where the pulmonary emboli are removed percutaneously using one of several techniques, has been around for nearly 30 years but few patients currently receive these therapies. These techniques can be subdivided into three categories. With fragmentation thrombectomy, the clot is broken into smaller pieces, most of which migrate further downstream, decreasing the central obstruction but resulting in a "no-reflow" phenomenon. It is sometimes used in combination with thrombolytics which preclude their use as an alternative to thrombolytics.
  • the present invention relates generally to systems and methods for removing undesirable material residing in vessels, such as blood vessels, or within chambers of the heart. More specifically, the subject invention relates to systems and methods for using a cannula to remove substantially en bloc, from a site of obstruction or interest, an undesirable material, such as blood clots, embolisms and thromboembolisms, without significant fragmentation and without excessive fluid loss.
  • the systems and methods of the present invention may simultaneously reinfuse aspirated (i.e., removed) and filtered fluid, such as blood, back into the patient on a substantially continuous basis to minimize any occurrences of fluid loss and/or shock.
  • the subject invention may be particularly useful, but may not be limited to, the removal of blood clots, tumors, infective vegetations and foreign bodies from medium to large blood vessels and heart chambers.
  • a system for removing an undesirable material from within a vessel includes a first cannula having a distal end and an opposing proximal end.
  • the distal end of the first cannula in an embodiment, may include or may be deployable to a diameter relatively larger than that of the proximal end.
  • the first cannula may be designed for maneuvering within the vessel to a site of interest, such that an undesirable material can be captured substantially en bloc through the distal end and removed along the first cannula away from the site.
  • the system may also include a pump, in fluid communication with the proximal end of the first cannula, so as to provide a sufficient suction force for removing the undesirable material from the site of interest.
  • the system may further include a second cannula in fluid communication with the pump, so that fluid removed from the site of interest by the first cannula can be directed along the second cannula and reinfused through a distal end of the second cannula.
  • the distal end of the second cannula may be situated in spaced relation to the distal end of the first cannula.
  • the system may also be provided with a filter device positioned in fluid communication with the first cannula.
  • the filter device in an embodiment, may act to entrap or capture the undesirable material and remove it from the fluid flow.
  • the system may further be provided with a reservoir in fluid communication with the filter device.
  • the reservoir may act to transiently collect fluid being directed from the filter device and to provide a source of fluid for reinfusion by the second cannula.
  • a second filter may also be included in fluid communication between the pump and the second cannula, so as to remove, prior to reinfusion, any debris that may have escaped from the filter device from the fluid flow.
  • a method for removing an undesirable material from within a vessel includes initially maneuvering a first cannula having a distal end and an opposing proximal end to a site of interest within the vessel, such that the distal end of the first cannula is positioned adjacent the undesirable material.
  • a second cannula in fluid communication with the first cannula, may be positioned such that its distal end can be situated in spaced relation to the distal end of the first cannula.
  • a suction force may be provided through the distal end of the first cannula to the site of interest, so as to remove, through the distal end of the first cannula, the undesirable material substantially en bloc from the site of interest.
  • any fluid removed along with the undesirable material may be reinfused, through the distal end of the second cannula, to a location in spaced relation from the distal end of the first cannula.
  • the suction and reinfusion of blood can occur, in an embodiment, continuously for a desired duration to minimize fluid loss in the patient.
  • the step of suctioning an undesirable material can occur at an intermittent pulse for a desired duration following reinfusion of the removed fluid.
  • an apparatus for removing an undesirable material from within a vessel includes an elongated tube having a distal end through which an undesirable material can be captured, a pathway extending along the tube to provide a passage for transporting the undesirable material from the distal end, and a proximal end in opposing relations to the distal end through which the undesirable material can exit.
  • the apparatus also includes a funnel situated at the distal end of the tube, and designed for deployment between an flared open position and a collapsed closed position, so as to better engage and capture the undesirable material.
  • the apparatus further includes a mechanism positioned about a distal portion of the tube, which mechanism, upon actuation, can deploy the funnel between the closed position and the open position.
  • the funnel includes a plurality of strips, with each strip being pivotally coupled at one end to the distal end of the tube.
  • the funnel may also include a substantially impermeable membrane extending across a space between adjacent strips, such that the membrane, in connection with the strips define the shape of the funnel.
  • the mechanism in an embodiment, includes a balloon positioned circumferentially about the tube at a location proximal to the funnel, and an attachment mechanism provided with one end attached to the funnel and an opposite end attached to the balloon. By design, upon expansion of the balloon, the attachment mechanism can pull on the funnel to deploy it into a flared open position.
  • the apparatus may also include a jacket positioned circumferentially about the distal end of the tube, and extending from the funnel to the balloon to protect the vessel from potential irritation that may be caused by the balloon and the strips defining the funnel.
  • the jacket may act as the mechanism for deploying the funnel into a flared open position upon expansion of the balloon.
  • the present invention overcomes the deficiencies of existing devices and techniques and can act to remove substantially en bloc (i.e., wholly or entirely) undesirable material, such as thrombi and emboli, from the vasculature, including medium to large size blood vessels, and from heart chambers.
  • Vessels from which the undesirable material may be removed include, for example, those within the pulmonary circulation (e.g., pulmonary arteries), systemic venous circulation (e.g., vena cavae, pelvic veins, leg veins, neck and arm veins) or arterial circulation (e.g., aorta or its large and medium branches).
  • the heart chambers may be, for example, in the left heart (e.g., the left ventricular apex and left atrial appendage), right heart (e.g., right atrium and right ventricle), or on its valves.
  • the present invention can also act to remove tumors, infective vegetations and other foreign.
  • System 1 for removing an undesirable material, substantially en bloc, from an obstruction site or site of interest within the vasculature, and for reinfusion of fluid removed (i.e., suctioned or aspirated) from the site of interest back into a patient, in order to minimize fluid loss within the patient.
  • System 1 may be provided with a first or suction cannula 10 for capturing and removing en bloc the undesirable material from the site of interest, such as that within a blood vessel or a heart chamber.
  • Cannula 10 in an embodiment, may be an elongated tube and may include a distal end 11 through which the undesirable material can be captured and removed.
  • Cannula 10 may also include a lumen or pathway 12 extending along a body portion of cannula 10.
  • Pathway 12 in one embodiment, provides a passage along which the captured material and aspirated circulatory fluid, such as blood, that may be captured therewith may be transported and directed away from the site of interest.
  • Cannula 10 may further include a proximal end 13 in opposing relations to the distal end 11, and through which the captured material may exit from the cannula 10.
  • cannula 10 may be designed for introduction into the vasculature, for instance, through a peripheral blood vessel, and may need to subsequently be maneuvered therealong to the site of interest, cannula 10, in an embodiment, may be made from a pliable material.
  • cannula 10 may be used to introduce a suction force to the site of interest for capturing the undesirable material, cannula 10 may be made from a sufficiently stiff material or may be reinforced with a sufficiently stiff material, so as not to collapse under a suction force.
  • cannula 10 may be constructed from a biocompatible material, such as polyvinyl chloride, polyethylene, polypropylene, polyurethane, Pebax®, silicone, or a combination thereof.
  • cannula 10 may be desirable to maneuver cannula 10 to the site of interest using image guidance, for example, using fluoroscopy or echocardiography.
  • cannula 10 in an embodiment, may also include a radioopaque material or any material capable of being visualized.
  • distal end 11 of cannula 10 may be designed to have a diameter that can be relatively larger than that of the proximal end 13.
  • distal end 11 of cannula 10 may be in the shape of a funnel 20, and may be provided with a diameter, for example, approximately at least three times that of pathway 12.
  • the ratio between the diameter of funnel 20 and pathway 12 can be varied, if so desired.
  • Funnel 20, with its design, may be placed directly at a site of interest 23 to engage undesirable material 24 ( Fig.
  • a vortex effect may be generated during suctioning to better direct the undesirable material into the funnel 20. It is believed that fluid flowing into funnel 20 can often exhibit a laminar flow circumferentially along the interior surface of the funnel 20 to generate a vortex flow into the distal end 11 of suction cannula 10. Thus, in the presence of a vortex flow, such a flow can act to direct the undesirable material toward the distal end 11 to allow the material to subsequently be pulled into the distal end by suctioning.
  • cannula 10 may include, in an embodiment, a sheath 21 circumferentially situated about distal end 11 of cannula 10.
  • Sheath 21, as illustrated, may be designed to slide toward as well as away from the distal end 11 of cannula 10. In that way, when the distal end 11 is positioned at the site of interest 23, and sheath 21 is retracted (i.e., slid away from the distal end 11), funnel 20 may be exposed and expanded into the desired shape in order to engage undesirable material 24.
  • sheath 21 may be advanced toward the distal end 11 and over the funnel 20. Thereafter, cannula 10 may be maneuvered from the site of interest 23.
  • cannula 10 may be designed to allow introduction of a catheter 25 with balloon 26 to the site of interest.
  • catheter 25 with balloon 26 may be directed along the lumen or pathway 12 of cannula 10 and into funnel 20.
  • balloon 26 may be inflated to a size sufficient to pull on the undesirable material entrapped within funnel 20.
  • balloon 26 can dislodge the entrapped material and can eventually partially or substantially occlude a pathway 12, distal to the undesirable material 24, which in essence occludes the fluid communication between cannula 10 and the vessel.
  • the suction force within pathway 12, as a result, can be enhanced to better remove the undesirable material.
  • catheter 25 and balloon 26 may be advanced past the distal end of cannula 10 and past the undesirable material 24 at the site of interest 23.
  • the balloon 26 may be inflated and as balloon is withdrawn back towards the distal end 11 of cannula 10, it can dislodge the undesirable material and allow the suction to draw it into the distal end of cannula 10.
  • this approach can also be applied when cannula 10 is situated directly at the site of interest 23 and the suction force may be insufficient to dislodge the undesirable material 24.
  • funnel 20 located at distal end 11 of cannula 10 may be created by providing a plurality of independent strips 31, each coupled at one end to distal end 11 of cannula 10.
  • three strips 31 are illustrated.
  • strips 31 may be designed to pivot between a closed position, where strips 31 may be substantially adjacent one another, and an open position, where strips may be flared into a funnel 20, shown in Fig. 3A .
  • cannula 10 may include a balloon 33 positioned circumferentially about cannula 10 and proximal to strips 31.
  • an attachment mechanism such as a string 34 or any similar mechanisms (e.g., rod, chain etc.), may be provided for each of the strips 31, with one end attached to one strip 31 and an opposite end attached to balloon 33.
  • Balloon 33 in one embodiment, may be inflated through opening 37 through the use of any fluid, including water, air, or radioopaque contrast material.
  • strips 33 and balloon 31 may be designed to expand to a diameter larger than that of the vessel within which cannula 10 is being deployed. In that way, cannula 10 may be securely positioned at the site of interest for removal of the undesirable material substantially en bloc.
  • a membrane 35 may be placed across a space between adjacent strips 31 when the strips 31 are in the open position.
  • a continuous membrane 35 may be used to circumferentially stretch across each of the space between adjacent strips 31.
  • Membrane 35 may also act to enhance suction at the site of interest, as it can cover up any open space between the strips 31.
  • membrane 35 in an embodiment, may be made from a non-permeable material. It should be appreciated that membrane 35 and strips 31, as illustrated, together define funnel 20 at distal end 11 of cannula 10.
  • jacket 36 may be provided circumferentially about the distal 11 of cannula 10.
  • jacket 36 may extend substantially from a tip of each strip 31 to balloon 33.
  • Jacket 36 can be affixed anywhere along each strip 31, if necessary. Since jacket 36 attaches at one end to strips 31 and at an opposite end to balloon 33, jacket 36, in an embodiment, may be used instead of attachment mechanism 34 to deploy strips 31 into an open position when balloon 33 is expanded. Of course, jacket 36 may also be used in conjunction with attachment mechanism 34 to deploy strips 31 into an open position.
  • jacket 36 may be lengthened, so that the end connected to strips 31 may instead be pulled over strips 31, into funnel 20, and attached substantially to a base of each strips 31 (i.e., base of funnel 20).
  • membrane 35 may not be necessary, as jacket 36 may serve the purpose of membrane 35 to cover the space between each of strips 31.
  • at least that portion of jacket 36 extending over strips 31 and into the base funnel 20 can be impermeable.
  • balloon 33 may act to enhance the suction force being applied at the site of interest when removing the undesirable material. For instance, when cannula 10 is deployed downstream of the undesirable material, rather than substantially adjacent to the undesirable material, within a vessel having a venous circulation (i.e., flow toward the heart), balloon 33, when expanded radially, can substantially occlude the vessel, such that collateral fluid flow within the vessel can be minimized, thereby increasing the suction force that can be applied to the undesirable material. Additionally, the occlusion of such a vessel by balloon 33 can better direct the material being removed into the funnel 20 and prevent the material from being carried by the flow of blood past the funnel.
  • balloon 33 when expanded radially, can substantially occlude the vessel, such that pressure being exerted on the downstream material by the fluid flow can be lessened. By lessening the pressure on the material to be removed, the suction force being applied at the site of interest can act to remove the material more easily.
  • suction cannula 10 may be made from a pliable material, in order to efficiently direct it along a vessel to the site of interest, cannula 10 may be reinforced with wire or other material to optimize maneuverability within the vessel without kinking.
  • suction cannula 10 may, in addition to pathway 12, be provided with one or more additional pathway or lumen 41.
  • pathway 12 may act, as noted above, to provide a passage along which the captured material may be transported and directed away from the site of interest.
  • Lumen 41 can provide a passage along which a fluid can be directed to inflate balloon 33 through opening 37 ( Figs. 3A-B ).
  • lumen 41 may also be used to accommodate other devices, such as other catheters or surgical instruments, for use in connection with a variety of purposes.
  • a device may be inserted and advanced along lumen 41 through the distal end 11 of suction cannula 10 to dislodge the undesirable material.
  • An angiography catheter can be inserted and advanced along lumen 41 through the distal end 11 of suction cannula 10 to perform an angiogram to confirm the location of the undesirable material or confirm that it has been successfully removed.
  • a balloon embolectomy catheter can be inserted along lumen 41 toward the distal end 11 of suction cannula 10 to remove any material which may have clogged the cannula or past the any undesirable material firmly lodged in the vessel to draw it into the cannula.
  • any other multi-lumen design may be possible.
  • cannula 10 may be provided with a port 51, as shown in Fig. 5 , located at the proximal end 13 of cannula 10. It should be appreciated that in the embodiment where cannula 10 has only pathway 12 (i.e., single lumen cannula), port 51 may similarly be provided at the proximal end 13 of cannula 10 to allow the introduction of other devices into pathway 12.
  • Cannula 10 of the present invention may be of any sufficient size, so long as it can be accommodated within a predetermined vessel, such as a medium to large size blood vessel.
  • the size of cannula 10 may also be determined by the size of the undesirable material to be removed, so long as the undesirable material can be removed substantially en bloc without significant fragmentation.
  • suction cannula 10 may be designed to remove at least 10 cm 3 of undesirable material substantially en bloc.
  • cannula 10 can be scaled and adapted for use within smaller vessels in the body and for removing a relatively smaller volume or amount undesirable material, if so desired.
  • system 1 can also include filter device 14 in fluid communication with the proximal end 13 of cannula 10.
  • Filter device 14 in one embodiment, may include an inlet 141 through which fluid removed from the site of interest along with the captured undesirable material can be directed from cannula 10.
  • Filter device 14 may also include an outlet 142 through which filtered fluid from within device 14 may be directed downstream of system 1.
  • filter device 14 may further include a permeable sheet 143 positioned within the fluid flow between the inlet 141 and the outlet 142.
  • Permeable sheet 143 may include a plurality of pores sufficiently sized, so as to permit fluid from the site of interest to flow therethrough, while preventing any undesirable material captured from the site of interest from moving downstream of system 1.
  • Examples of permeable sheet 143 includes coarse netting, fine netting, a screen, a porous filter, a combination thereof, or any other suitable filter material capable of permitting fluid to flow through while impeding movement of the captured undesirable material.
  • a plurality of permeable sheets 143 may be used.
  • one permeable sheet 143 may be folded to provide multiple surfaces, similar to an accordion, for use in connection with filter device 14. By using a plurality of permeable sheets 143 or by folding sheet 143, the number of filtration surfaces through which the fluid must flow increases to enhance filtration and further minimize any occurrence of any undesirable material from moving downstream of system 1.
  • filter device 14 may be of provided with any design capable of entrapping the undesirable material, while allowing fluid to move therethrough.
  • filter device 14 may include a mechanical trap to remove the undesirable material from the fluid flow.
  • a mechanical trap may be any trap known in the art and may be used with or without permeable sheet 143.
  • system 1 may also be provided with a pump 15 designed to generate negative pressure, so as to create a necessary suction force through cannula 10 to pull any undesirable material from the site of interest.
  • pump 15 may include an intake port 151 in fluid communication with outlet 142 of filter device 14. Intake port 151, as illustrated, may be designed to receive filtered fluid from filter device 14. Pump 15 may also be designed to generate the positive pressure, so as to create a necessary driving force to direct fluid through exit port 152 and downstream of system 1 for reinfusion of fluid removed from the site of interest back into the body.
  • the suction force and the drive force may be generated by pump 15 simultaneously and may take place continuously or intermittently for a set duration.
  • Pump 15 may be any commercially available pump, including those for medical applications and those capable of pumping fluids, such as blood.
  • a pump includes a kinetic pump, such as a centrifugal pump, and an active displacement pump, such as a rollerhead pump.
  • an independent vacuum device (not shown), may be provided for generating the necessary suction force at the site of interest, while a pump 15 may act to generate the necessary driving force for reinfusion purposes.
  • pump 15 may be in fluid communication with the filter device 14, while the vacuum device may be in fluid communication with suction cannula 10 upstream to the filter device 14.
  • the independent pump 15 and vacuum device may operate intermittently for a set duration, and if desired, either the vacuum device or pump 15 may operate continuously, while the other operates intermittently.
  • system 1 may further include a second or reinfusion cannula 16 in fluid communication with the exit port 152 of pump 15.
  • Reinfusion cannula 16 in an embodiment, may be designed to permit filtered fluid, directed from filter device 14 by way of pump 15, to be reinfused back into a patient at a desired site.
  • reinfusion cannula 16 may be designed for placement within the same or different vessel within which suction cannula 10 may be located.
  • Reinfusion cannula 16 in one embodiment, may be an elongated tube and includes a distal end 161 through which cleansed or filtered fluid can be reinfused back into the body.
  • distal end 161 of reinfusion cannula 16 may be designed so that it can be situated in spaced relation to the distal end 11 of the suction cannula 10 when system 1 is in operation.
  • Reinfusion cannula 16 may also include a lumen or pathway 162 extending along its body portion to provide a passage along which the filtered fluid, such as blood, may be transported to a reinfusion site.
  • Reinfusion cannula 16 may further include a proximal end 163 in opposing relations to the distal end 161, and through which the filtered fluid from pump 15 may enter into the cannula 16.
  • reinfusion cannula 16 may be made from a pliable material.
  • reinfusion cannula 16 may be constructed from a biocompatible material, such as polyvinyl chloride, polyethylene, polypropylene, polyurethane, Pebax®, silicone, or a combination thereof.
  • a biocompatible material such as polyvinyl chloride, polyethylene, polypropylene, polyurethane, Pebax®, silicone, or a combination thereof.
  • reinfusion cannula 16 in an embodiment, may also be made to include a radioopaque material.
  • reinfusion cannula 16 may be made from a pliable material, in order to efficiently direct it along a vessel to the reinfusion site, reinfusion cannula 16 may be reinforced to optimize maneuverability within the vessel without kinking. Moreover as shown in Fig. 4B , reinfusion cannula 16 may be provided with one or more additional lumens. With a multi-lumen design, lumen 162, as noted above, may act to provide a passage along which the filtered fluid may be transported and directed to the reinfusion site. Lumen 42, on the other hand, can provide a passage through which a guide wire can be inserted to assist in the guiding the reinfusion cannula 16 to the reinfusion site, or through which other instruments and devices may be inserted for various surgical procedures.
  • reinfusion cannula 16 can serve as an introducer sheath by providing lumen 42 through which these instruments can pass, while filtered blood can be reinfused through lumen 162.
  • any other multi-lumen design may be possible.
  • reinfusion cannula 16 may be designed to be substantially integral with suction cannula 10.
  • reinfusion cannula 16 may be incorporated as part of a double or multi- lumen introducer sheath 43 for insertion into the same vessel within which the suction cannula 10 may be situated.
  • suction cannula 10 may be inserted and maneuvered through one lumen 44 of sheath 43, while reinfusion cannula 16 may be in fluid communication with lumen 45 of sheath 43.
  • lumen 45 may include a distal end 451 in spaced relations to the distal end 11 of cannula 10, so that cleansed or filtered fluid may be introduced to the reinfusion site away from the site of interest where the distal end 11 of cannula 10 may be positioned.
  • reinfusion cannula 16 may be incorporated as part of a double or multi- lumen introducer sheath 43 where the reinfusion cannula 16 and the suction cannula 10 may be concentrically aligned along a shared axis A.
  • reinfusion cannula 16 may have a diameter that can be relatively larger than that of suction cannula 10.
  • reinfusion cannula 16 can accommodate suction cannula 10 within pathway 162 of the reinfusion cannula 16, and allow suction cannula 10 to extend from within pathway 162, such that the distal end 11 of suction cannula 10 may be positioned in spaced relations relative to the distal end 161 of reinfusion cannula 16.
  • the spaced relations between distal end 161 and distal end 11 allows filtered fluid to be introduced to the reinfusion site away from the site of interest, where the removal of the undesirable material may be occurring.
  • reinfusion cannula 16 and suction cannula 10 can be integrated into a single multi-lumen suction-reinfusion cannula 46, as shown in Fig. 4E .
  • multi-lumen cannula 46 may include a distal suction port 461 through which undesirable material from the site of interest can be removed, and a proximal reinfusion port 462 through which cleansed or filtered fluid may be reinfused back into the body.
  • the spaced relations between the suction port 461 and reinfusion port 462 allows filtered fluid to be introduced to the reinfusion site away from the site of interest where the removal of the undesirable material may be occurring.
  • the size of the reinfusion cannula may be designed so that it can handle a relatively rapid reinfusion of large volumes of fluid by pump 15.
  • system 1 may also include a reservoir 61.
  • Reservoir 61 in one embodiment, may be situated in fluid communication between filter device 14 and pump 15, and may act to transiently collect fluid filtered from the site of interest, prior to the filtered fluid being directed into reinfusion cannula 16.
  • reservoir 61 can allow the rate of suctioning (i.e., draining, aspirating) to be separated from rate of reinfusing.
  • the rate of reinfusion occurs at substantially the same rate of suctioning, as the volume of fluid suctioned from the site of interest gets immediately directed along the system 1 and introduced right back to the reinfusion site in a patient.
  • a volume of transiently collected fluid in reservoir 61 now provides a source from which the amount or volume of fluid being reinfused back into the patient can be adjusted, for example, to be less than that being suctioned from the site of interest, as well as the rate at which fluid can be reinfused back into the patient, for example, at a relatively slower rate in comparison to the rate of suctioning.
  • the reinfusion rate and volume can be adjusted to be higher, relative to the rate and volume of suction.
  • reservoir 61 may be a closed or an open container, and may be made from a biocompatible material.
  • system 1 likewise, will be a closed system.
  • pump 15 may be used as both a suction source and a driving force to move fluid from the site of interest to the reinfusion site.
  • pump 15 can generate a suction force independently of or alternately with a driving force to allow reservoir 61 collect filtered fluid from filter device 14.
  • pump 15 may be provided with a gauge in order to measure a rate of flow of the fluid being reinfused.
  • reservoir 61 may be an open container
  • reservoir 61 in such an embodiment, may be designed to accommodate both a volume of fluid, typically at the bottom of reservoir 61, and a volume of air, typically at the top of reservoir 61, to provide an air-fluid interface within reservoir 61.
  • pump 15 in fluid communication with reservoir 61 may not provide the needed driving force and/or suction force to adequately remove the undesirable material and to subsequent reinfuse fluid back into a patient.
  • system 1 may include a separate and independent vacuum source, in fluid communication with the volume of air at the top of reservoir 61, for providing the necessary suction force from the top area of reservoir 61 where air exists, through filter device 14, through the distal end 11 of cannula 10, and to the site of interest.
  • a port provided above the fluid level within reservoir 61 may be provided to allow the independent vacuum source to be in fluid communication with the volume of air within reservoir 61.
  • Pump 15, on the other hand, may be in fluid communication with the volume of fluid within reservoir 61, and may act to generate the necessary driving force for reinfusion purposes.
  • reservoir 61 and filter device 14 may be combined as a single unit.
  • system 1 may further include a second filter device 62 positioned in fluid communication between pump 15 and reinfusion cannula 16.
  • Second filter device 62 may act to remove any debris or material (e.g., ranging from smaller than microscopic in size to relatively larger) that may have escaped and moved downstream from filter device 14, so that the fluid may be substantially cleansed prior to reinfusion.
  • second filter device 62 may include a porous membrane 63 whose pores may be measurably smaller than that in filter device 14, but still capable of allowing fluid to flow therethrough.
  • system 1 Since fluid such as blood needs to be filtered through system 1, it should be noted that system 1 and its components may be made from a biocompatible material to minimize any adverse reaction when fluid removed from the site of interest gets reinfused back into the body.
  • system 1 of the present invention may be introduced into the vasculature, preferably through a peripheral blood vessel, to remove undesirable material, such as a clot, emboli, or thrombi, substantially en bloc and without significant fragmentation, and subsequently reinfusing fluid removed from the site of interest back into a patient.
  • undesirable material such as a clot, emboli, or thrombi
  • system 1 and its components disclosed above can collectively form a substantially closed circuit through which fluid and an undesirable material from a site of interest can be removed by suction, cleared of the undesirable material, filtered to remove any additional debris, and actively introduced back into a patient at a reinfusion site.
  • System 70 includes a suction cannula 71, filter device 72, pump 73, second filter device 74 and reinfusion cannula 75. It should be appreciated that depending on the procedure and to the extent desired, system 70 may not need all of the components shown, or may need other components in addition to those shown.
  • the method of the present invention includes, initially accessing a first blood vessel 701 either by surgical dissection or percutaneously with, for instance, a needle and guide wire.
  • the first blood vessel through which suction cannula 71 may be inserted into patient 700 can be, in an embodiment, any blood vessel that can be accessed percutaneously or by surgical dissection such as femoral vein, femoral artery or jugular vein.
  • suction cannula 71 may be inserted into the first blood vessel 701 over the guide wire, and advanced toward a site of interest 702, for instance, in a second vessel or a heart chamber 703 where an undesirable material 706 may be residing.
  • the second blood vessel or heart chamber in an embodiment, can be the main pulmonary artery, branch pulmonary arteries, inferior vena cavae, superior vena cavae, deep veins of the pelvic, legs, arms or neck, aorta, or any other medium to large blood vessel for which the use of a cannula is suitable for removing undesirable material without causing undesirable damage to the blood vessel.
  • the advancement of suction cannula 71 may be gauged or documented by fluoroscopic angiography, echocardiography or other suitable imaging modality.
  • the suction cannula 71 may normally be introduced through the femoral, jugular or subclavian vein. Alternatively, the suction cannula 71 may be introduced, if desired, directly into the cardiac chambers using a minimally invasive surgical or endoscopic, thoracoscopic, or pericardioscopic approach.
  • a third blood vessel 704 may be accessed either by surgical dissection or percutaneously with, for example, a needle and guide wire.
  • reinfusion cannula 75 may be inserted into the third blood vessel 703 using an open or over the guide wire technique.
  • the third blood vessel through which the reinfusion cannula 75 may be inserted in one embodiment, can be any large vein, such as the femoral vein or jugular vein. Reinfusion cannula 75 may then be advanced toward a reinfusion site, for example, within a fourth blood vessel 705.
  • the fourth blood vessel in one embodiment, can be the femoral vein, iliac vein, inferior vena cava, superior vena cava or right atrium.
  • pump 73 may be activated, and suction cannula 71 may then be placed against and in substantial engagement with the undesirable material 706 at the site of interest 702 for removal by suctioning through the suction cannula 71.
  • the undesirable material 706 and circulatory fluid removed from the site of interest 702 may thereafter be directed along suction cannula 71 into filter device 72 where the undesirable material 706 can be entrapped and removed from the fluid flow.
  • the resulting filtered fluid may next be directed downstream by way of pump 73 into the second filter device 74, where any debris or material (e.g., ranging from smaller than microscopic in size to relatively larger) that may have escaped and moved downstream from filter device 74 can be further captured and removed from the fluid flow prior to reinfusion.
  • the resulting cleansed fluid may then be directed into the reinfusion cannula 75 and introduced back into the patient 700.
  • system 70 may need to be primed with fluid to minimize or eliminate any air and/or air bubbles from the system prior to the initiation of suction and reinfusion.
  • the suction cannula 71 and reinfusion cannula 75 can be primed separately with fluid or by allowing blood to backfill the cannulae after insertion.
  • the remaining components of the system 70 including all tubing, the filter device 72, the pump 73 and any other components of system 70 may also need to be primed with fluid prior to connecting them to the cannulae.
  • this can be achieved by temporarily connecting these components in fluid communication with other as a closed circuit and infusing fluid through a port, similar to port 51 in Fig. 5 , while providing another port through which air can be displaced.
  • a priming fluid include crystalloid, colloid, autologous or heterologous blood, among others.
  • pump 73 may remain activated so that suction and continuous reinfusion of blood can occur continuously for a desired duration or until the removal of the undesirable material has been confirmed, for instance, by visualizing the captured undesirable material in the filter device 72.
  • pump 73 can be activated intermittently in short pulses, either automatically or manually by an operator (e.g., surgeon, nurse or any operating room attendant), for a desired duration or until the removal of the undesirable material has been confirmed by visualization of the material within filter device 72.
  • suction cannula 71 may be deployed within any vessel within patient 700, depending on the procedure, in addition to being placed substantially directly against the undesirable material at the site of interest, suction cannula 71 may be deployed at a location distant from the site of interest where direct engagement with the undesirable material may not be possible or desired.
  • suction cannula 71 In a situation where the suction cannula 71 is positioned within a vessel exhibiting a venous flow and at a distant location from the undesirable material, it may be desirable to place the distal end of suction cannula 71 downstream of the undesirable material, so that the fluid flow can push the undesirable material from the site of interest into suction cannula 71 during suction. To the extent there may be some difficulties with suctioning the undesirable material from its location, if necessary, a catheter may be deployed through suction cannula 71 and to the site of interest, where the undesirable material may be dislodged location for subsequent removal.
  • suction cannula 71 when suction cannula 71 is positioned within a vessel exhibiting arterial flow and at a distant location from the undesirable material, it may be necessary to place the distal end of suction cannula 71 upstream of the undesirable material for the purposes of removal, even though the undesirable material must move against the fluid flow in order to enter into the suction cannula 71. In such a situation, since the fluid flow in the vessel tends to exert a pressure against the undesirable material at the site of interest, and thus may make the undesirable material difficult to remove, suction cannula 71 may include a flow occlusion mechanism, similar to balloon 33 shown in Fig. 3 .
  • the mechanism When expanded radially, the mechanism can substantially occlude the vessel, such that pressure being exerted on the downstream material by the fluid flow can be lessened. By lessening the pressure on the undesirable material to be removed, the suction force being applied at the site of interest can act to remove the material more easily.
  • a catheter may be deployed through suction cannula 71 and to the site of interest, where the undesirable material may be dislodged or drawn back into the cannula to facilitate its removal.
  • the method of the present invention may also utilize a fluid reservoir, similar to reservoir 61 shown in Fig. 6 , in connection with system 70.
  • a fluid reservoir may be placed in fluid communication between filter device 72 and pump 73.
  • the reservoir in an embodiment, may be an independent reservoir or may be integrated with filter device 72 as a single unit, similar to that shown in Fig. 7 .
  • a volume of transiently collected fluid may be used to independently control the rate or volume of suctioning (i.e., draining, aspirating) and/or the rate or volume of reinfusion.
  • system 70 may not be a substantially closed system.
  • an independent vacuum device 76 may be employed to generate the necessary suction force, from the top of the reservoir where a volume of air exists, for removal of the undesirable material, while independent pump 73 may be employed to generate the necessary driving force, from the bottom of the reservoir where a volume of aspirated fluid exists, for reinfusion.
  • the method of the present invention may also utilize a suction cannula 71 with a deployable funnel tip, similar to funnel 20 in Fig. 2 or in Fig. 3 .
  • the funnel may be deployed after suction cannula 71 has been positioned adjacent the site of interest. Thereafter, once the suction force has been activated, the funnel may be advanced to engage the undesirable material for removal. The funnel may remain deployed while the suction force is activated, and through multiple cycles, if necessary, until the undesirable material can be removed. Subsequently, the funnel may be retracted in order to reposition or remove suction cannula 71.
  • the method of the present invention may further utilize reinfusion cannula 75 that has been incorporated into an introducer sheath, such as sheath 43 as a multi-lumen cannula ( Fig. 4C ) or as one which concentrically aligns the suction cannula and reinfusion cannula ( Fig. 4D ).
  • the sheath/reinfusion cannula 75 may initially be inserted into a first blood vessel.
  • Suction cannula 71 may then be inserted into the introducer lumen of the sheath/reinfusion cannula 75, and the assembly advanced together to a site of interest in a second blood vessel or heart chamber.
  • the method of the present invention may also further utilize a combined multi-lumen suction/reinfusion cannula, similar to cannula 46 shown in Fig. 4E .
  • the combined suction/reinfusion cannula may initially be inserted into a first blood vessel to a location where its distal suction lumen can be placed adjacent the site of interest within a second blood vessel, while its proximal located reinfusion lumen can be positioned at an appropriately spaced location from the suction lumen.
  • the method of the present invention may, in an embodiment, be employed to remove a plurality of undesirable materials, for instance, within the same vessel or its branches, from multiple vessels within the same vascular bed (e.g. left and right pulmonary arteries), from different vascular beds (e.g. pulmonary artery and iliofemoral veins), or a combination thereof.
  • the suction force may be deactivated.
  • the next undesirable material to be removed may then be located, for example, using an appropriate imaging modality.
  • Suction cannula 71 may thereafter be advanced to the location of this second undesirable material, and the suction force reactivated as above until this second undesirable material may be removed.
  • the cycle may be repeated until each undesirable material at the various identified locations has been removed. Once all undesirable material has been removed, an appropriate procedure to prevent the development of or migration of new material, such as placement of an inferior vena cava filter, may be performed.
  • the method of the present invention may also be employed in combination with a balloon embolectomy catheter or other devices suitable for dislodging clots or other undesirable material from a cannula or a vessel.
  • a balloon catheter can be inserted through, for instance, a side port, similar to port 51 in Fig. 5 , of suction cannula 71 and advanced past the lodged undesirable material.
  • the balloon catheter may subsequently be inflated distal to the undesirable material. Once inflated, the suction force may be activated and the inflated catheter withdrawn along the suction cannula 71 to dislodge the undesirable material its location of obstruction.
  • the balloon catheter can be inserted through the side port of suction cannula 71, advanced past a distal end of cannula 71, and past the adherent undesirable material.
  • the balloon catheter may then be inflated distal to the undesirable material.
  • the suction force may be activated and the inflated catheter withdrawn along the suction cannula 71. As it is withdrawn, the balloon catheter can act to drag the undesirable material into suction cannula 71.
  • the method of the present invention may further be employed in combination with a distal protection device (not shown), such as a netting device, designed to be positioned downstream of the undesirable material, when removal may be performed within a vessel having arterial flow.
  • a distal protection device such as a netting device
  • the netting device may be inserted through a side port in suction cannula 71, advanced past the undesirable material to a downstream location.
  • the netting device may then be deployed to an open position approximating the diameter of the vessel.
  • the deployed netting device may then act to entrap any material that may be dislodged from the site of interest and pushed downstream by the fluid flow. In the absence of the netting device, a dislodged material may be pushed downstream and may be lodged in a more life threatening location.
  • the systems, including the various components, and methods of the present invention can act to remove clots and other types of undesirable material from the circulation, particularly from medium to larger vessels and heart chambers. Important to achieving this includes the ability of the operator to perform substantially en bloc removal of the undesirable material without significant fragmentation from the site of interest. Such a protocol may only be achieved previously with invasive, open surgery.
  • the system of the present invention allows a sufficiently and relatively large suction cannula to be employed for the removal of a relatively large undesirable material 15 in substantially one piece, without fragmentation.
  • the systems and methods of the present invention provide an attractive alternative to treatments, such as thrombolysis, which may not be an option or may be ineffective for many patients, and which may carry a significant risk of major complications.
  • the systems and methods of the present invention now provide a significant contribution to the field of cardiovascular medicine and surgery, particularly thromboembolic disease.
  • systems and methods of the present invention may be adapted for use in connection with non-surgical protocols, and in connection with any vessel capable of permitting fluid flow therethrough and capable of being obstructed.
  • the system of the present invention may be adapted for use in connection with clearing obstructed oil pipelines, water pipes, and air ducts, among others.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Cardiology (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Surgical Instruments (AREA)
  • External Artificial Organs (AREA)
EP17196915.7A 2007-12-20 2008-08-06 Systèmes et procédés permettant de retirer un matériau indésirable à l'intérieur d'un système circulatoire Pending EP3311875A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US1530107P 2007-12-20 2007-12-20
EP08864356.4A EP2231256B1 (fr) 2007-12-20 2008-08-06 Systèmes pour retirer un matériau indésirable à l'intérieur d'un système circulatoire

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP08864356.4A Division-Into EP2231256B1 (fr) 2007-12-20 2008-08-06 Systèmes pour retirer un matériau indésirable à l'intérieur d'un système circulatoire
EP08864356.4A Division EP2231256B1 (fr) 2007-12-20 2008-08-06 Systèmes pour retirer un matériau indésirable à l'intérieur d'un système circulatoire

Publications (1)

Publication Number Publication Date
EP3311875A1 true EP3311875A1 (fr) 2018-04-25

Family

ID=40789476

Family Applications (2)

Application Number Title Priority Date Filing Date
EP17196915.7A Pending EP3311875A1 (fr) 2007-12-20 2008-08-06 Systèmes et procédés permettant de retirer un matériau indésirable à l'intérieur d'un système circulatoire
EP08864356.4A Active EP2231256B1 (fr) 2007-12-20 2008-08-06 Systèmes pour retirer un matériau indésirable à l'intérieur d'un système circulatoire

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP08864356.4A Active EP2231256B1 (fr) 2007-12-20 2008-08-06 Systèmes pour retirer un matériau indésirable à l'intérieur d'un système circulatoire

Country Status (5)

Country Link
US (1) US8075510B2 (fr)
EP (2) EP3311875A1 (fr)
JP (3) JP5739159B2 (fr)
CN (2) CN103446636B (fr)
WO (1) WO2009082513A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11376028B1 (en) 2021-04-17 2022-07-05 Inquis Medical, Inc. Devices, systems, and methods for removing obstructive material from body lumens
US11730925B2 (en) 2021-06-28 2023-08-22 Inquis Medical, Inc. Apparatuses and methods for tracking obstructive material within a suction catheter

Families Citing this family (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005094283A2 (fr) 2004-03-25 2005-10-13 Hauser David L Dispositif de filtrage vasculaire
US20120191181A1 (en) * 2007-04-27 2012-07-26 Kassab Ghassan S Systems and methods for localization of a puncture site relative to a mammalian tissue of interest
US20110213290A1 (en) * 2007-12-20 2011-09-01 Vortex Medical Systems and Methods for Removing Undesirable Material Within a Circulatory System
US8734374B2 (en) * 2007-12-20 2014-05-27 Angiodynamics, Inc. Systems and methods for removing undesirable material within a circulatory system during a surgical procedure
US10517617B2 (en) 2007-12-20 2019-12-31 Angiodynamics, Inc. Systems and methods for removing undesirable material within a circulatory system utilizing a balloon catheter
US20170136158A1 (en) 2015-10-16 2017-05-18 Angiodynamics, Inc. Systems and Methods for Removing Undesirable Material Within a Circulatory System
US11589880B2 (en) 2007-12-20 2023-02-28 Angiodynamics, Inc. System and methods for removing undesirable material within a circulatory system utilizing during a surgical procedure
US20130304082A1 (en) * 2007-12-20 2013-11-14 Angiodynamics, Inc. Systems and methods for removing undesirable material within a circulaton system utilizing a balloon catheter
US8613717B2 (en) 2007-12-20 2013-12-24 Angiodynamics, Inc. Systems and methods for removing and fragmenting undesirable material within a circulatory system
US20110213392A1 (en) * 2007-12-20 2011-09-01 Vortex Medical Systems and Methods for Removing Undesirable Material Within a Circulatory System
US8506512B2 (en) * 2007-12-20 2013-08-13 Angio Dynamics Systems and methods for removing undesirable material within a circulatory system utilizing a balloon catheter
US20110190806A1 (en) * 2008-06-19 2011-08-04 Angiodynamics, Inc. Thrombectomy catheter and a device comprising the same
US9095328B2 (en) * 2008-12-12 2015-08-04 Boston Scientific Scimed, Inc. Endoscopes having multiple lumens for tissue acquisition and removal and related methods of use
CA2763585C (fr) 2009-06-04 2017-07-18 Cardiogard Medical Ltd. Dispositif, systeme et procede arteriels
EP2539012B1 (fr) 2010-02-23 2018-01-24 Covidien LP Dispositifs pour recanalisation vasculaire
US9737309B1 (en) 2010-06-24 2017-08-22 Niv Ad System for occlusion of left atrial appendage
US10631868B2 (en) 2010-06-24 2020-04-28 Niv Ad System for occlusion of left atrial appendage
US10039900B2 (en) 2010-09-07 2018-08-07 Angiodynamics, Inc. Fluid delivery and treatment device and method of use
CA2811828A1 (fr) * 2010-09-20 2012-03-29 Britamed Incorporated Catheter d'ancrage a vide
JP2014503254A (ja) * 2010-12-03 2014-02-13 アンジオダイナミクス インコーポレイテッド 血塊の除去装置及び除去方法
US9055964B2 (en) 2011-03-15 2015-06-16 Angio Dynamics, Inc. Device and method for removing material from a hollow anatomical structure
US9554840B2 (en) * 2011-04-08 2017-01-31 Kyphon SÀRL Low cost low profile inflatable bone tamp
US20140025086A1 (en) * 2011-04-11 2014-01-23 The Spectranetics Corporation Device and method for capturing guidewires
WO2012156924A1 (fr) * 2011-05-17 2012-11-22 Cardioflow Ltd. Dispositif d'aspiration et d'occlusion vasculaire
US20120311934A1 (en) 2011-06-07 2012-12-13 Steven Robert Abramson Draft Guard
US10107022B2 (en) 2011-06-07 2018-10-23 Henniges Automotive Schlegel Canada, Inc. Draft guard for window assembly having seals and integral fins
US9039715B2 (en) 2011-07-11 2015-05-26 Great Aspirations Ltd. Apparatus for entrapping and extracting objects from body cavities
US8469970B2 (en) 2011-07-11 2013-06-25 Great Aspirations Ltd. Apparatus for entrapping and extracting objects from body cavities
CN102698329B (zh) * 2012-06-08 2015-01-21 李广成 血肿清除器的平衡灌洗装置
US20140039540A1 (en) * 2012-08-02 2014-02-06 Richard B. Park Medical devices including blood clot removing medical devices, and methods of using same
US9597171B2 (en) * 2012-09-11 2017-03-21 Covidien Lp Retrieval catheter with expandable tip
EP3821830A1 (fr) 2012-09-24 2021-05-19 Inari Medical, Inc. Dispositif de traitement de l'occlusion vasculaire
US8784434B2 (en) 2012-11-20 2014-07-22 Inceptus Medical, Inc. Methods and apparatus for treating embolism
US10406276B2 (en) 2013-03-14 2019-09-10 The General Hospital Corporation System and method for guided removal from an in vivo subject
WO2014160201A2 (fr) * 2013-03-14 2014-10-02 The General Hospital Corporation Système et procédé pour l'élimination guidée à partir d'un sujet in vivo
US20160038657A1 (en) * 2013-03-15 2016-02-11 Raymond Lareau Medical devices having surface modifiers
WO2014150288A2 (fr) * 2013-03-15 2014-09-25 Insera Therapeutics, Inc. Dispositifs et procédés de traitement vasculaire
US20150018860A1 (en) 2013-07-12 2015-01-15 Inceptus Medical, Llc Methods and apparatus for treating small vessel thromboembolisms
CN103480056A (zh) * 2013-08-15 2014-01-01 窦杰 净骨疗法体系用于治疗风湿骨病的技术及装置
WO2015061365A1 (fr) 2013-10-21 2015-04-30 Inceptus Medical, Llc Procédés et appareil de traitement d'embolie
CN103622729B (zh) * 2013-12-10 2016-02-17 上海理工大学 用于血栓取除器的动力装置
US10285720B2 (en) 2014-03-11 2019-05-14 Neuravi Limited Clot retrieval system for removing occlusive clot from a blood vessel
EP3125772A4 (fr) * 2014-04-02 2018-03-14 The Board of Trustees of The Leland Stanford Junior University Dispositifs de biopsie, systèmes et procédés d'utilisation
CA2939315C (fr) 2014-06-09 2018-09-11 Inceptus Medical, Llc Dispositif de retraction et d'aspiration pour traiter une embolie, et systemes et procedes associes
JP6595513B2 (ja) 2014-06-13 2019-10-23 ニューラヴィ・リミテッド 血管からの急性閉塞物の除去のための装置
US10265086B2 (en) 2014-06-30 2019-04-23 Neuravi Limited System for removing a clot from a blood vessel
ES2577288B8 (es) 2015-01-13 2019-01-10 Anaconda Biomed S L Dispositivo para trombectomía
EP3639768A1 (fr) 2018-10-16 2020-04-22 Anaconda Biomed, S.L. Dispositif d'extraction d'un caillot d'un vaisseau sanguin et appareil de thrombectomie
US11771446B2 (en) 2020-10-19 2023-10-03 Anaconda Biomed, S.L. Thrombectomy system and method of use
US10485481B2 (en) 2015-03-20 2019-11-26 The Trustees Of Dartmouth College Systems and methods for enhancing uptake of therapeutic agent from bloodstream into disease site
US9592111B2 (en) 2015-04-30 2017-03-14 Mark Groh Valve replacement devices
US10596354B2 (en) 2015-09-25 2020-03-24 Mark Taber Guide wires, catheters, and guide wire catheter systems and methods
US9700332B2 (en) 2015-10-23 2017-07-11 Inari Medical, Inc. Intravascular treatment of vascular occlusion and associated devices, systems, and methods
US10342571B2 (en) 2015-10-23 2019-07-09 Inari Medical, Inc. Intravascular treatment of vascular occlusion and associated devices, systems, and methods
FI3364891T3 (fi) 2015-10-23 2023-09-25 Inari Medical Inc Laite verisuonitukoksen suonensisäiseen hoitoon
JP2018537229A (ja) 2015-12-18 2018-12-20 イナリ メディカル, インコーポレイテッド カテーテルシャフト並びに関連する装置、システム、及び方法
CN107252339B (zh) * 2016-04-14 2019-11-08 丰凯医疗器械(上海)有限公司 血管内血栓抽吸系统
CN107411818B (zh) * 2016-05-23 2020-11-03 波士顿科学医学有限公司 流体装置、方法和系统
CN105928584B (zh) * 2016-06-20 2018-11-30 上海交通大学医学院附属新华医院 在体手术切除组织体积测量装置及其测量方法
CA3034121A1 (fr) 2016-08-17 2018-02-22 Neuravi Limited Systeme de retrait de caillot pour retirer un caillot occlusif d'un vaisseau sanguin
CN106214216B (zh) * 2016-08-31 2019-01-25 赵萍萍 一种血栓清除仪
USD916281S1 (en) 2016-10-17 2021-04-13 Angiodynamics, Inc. Reinforcement arms and collar for a cannula tip
CN110312481B (zh) 2016-10-24 2023-04-11 伊纳里医疗有限公司 用于治疗血管闭塞的装置和方法
US11134930B2 (en) * 2016-11-11 2021-10-05 Bernd Holthaus Device for removing organs from a human or animal body
EP3568173A4 (fr) 2017-01-12 2020-11-25 Merit Medical Systems, Inc. Procédés et systèmes de sélection et d'utilisation de raccords entre des conduits
US11744692B2 (en) * 2017-02-23 2023-09-05 Boston Scientific Scimed, Inc. Medical drain device
WO2018164945A1 (fr) * 2017-03-06 2018-09-13 Merit Medical Systems, Inc. Systèmes et procédés de décoagulation d'ensemble d'accès vasculaire
JP6855286B2 (ja) 2017-03-07 2021-04-07 テルモ株式会社 医療デバイスおよび医療システム
EP4201346A1 (fr) 2017-04-10 2023-06-28 The Regents Of The University Of Michigan Cathéter d'aspiration à vortex hydrodynamique
US11224458B2 (en) 2017-04-10 2022-01-18 The Regents Of The University Of Michigan Hydrodynamic vortex aspiration catheter
EP3651829A4 (fr) 2017-07-14 2021-04-21 Merit Medical Systems, Inc. Raccords de conduit libérables
JP7254775B2 (ja) 2017-09-06 2023-04-10 イナリ メディカル, インコーポレイテッド 止血弁および使用方法
US10258357B1 (en) 2017-10-16 2019-04-16 Michael Bruce Horowitz Catheter based retrieval device with proximal body having axial freedom of movement
US20220104839A1 (en) 2017-10-16 2022-04-07 Retriever Medical, Inc. Clot Removal Methods and Devices with Multiple Independently Controllable Elements
US20220104840A1 (en) 2017-10-16 2022-04-07 Retriever Medical, Inc. Clot Removal Methods and Devices with Multiple Independently Controllable Elements
US11351346B2 (en) 2017-10-24 2022-06-07 Venkat Tummala Balloon sheath and associated methods
AU2018366026B2 (en) * 2017-11-08 2024-05-02 Boston Scientific Scimed, Inc. Capture devices and related methods of use
CN117100471A (zh) 2017-12-28 2023-11-24 艾姆斯托普股份有限公司 栓塞材料捕集导管以及相关装置和方法
CN111727016A (zh) * 2018-01-25 2020-09-29 伊思凯米克尔有限公司 移除血液凝块的装置、系统和方法
US11154314B2 (en) 2018-01-26 2021-10-26 Inari Medical, Inc. Single insertion delivery system for treating embolism and associated systems and methods
EP3746144A4 (fr) 2018-02-02 2021-11-24 Calyxo, Inc. Dispositifs et procédés d'élimination mini-invasive de calculs rénaux par aspiration et irrigation combinées
CA3114285A1 (fr) 2018-08-13 2020-02-20 Inari Medical, Inc. Systeme de traitement d'une embolie et dispositifs et procedes associes
US11534191B2 (en) 2019-01-11 2022-12-27 Anaconda Biomed, S.L. Loading device for loading a medical device into a catheter
EP4000540B1 (fr) 2019-03-04 2024-02-14 Neuravi Limited Cathéter de récupération de caillot actionné
ES2964532T3 (es) * 2019-03-04 2024-04-08 Neuravi Ltd Sistemas de actuación de embudo
US11529495B2 (en) 2019-09-11 2022-12-20 Neuravi Limited Expandable mouth catheter
EP4044938A4 (fr) 2019-10-16 2023-11-15 Inari Medical, Inc. Systèmes, dispositifs et procédés de traitement d'occlusions vasculaires
US11779364B2 (en) 2019-11-27 2023-10-10 Neuravi Limited Actuated expandable mouth thrombectomy catheter
US11839725B2 (en) 2019-11-27 2023-12-12 Neuravi Limited Clot retrieval device with outer sheath and inner catheter
US11648020B2 (en) 2020-02-07 2023-05-16 Angiodynamics, Inc. Device and method for manual aspiration and removal of an undesirable material
US11633198B2 (en) 2020-03-05 2023-04-25 Neuravi Limited Catheter proximal joint
US11944327B2 (en) 2020-03-05 2024-04-02 Neuravi Limited Expandable mouth aspirating clot retrieval catheter
US11883043B2 (en) 2020-03-31 2024-01-30 DePuy Synthes Products, Inc. Catheter funnel extension
US11759217B2 (en) 2020-04-07 2023-09-19 Neuravi Limited Catheter tubular support
CN116234508A (zh) * 2020-06-05 2023-06-06 伊纳里医疗有限公司 可再捕获的漏斗导管以及相关联的系统和方法
CN111772730A (zh) * 2020-06-22 2020-10-16 合肥市第二人民医院 一种溶栓导液装置
JP7174939B2 (ja) * 2020-11-26 2022-11-18 Umidas株式会社 ドレナージチューブ
US11872354B2 (en) 2021-02-24 2024-01-16 Neuravi Limited Flexible catheter shaft frame with seam
USD972723S1 (en) 2021-03-17 2022-12-13 Angiodynamics, Inc. Reinforcement arms and collar for an expandable cannula tip
WO2022245872A1 (fr) * 2021-05-17 2022-11-24 Trifortis Llc Dispositif d'extraction d'embolie pulmonaire
US20230052964A1 (en) * 2021-08-11 2023-02-16 Boston Scientific Medical Device Limited Manual suction device for thrombus capture and reperfusion
US11937839B2 (en) 2021-09-28 2024-03-26 Neuravi Limited Catheter with electrically actuated expandable mouth
WO2023100179A1 (fr) * 2021-12-03 2023-06-08 Vascular Clarity Ltd. Appareil et procédés d'élimination d'embole
CN114711897B (zh) * 2022-06-08 2022-09-02 深圳佰特微医疗科技有限公司 血管中不期望物质的取出系统
CN116327316B (zh) * 2023-05-23 2023-07-25 北京心祐医疗科技有限公司 可往复血栓抽吸式注射器和血栓抽吸系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5158533A (en) * 1991-03-26 1992-10-27 Gish Biomedical, Inc. Combined cardiotomy/venous/pleural drainage autotransfusion unit with filter and integral manometer and water seal
US5188618A (en) * 1991-05-03 1993-02-23 Thomas Bruce W Thrombus-mobilizing thoracostomy tube
US20010049486A1 (en) * 1999-12-31 2001-12-06 Evans Michael A. Method and system for re-infusing filtered bodily aspirates
US20020165574A1 (en) * 2001-05-01 2002-11-07 Velocimed. Emboli protection devices and related methods of use
US20030093112A1 (en) * 1998-11-24 2003-05-15 Embol-X, Inc. Compliant framework and methods of use
US6673039B1 (en) * 1997-12-19 2004-01-06 Trustees Of The University Of Pennsylvania Compositions, kits, methods, and apparatus for transvascular delivery of a composition to an extravascular tissue of a mammal
US6719717B1 (en) * 2000-03-17 2004-04-13 Advanced Research & Technology Institute, Inc. Thrombectomy treatment system and method
US6905490B2 (en) * 1998-03-13 2005-06-14 Gore Enterprise Holdings, Inc. Apparatus and methods for reducing embolization during treatment of carotid artery disease

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4921478A (en) * 1988-02-23 1990-05-01 C. R. Bard, Inc. Cerebral balloon angioplasty system
US5011488A (en) * 1988-12-07 1991-04-30 Robert Ginsburg Thrombus extraction system
US5800457A (en) * 1997-03-05 1998-09-01 Gelbfish; Gary A. Intravascular filter and associated methodology
IE980920A1 (en) * 1997-11-07 1999-05-19 Salviac Ltd An embolic protection device
US6960222B2 (en) * 1998-03-13 2005-11-01 Gore Enterprise Holdins, Inc. Catheter having a funnel-shaped occlusion balloon of uniform thickness and methods of manufacture
US6206868B1 (en) * 1998-03-13 2001-03-27 Arteria Medical Science, Inc. Protective device and method against embolization during treatment of carotid artery disease
AR017498A1 (es) * 1998-03-13 2001-09-12 Arteria Medical Science Llc Dispositivo para proteccion contra embolizaciones, en angioplastia de carotida
US6540712B1 (en) * 1998-03-13 2003-04-01 Arteria Medical Science, Inc. Methods and low profile apparatus for reducing embolization during treatment of carotid artery disease
EP1061846B1 (fr) 1998-03-13 2010-03-03 Gore Enterprise Holdings, Inc. Dispositif protecteur contre les risques d'embolie dans l'angioplastie de la carotide
US6936060B2 (en) * 1998-05-13 2005-08-30 Arteria Medical Sciences, Inc. Apparatus and methods for removing emboli during a surgical procedure
US6908474B2 (en) * 1998-05-13 2005-06-21 Gore Enterprise Holdings, Inc. Apparatus and methods for reducing embolization during treatment of carotid artery disease
US6051014A (en) * 1998-10-13 2000-04-18 Embol-X, Inc. Percutaneous filtration catheter for valve repair surgery and methods of use
EP1210142B1 (fr) * 1999-06-14 2011-01-19 Gore Enterprise Holdings, Inc. Appareil permettant de reduire les risques d'embolie lors du traitement d'une affection de l'artere carotide
US7229402B2 (en) * 2001-02-09 2007-06-12 Cardiac Output Technologies, Inc. Minimally invasive ventricular assist technology and method
US7799046B2 (en) * 2001-12-14 2010-09-21 The General Hospital Corporation Dynamic cannula
US7223253B2 (en) * 2002-07-29 2007-05-29 Gore Enterprise Holdings, Inc. Blood aspiration system and methods of use
EP1402826B1 (fr) * 2002-08-20 2013-06-12 Nipro Corporation Cathéter de capture de thrombus
US20050015048A1 (en) * 2003-03-12 2005-01-20 Chiu Jessica G. Infusion treatment agents, catheters, filter devices, and occlusion devices, and use thereof
US6946099B2 (en) * 2003-03-31 2005-09-20 Venkataramana Vijay Methods of using condensed perfusion circuit for cardiopulmonary bypass and cardioplegia
US6852280B2 (en) * 2003-03-31 2005-02-08 Venkataramana Vijay Condensed perfusion circuit for cardiopulmonary bypass and cardioplegia
JP2006015058A (ja) * 2004-07-05 2006-01-19 Ookiddo:Kk マルチルーメンカテーテル
CN101076290B (zh) * 2004-12-09 2011-11-23 铸造品股份有限公司 主动脉瓣修复
JP4925729B2 (ja) * 2006-05-30 2012-05-09 ニプロ株式会社 経皮的血栓除去用デバイス

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5158533A (en) * 1991-03-26 1992-10-27 Gish Biomedical, Inc. Combined cardiotomy/venous/pleural drainage autotransfusion unit with filter and integral manometer and water seal
US5188618A (en) * 1991-05-03 1993-02-23 Thomas Bruce W Thrombus-mobilizing thoracostomy tube
US6673039B1 (en) * 1997-12-19 2004-01-06 Trustees Of The University Of Pennsylvania Compositions, kits, methods, and apparatus for transvascular delivery of a composition to an extravascular tissue of a mammal
US6905490B2 (en) * 1998-03-13 2005-06-14 Gore Enterprise Holdings, Inc. Apparatus and methods for reducing embolization during treatment of carotid artery disease
US20030093112A1 (en) * 1998-11-24 2003-05-15 Embol-X, Inc. Compliant framework and methods of use
US20010049486A1 (en) * 1999-12-31 2001-12-06 Evans Michael A. Method and system for re-infusing filtered bodily aspirates
US6719717B1 (en) * 2000-03-17 2004-04-13 Advanced Research & Technology Institute, Inc. Thrombectomy treatment system and method
US20020165574A1 (en) * 2001-05-01 2002-11-07 Velocimed. Emboli protection devices and related methods of use

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11376028B1 (en) 2021-04-17 2022-07-05 Inquis Medical, Inc. Devices, systems, and methods for removing obstructive material from body lumens
US11730925B2 (en) 2021-06-28 2023-08-22 Inquis Medical, Inc. Apparatuses and methods for tracking obstructive material within a suction catheter
US11730924B2 (en) 2021-06-28 2023-08-22 Inquis Medical, Inc. Apparatuses and methods for controlling removal of obstructive material

Also Published As

Publication number Publication date
US8075510B2 (en) 2011-12-13
JP2016190050A (ja) 2016-11-10
CN103446636B (zh) 2016-01-20
JP6171055B2 (ja) 2017-07-26
EP2231256B1 (fr) 2018-05-30
JP2011507602A (ja) 2011-03-10
EP2231256A4 (fr) 2014-05-21
US20090163846A1 (en) 2009-06-25
JP5739159B2 (ja) 2015-06-24
CN102006905B (zh) 2014-10-01
CN102006905A (zh) 2011-04-06
CN103446636A (zh) 2013-12-18
EP2231256A1 (fr) 2010-09-29
WO2009082513A1 (fr) 2009-07-02
JP2015154985A (ja) 2015-08-27

Similar Documents

Publication Publication Date Title
US11896246B2 (en) Systems and methods for removing undesirable material within a circulatory system utilizing a balloon catheter
US10383983B2 (en) System and methods for removing undesirable material within a circulatory system utilizing during a surgical procedure
EP2231256B1 (fr) Systèmes pour retirer un matériau indésirable à l'intérieur d'un système circulatoire
US8506512B2 (en) Systems and methods for removing undesirable material within a circulatory system utilizing a balloon catheter
US8613717B2 (en) Systems and methods for removing and fragmenting undesirable material within a circulatory system
US20110213290A1 (en) Systems and Methods for Removing Undesirable Material Within a Circulatory System
US20130304082A1 (en) Systems and methods for removing undesirable material within a circulaton system utilizing a balloon catheter
CA2819670C (fr) Dispositifs et procedes d'elimination de caillots
US20200164117A1 (en) Systems and Methods for Removing Undesirable Material Within a Circulatory System
US20110213392A1 (en) Systems and Methods for Removing Undesirable Material Within a Circulatory System
US20230149034A1 (en) System and methods for removing undesirable material within a circulatory system utilizing during a surgical procedure
US20230030606A1 (en) Device and method of use for aspiration system retrievers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AC Divisional application: reference to earlier application

Ref document number: 2231256

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181025

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

RIC1 Information provided on ipc code assigned before grant

Ipc: A61M 37/00 20060101AFI20181214BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20191204

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS