US20150018860A1 - Methods and apparatus for treating small vessel thromboembolisms - Google Patents

Methods and apparatus for treating small vessel thromboembolisms Download PDF

Info

Publication number
US20150018860A1
US20150018860A1 US14/299,997 US201414299997A US2015018860A1 US 20150018860 A1 US20150018860 A1 US 20150018860A1 US 201414299997 A US201414299997 A US 201414299997A US 2015018860 A1 US2015018860 A1 US 2015018860A1
Authority
US
United States
Prior art keywords
clot
engagement members
portion
portions
clot engagement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/299,997
Inventor
Richard Quick
Brian J. Cox
Paul Lubock
Robert F. Rosenbluth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inceptus Medical LLC
Original Assignee
Inceptus Medical LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US201361845796P priority Critical
Priority to US201461949953P priority
Application filed by Inceptus Medical LLC filed Critical Inceptus Medical LLC
Priority to US14/299,997 priority patent/US20150018860A1/en
Priority claimed from US15/031,102 external-priority patent/US10238406B2/en
Priority claimed from PCT/US2014/061645 external-priority patent/WO2015061365A1/en
Publication of US20150018860A1 publication Critical patent/US20150018860A1/en
Priority claimed from US14/639,890 external-priority patent/US20150374391A1/en
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/01Filters implantable into blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/221Gripping devices in the form of loops or baskets for gripping calculi or similar types of obstructions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • A61B17/320725Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions with radially expandable cutting or abrading elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00743Type of operation; Specification of treatment sites
    • A61B2017/00778Operations on blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22031Gripping instruments, e.g. forceps, for removing or smashing calculi
    • A61B2017/22034Gripping instruments, e.g. forceps, for removing or smashing calculi for gripping the obstruction or the tissue part from inside
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B2017/320004Surgical cutting instruments abrasive
    • A61B2017/320008Scrapers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/01Filters implantable into blood vessels
    • A61F2002/011Instruments for their placement or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/01Filters implantable into blood vessels
    • A61F2002/016Filters implantable into blood vessels made from wire-like elements

Abstract

A device and method for intravascular treatment of an embolism, and particularly an embolism within a small vessel, is disclosed herein. One aspect of the present technology, for example, is directed toward a clot treatment device that includes a support member configured to extend through a delivery catheter and a plurality of clot engagement members positioned about the circumference of a distal portion of the support member. The individual clot engagement members can have a first portion and a second portion extending from the first portion, and the first portions can have a proximal region attached to the support member. In the deployed state, the individual second portions can extend from the distal region of one of the first portions and project radially outwardly relative to the support member in a curve that has a proximally extending section which defines a proximally facing concave portion.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application claims the benefit of U.S. Provisional Patent Application No. 61/949,953 filed Mar. 7, 2014, entitled “METHODS AND APPARATUS FOR TREATING EMBOLISM,” which is incorporated herein by reference in its entirety.
  • TECHNICAL FIELD
  • The present technology relates generally to devices and methods for intravascular treatment of stroke, myocardial infarction and other small vessel thromboembolisms. Many embodiments of the technology relate to the intravascular removal of an embolism within a blood vessel associated with the brain, heart or peripheral vasculature.
  • BACKGROUND
  • Thromboembolism occurs when a thrombus or blood clot trapped within a blood vessel breaks loose and travels through the blood stream to another location in the circulatory system, resulting in a clot or obstruction at the new location. Thromboembolisms in small blood vessels (such as those within the heart, brain, and peripheral vasculature) can be particularly difficult to treat intravascularly due to the limited space within the vessel at the target site.
  • One indication caused by small vessel thromboembolisms is acute ischemic stroke, or the sudden loss of blood circulation to an area of the brain. As illustrated in FIG. 1, acute ischemic stroke is caused by a thrombus traveling through the brain and lodging in a cerebral artery, thereby causing thrombotic or embolic occlusion of the cerebral artery. Small vessel thromboembolisms can also lead to myocardial infarction (MI) or “heart attack”. An MI requires immediate medical attention. Treatment includes attempts to save as much viable heart muscle as possible and to prevent further complications. Small vessel thromboembolisms can also lead to peripheral vascular disease (PVD) and/or peripheral arterial disease (PAD). Conditions associated with PVD that affect the veins include deep vein thrombosis (DVT), varicose veins, and chronic venous insufficiency. Lymphedema is an example of PVD that affects the lymphatic vessel. Conditions associated with PAD may be occlusive (occurs because the artery becomes blocked in some manner) or functional (the artery either constricts due to a spasm or expands). Examples of occlusive PAD include peripheral arterial occlusion and Buerger's disease (thromboangiitis obliterans). Examples of functional PAD include Raynaud's disease and phenomenon and acrocyanosis.
  • Conventional approaches to treating thromboembolism in small vessels include clot reduction and/or removal. For example, anticoagulants can be introduced to the affected vessel to prevent additional clots from forming, and thrombolytics can be introduced to the vessel to at least partially disintegrate the clot. However, such agents typically take a prolonged period of time (e.g., hours, days, etc.) before the treatment is effective and in some instances can cause bleeding complications including major bleeding and intracranial hemorrhaging. Transcatheter clot removal devices also exist, however, such devices are typically highly complex, prone to cause trauma to the vessel, hard to navigate to the embolism site, and/or expensive to manufacture. Conventional approaches also include surgical techniques that involve opening the chest cavity and dissecting the vessel. Such surgical procedures, however, come with increased cost, procedure time, risk of infection, higher morbidity, higher mortality, and recovery time. Accordingly, there is a need for devices and methods that address one or more of these deficiencies.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Many aspects of the present technology can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale. Instead, emphasis is placed on illustrating clearly the principles of the present disclosure.
  • FIG. 1 is a schematic illustration of an embolism traveling through the brain and forming an embolism in a cerebral blood vessel.
  • FIG. 2A is a perspective view of one embodiment of a clot treatment device in a collapsed or delivery state configured in accordance with an embodiment of the present technology.
  • FIG. 2B is a perspective view of the clot treatment device of FIG. 2A in a deployed state configured in accordance with an embodiment of the present technology.
  • FIG. 2C is an enlarged view of a portion the clot treatment device shown in FIG. 2A.
  • FIG. 2D is an axial-perspective view of a portion of the clot treatment device shown in FIG. 2A.
  • FIGS. 3A-3C are isolated, enlarged side views of clot engagement members in a deployed state configured in accordance with embodiments of the present technology.
  • FIG. 4A is a perspective view of another embodiment of a clot treatment device in a collapsed or delivery state configured in accordance with an embodiment of the present technology.
  • FIG. 4B is a perspective view of the clot treatment device of FIG. 4A in a deployed state configured in accordance with an embodiment of the present technology.
  • FIG. 5 is a perspective view of a clot treatment device configured in accordance with another embodiment of the present technology.
  • FIG. 6 is a perspective view of a clot treatment device configured in accordance with another embodiment of the present technology.
  • FIG. 7A is a perspective view of a clot treatment device configured in accordance with another embodiment of the present technology.
  • FIG. 7B is a cross-sectional end view taken along line 7B-7B in FIG. 7A.
  • FIG. 8 is a perspective view of a clot treatment device configured in accordance with another embodiment of the present technology.
  • FIG. 9A is a perspective view of a clot treatment device configured in accordance with another embodiment of the present technology.
  • FIG. 9B is a cross-sectional end view of a portion of the clot treatment device shown in FIG. 9A.
  • FIG. 9C is a side view of a binding member configured in accordance with the present technology.
  • FIG. 10 is a side partial cross-sectional view of a delivery system configured in accordance an embodiment of the present technology.
  • FIGS. 11A-11K illustrate a method for using a clot treatment device configured in accordance with the present technology to remove clot material from a vessel.
  • DETAILED DESCRIPTION
  • Specific details of several embodiments of clot treatment devices, systems and associated methods in accordance with the present technology are described below with reference to FIGS. 2A-11K. Although many of the embodiments are described below with respect to devices, systems, and methods for treating small vessel thromboemboli within the heart, brain and peripheral vasculature, other applications and other embodiments in addition to those described herein are within the scope of the technology (for example, small vessels in other parts of the vasculature). As used herein, “small vessel” refers to any portion of the vasculature having an inner diameter less than about 6 mm. Additionally, several other embodiments of the technology can have different states, components, or procedures than those described herein. Moreover, it will be appreciated that specific elements, substructures, advantages, uses, and/or other features of the embodiments described with reference to FIGS. 2A-11K can be suitably interchanged, substituted or otherwise configured with one another in accordance with additional embodiments of the present technology. Furthermore, suitable elements of the embodiments described with reference to FIGS. 2A-11K can be used as standalone and/or self-contained devices. A person of ordinary skill in the art, therefore, will accordingly understand that the technology can have other embodiments with additional elements, or the technology can have other embodiments without several of the features shown and described below with reference to FIGS. 2A-11K.
  • With regard to the terms “distal” and “proximal” within this description, unless otherwise specified, the terms can reference a relative position of the portions of a clot treatment device and/or an associated delivery device with reference to an operator and/or a location in the vasculature.
  • I. Selected Embodiments of Clot Treatment Devices
  • FIG. 2A is a perspective view of one embodiment of a clot treatment device 200 (“the device 200”) in a low-profile or delivery state, and FIG. 2B is a perspective view of the device 200 in an unrestricted expanded or deployed state that is well suited for removing clot material from a small blood vessel (e.g., a cerebral blood vessel). Referring to FIGS. 2A and 2B together, the device 200 can include a support member 204 and a plurality of clot engagement members 202 positioned about the circumference of the support member 204. As best shown in FIG. 2B, the individual clot engagement members 202 can include a first portion 206 having a proximal region 205 and a distal region 207, and a second portion 208 extending from the distal region 207 of the first portion 206. In the delivery state, as shown in FIG. 2A, the clot engagement members 202 can be generally linear and extend generally parallel to the support member 204. In the expanded state, as shown in FIG. 2B, the second portions 208 can project radially outwardly relative to the support member 204 in a curved shape. The second portions 208 can have a proximally facing section 212 which defines a proximally facing concave portion, and, in some embodiments, the second portions 208 can further include an end section 214 that curves radially inwardly from the proximally facing section 212. When deployed within a blood vessel adjacent to clot material, the clot engagement members 202 are configured to penetrate the clot material along an arcuate path and hold clot material to the device 200, as discussed in greater detail below with reference to FIGS. 10-11K.
  • FIG. 2C is an enlarged view of a portion of the device 200 of FIG. 2A showing that the device 200 can include a hub 210 that couples the proximal regions 205 of the first portions 206 to the support member 204. The first portions 206 can extend distally from their proximal regions 205 in a longitudinal direction along the length of the support member 204 to their distal regions 207, and the distal regions 207 can be free to move relative to the support member 204. As such, the first portions 206 can be cantilevered portions of the clot engagement members 202 that enable the clot engagement members 202 to flex and move independently of the support member 204 in response to forces present within the blood vessel, such as blood flow, gravity, and/or the local anatomy. The first portions 206 can be sufficiently rigid to maintain a generally linear shape along their respective lengths, yet flexible enough to bend and/or flex about the hub 210. For example, in some instances, in response to local forces, one or more of the distal regions 207 of the first portions 206 can be spaced radially apart from the support member 204 such that one or more first portions 206 forms an angle with the support member 204.
  • Referring back to FIGS. 2A and 2B, the first portions 206 of different clot engagement members 202 can have different lengths such that the second portions 208 of at least two clot engagement members extend radially outwardly at different locations along the length of the support member 204. For example, as best shown in FIG. 2B, the clot treatment device 200 can include a first group 202 a of clot engagement members 202 having first portions 206 with a first length L1, a second group 202 b of clot engagement members 202 having first portions 206 with a second length L2 greater than the first length L1, a third group of clot engagement members 202 c having first portions 206 with a third length L3 greater than the second length L2, a fourth group of clot engagement members 202 d having first portions 206 with a fourth length L4 greater than the third length L3, a fifth group of clot engagement members 202 e having first portions 206 with a fifth length L5 greater than the fourth length L4, and a sixth group of clot engagement members 202 f having first portions 206 with a sixth length L6 greater than the fifth length L5. It will be appreciated that although six groups of clot engagement members are shown in FIGS. 2A and 2B, in other embodiments the clot treatment device can have more or fewer than six groups (e.g., one group, two groups, three groups, seven groups, ten groups, etc.) and/or the lengths of all or some of the first portions 206 can be the same or different.
  • Moreover, the second portions 208 of the first group 202 a of clot engagement members 202 extend radially outward at a first area of the support member 204, the second portions 208 of the second group 202 b of the clot engagement members 202 extend radially outward from a second area of the support member 204, the second portions 208 of the third group 202 c of clot engagement members 202 extend radially outward from a third area of the support member 204, the second portions 208 of the fourth group 202 d of clot engagement members 202 extend radially outward from a fourth area of the support member 204, the second portions 208 of the fifth group 202 e of clot engagement members 202 extend radially outward from a fifth area of the support member 204, and the second portions 208 of the sixth group 202 f of clot engagement members 202 extend radially outward from a sixth area of the support member 204. It will be appreciated that although six areas of clot engagement members are shown in FIGS. 2A and 2B, in other embodiments the clot treatment device can have more or fewer than six areas (e.g., one area, two areas, three areas, five areas, nine areas, etc.).
  • FIG. 2D is an enlarged, axial-perspective view of a portion of the device 200 in which the groups of clot engagement members 202 a-f (only the first, second and third groups 202 a-c shown) are arranged about the circumference of the support member 204 such that the second portions (labeled 208 a-c) of adjacent groups 202 a-c are circumferentially offset from one another. As such, in the embodiment shown in FIG. 2D, the second portions 208 of adjacent groups of clot engagement members 202 a-f are not circumferentially aligned, and thus can engage the clot material at different circumferential positions along the length of the clot material.
  • FIG. 3A is a side view of a clot engagement member 202 in the expanded state. Individual clot engagement members can be made from a shape memory material such that, when unconstrained, assume a preformed curved shape. As shown in FIG. 3A, the second portion 208 can have an arcuate shape that includes an outwardly extending section 216, the proximally facing section 212 extending from the outwardly extending section 216, and the end section 214 extending from the proximally facing section 212. In one embodiment, the demarcation between the proximally facing section 212 and the end section 214 occurs at an apex 218 of the second portion 208. The proximally facing section 212 is configured to retain clot material with the clot engagement member 202 as the device 200 is pulled proximally through the vessel (arrow P), and the apex 218 provides a smooth curve that can atraumatically slide along the vessel wall as the device 200 is pulled proximally through the vessel. In the embodiment shown in FIG. 3A, the second portion 208 of the clot treatment device 200 can have a single or constant radius of curvature R1. In other embodiments, such as the clot engagement member 402 shown in FIG. 3B, the second portions 208 can have a plurality of radii of curvature, such as a first region with a first radius of curvature R1 and a second region with a second radius of curvature R2. In the embodiment shown in FIGS. 2A-2D, the second portions 208 of the clot engagement members 202 have a single radius of curvature that is the same for all of the clot engagement members 202. In other embodiments, the device 200 can have a first group of second portions with a constant radius of curvature and a second group of second portions with a plurality of radii of curvature. Moreover, in additional embodiments the device 200 can include a first group of second portions having a first radius of curvature and a second group of second portions having a second radius of curvature different than the first radius of curvature. In some embodiments, the radius R1 of the clot engagement members 202 can be between about 0.15 mm and about 3 mm, and in some embodiments, between about 0.25 mm and about 2 mm.
  • As shown in FIG. 3C, the arc length a of the clot engagement members 202 may be substantially greater than 180 degrees to provide several benefits in performance of clot engagement and retrieval. In particular, a greater arc length a can provide improved clot engagement during retraction when resistance due to clot friction and interference with the vessel wall deflects the clot engagement member 202 distally (arrow D). A greater arc length a may provide more deflection and/or unravelling or straightening of the arcuate shape without loss of engagement with the clot. In some embodiments, the arc length a of the clot engagement members 202 can be greater than about 200 degrees. In some embodiments the arc length a of the clot engagement members 202 may be between about 200 degrees and 340 degrees and between about 240 degrees and 300 degrees in other embodiments. It can be advantageous to keep the arc length a under about 360 degrees so as to avoid overlap of the clot engagement member 202. Greater arc length a can allow for the use of smaller clot engagement member filaments or wires that may be particularly beneficial for minimization of the collapsed profile of the device. Greater arc length a can also allow for a larger total number of clot engagement members 202 that also enhance the ability of the device to remove embolic material from a small vessel. Moreover, in some embodiments, the distal end of the clot engagement members 202 may define an angle with respect to the axis of the support member and/or the straight portion of the engagement members (as shown in FIG. 3C). This angle may be between about 30 degrees and about 90 degrees, and in some embodiments between about 40 degrees and about 80 degrees.
  • The clot engagement members 202 can be made from a variety of materials. In a particular embodiment, the clot engagement members 202 comprise a material with sufficient elasticity to allow for repeated collapse into an appropriately sized catheter and full deployment in a blood vessel. Such suitable metals can include nickel-titanium alloys (e.g., Nitinol), platinum, cobalt-chrome alloys, Elgiloy, stainless steel, tungsten, titanium and/or others. Polymers and metal/polymer composites can also be utilized in the construction of the clot engagement members. Polymer materials can include Dacron, polyester, polyethylene, polypropylene, nylon, Teflon, PTFE, ePTFE, TFE, PET, TPE, PLA silicone, polyurethane, polyethylene, ABS, polycarbonate, styrene, polyimide, PEBAX, Hytrel, polyvinyl chloride, HDPE, LDPE, PEEK, rubber, latex and the like. In some embodiments, the clot engagement members 202 may comprise an environmentally responsive material, also known as a smart material. Smart materials are designed materials that have one or more properties that can be significantly changed in a controlled fashion by external stimuli, such as stress, temperature, moisture, pH, electric or magnetic fields.
  • In some embodiments, portions of the exterior surfaces of the support member 204 and/or clot engagement members 202 may be textured, or the exterior surfaces can include microfeatures configured to facilitate engagement or adhesion of thrombus material (e.g., ridges, bumps, protrusions, grooves, cut-outs, recesses, serrations, etc.). In some embodiments, the clot engagement members 202 may be coated with one or more materials to promote platelet activation or adhesion of thrombus material. Adhesion of thrombi to clot engagement members 202 may facilitate capture and/or removal.
  • In some embodiments, the clot treatment device 200 can include between about 20 and about 140 clot engagement members 202, and in some embodiments, between about 40 and about 120 clot engagement members 202. The clot engagement members 202 can individually have one consistent diameter or have a variety of diameters (among the members 202) along their lengths. In addition, an individual clot engagement member 202 may have a tapered or varying diameter along its length to provide desired mechanical characteristics. The average diameter of the clot engagement members 202 can be between about 0.02 mm to about 0.1 mm in some embodiments and in a particular embodiment, between about 0.04 mm and 0.08 mm.
  • In any of the embodiments described herein, the clot engagement members 202 can be formed from a filament or wire having a circular cross-section. Additionally, the clot engagement members 202 can be formed from a filament or wire having a non-circular cross-section. For example, filaments or wires having square, rectangular and oval cross-sections may be used. In some embodiments, a rectangular wire (also known as a “flat wire”) may have a height or radial dimension of between about 0.02 mm to about 0.1 mm. In some embodiments, a rectangular wire may have a width or transverse dimension of between about 0.02 mm to about 0.08 mm. In some embodiments, a rectangular wire may have a height to width ratio of between about 0.3 to about 0.9 and between about 1 and about 1.8.
  • FIGS. 4A and 4B illustrate an embodiment in which clot engagement members having non-circular cross-sections can be fabricated from a tube (e.g., a hypotube). The tube may be cut or machined by various means known in the art including conventional machining, laser cutting, electrical discharge machining (EDM) or photochemical machining (PCM). Referring to FIG. 4A, a tube may be cut to form a plurality of clot engagement members 454 that are integral with a hub member 456. The cut tube may then be formed by heat treatment to move from a delivery state shown in FIG. 4A to a deployed state shown in FIG. 4B in which an array of arcuate clot engagement members 454 project radially outward. As is known in the art of heat setting, a fixture or mold may be used to hold the structure in its desired final configuration and subjected to an appropriate heat treatment such that the clot engagement members assume or are otherwise shape-set to the desire arcuate shape. In some embodiments, the device or component may be held by a fixture and heated to about 475-525° C. for about 5-15 minutes to shape-set the structure. In some embodiments, the tubular clot engagement structure may be formed from various metals or alloys such as Nitinol, platinum, cobalt-chrome alloys, 35N LT, Elgiloy, stainless steel, tungsten or titanium.
  • FIG. 5 is a perspective view of another embodiment of a clot treatment device 500 in a deployed state in accordance with the present technology. As shown in FIG. 5, the clot treatment device 500 can include a plurality of clot engagement members 502 generally similar to the clot engagement members 202 and 402 described with reference to FIGS. 2A-4B, except the clot engagement members 502 of FIG. 5 are arranged about the support member 204 such that the length of the first portions 506 increase in a clockwise or counterclockwise direction about 360 degrees of the support member 204. As such, the second portions 508 spiral around the length of the support member 204 and each successive second portion 508 extending from a location along the shaft that is circumferentially offset and distal to the location of the immediately adjacent second portion 508.
  • FIG. 6 is a perspective view of another embodiment of a clot treatment device 600 in a deployed state in accordance with the present technology. The clot treatment device 600 can include a plurality of clot engagement members 602 generally similar to the clot engagement members 202 and 402 described with reference to FIGS. 2A-4B, except the second portions 608 of the clot engagement members 602 of FIG. 6 are not arranged in groups, but instead extend at irregular intervals from support member 204.
  • FIG. 7A is a perspective view of another embodiment of a clot treatment device 700 in a deployed state in accordance with the present technology, and FIG. 7B is a cross-sectional end view taken along line 7B-7B in FIG. 7A. Referring to FIGS. 7A and 7B together, the clot treatment device 700 can have groups of clot engagement members 702 a-f spaced along the support member 204. The groups 702 a-f can include a plurality of arcuate clot engagement members 702 generally similar to the clot engagement members 202 and 402 described with reference to FIGS. 2A-4B, except the second portions 708 of the clot engagement members 702 of FIG. 7A extend at an angle from the support member 204 such that the distal ends 713 of the second portions 708 are not circumferentially aligned with the corresponding proximal ends 711 of the second portions 708. For example, as shown in FIG. 7B, the second portions 708 can extend at an angle θ from the first portions 706. In some embodiments, the angle θ can be between about 10 and about 80 degrees. In a particular embodiment, the angle θ can be between about 40 and about 60 degrees. Additionally, as shown in FIGS. 4B and 7B, the clot engagement members may form a substantially circular axial array about the axis of the support member. A circular array may engage clot more uniformly and securely than a non-circular array and thus may facilitate retrieval and removal of clot from the vessel.
  • FIG. 8 is a perspective view of another embodiment of a clot treatment device 800 in a deployed state in accordance with the present technology. As shown in FIG. 8, the clot treatment device 800 can have groups of clot engagement members 802 a-f spaced along the support member 204. The groups 802 a-f can include a plurality of arcuate clot engagement members 802 generally similar to the clot engagement members 202 and 402 described with reference to FIGS. 2A-4B, except the clot engagement members 802 of FIG. 8 do not include a first or cantilevered portion. As such, the clot engagement members 802 include only a curved second portion 808 which is coupled to the support member 204 at one end (e.g., via hubs 810 a-f). In other embodiments, however, the clot engagement members 802 can have relatively short first portions (e.g., less than about 10 mm (e.g., less than about 5 mm, less than about 3 mm, less than about 2 mm, etc.)). In some embodiments, the groups 802 a-f can be evenly spaced along the support member 204, and in other embodiments the groups 802 a-f can have any spacing or state along the support member 204. Additionally, the arcuate clot engagement members 802 at one group 802 can have a different size than the arcuate clot engagement members 802 at a different group 802. The groups 802 a-f can be deployed or expanded simultaneously (e.g., via a push-wire or other deployment methods) or consecutively (e.g., by retracting a sheath).
  • FIG. 9A is a perspective view of another embodiment of a clot treatment device 1200 in a deployed state configured in accordance with the present technology. In some embodiments, the device 1200 can include a plurality of clot engagement members 1202 arranged in closely-packed circular array. The clot engagement members 1202 can be generally similar to the clot engagement members 202 and 402 described with reference to FIGS. 2A-4B. A proximal portion of the clot engagement members 1202 can be bound together and surrounded by a tubular binding member 1210. The clot engagement members 1202 can fill substantially all of a lumen of the binding member 1210, as shown in the cross-sectional view of FIG. 9B (other than the small gaps between the clot engagement members (that are too small for another clot engagement member)). Referring to FIG. 9A, the clot engagement members 1202 can have first portions 1206 with differing lengths so that the second portions 1206 are spread out over a deployed engagement member length L. In some embodiments, the deployed engagement member length L may be between about 0.25 cm and about 3.0 cm, and in some embodiments, between about 0.5 cm and about 2 cm. As shown in FIG. 9C, the binding member 1210 can be a coil, spiral, tube, sleeve, braid and/or other generally suitable tubular configurations. The binding member 1210 may be slotted, cut or otherwise fenestrated to enhance flexibility. The binding member 1210 may be made of various metals, polymers and combinations thereof and may comprise materials visible under x-ray or fluoroscopy so as to function as a radiopaque marker to facilitate deployment, placement and retraction by the user.
  • II. Delivery Systems and Methods
  • FIG. 10 is a side partial cross-sectional view of one embodiment of a delivery system 910 for delivering the clot treatment device 200 to a treatment site, such as the location of an embolism within a small blood vessel. The delivery system 910 can include a proximal portion 911, an elongated delivery catheter 920 extending from a distal region of the proximal portion 911, a delivery sheath 930 slidably received within a lumen of the delivery catheter 920, and a tubular push member 940 slidably received within a lumen of the delivery sheath 930. As shown in FIG. 10, the clot treatment device 200 can be positioned within the delivery sheath 930 such that the delivery sheath 930 constrains the clot engagement members 202 in a low-profile delivery state that is generally parallel with the support member 204. In some embodiments, the delivery catheter 920 can have an outside diameter between about 0.08 mm and about 0.06 mm. A proximal portion of the support member 204 can be coupled to a distal region of the push member 204 such that axial movement of the push member 204 causes axial movement of the support member 204 (and thus the clot treatment device 200).
  • The proximal portion 911 of the device can include a first hub 922 and a second hub 932 configured to be positioned external to the patient. The first and/or second hubs 922, 932 can include a hemostatic adaptor, a Tuohy Borst adaptor, and/or other suitable valves and/or sealing devices. A distal region 920 a of the first hub 922 can be coupled to the delivery catheter 920, and a proximal region of the first hub 922 can include an opening 924 configured to slidably receive the delivery sheath 930 therethrough. In some embodiments, the first hub 922 can further include an aspiration line 926 coupled to a negative pressure-generating device 928 (shown schematically), such as a syringe or a vacuum pump. A distal region 932 a of the second hub 932 can be fixed to a proximal region of the delivery sheath 930, and a proximal region of the second hub 932 can include an opening 934 configured to receive the push member 940 therethrough. Additionally, in some embodiments, the second hub 932 can include a port 936 configured to receive one or more fluids before, during and/or after the procedure (e.g., contrast, saline, etc.).
  • As shown in FIG. 10, the delivery system 910 does not include a guidewire. The inclusion of a guidewire increases the profile of the delivery catheter 920 and/or sheath 930 which is particularly undesirable for the treatment of small vessels. Several conventional microcatheters exist that do not require a guidewire and can be used with the any of the clot treatment device embodiments disclosed herein, such as Progreat™ by Terumo Interventional Systems and Prowler® Microcatheter by DePuy Synthes. In some embodiments, for example, for delivery to a cerebral blood vessel (e.g., to treat stroke), the clot treatment device 200 is configured to be delivered through a delivery catheter having a diameter less than or equal to 0.027 inches (e.g., less than an 0.021 inches, less than 0.015-0.018 inches. In other embodiments, however, the delivery system can be configured to receive a guidewire and/or be delivered with the aid of a guidewire.
  • FIGS. 11A-11K illustrate one example for treating a small vessel thromboembolism with the clot treatment device 200 (and delivery system 910). FIG. 11A is a side view of a delivery system 910 positioned adjacent to an embolism or clot material E within a small blood vessel V. Access to the target vessel can be achieved through the patient's vasculature, for example, via the femoral vein. It will be understood, however, that other access locations into the vasculature of a patient are possible and consistent with the present technology. For example, the user can gain access through the jugular vein, the subclavian vein, the brachial vein or any other vein. Use of other vessels that are closer to the location of the embolism can also be advantageous as it reduces the length of the instruments needed to reach the embolism.
  • As shown in FIG. 11A, the delivery sheath 930 containing the collapsed clot treatment device 200 (not shown) can be advanced together with the delivery catheter 920 to the treatment site. and a distal portion of the delivery catheter 920 and/or delivery sheath 930 can be inserted through the embolism E such that the distal ends 201 of at least one group of the clot engagement members 202 are aligned with or positioned distal to a distal edge of the embolism E (as shown in FIG. 11B). In other embodiments (not shown), a distal portion of the delivery catheter 920 and/or delivery sheath 930 can be positioned such that the distal ends 201 of at least one group of the clot engagement members 202 are positioned proximal to a distal edge of the embolism E.
  • Once the device is positioned, the delivery catheter 930 can be pulled proximally to a position proximal of the embolism E (as shown in FIG. 11B). As shown in FIGS. 11C-11G, the delivery sheath 930 can be retracted proximally to expose the distal portions of the second portions 208 of the clot engagement members such that the exposed portions radially expand and bend backwards in a proximal direction. As the second portions 208 expand, they extend into the embolism E around the device along an arcuate path P. The arcuate path P can extend radially outward and proximally with respect to the support member (not shown) and, as shown in FIG. 11F, can eventually curve radially inwardly. The second portions 208 can thus form hook-like capture elements that penetrate into and hold clot material to the device 200 for subsequent removal. Moreover, should the second portions 208 extend radially outwardly enough to touch the vessel wall, the end sections 214 of the second portions 208 form an atraumatic surface that can abut or apply pressure to the vessel wall without damaging the vessel wall. In some embodiments, the device presents a plurality of arcuate members that may be substantially parallel with the axis of the device at the point of contact with the vessel wall when in the deployed state.
  • Still referring to FIG. 11F, when the delivery sheath 930 is withdrawn proximally beyond the second portions 208 of the most distal group of clot engagement members 202 f, the first portions 206 of the clot engagement members 202 f are exposed. In some embodiments, the delivery sheath 930 can be withdrawn so as to expose only a portion of the clot engagement members. Additionally, in those embodiments having two or more groups of clot engagement members, the delivery sheath 930 can be withdrawn to expose all or some of the groups of clot engagement members. As shown in FIG. 11G, the delivery sheath 930 can continue to be withdrawn proximally to expose additional second portions 208 and/or groups of clot engagement members 202 a-f. Clot engagement members 202 a-f may just contact or be slightly deflected by the vessel wall. If the device is sized such that the diameter of the clot engagement members are larger than the vessel diameter (e.g., “over-sized”), the clot engagement members may be compressed by the vessel wall. Thus, while fully deployed, the device may be in state of a small amount of radial compression. In some embodiments, the device may be diametrically over-sized by between about 5% and 50% and in other embodiments between about 10% and 25%.
  • As shown in FIGS. 11H-11K, once at least a portion of the clot engagement members and/or second portions 208 have penetrated and engaged the targeted clot material E, the clot treatment device 200 can be withdrawn proximally, thereby pulling at least a portion of the clot material E in a proximal direction with the device 200. For example, the push member 940, second hub 932, and delivery sheath 930 (FIG. 10) can be retracted proximally at the same time and rate. As such, the delivery catheter 920 can be held in place while the delivery sheath 930, clot material E, and clot engagement device 200 are pulled proximally into the delivery catheter 920. The curved shape of the second portions 208 increases the surface area of the clot engagement members 202 in contact with the clot material E, thus increasing the proximal forces exerted on the clot material. Withdrawal of the device 200 not only removes the clot but also can increase blood flow through the vessel.
  • As shown in FIG. 11K, in some embodiments the delivery catheter 920 can include an aspiration lumen (not shown) configured to apply a negative pressure (indicated by arrows A) to facilitate removal of the clot material E. For example, the delivery catheter 920, delivery sheath 930 and/or clot treatment device 200 of the present technology can be configured to be operably coupled to the retraction and aspiration apparatus disclosed in Attorney Docket No. 111552.8004.US00, titled “Retraction and Aspiration Apparatus and Associated Systems and Methods,” filed concurrently herewith, which is incorporated herein by reference in its entirety. When coupled to the retraction and aspiration apparatus, a negative pressure is applied at or near the distal portion of the delivery catheter 920 (via the aspiration lumen) only while the clot treatment device 200 and/or delivery sheath 930 is being retracted. Therefore, when retraction pauses or stops altogether, aspiration also pauses or stops altogether. Accordingly, aspiration is non-continuous and dependent upon retraction of the delivery sheath 930 and/or clot treatment device 200. Such non-continuous, synchronized aspiration and retraction can be advantageous because it reduces the amount of fluid withdrawn from the patient's body during treatment (and thus less fluid need be replaced, if necessary). In addition, it may be advantageous to consolidate the steps and motions required to both mechanically transport the thrombus into the guide catheter (e.g. aspiration tube) and remove fluid from the tube into one motion, by one person.
  • Although the invention has been described in terms of particular embodiments and applications, one of ordinary skill in the art, in light of this teaching, can generate additional embodiments and modifications without departing from the spirit of or exceeding the scope of the exampled invention. Accordingly, it is to be understood that the drawings and descriptions herein are proffered by way of example to facilitate comprehension of the invention and should not be construed to limit the scope thereof.

Claims (11)

1-20. (canceled)
21. A method of treating a cerebral or coronary embolism that at least partially restricts blood flow through a small vessel, the method comprising:
deploying an embolectomy device within the embolism in the small vessel by penetrating clot material with a plurality of clot engagement members, wherein individual clot engagement members extend into the clot material along an arcuate path that extends radially outward and proximally with respect to the elongated shaft, and then curve radially inwardly, whereby the clot material is held by the clot engagement members;
moving the embolectomy device and at least a portion of the embolism along the small vessel; and
withdrawing the embolectomy device and at least a portion of the embolism from the small vessel.
22. The method of claim 21 wherein deploying the embolectomy device comprises expanding the clot engagement members into arcuate shapes, each having a concave portion facing proximally.
23. The method of claim 21 wherein withdrawing the embolectomy device comprises urging the portion of the embolism into a catheter while applying a vacuum through the catheter.
24. The method of claim 21 wherein retraction of the device includes extracting at least some clot material and increasing flow in the small vessel where flow had been reduced by the presence of a thrombus.
25. The method of claim 21 wherein individual clot engagement members have a first portion and a second portion extending from the first portion, and wherein individual first portions have a proximal region attached to the support member and a distal region, and wherein the first portions extend distally in a longitudinal direction from the proximal region to the distal region.
26. The method of claim 25 wherein individual second portions further include an end section curving radially inward from the proximally extending section.
27. The method of claim 25 wherein individual clot engagement members have a proximal region that is fixed to a distal portion of the embolectomy device.
28. The method of claim 21, further comprising improving blood flow to ischemic tissue.
29. The method of claim 21, wherein the small vessel is a cerebral vessel.
30. The method of claim 21, wherein the small vessel is a coronary vessel.
US14/299,997 2013-07-12 2014-06-09 Methods and apparatus for treating small vessel thromboembolisms Abandoned US20150018860A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US201361845796P true 2013-07-12 2013-07-12
US201461949953P true 2014-03-07 2014-03-07
US14/299,997 US20150018860A1 (en) 2013-07-12 2014-06-09 Methods and apparatus for treating small vessel thromboembolisms

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US14/299,997 US20150018860A1 (en) 2013-07-12 2014-06-09 Methods and apparatus for treating small vessel thromboembolisms
US15/031,102 US10238406B2 (en) 2013-10-21 2014-10-21 Methods and apparatus for treating embolism
PCT/US2014/061645 WO2015061365A1 (en) 2013-10-21 2014-10-21 Methods and apparatus for treating embolism
US14/639,890 US20150374391A1 (en) 2014-03-07 2015-03-05 Methods and apparatus for treating small vessel thromboembolisms

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/299,933 Continuation-In-Part US9259237B2 (en) 2013-07-12 2014-06-09 Methods and apparatus for treating pulmonary embolism
US14/639,890 Continuation US20150374391A1 (en) 2013-07-12 2015-03-05 Methods and apparatus for treating small vessel thromboembolisms

Publications (1)

Publication Number Publication Date
US20150018860A1 true US20150018860A1 (en) 2015-01-15

Family

ID=52277699

Family Applications (3)

Application Number Title Priority Date Filing Date
US14/299,997 Abandoned US20150018860A1 (en) 2013-07-12 2014-06-09 Methods and apparatus for treating small vessel thromboembolisms
US14/299,933 Active US9259237B2 (en) 2013-07-12 2014-06-09 Methods and apparatus for treating pulmonary embolism
US14/904,647 Abandoned US20160143721A1 (en) 2013-07-12 2014-07-14 Methods and apparatus for treating pulmonary embolism

Family Applications After (2)

Application Number Title Priority Date Filing Date
US14/299,933 Active US9259237B2 (en) 2013-07-12 2014-06-09 Methods and apparatus for treating pulmonary embolism
US14/904,647 Abandoned US20160143721A1 (en) 2013-07-12 2014-07-14 Methods and apparatus for treating pulmonary embolism

Country Status (1)

Country Link
US (3) US20150018860A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9351749B2 (en) 2010-10-22 2016-05-31 Neuravi Limited Clot engagement and removal system
US9402707B2 (en) 2008-07-22 2016-08-02 Neuravi Limited Clot capture systems and associated methods
US9433429B2 (en) 2013-03-14 2016-09-06 Neuravi Limited Clot retrieval devices
US9445829B2 (en) 2013-03-14 2016-09-20 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US9463035B1 (en) * 2015-09-28 2016-10-11 GW Medical LLC Mechanical thrombectomy apparatuses and methods
US9526865B2 (en) 2014-06-09 2016-12-27 Inceptus Medical, Llc Retraction and aspiration device for treating embolism and associated systems and methods
WO2017072761A1 (en) * 2015-10-26 2017-05-04 Amnis Therapeutics Ltd. Systems for thrombectomy
US9642635B2 (en) 2013-03-13 2017-05-09 Neuravi Limited Clot removal device
US9642639B2 (en) 2011-03-09 2017-05-09 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US9717519B2 (en) 2012-11-20 2017-08-01 Inceptus Medical, Llc Methods and apparatus for treating embolism
US20170303942A1 (en) * 2016-04-25 2017-10-26 Stryker Corporation Pre-loaded inverting tractor thrombectomy apparatuses and methods
US9994980B2 (en) 2016-10-14 2018-06-12 Inceptus Medical, Llc Braiding machine and methods of use
US10028759B2 (en) 2016-04-25 2018-07-24 Stryker Corporation Anti-jamming and macerating thrombectomy apparatuses and methods
US10045790B2 (en) 2012-09-24 2018-08-14 Inari Medical, Inc. Device and method for treating vascular occlusion
US10201360B2 (en) 2013-03-14 2019-02-12 Neuravi Limited Devices and methods for removal of acute blockages from blood vessels
US10238406B2 (en) 2013-10-21 2019-03-26 Inari Medical, Inc. Methods and apparatus for treating embolism
US10265086B2 (en) 2014-06-30 2019-04-23 Neuravi Limited System for removing a clot from a blood vessel
US10285720B2 (en) 2015-03-11 2019-05-14 Neuravi Limited Clot retrieval system for removing occlusive clot from a blood vessel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150374391A1 (en) * 2014-03-07 2015-12-31 Inceptus Medical, Llc Methods and apparatus for treating small vessel thromboembolisms
CN107405140A (en) * 2015-01-28 2017-11-28 小麦公司 Device and method for removing occlusions in a biological vessel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6511492B1 (en) * 1998-05-01 2003-01-28 Microvention, Inc. Embolectomy catheters and methods for treating stroke and other small vessel thromboembolic disorders
US20040073243A1 (en) * 2000-06-29 2004-04-15 Concentric Medical, Inc., A Delaware Corporation Systems, methods and devices for removing obstructions from a blood vessel
US20050119668A1 (en) * 2003-09-18 2005-06-02 Boston Scientific Scimed, Inc. Medical retrieval devices and methods
US20070118165A1 (en) * 2004-03-08 2007-05-24 Demello Jonathan R System and method for removal of material from a blood vessel using a small diameter catheter
US8852205B2 (en) * 2011-03-09 2014-10-07 Neuravi Limited Clot retrieval device for removing occlusive clot from a blood vessel

Family Cites Families (140)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3435826A (en) 1964-05-27 1969-04-01 Edwards Lab Inc Embolectomy catheter
US3923065A (en) 1974-09-09 1975-12-02 Jerome Nozick Embolectomy catheter
US4030503A (en) 1975-11-05 1977-06-21 Clark Iii William T Embolectomy catheter
US4650466A (en) 1985-11-01 1987-03-17 Angiobrade Partners Angioplasty device
US4883458A (en) 1987-02-24 1989-11-28 Surgical Systems & Instruments, Inc. Atherectomy system and method of using the same
US4873978A (en) 1987-12-04 1989-10-17 Robert Ginsburg Device and method for emboli retrieval
US4890611A (en) 1988-04-05 1990-01-02 Thomas J. Fogarty Endarterectomy apparatus and method
JPH0438435B2 (en) 1988-08-03 1992-06-24
US5011488A (en) 1988-12-07 1991-04-30 Robert Ginsburg Thrombus extraction system
DE8910603U1 (en) 1989-09-06 1989-12-07 Guenther, Rolf W., Prof. Dr.
US5192290A (en) 1990-08-29 1993-03-09 Applied Medical Resources, Inc. Embolectomy catheter
US5192286A (en) 1991-07-26 1993-03-09 Regents Of The University Of California Method and device for retrieving materials from body lumens
US5129910A (en) 1991-07-26 1992-07-14 The Regents Of The University Of California Stone expulsion stent
WO1993019679A1 (en) 1992-04-07 1993-10-14 The Johns Hopkins University A percutaneous mechanical fragmentation catheter system
US5643297A (en) 1992-11-09 1997-07-01 Endovascular Instruments, Inc. Intra-artery obstruction clearing apparatus and methods
US5490859A (en) 1992-11-13 1996-02-13 Scimed Life Systems, Inc. Expandable intravascular occlusion material removal devices and methods of use
DK0630617T3 (en) 1993-06-24 1999-05-31 Schneider Europ Gmbh Aspirationskateterindretning
US5370653A (en) 1993-07-22 1994-12-06 Micro Therapeutics, Inc. Thrombectomy method and apparatus
US5476450A (en) 1993-11-04 1995-12-19 Ruggio; Joseph M. Apparatus and method for aspirating intravascular, pulmonary and cardiac obstructions
JPH10504738A (en) 1994-07-08 1998-05-12 マイクロベナ コーポレイション Forming method and vascular embolization device of the medical device
US5827304A (en) 1995-11-16 1998-10-27 Applied Medical Resources Corporation Intraluminal extraction catheter
WO1997038631A1 (en) 1996-04-18 1997-10-23 Applied Medical Resources Corporation Remote clot management
US5972019A (en) 1996-07-25 1999-10-26 Target Therapeutics, Inc. Mechanical clot treatment device
US5882329A (en) 1997-02-12 1999-03-16 Prolifix Medical, Inc. Apparatus and method for removing stenotic material from stents
WO1998038929A1 (en) 1997-03-06 1998-09-11 Percusurge, Inc. Intravascular aspiration system
US5868708A (en) 1997-05-07 1999-02-09 Applied Medical Resources Corporation Balloon catheter apparatus and method
US5800525A (en) 1997-06-04 1998-09-01 Vascular Science, Inc. Blood filter
US6066149A (en) 1997-09-30 2000-05-23 Target Therapeutics, Inc. Mechanical clot treatment device with distal filter
AT404123T (en) 1997-11-12 2008-08-15 Genesis Technologies Llc A device for removing occlusions in biological passages
US20100030256A1 (en) 1997-11-12 2010-02-04 Genesis Technologies Llc Medical Devices and Methods
EP1054634A4 (en) 1998-02-10 2006-03-29 Artemis Medical Inc Entrapping apparatus and method for use
US6645222B1 (en) 1998-05-13 2003-11-11 Arteria Medical Science, Inc. Puncture resistant branch artery occlusion device and methods of use
US6306163B1 (en) 1998-08-04 2001-10-23 Advanced Cardiovascular Systems, Inc. Assembly for collecting emboli and method of use
US6994092B2 (en) 1999-11-08 2006-02-07 Ev3 Sunnyvale, Inc. Device for containing embolic material in the LAA having a plurality of tissue retention structures
US7128073B1 (en) 1998-11-06 2006-10-31 Ev3 Endovascular, Inc. Method and device for left atrial appendage occlusion
US6371935B1 (en) 1999-01-22 2002-04-16 Cardeon Corporation Aortic catheter with flow divider and methods for preventing cerebral embolization
US20020169474A1 (en) 1999-03-08 2002-11-14 Microvena Corporation Minimally invasive medical device deployment and retrieval system
US6350271B1 (en) 1999-05-17 2002-02-26 Micrus Corporation Clot retrieval device
US6458139B1 (en) 1999-06-21 2002-10-01 Endovascular Technologies, Inc. Filter/emboli extractor for use in variable sized blood vessels
US7306618B2 (en) 1999-07-30 2007-12-11 Incept Llc Vascular device for emboli and thrombi removal and methods of use
US6660013B2 (en) 1999-10-05 2003-12-09 Omnisonics Medical Technologies, Inc. Apparatus for removing plaque from blood vessels using ultrasonic energy
US6689150B1 (en) 1999-10-27 2004-02-10 Atritech, Inc. Filter apparatus for ostium of left atrial appendage
US6454775B1 (en) 1999-12-06 2002-09-24 Bacchus Vascular Inc. Systems and methods for clot disruption and retrieval
US6821297B2 (en) 2000-02-02 2004-11-23 Robert V. Snyders Artificial heart valve, implantation instrument and method therefor
US6514273B1 (en) 2000-03-22 2003-02-04 Endovascular Technologies, Inc. Device for removal of thrombus through physiological adhesion
US7285126B2 (en) 2000-06-29 2007-10-23 Concentric Medical, Inc. Systems, methods and devices for removing obstructions from a blood vessel
US6544279B1 (en) 2000-08-09 2003-04-08 Incept, Llc Vascular device for emboli, thrombus and foreign body removal and methods of use
US7097659B2 (en) 2001-09-07 2006-08-29 Medtronic, Inc. Fixation band for affixing a prosthetic heart valve to tissue
US6800083B2 (en) 2001-04-09 2004-10-05 Scimed Life Systems, Inc. Compressible atherectomy burr
US6635070B2 (en) 2001-05-21 2003-10-21 Bacchus Vascular, Inc. Apparatus and methods for capturing particulate material within blood vessels
US6755847B2 (en) 2001-10-05 2004-06-29 Scimed Life Systems, Inc. Emboli capturing device and method of manufacture therefor
US7052500B2 (en) 2001-10-19 2006-05-30 Scimed Life Systems, Inc. Embolus extractor
US6767353B1 (en) 2002-03-01 2004-07-27 Samuel Shiber Thrombectomy catheter
US20030195553A1 (en) 2002-04-12 2003-10-16 Scimed Life Systems, Inc. System and method for retaining vaso-occlusive devices within an aneurysm
US8425549B2 (en) 2002-07-23 2013-04-23 Reverse Medical Corporation Systems and methods for removing obstructive matter from body lumens and treating vascular defects
JP2004097807A (en) 2002-08-20 2004-04-02 Nipro Corp Thrombus capturing catheter
US8114114B2 (en) 2002-08-27 2012-02-14 Emboline, Inc. Embolic protection device
US20050059993A1 (en) 2003-09-17 2005-03-17 Kamal Ramzipoor Embolectomy device
US7604650B2 (en) 2003-10-06 2009-10-20 3F Therapeutics, Inc. Method and assembly for distal embolic protection
US20070255252A1 (en) 2003-10-07 2007-11-01 Mehta Bharat A Embolectomy Catheter
US7344550B2 (en) 2003-10-21 2008-03-18 Boston Scientific Scimed, Inc. Clot removal device
US7220269B1 (en) 2003-11-06 2007-05-22 Possis Medical, Inc. Thrombectomy catheter system with occluder and method of using same
US9526609B2 (en) 2003-12-23 2016-12-27 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US20070179513A1 (en) 2004-01-09 2007-08-02 Deutsch Harvey L Method and device for removing an occlusion
JP2005230132A (en) 2004-02-18 2005-09-02 Asahi Intecc Co Ltd Medical treatment tool
US20080228209A1 (en) 2004-03-08 2008-09-18 Demello Richard M System and method for removal of material from a blood vessel using a small diameter catheter
US9039724B2 (en) 2004-03-19 2015-05-26 Aga Medical Corporation Device for occluding vascular defects
ES2529352T3 (en) 2004-04-08 2015-02-19 Aga Medical Corporation Occluders flange
JP2005323702A (en) 2004-05-13 2005-11-24 Asahi Intecc Co Ltd Medical treatment instrument
US7794490B2 (en) 2004-06-22 2010-09-14 Boston Scientific Scimed, Inc. Implantable medical devices with antimicrobial and biodegradable matrices
DE102004040868A1 (en) 2004-08-23 2006-03-09 Miloslavski, Elina An apparatus for removing thrombi
JP4324535B2 (en) 2004-09-28 2009-09-02 朝日インテック株式会社 Medical treatment tool
US20060155323A1 (en) 2005-01-07 2006-07-13 Porter Stephen C Intra-aneurysm devices
US7244243B2 (en) 2005-03-10 2007-07-17 Banning Gray Lary Catheter for treatment of severe pulmonary emboli
US8475487B2 (en) 2005-04-07 2013-07-02 Medrad, Inc. Cross stream thrombectomy catheter with flexible and expandable cage
US7645290B2 (en) 2005-05-05 2010-01-12 Lucas Paul R Multi-functional thrombectomy device
AU2006251938B2 (en) 2005-05-27 2011-09-29 Hlt, Inc. Stentless support structure
US20060282111A1 (en) 2005-06-09 2006-12-14 Baylor College Of Medicine Segmented Embolectomy Catheter
WO2007013999A2 (en) 2005-07-21 2007-02-01 Florida International University Collapsible heart valve with polymer leaflets
US7938820B2 (en) 2005-08-18 2011-05-10 Lumen Biomedical, Inc. Thrombectomy catheter
DE102005052628B4 (en) 2005-11-04 2014-06-05 Jenavalve Technology Inc. Self-expanding, flexible wire mesh with integrated valve prosthesis for the transvascular cardiac valve replacement and a system comprising such a device and a delivery catheter
WO2007054015A1 (en) 2005-11-09 2007-05-18 Ning Wen An artificial heart valve stent and weaving method thereof
US20070161963A1 (en) 2006-01-09 2007-07-12 Smalling Medical Ventures, Llc Aspiration thrombectomy catheter system, and associated methods
CA2641249C (en) 2006-02-01 2014-08-05 The Cleveland Clinic Foundation A method and apparatus for increasing blood flow through an obstructed blood vessel
EP1986568B1 (en) 2006-02-03 2017-04-05 Covidien LP Methods and devices for restoring blood flow within blocked vasculature
US8597341B2 (en) 2006-03-06 2013-12-03 David Elmaleh Intravascular device with netting system
DE602007003871D1 (en) 2006-03-06 2010-02-04 Terumo Corp atherectomy
US20070213753A1 (en) 2006-03-08 2007-09-13 Wilson-Cook Medical Inc. Stent-cleaning assembly and method
EP1849440A1 (en) 2006-04-28 2007-10-31 Younes Boudjemline Vascular stents with varying diameter
US7993302B2 (en) 2006-05-09 2011-08-09 Stephen Hebert Clot retrieval device
US20080234722A1 (en) * 2006-06-14 2008-09-25 Possis Medical, Inc. Inferior vena cava filter on guidewire
US8246641B2 (en) 2006-11-08 2012-08-21 Cook Medical Technolgies, LLC Thrombus removal device
EP2129425A4 (en) 2006-11-29 2017-07-26 BELSON, Amir Embolic protection device
US7914549B2 (en) 2007-01-05 2011-03-29 Hesham Morsi Mechanical embolectomy and suction catheter
EP2150181A1 (en) 2007-05-31 2010-02-10 Rex Medical, L.P. Closure device for left atrial appendage
EP2157937B1 (en) 2007-06-04 2017-03-22 Sequent Medical, Inc. Devices for treatment of vascular defects
WO2009021071A2 (en) 2007-08-06 2009-02-12 Henson Michael R Thrombectomy system and method
US9414842B2 (en) 2007-10-12 2016-08-16 St. Jude Medical, Cardiology Division, Inc. Multi-component vascular device
US8066757B2 (en) 2007-10-17 2011-11-29 Mindframe, Inc. Blood flow restoration and thrombus management methods
EP2231256B1 (en) 2007-12-20 2018-05-30 Vortex Medical Systems for removing undesirable material within a circulatory system
US20110213290A1 (en) 2007-12-20 2011-09-01 Vortex Medical Systems and Methods for Removing Undesirable Material Within a Circulatory System
US8021380B2 (en) 2008-01-11 2011-09-20 Dustin Thompson Obstruction removal system
US8940003B2 (en) 2008-02-22 2015-01-27 Covidien Lp Methods and apparatus for flow restoration
AT533414T (en) 2008-04-21 2011-12-15 Nfocus Neuromedical Inc Spherical network-embolic device and - dispensing systems
CN106974691A (en) 2008-05-02 2017-07-25 斯昆特医疗公司 Filamentary devices for treatment of vascular defects
US20090292307A1 (en) 2008-05-22 2009-11-26 Nasser Razack Mechanical embolectomy device and method
US20110190806A1 (en) 2008-06-19 2011-08-04 Angiodynamics, Inc. Thrombectomy catheter and a device comprising the same
WO2009155571A1 (en) 2008-06-19 2009-12-23 Coherex Medical, Inc. Clot retrieval method and device
US8043313B2 (en) 2008-07-03 2011-10-25 Hotspur Technologies, Inc Apparatus and methods for treating obstructions within body lumens
US20110178539A1 (en) 2008-07-11 2011-07-21 Holmes Jr David R Left atrial appendage occlusion devices
WO2010010545A1 (en) 2008-07-22 2010-01-28 Neuravi Limited Clot capture systems and associated methods
DE102008038195A1 (en) 2008-08-19 2010-02-25 Phenox Gmbh A device for opening occluded blood vessels
AT534336T (en) 2008-08-29 2011-12-15 Rapid Medical Ltd Embolektomievorrichtung
DE102008053635A1 (en) 2008-10-29 2010-05-12 Acandis Gmbh & Co. Kg A medical device for recanalization of thrombi
US20100114152A1 (en) 2008-11-06 2010-05-06 Himanshu Shukla Minimally-Invasive Method and Device for Permanently Compressing Tissues within the Body
EP2403583B1 (en) 2009-03-06 2016-10-19 Lazarus Effect, Inc. Retrieval systems
US20100249815A1 (en) 2009-03-25 2010-09-30 Cook Incorporated Everted sheath thrombectomy device
US20100256723A1 (en) 2009-04-03 2010-10-07 Medtronic Vascular, Inc. Prosthetic Valve With Device for Restricting Expansion
US9278201B2 (en) 2009-06-15 2016-03-08 Perflow Medical Ltd. Method and apparatus for allowing blood flow through an occluded vessel
CH701695A1 (en) 2009-08-27 2011-02-28 Straub Medical Ag Catheter with protection system for aspirating, fragmenting and out pumping of removable material from hollow bodies or vessels, in particular of the human or animal body.
GB0915552D0 (en) 2009-09-07 2009-10-07 Icore Internat Ltd Cable-routing
GB2474866B8 (en) 2009-10-29 2013-04-10 Xiros Ltd Knot slip resistant woven cord
DE102009052002B4 (en) 2009-11-05 2012-09-27 Acandis Gmbh & Co. Kg A medical device for recanalization of body cavities and set comprising such a device
WO2011057087A1 (en) 2009-11-05 2011-05-12 The Trustees University Of Pennsylvania Valve prosthesis
CN102639181A (en) 2009-11-05 2012-08-15 斯昆特医疗公司 Multiple layer filamentary devices or treatment of vascular defects
US20110146361A1 (en) 2009-12-22 2011-06-23 Edwards Lifesciences Corporation Method of Peening Metal Heart Valve Stents
CA2804254C (en) 2010-02-23 2016-11-01 Medina Medical, Inc. Devices and methods for vascular recanalization
EP2558005A4 (en) 2010-04-13 2017-08-09 Mivi Neuroscience LLC. Embolectomy devices and methods for treatment of acute ischemic stroke condition
WO2012009675A2 (en) 2010-07-15 2012-01-19 Lazarus Effect, Inc. Retrieval systems and methods for use thereof
DE102010051740A1 (en) 2010-11-19 2012-05-24 Phenox Gmbh thrombectomy
EP2646102A4 (en) 2010-12-03 2017-12-06 AngioDynamics, Inc. Devices and methods for removing clots
US20120271231A1 (en) 2011-04-25 2012-10-25 Sony Agrawal Aspiration thrombectomy device
US20150005811A1 (en) 2012-01-06 2015-01-01 Inceptus Medical, Llc Expandable occlusion devices and methods of use
WO2013028579A1 (en) 2011-08-19 2013-02-28 Cox Brian J Expandable occlusion device and methods
FR2985659B1 (en) 2012-01-13 2015-03-06 Assist Publ Hopitaux De Paris Device for anchoring a prosthetic heart valve.
US9211132B2 (en) 2012-06-27 2015-12-15 MicoVention, Inc. Obstruction removal system
EP2897536A4 (en) 2012-09-24 2016-05-18 Inceptus Medical LLC Device and method for treating vascular occlusion
US8784434B2 (en) 2012-11-20 2014-07-22 Inceptus Medical, Inc. Methods and apparatus for treating embolism
WO2015061365A1 (en) 2013-10-21 2015-04-30 Inceptus Medical, Llc Methods and apparatus for treating embolism
WO2015006782A1 (en) 2013-07-12 2015-01-15 Inceptus Medical, Llc Methods and apparatus for treating pulmonary embolism

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6511492B1 (en) * 1998-05-01 2003-01-28 Microvention, Inc. Embolectomy catheters and methods for treating stroke and other small vessel thromboembolic disorders
US20040073243A1 (en) * 2000-06-29 2004-04-15 Concentric Medical, Inc., A Delaware Corporation Systems, methods and devices for removing obstructions from a blood vessel
US20050119668A1 (en) * 2003-09-18 2005-06-02 Boston Scientific Scimed, Inc. Medical retrieval devices and methods
US20070118165A1 (en) * 2004-03-08 2007-05-24 Demello Jonathan R System and method for removal of material from a blood vessel using a small diameter catheter
US8852205B2 (en) * 2011-03-09 2014-10-07 Neuravi Limited Clot retrieval device for removing occlusive clot from a blood vessel

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9402707B2 (en) 2008-07-22 2016-08-02 Neuravi Limited Clot capture systems and associated methods
US9351749B2 (en) 2010-10-22 2016-05-31 Neuravi Limited Clot engagement and removal system
US9463036B2 (en) 2010-10-22 2016-10-11 Neuravi Limited Clot engagement and removal system
US10034680B2 (en) 2011-03-09 2018-07-31 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US9642639B2 (en) 2011-03-09 2017-05-09 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US10045790B2 (en) 2012-09-24 2018-08-14 Inari Medical, Inc. Device and method for treating vascular occlusion
US10004531B2 (en) 2012-11-20 2018-06-26 Inari Medical, Inc. Methods and apparatus for treating embolism
US9717519B2 (en) 2012-11-20 2017-08-01 Inceptus Medical, Llc Methods and apparatus for treating embolism
US9642635B2 (en) 2013-03-13 2017-05-09 Neuravi Limited Clot removal device
US9433429B2 (en) 2013-03-14 2016-09-06 Neuravi Limited Clot retrieval devices
US10278717B2 (en) 2013-03-14 2019-05-07 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US9445829B2 (en) 2013-03-14 2016-09-20 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US10201360B2 (en) 2013-03-14 2019-02-12 Neuravi Limited Devices and methods for removal of acute blockages from blood vessels
US10238406B2 (en) 2013-10-21 2019-03-26 Inari Medical, Inc. Methods and apparatus for treating embolism
US9526865B2 (en) 2014-06-09 2016-12-27 Inceptus Medical, Llc Retraction and aspiration device for treating embolism and associated systems and methods
US9526864B2 (en) 2014-06-09 2016-12-27 Inceptus Medical, Llc Retraction and aspiration device for treating embolism and associated systems and methods
US10265086B2 (en) 2014-06-30 2019-04-23 Neuravi Limited System for removing a clot from a blood vessel
US10285720B2 (en) 2015-03-11 2019-05-14 Neuravi Limited Clot retrieval system for removing occlusive clot from a blood vessel
US10271864B2 (en) 2015-09-28 2019-04-30 Stryker Corporation Mechanical thrombectomy apparatuses and methods
US9463035B1 (en) * 2015-09-28 2016-10-11 GW Medical LLC Mechanical thrombectomy apparatuses and methods
WO2017072761A1 (en) * 2015-10-26 2017-05-04 Amnis Therapeutics Ltd. Systems for thrombectomy
US10028759B2 (en) 2016-04-25 2018-07-24 Stryker Corporation Anti-jamming and macerating thrombectomy apparatuses and methods
US9962178B2 (en) * 2016-04-25 2018-05-08 Stryker Corporation Pre-loaded inverting tractor thrombectomy apparatuses
US20170303942A1 (en) * 2016-04-25 2017-10-26 Stryker Corporation Pre-loaded inverting tractor thrombectomy apparatuses and methods
US9994980B2 (en) 2016-10-14 2018-06-12 Inceptus Medical, Llc Braiding machine and methods of use

Also Published As

Publication number Publication date
US9259237B2 (en) 2016-02-16
US20150018859A1 (en) 2015-01-15
US20160143721A1 (en) 2016-05-26

Similar Documents

Publication Publication Date Title
US8845679B1 (en) Variable porosity flow diverting devices
US7316692B2 (en) Laser-cut clot puller
US7058456B2 (en) Methods and devices for changing the shape of a medical device
US7166120B2 (en) Catheter with occluding cuff
US8100935B2 (en) Embolectomy catheters and methods for treating stroke and other small vessel thromboembolic disorders
US8394119B2 (en) Stents having radiopaque mesh
US8784434B2 (en) Methods and apparatus for treating embolism
AU2010339405B2 (en) Blood flow restoration and thrombus management
US6602265B2 (en) Tissue separation medical device and method
EP2349434B1 (en) Asymmetrical medical devices for treating a target site and associated method
US6695858B1 (en) Medical device and methods for use
US9867723B2 (en) Procedures for vascular occlusion
EP1589900B1 (en) Embolic filters with a distal loop
US8480697B2 (en) Thrombus removal system and process
US20090306702A1 (en) Device for the Removal of Thrombi
EP2319575B1 (en) Embolectomy catheter
EP1642540B1 (en) Clot capture coil
EP2317956B1 (en) Multi-layered medical device for treating a target site and associated method
US8568465B2 (en) Device for rechanneling a cavity, organ path or vessel
CN104487024B (en) Stents and stent delivery apparatus
US10258452B2 (en) Device and method for clot engagement and capture
US20060155305A1 (en) Extraction device
US20150080941A1 (en) Free end vascular treatment systems
US20090198269A1 (en) Device for the Removal of Thrombi From Blood Vessels
US8449566B2 (en) Thrombus removal system and process