EP3298260B1 - Einspritzsystem für eine brennkraftmaschine sowie brennkraftmaschine mit einem solchen einspritzsystem - Google Patents

Einspritzsystem für eine brennkraftmaschine sowie brennkraftmaschine mit einem solchen einspritzsystem Download PDF

Info

Publication number
EP3298260B1
EP3298260B1 EP16711138.4A EP16711138A EP3298260B1 EP 3298260 B1 EP3298260 B1 EP 3298260B1 EP 16711138 A EP16711138 A EP 16711138A EP 3298260 B1 EP3298260 B1 EP 3298260B1
Authority
EP
European Patent Office
Prior art keywords
pressure
injection system
internal combustion
combustion engine
pressure regulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16711138.4A
Other languages
English (en)
French (fr)
Other versions
EP3298260A1 (de
Inventor
Armin DÖLKER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Solutions GmbH
Original Assignee
MTU Friedrichshafen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Friedrichshafen GmbH filed Critical MTU Friedrichshafen GmbH
Publication of EP3298260A1 publication Critical patent/EP3298260A1/de
Application granted granted Critical
Publication of EP3298260B1 publication Critical patent/EP3298260B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3863Controlling the fuel pressure by controlling the flow out of the common rail, e.g. using pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/005Pressure relief valves
    • F02M63/0052Pressure relief valves with means for adjusting the opening pressure, e.g. electrically controlled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • F02M63/023Means for varying pressure in common rails
    • F02M63/0235Means for varying pressure in common rails by bleeding fuel pressure
    • F02M63/025Means for varying pressure in common rails by bleeding fuel pressure from the common rail
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/224Diagnosis of the fuel system

Definitions

  • the invention relates to an injection system for an internal combustion engine and an internal combustion engine with such an injection system.
  • the invention is based on the object of creating an injection system for an internal combustion engine and an internal combustion engine with such an injection system, the disadvantages mentioned not occurring.
  • the object is achieved in particular by creating an injection system for an internal combustion engine which has at least one injector and at least one high-pressure accumulator, which is in fluid connection on the one hand with the at least one injector and on the other hand via a high-pressure pump with a fuel reservoir, the high-pressure pump being a suction throttle as Pressure actuator is assigned.
  • the injection system also has at least two pressure regulating valves, via which the high-pressure accumulator can be brought into fluid connection, preferably fluidly connected, with the fuel reservoir.
  • the injection system has at least two pressure regulating valves
  • protective and / or regulating functions achieved via the pressure regulating valves can be represented by more than one pressure regulating valve, so that an increased volume flow can be controlled from the high-pressure accumulator without having to scale the individual pressure regulating valves used . Rather, scaling can take place via the number of pressure control valves used.
  • the individual pressure regulating valves can thus be installed as inexpensive mass-produced parts, which saves logistical costs, and the individual pressure regulating valves themselves are inexpensive. There is then also no need to keep different pressure control valves for different internal combustion engines; rather, larger internal combustion engines can be equipped with a larger number of pressure control valves than smaller internal combustion engines.
  • the suction throttle is preferably arranged on a low-pressure side of the high-pressure pump, so it is a low-pressure-side suction throttle that is assigned to the high-pressure pump.
  • the suction throttle is accordingly arranged in particular upstream of the high-pressure pump.
  • a low-pressure pump by means of which fuel can be conveyed from the fuel reservoir to the high-pressure pump, is preferably also arranged upstream of the high-pressure pump.
  • the suction throttle is preferably arranged fluidically between the low-pressure pump and the high-pressure pump. It is possible for the suction throttle to be formed integrally with the high-pressure pump.
  • the at least two pressure regulating valves are preferably arranged fluidically parallel to one another, with both - in parallel connection - the high-pressure accumulator with the fuel reservoir connect. If two identical pressure regulating valves are used - in particular with an identical nominal flow rate - a double volume flow can be diverted from the high pressure accumulator into the fuel reservoir via the pressure regulating valves, compared to an embodiment in which only one pressure regulating valve is provided.
  • the injection system is preferably free of a mechanical pressure relief valve, so it does not have a mechanical pressure relief valve.
  • a mechanical pressure relief valve can be dispensed with, since a corresponding protective function - as will be explained in the following - can be provided by the at least two pressure regulating valves. The costs otherwise associated with a mechanical pressure relief valve can thus be saved.
  • the injection system preferably has a high pressure sensor, via which a high pressure in the high pressure accumulator can be detected.
  • the high pressure sensor is preferably arranged on the high pressure accumulator.
  • the high-pressure accumulator is preferably designed as a common high-pressure accumulator with which a plurality of injectors are in fluid connection.
  • a high-pressure accumulator is also referred to as a rail, the injection system preferably being designed as a common rail injection system.
  • the injection system is characterized by a control device which is operatively connected to the suction throttle and the at least two pressure control valves and preferably to the at least one injector.
  • the injection system in particular the control unit, is set up to regulate a high pressure in the high pressure accumulator during normal operation by activating the suction throttle as a pressure actuator.
  • at least one first pressure regulating valve of the at least two pressure regulating valves is preferably activated to generate a high-pressure disturbance variable.
  • the injection system in particular the control unit, is also set up to control the high pressure in the high pressure accumulator in a first operating mode of a protective mode by controlling to regulate at least one first pressure control valve of the at least two pressure control valves as a pressure actuator.
  • the injection system in particular the control unit, is also set up to, in a second operating mode of the protective mode, at least one second pressure regulating valve of the at least two pressure regulating valves, the at least one second pressure regulating valve being different from the at least one first pressure regulating valve, in addition to the at least one first pressure regulating valve as To control the pressure actuator to regulate the high pressure in the high pressure accumulator.
  • a conventional control of the high pressure via the suction throttle is provided, with a high pressure disturbance variable preferably being generated at the same time by means of at least one first pressure control valve by diverting fuel from the high pressure accumulator into the fuel reservoir via the at least one first pressure control valve.
  • a control strategy is, for example, from the German patent specification DE 10 2009 031 529 B3 known.
  • a constant leakage is simulated by means of the high-pressure disturbance variable, which increases the stability of the high-pressure control in the low-load range.
  • the high pressure in the high pressure accumulator is regulated by means of at least one first pressure regulating valve.
  • This makes it possible that even in the event of a failure of a regulation via the suction throttle - in particular if the suction throttle itself fails as a pressure actuator, for example due to a cable break, forgetting to plug in the suction throttle connector, jamming or twisting of the suction throttle, or another error or defect -
  • a regulation of the high pressure is still possible, namely by means of the at least one first pressure control valve.
  • the injection system can thus be protected from impermissibly high high pressure, and on the other hand, periodic fluctuations in the high pressure are avoided. Rather, this is regulated to a setpoint value by activating the at least one first pressure regulating valve, so that there is no deterioration in the emissions behavior of the internal combustion engine.
  • the high pressure is preferably regulated by controlling the suction throttle as a pressure actuator in a first high pressure control circuit.
  • the high pressure is preferably regulated by activating the at least one first pressure regulating valve in a second high pressure regulating circuit, which is different from the first high pressure regulating circuit. This enables a separation of the two control loops and their specific coordination to the control of the suction throttle on the one hand and the at least one first pressure regulating valve on the other hand.
  • the at least one first pressure regulating valve and the at least one second pressure regulating valve differ - in particular in their nominal flow rates - it is possible that the at least one second pressure regulating valve is controlled by a third high pressure control circuit in the second operating mode of protective operation.
  • separate flow regulators can preferably be provided for energizing the various pressure regulating valves.
  • the injection system it is provided that in normal operation only one of the pressure regulating valves, in particular precisely one and only one first pressure regulating valve, is activated to generate the high-pressure disturbance variable.
  • the at least one further pressure regulating valve is then preferably closed or is driven into a closed state.
  • more than one first pressure control valve is activated to generate the high pressure disturbance variable, it being possible in particular that a subset of the total pressure control valves present is activated to produce a high pressure disturbance variable.
  • all existing pressure control valves it is also possible for all existing pressure control valves to be activated to generate a high-pressure disturbance variable. This can be a choice of the amount of actually controlled pressure control valves for the generation of the high pressure disturbance variable are selected in particular as a function of pressure.
  • first pressure regulating valve In the first operating mode of the protective operation, only one and precisely one first pressure regulating valve is preferably activated as a pressure actuator. Other pressure regulating valves are preferably closed or are controlled in a closed state. Alternatively, it is possible that a subset of the existing pressure regulating valves, in particular more than a first pressure regulating valve, are activated as first pressure regulating valves and pressure actuators. However, at least one pressure regulating valve preferably remains in the first operating mode, which as a second pressure regulating valve is not activated as a pressure actuator, but is closed or is activated in a closed state.
  • This at least one remaining second pressure control valve is switched on in the second operating mode of the protective mode, that is to say controlled as a further pressure actuator. It is possible that precisely one second pressure control valve is switched on in the second operating mode. Alternatively, it is possible that a subset, in particular more than a second pressure regulating valve, are switched on as pressure actuators. Preferably, all remaining pressure regulating valves which are not already activated as first pressure regulating valves and pressure actuators in the first operating mode are additionally activated as pressure actuators and second pressure regulating valves in the second operating mode. It is possible here for a number of connected, second pressure control valves to be selected as a function of the pressure. In particular, a number of second pressure control valves are switched on as a function of pressure.
  • An exemplary embodiment of the injection system is preferred which is characterized in that a normal function is set for the at least one first pressure regulating valve in normal operation, in which the at least one first pressure regulating valve is controlled as a function of a set volume flow.
  • the normal function provides an operating mode for the first pressure regulating valve in which the latter generates a high-pressure disturbance variable by diverting fuel from the high-pressure accumulator into the fuel reservoir.
  • the normal function is preferably also set for the at least one first pressure regulating valve in the first operating mode and in the second operating mode of the protective operation, so that the pressure regulating valve is activated as a function of a setpoint volume flow.
  • This is true in the second operating mode of the protective operation preferably also for the at least one second pressure control valve.
  • the normal operation on the one hand and the first and second operating mode of the protective operation on the other hand preferably differ in this case in the way in which the target volume flow for controlling the pressure regulating valves is calculated:
  • the set volume flow is preferably calculated from a static and a dynamic set volume flow.
  • the static setpoint volume flow is in turn preferably calculated as a function of a setpoint injection quantity and a speed of the internal combustion engine using a setpoint volume flow characteristic map.
  • a target torque or a target load requirement can also be used instead of the target injection quantity.
  • a constant leakage is simulated via the static target volume flow, in that the fuel is only diverted in a low-load range and in small quantities. The advantage here is that neither a significant increase in the fuel temperature nor a significant reduction in the efficiency of the internal combustion engine occur.
  • the stability of the high pressure control circuit is increased in the low load range, which can be recognized, for example, from the fact that the high pressure remains approximately constant in overrun mode.
  • the dynamic setpoint volume flow is calculated using a dynamic correction as a function of a setpoint high pressure and the actual high pressure - or a dynamic rail pressure defined in more detail below - or the control deviation derived therefrom. If the control deviation is negative, for example in the case of a load shedding of the internal combustion engine, the static target volume flow is corrected via the dynamic target volume flow. Otherwise, in particular in the case of a positive control deviation, there is no change in the static setpoint volume flow. An increase in pressure in the high pressure is counteracted via the dynamic setpoint volume flow, with the advantage that the system's settling time can be further improved.
  • the at least one first pressure regulating valve is controlled with the aid of the set volume flow in such a way that it increases the stability of the high pressure control circuit by simulating a constant leak and improves the regulation time of the injection system by means of the correction via the dynamic set volume flow.
  • the set volume flow is preferably calculated in the second high-pressure control circuit, in particular by a pressure control valve pressure regulator.
  • the set volume flow represents a manipulated variable of the second high pressure control circuit and is used to directly regulate the high pressure.
  • a control mimic is preferably provided for the pressure regulating valves, which has the setpoint volume flow as an input variable. It is then preferably by means of a - possibly virtual - switch when switching from normal operation to the first operating mode and / or to the second operating mode of the protective operation from the calculation of the target volume flow as the resulting volume flow from the static and dynamic target volume flow the calculation in the second high pressure control loop.
  • the integral part of the pressure regulating valve pressure regulator of the second high-pressure regulating circuit is preferably initialized when switching with the resulting target volume flow calculated last before switching, so that a smooth, smooth switchover takes place.
  • An exemplary embodiment of the injection system is also preferred which is characterized in that the injection system, in particular the control unit, is set up to permanently open the at least one first pressure control valve and the at least one second pressure control valve in a third operating mode of the protective mode.
  • the injection system in particular the control unit, is set up to permanently open the at least one first pressure control valve and the at least one second pressure control valve in a third operating mode of the protective mode.
  • a large, preferably a maximum, volume flow of fuel from the high-pressure accumulator is continuously diverted into the fuel reservoir via the pressure regulating valves.
  • the pressure regulating valves are activated in the protective mode in the direction of maximum opening.
  • the pressure regulating valves are opened to the maximum extent in the third operating mode of the protective mode.
  • a large, preferably maximum control current is preferably selected, or a small or no control current.
  • the fuel volume flow actually passing through the pressure regulating valves depends on the high pressure in the high pressure accumulator, the term “maximum fuel volume flow” referring to the fact that the pressure regulating valves are open as far as possible.
  • maximum fuel volume flow referring to the fact that the pressure regulating valves are open as far as possible.
  • an impermissibly high high pressure in the high pressure accumulator is not only temporarily but permanently reduced quickly and reliably, so that the injection system is effectively and reliably protected. This functionality makes it possible to dispense with a mechanical pressure relief valve, so that installation space and costs can be saved.
  • the term "permanent" means in particular that the pressure control valves in the third operating mode are no longer controlled with a time-varying control signal, but rather continuously with a constant control signal, which results in a predetermined opening of the pressure control valves, preferably a maximum opening. It can be the case that the control signal is selected to be constant at zero when the pressure regulating valves are designed to be open when de-energized.
  • all pressure regulating valves are preferably opened permanently and, in particular, to the maximum extent. But it is also possible that only a subset of the existing pressure control valves are opened permanently and preferably to the maximum extent.
  • a number of the pressure regulating valves that are permanently and preferably maximally open can be selected, in particular as a function of the pressure.
  • An exemplary embodiment of the injection system is preferred which is characterized in that the injection system, in particular the control unit, is set up to switch - in particular from normal operation - to the first operating mode of protective operation when the high pressure reaches or exceeds a first pressure limit value, or if a defect in the suction throttle is detected.
  • the first pressure limit value is in particular selected such that reaching or exceeding it is an indication that pressure regulation of the high pressure via the suction throttle is no longer possible. This can in particular be an indication of a defect in the suction throttle.
  • a defect in the suction throttle is recognized without the high pressure first reaching or exceeding the first pressure limit value. In this case, too, pressure control via the suction throttle is no longer possible. It therefore makes sense to switch to the first operating mode of the protective mode and then to regulate the high pressure by activating the at least one first pressure regulating valve as a pressure actuator.
  • a switch is made to the second operating mode when the high pressure reaches or exceeds a second pressure limit value. Reaching or exceeding the second pressure limit value is an indication that an activation of the at least one first Pressure regulating valve for pressure regulation is no longer sufficient, so that the second operating mode is advantageously selected, in which the at least one second pressure regulating valve is additionally activated as a pressure actuator for regulating the high pressure.
  • a switch is made to the third operating mode when the high pressure reaches or exceeds a third pressure limit value, or when a defect in a high pressure sensor is detected.
  • Reaching or exceeding the third pressure limit value serves as an indication that an impermissibly high pressure is being reached in the high-pressure accumulator, which endangers the operational safety of the injection system and in particular of the high-pressure accumulator, with particular fear of damage to the injection system, especially the high-pressure accumulator. If a defect in the high pressure sensor is detected, it can in principle no longer be guaranteed that the high pressure is reliably regulated and in particular remains in a permissible range.
  • the third pressure limit value is preferably selected to be greater than the second pressure limit value.
  • the third pressure limit value is preferably selected to be greater than the first pressure limit value.
  • the second pressure limit value is preferably selected to be greater than the first pressure limit value.
  • the second pressure limit value is particularly preferably selected to be greater than the first pressure limit value, the third pressure limit value being selected to be greater than the second pressure limit value.
  • the first pressure limit value is preferably selected such that it is higher than a highest pressure value for the high pressure that is typically realized in error-free operation of the injection system.
  • the high pressure it is possible, for example, for the high pressure to be regulated to a value of 2200 bar during operation.
  • a pressure reserve is provided for any pressure fluctuations up to 2300 bar.
  • the first pressure limit value is preferably selected to be 2400 bar in order to avoid the first operating mode being activated without a malfunction of the first high-pressure control circuit or the suction throttle being present.
  • the high pressure can rise above the intended reserve level, especially in a higher speed range of the internal combustion engine, especially when the intake throttle is designed to be normally open.
  • the high pressure reaches or exceeds the first pressure limit value, and the at least one first pressure regulating valve takes over the control of the high pressure.
  • the first high-pressure control circuit stable control of the high pressure is still possible, so that there is no deterioration in the emission behavior of the internal combustion engine, while at the same time the engine is reliably protected from an impermissible increase in the high pressure.
  • the third pressure limit value can be, for example, 2500 bar. This can in particular correspond to a pressure at which a mechanical pressure relief valve would be designed for opening. Its function is now preferably completely simulated by the pressure regulating valves.
  • the second pressure limit value is preferably selected between the first pressure limit value and the third pressure limit value.
  • the first operating mode, the second operating mode and the third operating mode are run through sequentially one after the other, with the first operating mode being implemented, for example, when a defect occurs in the first high-pressure control circuit at an initially low speed of the internal combustion engine, with a further increase the speed then the second operating mode and finally the third operating mode is realized.
  • the high pressure in the high pressure accumulator suddenly rises above the second or the third pressure limit value, in which case the first operating mode and / or the second operating mode is / are virtually skipped, the second or the third operating mode being rather immediately is realized.
  • a dynamic rail pressure is preferably used, which results from filtering the high pressure measured by means of a high pressure sensor, in particular with a comparatively short time constant.
  • filtering has the advantage that overshoots above the pressure limit values - albeit rarely occurring - do not lead directly to a switching of the operating modes.
  • a manipulated variable for the pressure regulating valves is limited in the first and / or in the second operating mode as a function of the high pressure. This has the advantage that a pressure regulating valve is not opened further than it is at all most sensible for a given high pressure
  • Limitation of the manipulated variable is preferably based on a characteristic curve through which a maximum volume flow of the pressure regulating valve is stored as a function of the high pressure.
  • an integrating component of a pressure regulator of the second high-pressure control circuit which is provided for activating the pressure regulating valve, is initialized with an activation value which, in normal operation, is immediately prior to switching to the Protection mode was used to control the pressure control valve.
  • a standstill function is set for the pressure regulating valves in the third operating mode of the protective mode, the pressure regulating valves not being activated in the standstill function.
  • a pressure control valve which is open when de-energized.
  • the pressure regulating valves can completely take over the functionality of an otherwise provided mechanical pressure relief valve, so that the mechanical pressure relief valve can be dispensed with.
  • the currentless open design of the pressure regulating valves has the advantage that they reliably open completely even when they are no longer supplied with current due to a defect.
  • a transition from the normal function to the standstill function is preferably carried out when the high pressure, in particular the dynamic rail pressure, reaches or exceeds the third pressure limit value, or when a defect in the high pressure sensor is detected. If the high pressure sensor is defective, the high pressure can no longer be regulated, and it is also no longer possible to detect an impermissibly high pressure in the high pressure accumulator.
  • the standstill function for the Pressure control valves are set so that they open to the maximum and thus bring the injection system into a safe state, which corresponds to a state in which the mechanical pressure relief valve would be open in the prior art. An inadmissible increase in high pressure can then no longer occur.
  • the standstill function is preferably also set on the basis of the normal function when a standstill of the internal combustion engine is determined.
  • a standstill of the internal combustion engine is recognized and the standstill function for the pressure regulating valves is set. This is particularly the case when the internal combustion engine is switched off.
  • a transition between the standstill function and the normal function occurs when the internal combustion engine is started, preferably when it is determined that the internal combustion engine is running, with the high pressure simultaneously exceeding a starting pressure value.
  • a certain minimum pressure build-up therefore preferably takes place in the high-pressure accumulator before a pressure regulating valve is activated in the normal function for generating the high-pressure disturbance variable.
  • the fact that the internal combustion engine is running can preferably be recognized by the fact that a predetermined limit speed is exceeded for a predetermined time.
  • An exemplary embodiment of the injection system is also preferred which is characterized in that the injection system, in particular the control unit, is set up to move the suction throttle to a permanently open position in at least one of the three operating modes of the protective operation, in particular in the third operating mode of the protective operation head for. Because of the pressure control valves that are opened as much as possible in the third operating mode, it is possible that the pressure in the high-pressure accumulator drops sharply. While it is then still possible in a high speed range of the internal combustion engine to nevertheless provide sufficient high pressure to operate the internal combustion engine, if the suction throttle is not sufficiently open in a medium or low speed range, the high pressure in the high pressure accumulator can drop so sharply that no longer enough fuel can be injected through the injectors.
  • the suction throttle is permanently opened in the third operating mode in a kind of emergency operation, in particular controlled to a permanently open operation, in order to ensure that enough fuel can still be pumped into the high-pressure accumulator in the medium and low speed range of the internal combustion engine. in order to be able to maintain operation of the internal combustion engine.
  • a suction throttle is preferably used, which is de-energized is open.
  • the suction throttle is therefore preferably controlled with a current that is small compared to its maximum closing current, for example 0.5 A, or not at all, that is to say not energized. In the case in which it is not energized, it is open to the maximum.
  • the suction throttle is opened permanently in the first and / or in the second operating mode of the protective mode, preferably controlled for a permanently open mode, in particular not supplied with current or only with a small current. This prevents double, simultaneous regulation of the high pressure on the one hand via the pressure control valves and on the other hand via the suction throttle, especially in a case in which the first or second operating mode is activated by an overshoot of the high pressure with an intact suction throttle.
  • the control device is preferably set up to filter the measured high pressure, in particular for filtering with a first, longer time constant in order to calculate an actual high pressure to be used within the scope of the pressure control, and for filtering the measured high pressure with a second, shorter time constant, by one to calculate dynamic rail pressure, which is compared in particular with the pressure limit values.
  • An exemplary embodiment of the injection system is preferred which is characterized in that at least one of the at least two pressure regulating valves is designed to be normally open. Particularly preferably, all pressure regulating valves are designed to be normally open.
  • This embodiment has the advantage that a normally open pressure regulating valve opens to the maximum extent in the event that it is not activated or energized, which enables particularly safe and reliable operation, especially when a mechanical pressure relief valve is dispensed with. An impermissible increase in the high pressure in the high pressure accumulator can then also be avoided if it is not possible to energize the pressure regulating valve due to a technical error.
  • At least one pressure control valve of the at least two pressure control valves is designed to be closed without pressure and without current.
  • all pressure regulating valves are designed to be closed without pressure and without current.
  • Such a pressure regulating valve is designed such that it is closed when the pressure prevailing in the high-pressure accumulator, that is to say the rail pressure, is less than a predetermined one Opening pressure value.
  • the high pressure is applied to an inlet of the pressure control valve when this is properly mounted on the injection system.
  • the pressure control valve opens when the pressure applied on the inlet side reaches or exceeds the opening pressure value in the de-energized state.
  • the pressure regulating valve is therefore depressurized and de-energized on the input side, it is biased into a closed state, for example by means of a mechanical biasing element. If the pressure on the inlet side reaches or exceeds the opening pressure value, and if the pressure control valve is not energized, it is opened - preferably against the force of the pretensioning element - so that it is open without current at the opening pressure value and higher inlet pressures. If the pressure control valve is energized in this state, it closes depending on the current with which it is controlled. It is closed to the maximum when it is controlled with a predetermined, maximum current value. If it is no longer supplied with current or if the current supply fails, it opens again completely, whereby it closes when the pressure on the inlet side falls below the opening pressure value.
  • the opening pressure value is preferably selected such that it is lower than a high pressure which is minimally reached in normal control operation of the injection system.
  • the opening pressure value in particular, in the specific example mentioned above in connection with the operating modes of protective operation, it is possible for the opening pressure value to be 850 bar.
  • the starting pressure value at which there is a transition from the standstill function of the pressure regulating valve to the normal function when the internal combustion engine is started is also preferably selected such that it is approximately of the order of magnitude of the opening pressure value, whereby it is preferably selected to be somewhat lower in order to ensure that the pressure control valve is activated in any case as soon as it opens by reaching or exceeding the opening pressure value.
  • Tolerances of the pressure regulating valve can also be taken into account here.
  • it can be that the starting pressure value is selected to be 600 bar.
  • the pressure regulating valve is arranged in its standstill function and is therefore de-energized and unpressurized. It is therefore closed. If the internal combustion engine now starts, the closed pressure control valve initially enables a rapid and reliable pressure build-up in the high-pressure accumulator, since no fuel is diverted into the fuel reservoir via the pressure control valve. Typically, the high pressure now reaches the high pressure accumulator first the starting pressure value, whereby a transition from the standstill function to the normal function takes place, the pressure control valve being activated as a result. In this case, however, it is typically still closed because the opening pressure value has not yet been reached.
  • the high pressure in the high pressure accumulator continues to rise and finally also exceeds the opening pressure value, the pressure regulating valve then opening and - in the absence of activation - would also be open without current.
  • the pressure regulating valve By energizing and appropriately activating the pressure regulating valve, it is now possible to influence its degree of opening and, in particular, to close it further by applying a greater amount of current or to open it further by applying less current. If there is a transition to the standstill function again in the third operating mode of the protective operation, the pressure control valve is no longer activated, in which case, at the moment of the transition, a high pressure prevails that is greater than the third pressure limit value, i.e. in particular much greater than the opening pressure value.
  • the pressure regulating valve is therefore open without current and, due to the lack of activation, controls a maximum volume flow of fuel from the high-pressure accumulator into the fuel reservoir, so that it safely and reliably fulfills its protective function.
  • This makes it possible to do without a mechanical pressure relief valve.
  • the pressure control valve only closes again when the high pressure drops below the opening pressure value. In this way, reliable operation of the injection system is achieved, and there is no longer any risk of damage or impermissibly high pressure.
  • An exemplary embodiment of the injection system is also preferred, which is characterized in that the injection system, in particular the control unit, is set up to generate a first control signal and a second control signal, and to alternate between the at least one first pressure control valve and the at least one second pressure control valve to be controlled with the first control signal and the second control signal.
  • the injection system in particular the control unit, is set up to generate a first control signal and a second control signal, and to alternate between the at least one first pressure control valve and the at least one second pressure control valve to be controlled with the first control signal and the second control signal.
  • the at least one first pressure control valve is controlled with the first control signal
  • the at least one second pressure control valve being controlled simultaneously with the second control signal
  • with the at least one first pressure control valve being controlled with the second control signal at a second time is controlled, at the same time the at least one second pressure control valve is controlled with the first control signal.
  • This embodiment has the advantage that the various pressure regulating valves can be used to full capacity.
  • control device it is of course possible for the control device to be set up to generate more than two control signals, in particular for more than two pressure regulating valves. It is possible here for the different control signals to be assigned to the different pressure regulating valves alternately, in particular cyclically, in different ways.
  • a regulator for energizing the pressure regulating valve is preferably provided for each pressure regulating valve, the regulators also being assigned alternately to the various pressure regulating valves.
  • the currents detected at the pressure regulating valves are also switched over so that they can be detected by the correct, currently responsible controllers and used for regulation.
  • control signals are preferably only switched over to the various pressure regulating valves when the internal combustion engine is at a standstill. Otherwise, there may be short-term malfunctions in the operation of the internal combustion engine.
  • the control signals are preferably switched over after a predetermined operating time of the injection system has elapsed, in particular after a predetermined number of operating hours has elapsed. For example, a switchover can take place after 5000 operating hours. If, after the predetermined number of operating hours has elapsed, it is determined that the internal combustion engine is not at a standstill, the next standstill of the internal combustion engine is preferably waited for before a switchover takes place.
  • An exemplary embodiment of the injection system is also preferred which is characterized in that the injection system is free of a mechanical pressure relief valve.
  • the injection valve does not have a mechanical pressure relief valve.
  • a mechanical overpressure valve can be dispensed with because a protective function of the injection system against impermissibly high pressures can be represented safely and efficiently via the pressure control valves. In this way, costs and installation space associated with a mechanical pressure relief valve can be saved.
  • the object is also achieved by creating an internal combustion engine which has an injection system according to one of the exemplary embodiments described above.
  • the advantages that have already been explained in connection with the injection system are realized.
  • the control device is preferably designed as an engine control unit (ECU) of the internal combustion engine.
  • ECU engine control unit
  • the injection system preferably has a plurality of injectors, with exactly one and only one high-pressure accumulator, or alternatively two high-pressure accumulators - for V-engines - or also three high-pressure accumulators - for W-engines - or possibly another configuration of high-pressure accumulators for one another configuration of combustion chambers of the internal combustion engine, wherein the various injectors are fluidly connected to the high-pressure accumulator (s).
  • a plurality of injectors are each connected to a common high-pressure accumulator.
  • the common high-pressure accumulator (s) is / are in this case designed as a so-called common bar, in particular as a rail, the injection system preferably being designed as a common rail injection system.
  • the internal combustion engine is preferably designed as a reciprocating piston engine. It is possible that the internal combustion engine is set up to drive a passenger car, a truck or a utility vehicle. In a preferred embodiment, the internal combustion engine is used to drive particularly heavy land or water vehicles, for example mining vehicles, trains, the internal combustion engine being used in a locomotive or a railcar, or ships. It is also possible to use the internal combustion engine to drive a vehicle used for defense, for example a tank. An embodiment of the internal combustion engine is preferably also stationary, for example for stationary energy supply in emergency power mode, Continuous load operation or peak load operation used, the internal combustion engine in this case preferably driving a generator. Stationary use of the internal combustion engine to drive auxiliary units, for example fire pumps on drilling rigs, is also possible.
  • the internal combustion engine in the field of conveying fossil raw materials and, in particular, fuels, for example oil and / or gas. It is also possible to use the internal combustion engine in the industrial sector or in the construction sector, for example in a construction or construction machine, for example in a crane or an excavator.
  • the internal combustion engine is preferably designed as a diesel engine, as a gasoline engine, as a gas engine for operation with natural gas, biogas, special gas or another suitable gas.
  • the internal combustion engine is designed as a gas engine, it is suitable for use in a block-type thermal power station for stationary energy generation.
  • the internal combustion engine is preferred in which it is designed as a large engine.
  • the internal combustion engine preferably has eight combustion chambers or more, in particular ten combustion chambers, twelve combustion chambers, fourteen combustion chambers, sixteen combustion chambers, eighteen combustion chambers or twenty combustion chambers.
  • An internal combustion engine which is designed as a reciprocating piston engine with twenty cylinders is particularly preferred.
  • the design of the injection system proposed here makes it possible in particular to install the same pressure regulating valves for a multitude of different internal combustion engines with a multitude of different configurations and numbers of cylinders, a number of built-in pressure regulating valves only being scaled with the size of the internal combustion engine.
  • Fig. 1 shows a schematic representation of an exemplary embodiment of an internal combustion engine 1 which has an injection system 3.
  • This is preferably designed as a common rail injection system. It has a low-pressure pump 5 for delivering fuel from a fuel reservoir 7, an adjustable, low-pressure-side suction throttle 9 for influencing a volume flow of fuel flowing through it, a high-pressure pump 11 for delivering the fuel under pressure increase into a high-pressure accumulator 13, and the high-pressure accumulator 13 for storing the fuel , and a plurality of injectors 15 for injecting the fuel into combustion chambers 16 of the internal combustion engine 1. It is optional It is possible that the injection system 3 is also designed with individual stores, in which case, for example, an individual store 17 is integrated into the injector 15 as an additional buffer volume.
  • a first, in particular electrically controllable pressure control valve 19 is provided, via which the high-pressure accumulator 13 is fluidly connected to the fuel reservoir 7.
  • the position of the first pressure regulating valve 19 defines a fuel volume flow which is diverted from the high-pressure accumulator 13 into the fuel reservoir 7.
  • This fuel volume flow is shown in Figure 1 as well as in the following text with VDRV1 and represents a high pressure disturbance of the injection system 3.
  • the injection system 3 has a second, in particular electrically controllable, pressure regulating valve 20, via which the high-pressure accumulator 13 is also fluidly connected to the fuel reservoir 7.
  • the two pressure regulating valves 19, 20 are accordingly arranged in particular fluidically parallel to one another.
  • a fuel volume flow can also be defined via the second pressure regulating valve 20, which fuel volume flow can be diverted from the high-pressure accumulator 13 into the fuel reservoir 7. This fuel volume flow is shown in Figure 1 as well as in the following text referred to as VDRV2.
  • the injection system 3 does not have a mechanical pressure relief valve, which is conventionally provided according to the prior art and then connects the high-pressure accumulator 13 to the fuel reservoir 7.
  • the mechanical pressure relief valve can be dispensed with, since its function is completely taken over by the pressure regulating valves 19, 20.
  • the injection system 3 it is possible for the injection system 3 to have more than two pressure regulating valves 19, 20.
  • the mode of operation of the injection system 1 according to the invention is explained in the following on the basis of the exemplary embodiment shown here, which has exactly two pressure regulating valves 19, 20.
  • the mode of operation of the internal combustion engine 1 is determined by an electronic control unit 21, which is preferably designed as an engine control unit of the internal combustion engine 1, namely as a so-called engine control unit (ECU).
  • the electronic control unit 21 contains the usual components of a microcomputer system, for example a microprocessor, I / O modules, buffers and memory modules (EEPROM, RAM).
  • the operating data relevant to the operation of the internal combustion engine 1 are stored in the memory modules applied in maps / characteristic curves.
  • the electronic control unit 21 uses this to calculate output variables from input variables.
  • a measured, still unfiltered high pressure p which prevails in the high pressure accumulator 13 and is measured by means of a high pressure sensor 23, a current engine speed n I , a signal FP for the output specification by an operator of the internal combustion engine 1, and an input variable E. Further sensor signals are preferably combined under input variable E, for example a charge air pressure of an exhaust gas turbocharger.
  • an individual accumulator pressure p E is preferably an additional input variable of control unit 21.
  • the output variables of the electronic control unit 21 include, for example, a signal PWMSD for controlling the suction throttle 9 as a pressure actuator, a signal ve for controlling the injectors 15 - which in particular specifies a start and / or an end of injection or also an injection duration - and a first signal PWMDRV1 for control a first pressure regulating valve of the two pressure regulating valves 19, 20, and a second signal PWMDRV2 for controlling a second pressure regulating valve of the two pressure regulating valves 19, 20 is shown.
  • a signal PWMSD for controlling the suction throttle 9 as a pressure actuator
  • a signal ve for controlling the injectors 15 - which in particular specifies a start and / or an end of injection or also an injection duration -
  • a first signal PWMDRV1 for control a first pressure regulating valve of the two pressure regulating valves 19, 20, and a second signal PWMDRV2 for controlling a second pressure regulating valve of the two pressure regulating valves 19, 20 is shown.
  • the in Figure 1 The illustrated assignment of the first signal PWMDRV1 to the first pressure regulating valve 19 and the second signal PWMDRV2 to the second pressure regulating valve 20 are not fixed for all times, rather the pressure regulating valves 19, 20 are preferably controlled alternately with the signals PWMDRV1, PWMDRV2.
  • the signals PWMDRV1, PWMDRV2 are preferably pulse-width modulated signals via which the position of a pressure regulating valve 19, 20 and thus the volume flow VDRV1, VDRV2 assigned to the pressure regulating valve 19, 20 can be defined.
  • an output variable A is also shown, which is representative of further actuating signals for controlling and / or regulating the internal combustion engine 1, for example for an actuating signal for activating a second exhaust gas turbocharger during register charging.
  • Fig. 2 shows a first schematic representation of an embodiment of a method which is considered an example and does not belong to the invention.
  • the method of operation of the method under control of only one of the pressure regulating valves 19, 20 is first explained, with the functionality then being explained in a next step, which is added by adding a further pressure regulating valve 20, 19.
  • a first high-pressure control circuit 25 is provided, via which, in normal operation of the injection system 3, the high pressure in the high-pressure accumulator 13 is controlled by means of the suction throttle 9 as a pressure actuator.
  • the first high pressure control circuit 25 is in connection with Figure 9 explained in more detail where it is shown in detail.
  • the first high-pressure control circuit 25 has a setpoint high pressure p s for the injection system 3 as an input variable. This is preferably read out from a characteristic map as a function of the speed n I of the internal combustion engine 1, a load or torque request on the internal combustion engine 1 and / or as a function of further variables, in particular for a correction.
  • Further input variables of the first high-pressure control circuit 25 are, in particular, the speed n I of the internal combustion engine 1 as well as a setpoint injection quantity Q s - in particular also read from a characteristic map.
  • the first high pressure control circuit 25 has, in particular, the high pressure p measured by the high pressure sensor 23, which is preferably subjected to a first filtering with a larger time constant in order to determine an actual high pressure p I is subjected to a smaller time constant in order to calculate a dynamic rail pressure p dyn.
  • These two pressure values p I , p dyn represent further output variables of the first high-pressure control circuit 25.
  • a first switching element 27 is preferably provided with which it is possible to switch between normal operation and a first operating mode of protective operation as a function of a first logic signal SIG1.
  • the switching element 27 is preferably implemented entirely on an electronic or software level. The functionality described below is preferably switched over as a function of a value of a variable corresponding to the first logic signal SIG1, which is in particular designed as a so-called flag and can assume the values “true” or “false”. Alternatively, however, it is of course also possible for the switching element 27 to be designed as a real switch, for example as a relay.
  • This switch can then be switched, for example, as a function of a level of an electrical signal.
  • normal operation is set when the first logic signal SIG1 has the value “false”.
  • the operating mode of protective operation is set when the first logical signal SIG1 has the value "true”.
  • a second switching element 29 is provided, which is set up to switch the first control signal PWMDRV1 between two modes, wherein in particular a pressure control valve 19, 20 controlled by the first control signal PWMDRV1 can be switched from a normal function to a standstill function and back.
  • the second switching element 29 is controlled as a function of a second logic signal Z or the value of a corresponding variable.
  • the second switching element 29 can be configured as a virtual, in particular software-based, switching element which switches between the normal function and the standstill function as a function of the value of a variable configured in particular as a flag.
  • the second switching element it is also possible for the second switching element to be designed as a real switch, for example as a relay, which switches as a function of a signal value of an electrical signal.
  • the second logic signal Z corresponds to a state variable which can assume the values 1 for a first state and 2 for a second state.
  • the normal function for the activated pressure regulating valve 19, 20 is set here when the second logic signal Z assumes the value 2, the standstill function being set when the second logic signal Z assumes the value 1. It goes without saying that a different definition of the second logic signal Z is possible, in particular such that a corresponding variable can assume the values 0 and 1.
  • a first calculation element 31 is provided, which outputs a calculated target volume flow V S.ber as an output variable, with the current speed n I , the target injection quantity Q s , the target high pressure p s , the dynamic rail pressure p dyn and the actual high pressure p I are included .
  • the functioning of the calculation element 31 is detailed in the German patents DE 10 2009 031 528 B3 and DE 10 2009 031 527 B3 described.
  • a positive value for a static target volume flow is calculated, while in a normal operating range a static target volume flow of 0 is calculated.
  • the static target volume flow is preferably corrected by adding up a dynamic target volume flow, which in turn is calculated via a dynamic correction as a function of the target high pressure p s , the actual high pressure p I and the dynamic rail pressure p dyn .
  • the calculated target volume flow V S, ber is finally the sum of the static target volume flow and the dynamic target volume flow. It The calculated target volume flow V S is a resultant target volume flow.
  • the calculated setpoint volume flow V S, ber is transferred to a pressure control valve map 33 as the setpoint volume flow V S.
  • the pressure control valve map 33 forms here - as in the German patent DE 10 2009 031 528 B3 described - an inverse characteristic of a pressure control valve 19, 20 used.
  • the injection system has identical pressure regulating valves 19, 20, so that the same pressure regulating valve characteristics map 33 can be used for each of the pressure regulating valves 19, 20.
  • the output variable of the pressure control valve characteristic map 33 is a pressure control valve setpoint current I s , the input variables are the setpoint volume flow rate V S to be controlled and the actual high pressure p I.
  • the set volume flow V S not to be calculated by means of the first calculation element 31, but rather to be specified as constant in normal operation.
  • the pressure regulating valve setpoint current is fed to a first current regulator 35, which has the task of regulating the current for controlling the pressure regulating valve 19, 20.
  • Further input variables of the first current regulator 35 are, for example, a proportional coefficient kp I, DRV and an ohmic resistance R I , DRV of the pressure regulating valve 19, 20.
  • the output variable of the first current regulator 35 is a first setpoint voltage U S for the pressure regulating valve 19, 20, which through With reference to an operating voltage U B, it is converted into a duty cycle for the first, pulse-width modulated signal PWMDRV1 for controlling the pressure regulating valve 19, 20 in the usual manner and is supplied to this in the normal function, i.e. when the second logic signal Z has the value 2.
  • the current at the pressure control valve 19, 20 controlled by the first control signal PWMDRV1 is measured as the first current variable I R , filtered in a first current filter 37 and the first filtered actual current I 1 fed back to the current regulator 35.
  • a high pressure disturbance variable namely the controlled set volume flow V S , is generated via one of the pressure regulating valves 19, 20.
  • the first switching element 27 switches from normal operation to protective operation.
  • the conditions under which this is the case is discussed in connection with Figure 3 explained.
  • the control of the pressure regulating valve 19, 20 there is no difference in the first and second operating mode of the protective mode, as here, too, the pressure regulating valve 19, 20 is controlled with the target volume flow V S , at least as long as the normal function is set by the switching element 29 .
  • the set volume flow V S is calculated differently in the first and second operating mode of the protective operation than in the normal operation, namely via a second high-pressure control circuit 39.
  • the set volume flow rate V S is set identically to a limited output volume flow rate V R from a pressure regulating valve pressure regulator 41 - with the exception of a factor f DRV which will be explained below.
  • the pressure regulating valve pressure regulator 41 has as an input variable a high pressure control deviation e p , which is calculated as the difference between the target high pressure p s and the dynamic rail pressure p dyn.
  • Further input variables of the pressure regulating valve pressure regulator 41 are preferably a maximum volume flow V max for the pressure regulating valve 19, 20, the set volume flow V S, ber calculated in the first calculation element 31 and / or a proportional coefficient kp DRV .
  • the pressure regulating valve pressure regulator 41 is preferably implemented as a PI (DT 1 ) algorithm, which is shown in Figure 7 is explained in more detail.
  • PI PI
  • the I component of the pressure regulating valve pressure regulator 41 is limited at the top to the maximum volume flow V max for the pressure regulating valve 19, 20.
  • the maximum volume flow V max is preferably - except for the factor f DRV - an output variable of a two-dimensional characteristic curve 43, which has the maximum volume flow through the pressure regulating valve 19, 20 as a function of the high pressure, the characteristic curve 43 receiving the dynamic rail pressure p dyn as an input variable.
  • the pressure regulating valves 19, 20 are of identical design, so that an identical characteristic curve 43 can be used for both pressure regulating valves.
  • the direct output variable of the pressure control valve pressure regulator 41 is an unlimited volume flow V U , which is limited in a limiting element 45 to the maximum volume flow V max.
  • the limiting element 45 finally outputs the limited setpoint volume flow V R as an output variable. This is then - except for the below-mentioned factor f DRV - the pressure regulating valve 19, 20 controlled as the target volumetric flow V S by the desired volume flow V S in the previously described manner is supplied to the pressure control valve characteristic diagram 33rd
  • a pressure regulating valve 19, 20 as a pressure actuator for regulating the high pressure in the high pressure accumulator 13 via the second high pressure control circuit 39 is activated in the first operating mode of the protective operation.
  • the first logic signal SIG1 assumes the logic value "true” when the dynamic rail pressure p dyn - for example as a result of a cable break in the suction throttle connector - reaches a first pressure limit value p G1 .
  • the first switching element 27 changes to the in FIG Figure 2 Upper switching position shown, so that the high pressure is now regulated with the aid of the second high pressure control circuit 39 and one of the pressure control valves 19, 20.
  • a third logic signal SIG2 has the value "false” if the dynamic rail pressure p dyn has not yet reached a second pressure limit value p G2.
  • a second pressure control valve setpoint current I S, 2 for a second pressure control valve 20, 19 is then read out from a second pressure control valve characteristic map 49, which has the actual high pressure p I and the value zero for the setpoint volume flow as input variables. If the two pressure regulating valves 19, 20 are of identical design, the second is Pressure regulating valve characteristic map 49 is the same as the first pressure regulating valve characteristic map 33 and differs only with regard to the incoming setpoint volume flow set to zero. If different pressure regulating valves 19, 20 are used, the two pressure regulating valve characteristics maps 33, 49 can differ.
  • the pressure regulating valve 19, 20 activated in this way is activated in such a way that it is completely closed, whereby it does not divert any fuel into the fuel reservoir 7.
  • the high pressure is therefore regulated only with the aid of a pressure regulating valve 19, 20 until the dynamic rail pressure p dyn reaches the second pressure limit value p G2.
  • a fourth switching element 44 is provided which determines the value of the previously mentioned factor f DRV .
  • This fourth switching element 44 is also controlled as a function of the third logic signal SIG2, and takes its in Figure 2 shown lower switch position when the third logical signal SIG2 has the value "false" (false).
  • the output variable of the characteristic curve 43 is multiplied by the factor 1.
  • the limited set volume flow V R resulting from the limitation element 45 is divided by the factor 1.
  • the third logic signal SIG2 assumes the value “true”. This leads to the third switching element 47 and the fourth switching element 44 in their in Figure 2 Change upper switch position. If one first looks at the third switching element 47, it becomes apparent that as a result, the second pressure control valve setpoint current I S, 2 in the exemplary embodiment specifically illustrated here now becomes identical to the first pressure control valve setpoint current I S , so that both pressure control valves 19, 20 as a result be applied with the same nominal current. This in turn presupposes that the two pressure regulating valves 19, 20 are of identical design, which corresponds to a preferred embodiment. It is of course possible, however, to apply separate setpoint currents, in particular those resulting from separate characteristic maps, to them if the pressure regulating valves 19, 20 differ.
  • Two identical pressure regulating valves 19, 20 can cut off twice the amount of fuel compared to a single pressure regulating valve 19, 20. For this reason, if one considers the fourth switching element 44, the factor f DRV now assumes the value 2, as a result of which the maximum volume flow V max resulting from the characteristic curve 43 is doubled.
  • the limited one Volume flow V R which results from the limiting element 45, on the other hand, is divided by the factor f DRV and thus now by two, since ultimately the resulting pressure control valve setpoint volume flow V S corresponds in each case to a pressure control valve 19, 20 and in each case to the control of a pressure control valve 19, 20 serves. This procedure is also coordinated with the preferred embodiment, in which the two pressure control valves 19, 20 used are of identical design.
  • different characteristic curves 43, different second high-pressure control circuits 39, and different pressure control valve characteristics maps 33, 49 are preferably used to control the different pressure control valves. If, on the other hand, more than two identically designed pressure control valves are provided, these can be completely analogous to the illustration in Figure 2 are controlled by a multiplication of the control elements shown there for each pressure control valve 19, 20, the number of pressure control valves used can be used as the factor f DRV in the upper switching position of the fourth switching element 44.
  • the second pressure control valve setpoint current I S, 2 is the input variable of a second current controller 51, which is otherwise preferably designed exactly like the first current controller 35.
  • the control mimics for generating the second control signal PWMDRV2 also correspond to those for generating the first control signal PWMDRV1, with a fifth switching element 53 being provided here for switching between the normal function and the standstill function, and with a second current filter 55 being provided for filtering a second, measured current I R, 2 , which has a second actual current I I as the output , 2 , which is fed to the second current regulator 51.
  • the controller parameters of the second current controller 51 are preferably set in the same way as the corresponding parameters of the first current controller 35.
  • the second switching element 29 and the fifth switching element 53 also show that the switch-on duration of the control signals PWMDRV1, PWMDRV2 in the standstill function is identical to 0%.
  • the respective control signal PWMDRV1, PWMDRV2 is generated by the control mimic assigned to it, as has already been explained above.
  • the two control signals PWMDRV1, PWMDRV2 are fed to a switchover logic 57, which is described below in connection with the Figures 5 and 6 will be explained in more detail, the switchover logic 57 ensuring that the pressure control valves 19, 20 alternate with the Control signals PWMDRV1, PWMDRV2 are controlled.
  • the measured current variables I R , I R, 2 are also taken from the switching logic 57, which ensures that they are always measured on the respective pressure control valves 19, 20 correctly assigned to the control signals PWMDRV1, PWMDRV2 in order to ensure a defined regulation of each of the To ensure pressure control valves 19, 20 via the flow regulator 35, 51.
  • Fig. 3 shows the conditions under which the first logic signal SIG1 and the third logic signal SIG2 each assume the values "true” and "false”.
  • the output of the first ORing element 61 is fed to an input of a first ORing element 63, the other input of which is fed a negative represented by a dash to a variable MS, the variable MS having the value "true” when the internal combustion engine 1 is at a standstill, and where it has the value "false” when the internal combustion engine 1 is running.
  • the value of the negative value of the variable MS is "true”.
  • the output of the first comparator element 59 jumps from “false” to “true”.
  • the output of the first ORing element 61 thus also jumps from “false” to “true”.
  • the output of the first rounding element 63 also jumps from “false” to “true”, so that the value of the first logic signal SIG1 becomes “true”. This value is fed back to the first ORing element 61, but this does not change the fact that its output remains "true”.
  • the set volume flow V S is identical to the limited volume flow V R of the second high-pressure control circuit 39, except for the factor F DRV .
  • a high pressure disturbance variable is generated by one of the pressure regulating valves 19, 20, wherein in the first operating mode of the protective operation the high pressure always when the dynamic rail pressure p dyn reaches the first pressure limit value p GI , then from the pressure regulating valve Pressure regulator 41 is regulated, and this until a standstill of the internal combustion engine 1 is recognized.
  • at least one of the pressure control valves 19, 20 takes over the control of the high pressure via the second high pressure control circuit 39.
  • Figure 3b the logic for switching the third logic signal SIG2 is shown. It can be seen that this corresponds completely to the logic for switching the first logic signal SIG1, the second pressure limit value p G2 being used as the input variable only instead of the first pressure limit value p G1.
  • the corresponding logical switching components are here compared to Figure 3a ) are provided with a crossed reference symbol. Due to the completely identical mode of operation, the explanations apply to Figure 3a ) referenced.
  • the second logic signal SIG2 is “initialized” with the value “false” at the beginning of operation of the internal combustion engine 1, with its truth value changing to "true” when the dynamic rail pressure p dyn reaches or exceeds the second pressure limit value p G2 , whereupon the truth value of the third logic signal SIG2 remains “true” until a standstill of the internal combustion engine 1 is recognized.
  • the normal function for the pressure regulating valves 19, 20 is set - as already explained - and these are set with their respective setpoint currents I S , I S, 2 and the control signals PWMDRV1, PWMDRV2 calculated from them controlled.
  • Fig. 4 shows schematically a state transition diagram for the pressure control valves 19, 20 from the normal function to the standstill function and back.
  • the pressure regulating valves 19, 20 are preferably designed so that they are designed to be closed without pressure and without current, whereby they are further preferably designed so that they are closed at a pressure applied on the input side up to an opening pressure value, whereby they open when the pressure applied on the input side Pressure in the de-energized state reaches or exceeds the opening pressure value. They are then open when de-energized under input pressure and can be activated in the direction of the closed state by energizing them.
  • the opening pressure value can be, for example, 850 bar.
  • FIG 4 the standstill function is symbolized by a first circle K1, the normal function being symbolized by a second circle K2 at the top right.
  • a first arrow P1 represents a transition between the standstill function and the normal function, with a second arrow P2 representing a transition between the normal function and the standstill function.
  • a third arrow P3 indicates an initialization of the internal combustion engine 1 after the start, the pressure regulating valves 19, 20 initially being initialized in the standstill function.
  • the dynamic rail pressure p dyn exceeds the third pressure limit value p G3 , which is preferably selected to be greater than the first pressure limit value p G1 and the second pressure limit value p G2 , and in particular has a value at which in a conventional embodiment of the injection system would open a mechanical pressure relief valve. Since the pressure regulating valves 19, 20 are normally open under pressure, they open completely in the standstill function in this case and thus safely and reliably fulfill the function of a pressure relief valve.
  • the transition from the normal function to the standstill function also takes place if a defect is detected in the high pressure sensor 23. If there is a defect here, the high pressure in the high pressure accumulator 13 can no longer be regulated. To the internal combustion engine 1 anyway To still be able to operate safely, the transition from the normal function to the standstill function is brought about for the pressure regulating valves 19, 20 so that they open and thus prevent an impermissible increase in the high pressure.
  • the transition from the normal function to the standstill function takes place in a case in which a standstill of the internal combustion engine 1 is determined. This corresponds to resetting the pressure regulating valves 19, 20, so that when the internal combustion engine 1 is restarted, the cycle described here can start again.
  • the standstill function is set for the pressure regulating valves 19, 20 under pressure in the high-pressure accumulator 13, they are opened to the maximum and control a maximum volume flow from the high-pressure accumulator 13 into the fuel reservoir 7.
  • This corresponds to a protective function for the internal combustion engine 1 and the injection system 3, this protective function in particular being able to replace the lack of a mechanical pressure relief valve.
  • the pressure regulating valves 19, 20 have only two functional states, namely the standstill function and the normal function, these two functional states being fully sufficient to represent the entire relevant functionality of the pressure regulating valves 19, 20 including the protective function for replacing a mechanical pressure relief valve.
  • both pressure regulating valves 19, 20 are simultaneously transferred from a closed to an open state. In this way, large pressure gradients, which could have a damaging effect on the injection system 3, are avoided.
  • the pressure regulating valves 19, 20 are alternately acted upon by the control signals PWMDRV1 and PWMDRV2. This means that one of the two pressure regulating valves 19, 20 is acted upon by the first control signal PWMDRV1 during a predetermined period of time, for example 5000 operating hours. At the same time, the other pressure regulating valve 20, 19 is acted upon by the second control signal PWMDRV2. Conversely, after the predetermined period of time has elapsed, one pressure control valve 19, 20 is acted upon with the second control signal PWMDRV2 and the other pressure control valve 20, 19 with the first control signal PWMDRV1 - again for the predetermined period of time. This is now in connection with the Figures 5 and 6 explained in more detail.
  • Fig. 5 shows a schematic representation of a logic for an alternating control of the pressure regulating valves 19, 20 on the basis of various diagrams.
  • a first diagram 1) shows a time counter Z DRV plotted against time t.
  • a predetermined time period t DRV is shown in curly brackets.
  • the time counter Z DRV has its maximum value, for example 5000 operating hours, at a first point in time t 1 after the predetermined time period t DRV has elapsed.
  • the second, middle diagram 2 shows the logical variable MS as a function of time t, this assuming the value 0 when the internal combustion engine 1 is running and the value 1 when the internal combustion engine 1 is at a standstill.
  • the variable MS assumes the value 0, that is to say the internal combustion engine 1 is running.
  • the second point in time t 2 it assumes the value 1, so a standstill of the internal combustion engine 1 is recognized.
  • the first, upper diagram shows that the time counter Z DRV is now reset to 0. It then runs up to its maximum value again, which is then reached again at a third point in time t 3 .
  • time counter Z DRV There is no change in the time counter Z DRV between the first point in time t 1 and the second point in time t 2 because it has reached its maximum value, although no standstill of the internal combustion engine 1 has yet been detected.
  • the time counter Z DRV is reset to the value 0 because the second Diagram showing a stopped engine.
  • the time counter Z DRV is then counted up again until it finally reaches its maximum value again at a fourth point in time t 4. Since the second diagram only shows a stopped engine at a fifth point in time t 5 , the time counter is reset to the value 0 at the fifth point in time t 5 in accordance with the first diagram.
  • the counter then runs up again to its maximum value, which it reaches again at a sixth point in time t 6.
  • the third, lower diagram 3) shows a fourth logic signal SIG4 plotted against time t.
  • This fourth logic signal SIG4 indicates when a change in the assignment of the control signals PWMDRV1, PWMDRV2 to the corresponding pressure regulating valves 19, 20 should take place.
  • This fourth logic signal SIG4 has the value 0 at time 0. Whenever the time counter Z DRV has reached its maximum value and a stationary internal combustion engine 1 is simultaneously indicated by the logic signal MS, there is a change in the value of the fourth logic signal SIG4.
  • Fig. 6 shows a function of the switchover logic 57 in a schematic representation. This has a sixth switching element 65 and a seventh switching element 67, which change their switching position as a function of the fourth logic signal SIG4. If the fourth logic signal SIG4 assumes the value 0, both switching elements 65, 67 are in their Figure 6 shown, upper switch position.
  • the first control signal PWMDRV1 is thus assigned to the first pressure regulating valve 19, the second control signal PWMDRV2 being assigned to the second pressure regulating valve 20 at the same time.
  • the first measured current I R is measured at the first pressure regulating valve 19, the second measured current I R, 2 being measured at the second pressure regulating valve - which is possibly caused by additional physical switching elements, but is explained here together with the control signals for the sake of simplicity 20 is measured.
  • the switching elements 65, 67 change to their in Figure 6 shown, lower switch position.
  • the first control signal PWMDRV1 is now assigned to the second pressure control valve 20, the second control signal PWMDRV2 being assigned to the first pressure control valve 19.
  • the first measured current variable I R measured at the second pressure regulating valve 20 the second measured current variable I R, 2 being measured at the first pressure regulating valve 19.
  • the switchover logic 57 depending on the fourth logic signal SIG4, causes the pressure regulating valves 19, 20 to be controlled alternately with the various control signals PWMDRV1, PWMDRV2, which at the same time ensures that the current regulators 35, 51 provided for this purpose each have the correct measured current variables I R , I R, 2 are supplied.
  • Fig. 7 shows a schematic representation of the pressure regulating valve pressure regulator 41, which is designed here as a PI (DT 1) pressure regulator.
  • the output variable V U of the pressure regulating valve pressure regulator 41 consists of three summed regulator components, namely a proportional component Ap, an integral component A I , and a differential component A DTI . These three components are added to one another in a summation point 69 to form the unlimited volume flow V U.
  • the proportional component A P represents the product of the control deviation e p multiplied by the value -1 in a multiplication point 71 with the proportional coefficient kp DRV .
  • the integrating component A I results from the sum of two summands.
  • the first addend here is the current integral component A I delayed by one sampling step T a .
  • the second summand is the product of a gain factor r2 DRV and the sum of the current control deviation e p delayed by one sampling step - again multiplied by the factor ⁇ 1 in the multiplication point 71.
  • the sum of both summands is limited upwards to the maximum volume flow V max in a limiting element 73.
  • the integrating component A I depends on whether the dynamic rail pressure p dyn has reached the first pressure limit value p GI for the first time after the internal combustion engine 1 has started. If this is the case, the first logic signal SIG1 assumes the value "true” and an in Figure 7
  • the eighth switching element 75 shown changes into its lower switching position. In this switching position, the integrating component A I is identical to the output signal of the limiting element 73, that is to say the integrating component A I is limited to the maximum volume flow V max . Becomes a standstill of the internal combustion engine 1 recognized, takes - as already in connection with Figure 3 explained - the first logic signal SIG1 the value "false", and the eighth switching element 75 changes to its upper switching position.
  • the integrating component A I is set to the calculated volume flow V S, ber .
  • the calculated target volume flow V S thus represents the initialization value of the integrating component A I in the event that the pressure regulating valve pressure regulator 41 is activated when the dynamic rail pressure p dyn exceeds the first pressure limit value p GI.
  • the calculation of the differential component A DTI is in the lower part of Figure 7 shown. This proportion is the sum of two products.
  • the first product results from a multiplication of the factor r4 DRV by the differential component A DTI delayed by one sampling step.
  • the second product resulting from the multiplication of the factor r3 DRV with the difference multiplied by the factor -1 deviation e p and the deviation correspondingly delayed by one sampling step and multiplied by the factor -1 e p.
  • the gains r2 and r3 DRV DRV of the proportional kp DRV depend.
  • the gain factor r2 DRV also depends on the reset time tn DRV , the gain factor r3 DRV on the lead time tv DRV and the delay time t1 DRV .
  • the gain factor r4 DRV also depends on the delay time t1 DRV .
  • Fig. 8 shows a schematic representation of a logic for calculating the value of a fifth logic signal SIG5, which is used to ensure that in the first and in the second operating mode of the protective operation, the suction throttle 9 is controlled to a permanently open operation.
  • the value of the fifth logic signal SIG5 results from a third rounding element 77, whose first input again receives the negation of the variable MS, the result of a previous calculation, which is explained in more detail below, entering the second input.
  • the fifth logic signal SIG5 is initially initialized with the value "false" when the internal combustion engine 1 is started.
  • a third comparator element 81 in which it is checked whether the dynamic rail pressure p dyn is greater than or equal to the third pressure limit value p G3 , enters a first input of a third ORing element 79.
  • the result of a comparison element 83 goes into the second input of the third ORing element 79, which checks whether the value of the logical variable HDSD, which indicates a sensor defect of the high pressure sensor 23, is equal to 1, in which case there is a sensor defect and there is none The sensor is defective if the value of the HDSD variable is 0.
  • the output of the third ORing element 79 assumes the value “true” when at least one of the outputs of the third comparator element 81 or of the comparison element 83 assumes the value “true”. So that the output of the third ORing element 79 assumes the value "true”, at least one of the following conditions must be met: The dynamic rail pressure p dyn must have reached or exceeded the third pressure limit value p G3 , and / or there must be a sensor defect in the high pressure sensor 23 have been determined so that the variable HDSD takes the value 1. If none of these conditions is met, the output of the third ORing element 79 has the value “false”.
  • the output of the third ORing element 79 goes into a first input of a fourth ORing element 85, whose second input receives the value of the fifth logic signal SIG5. Since this is originally initialized with the value “false”, the output of the fourth ORing element 85 has the value “false” until the output of the third ORing element 79 assumes the value “true”. If this is the case, the output of the fourth ORing element 85 also jumps to the value “true”. In this case, the value of the third rounding element 77 also jumps to true when the internal combustion engine 1 is running, so that the value of the fifth logic signal SIG5 also jumps to "true”. Based on Figure 8 shows that the value of the fifth logic signal SIG5 remains “true” until a standstill of the internal combustion engine 1 is recognized, in which case the variable MS assumes the value "true” and thus its negative assumes the value "false”.
  • suction throttle 9 is also to be opened permanently in the second and / or in the first operating mode of the protective operation - in particular by a double regulation of the high pressure via the To prevent suction throttle 9 and pressure regulating valves 19, 20 - this can be achieved by using the second pressure limit value p G2 or the first pressure limit value p G1 instead of the third pressure limit value p G3 in the third comparator element 81 and comparing it with the dynamic rail pressure p dyn becomes.
  • Fig. 9 shows a schematic representation of the first high-pressure control circuit 25 including a ninth switching element 87 to illustrate the permanently open operation of the suction throttle 9 in the first, second and / or third operating mode of the protective mode, with the ninth switching element 87 being controlled by the fifth logic signal SIG5 is received, its calculation in connection with Figure 8 has been described. It is possible for the ninth switching element 87 to be designed as a software switch, that is to say as a purely virtual switch. Alternatively, it is of course also possible for the ninth switching element 87 to be designed as a physical switch, for example as a relay.
  • an input variable of the first high pressure control circuit 25 is the set high pressure p S , which in this case is compared with the actual high pressure p I in order to calculate the control deviation e p.
  • This control deviation e p is an input variable of a high pressure regulator 89, which is preferably designed as a PI (DT 1 ) algorithm.
  • Another input variable of the high pressure regulator 89 is preferably a proportional coefficient kp SD .
  • the output variable of the high-pressure regulator 89 is a fuel volume flow V SD for the intake throttle 9, to which a target fuel consumption V Q is added in an addition point 91.
  • This target fuel consumption V Q is calculated in a calculation element 93 as a function of the speed n I and the target injection quantity Q S and represents a disturbance variable in the first high pressure control circuit 25.
  • V SD of the high pressure regulator 89 and the disturbance variable V Q results in an unlimited target fuel volume flow V U, DS .
  • This is limited in a limiting element 95 as a function of the speed n I to a maximum volume flow V max, SD for the suction throttle 9.
  • the output of the limiting element 95 results in a limited target fuel volume flow V S, SD for the suction throttle 9, which is included as an input variable in a pump characteristic curve 97. This converts the limited target fuel volume flow V S, SD into a characteristic suction throttle flow I KL, SD .
  • a suction throttle setpoint current I S , SD is set equal to the characteristic suction throttle current I KL, SD.
  • This Suction throttle setpoint current I S, SD represents the input variable of a suction throttle flow regulator 99, which has the task of regulating the suction throttle flow through suction throttle 9.
  • Another input variable of the suction throttle current regulator 99 is, inter alia, an actual suction throttle current I I, SD .
  • the output variable of the suction throttle current regulator 99 is a suction throttle setpoint voltage U S, SD , which is finally converted in a calculation element 101 in a manner known per se into a duty cycle of a pulse-width modulated signal PWMSD for the suction throttle 9.
  • the suction throttle 9 is controlled with this, the signal thus acting overall on a control path 103, which in particular has the suction throttle 9, the high-pressure pump 11, and the high-pressure accumulator 13.
  • the suction throttle current is measured, resulting in a raw measured value I R, SD which is filtered in a current filter 105.
  • the current filter 105 is preferably designed as a PT 1 filter.
  • the output variable of this filter is the actual suction throttle current I I, SD , which in turn is fed to the suction throttle current regulator 99.
  • the controlled variable of the first high pressure control circuit 25 is the high pressure in the high pressure accumulator 13.
  • Raw values of this high pressure p are measured by the high pressure sensor 23 and filtered by a first high pressure filter element 107, which has the actual high pressure p I as its output variable.
  • the raw values of the high pressure p are filtered by a second high pressure filter element 109, the output variable of which is the dynamic rail pressure p dyn .
  • Both high-pressure filter elements are preferably implemented by a PT 1 algorithm, a time constant of the first high-pressure filter element 107 being greater than a time constant of the second high-pressure filter element 109.
  • the second high-pressure filter element 109 is a faster filter than the first High pressure filter element 107 is formed.
  • the time constant of the second high pressure filter element 109 can also be identical to the value zero, so that the dynamic rail pressure p dyn then corresponds to the measured raw values of the high pressure p or is identical to them. With the dynamic rail pressure p dyn, there is thus a highly dynamic value for the high pressure, which is always required in particular when a rapid reaction to certain occurring events has to take place.
  • Output variables of the first high pressure control circuit 25 are therefore the filtered high pressure values p I , p dyn in addition to the unfiltered high pressure p.
  • the ninth switching element 87 switches to its in Figure 9 shown, lower switching position.
  • the target suction throttle current is I S, SD is no longer identical to the characteristic suction throttle current I KL, SD , but rather is equated with a suction throttle emergency current I N, SD.
  • the suction throttle emergency current I N, SD preferably has a predetermined, constant value, for example 0 A, in which case the suction throttle 9, which is preferably open when de-energized, is open to the maximum, or it has a small current value compared to a maximum closed position of the suction throttle 9, for example 0.5 A, so that the suction throttle 9 is not fully, but still largely open.
  • the suction throttle emergency current I N, SD and the associated opening of the suction throttle 9 reliably prevents the internal combustion engine 1 from stopping when it is operated in the third operating mode of protective operation with the pressure control valves 19, 20 open to the maximum.
  • the opening of the intake throttle 9 has the effect that a sufficient amount of fuel can still be fed into the high-pressure accumulator 13 even in a medium to low speed range, so that the internal combustion engine 1 can be operated without stalling. In this way, in the first and / or second operating mode, a double regulation of the high pressure is prevented on the one hand via the suction throttle 9 and on the other hand via the pressure regulating valves 19, 20.
  • At least stable operation of the internal combustion engine 1 is then still guaranteed. Even if the high pressure sensor 23 fails, stable operation of the internal combustion engine 1 is possible, even if the operating values may deteriorate in this case.
  • pressure regulating valves 19, 20 are not activated at the same time prevents the injection system 3 from being damaged by excessive high-pressure gradients. If there are more than two pressure regulating valves 19, 20, it is possible to set separate pressure limit values for connecting each of these pressure regulating valves 19, 20 or for connecting groups of these pressure regulating valves 19, 20, which can be staggered in size.
  • the pressure regulating valves 19, 20 are evenly utilized by alternate actuation.
  • the dynamic rail pressure p dyn reaches or exceeds the second pressure limit value p G2 , which is preferably greater than the first pressure limit value p G1 , while the internal combustion engine 1 is running, despite the activation of one pressure control valve 19, 20, the further pressure control valve 20, 19 is also used to control the High pressure activated.
  • Both pressure regulating valves 19, 20 are preferably activated with the same setpoint current I S , I S, 2 .
  • the pressure regulating valves 19, 20 are controlled so that open them reliably, permanently and preferably completely.
  • the suction throttle 9 is preferably activated at the same time in such a way that it is also in the fully open state is operated.
  • the pressure regulating valves 19, 20 are controlled alternately at predeterminable time intervals. A change may only take place when the internal combustion engine 1 is at a standstill.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

  • Die Erfindung betrifft ein Einspritzsystem für eine Brennkraftmaschine sowie eine Brennkraftmaschine mit einem solchen Einspritzsystem.
  • Aus der nicht vorveröffentlichten deutschen Patentanmeldung DE 10 2014 213 648.2 ist ein Verfahren zum Betreiben einer Brennkraftmaschine mit einem Einspritzsystem bekannt, bei welchem ein Druckregelventil in einer ersten Betriebsart eines Schutzbetriebs zur Regelung eines Hochdrucks in einem Hochdruckspeicher angesteuert wird, wobei das Druckregelventil in einer zweiten Betriebsart des Schutzbetriebs dauerhaft geöffnet wird, um einen unzulässig hohen Druckanstieg in dem Hochdruckspeicher zu verhindern. Für vergleichsweise kleine Brennkraftmaschinen mit niedriger Nennleistung und/oder mit einer relativ geringen Zahl von Brennräumen ist diese Ausgestaltung funktional, einfach und kostengünstig realisierbar. Nachteilig ist jedoch, dass die Ausgestaltung nur in eingeschränktem Maße, oder mit erheblichem Aufwand und hohen Kosten skaliert werden kann. Größere Brennkraftmaschinen mit größerer Nennleistung und/oder einer größeren Zahl an Brennräumen benötigen nämlich im Fehlerfall die Möglichkeit, größere Kraftstoffmengen absteuern zu können, als kleinere Brennkraftmaschinen mit geringerer Nennleistung und/oder einer geringeren Zahl an Brennräumen. Soll daher eine entsprechende Regelungs- und Sicherheitsfunktion bei einer größeren Brennkraftmaschine etabliert werden, bedarf es eines Druckregelventils, welches ausgebildet ist zur Absteuerung entsprechend höherer Kraftstoffmengen. Solche Druckregelventile sind aber Spezialanfertigungen, die nur in Kleinserie gefertigt werden können, sodass sie vergleichsweise teuer sind. Außerdem bedürfte es für Brennkraftmaschinen mit verschiedener Nennleistung und/oder verschiedener Zahl von Brennräumen verschiedener Druckregelventile, was auch die logistischen Kosten erhöhen würde. Weitere Beispiele von Einspritzsystemen liegen vor, in welchen mehrere Druckregelventile angeordnet sind. DE 10 2005 059830 offenbart ein Einspritzsystem, wobei ein Druckregelventil zwischen jedem Einspritzventil und dem Hochdruckspeicher eingebaut ist. Gemäß DE 10 2009 051390 ist jede Seite der als V-Motor ausgebildeten Brennkraftmaschine mit ihrem eigenständigen Einspritzsystem, das jeweils ein Druckregelventil umfasst, ausgeführt.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Einspritzsystem für eine Brennkraftmaschine und eine Brennkraftmaschine mit einem solchen Einspritzsystem zu schaffen, wobei die genannten Nachteile nicht auftreten.
  • Die Aufgabe wird gelöst, indem die Gegenstände der unabhängigen Ansprüche geschaffen werden. Vorteilhafte Ausgestaltungen ergeben sich aus den Unteransprüchen.
  • Die Aufgabe wird insbesondere gelöst, indem ein Einspritzsystem für eine Brennkraftmaschine geschaffen wird, welches wenigstens einen Injektor und wenigstens einen Hochdruckspeicher aufweist, der einerseits mit dem wenigstens einen Injektor und andererseits über eine Hochdruckpumpe mit einem Kraftstoffreservoir in Fluidverbindung ist, wobei der Hochdruckpumpe eine Saugdrossel als Druckstellglied zugeordnet ist. Das Einspritzsystem weist ferner wenigstens zwei Druckregelventile auf, über welche der Hochdruckspeicher mit dem Kraftstoffreservoir in Fluidverbindung bringbar, vorzugsweise fluidverbunden, ist. Dadurch, dass das Einspritzsystem wenigstens zwei Druckregelventile aufweist, können über die Druckregelventile erreichte Schutz- und/oder Regelfunktionen von mehr als einem Druckregelventil dargestellt werden, sodass ein erhöhter Volumenstrom aus dem Hochdruckspeicher abgesteuert werden kann, ohne dass es einer Skalierung der einzelnen verwendeten Druckregelventile bedarf. Vielmehr kann eine Skalierung über die Zahl der verwendeten Druckregelventile erfolgen. Somit können die einzelnen Druckregelventile als kostengünstige Großserienteile verbaut werden, was logistische Kosten spart, und wobei die einzelnen Druckregelventile selbst kostengünstig sind. Es müssen dann auch keine verschiedenen Druckregelventile für verschiedene Brennkraftmaschinen vorgehalten werden, vielmehr können größere Brennkraftmaschinen mit einer größeren Zahl von Druckregelventilen ausgestattet werden, als kleinere Brennkraftmaschinen.
  • Die Saugdrossel ist vorzugsweise auf einer Niederdruckseite der Hochdruckpumpe angeordnet, es handelt sich also um eine niederdruckseitige Saugdrossel, die der Hochdruckpumpe zugeordnet ist. Die Saugdrossel ist demnach insbesondere stromaufwärts der Hochdruckpumpe angeordnet. Vorzugsweise ist vor der Hochdruckpumpe noch eine Niederdruckpumpe angeordnet, durch welche Kraftstoff von dem Kraftstoffreservoir zu der Hochdruckpumpe förderbar ist. Die Saugdrossel ist in diesem Fall bevorzugt fluidisch zwischen der Niederdruckpumpe und der Hochdruckpumpe angeordnet. Es ist möglich, dass die Saugdrossel integral mit der Hochdruckpumpe ausgebildet ist.
  • Die wenigstens zwei Druckregelventile sind bevorzug fluidisch parallel zueinander angeordnet, wobei sie beide - in Parallelschaltung - den Hochdruckspeicher mit dem Kraftstoffreservoir verbinden. Werden also zwei identische Druckregelventile - insbesondere mit identischem Nenndurchfluss - verwendet, kann ein doppelter Volumenstrom über die Druckregelventile aus dem Hochdruckspeicher in das Kraftstoffreservoir abgesteuert werden, im Vergleich zu einer Ausgestaltung, bei der nur ein Druckregelventil vorgesehen ist.
  • Das Einspritzsystem ist vorzugsweise frei von einem mechanischen Überdruckventil, es weist also kein mechanisches Überdruckventil auf. Auf ein mechanisches Überdruckventil kann verzichtet werden, da eine entsprechende Schutzfunktion - wie im Folgenden noch erläutert wird - durch die wenigstens zwei Druckregelventile bereitgestellt werden kann. Somit können die mit einem mechanischen Überdruckventil ansonsten verbundenen Kosten eingespart werden.
  • Das Einspritzsystem weist vorzugsweise einen Hochdruck-Sensor auf, über welchen ein Hochdruck in dem Hochdruckspeicher erfassbar ist. Der Hochdrucksensor ist bevorzugt an dem Hochdruckspeicher angeordnet. Es ist aber auch möglich, den Hochdruck in dem Einspritzsystem an einer anderen Stelle zu messen, wobei gegebenenfalls aus dem an anderer Stelle gemessenen Hochdruck auf den Druck in dem Hochdruckspeicher geschlossen werden kann, oder wobei der an anderer Stelle gemessene Hochdruck zur Steuerung des Einspritzsystems herangezogen werden kann.
  • Der Hochdruckspeicher ist vorzugsweise als gemeinsamer Hochdruckspeicher ausgebildet, mit dem eine Mehrzahl von Injektoren in Fluidverbindung stehen. Ein solcher Hochdruckspeicher wird auch als Rail bezeichnet, wobei das Einspritzsystem bevorzugt als Common-Rail-Einspritzsystem ausgestaltet ist.
  • Das Einspritzsystem zeichnet sich durch ein Steuergerät aus, das mit der Saugdrossel und den wenigstens zwei Druckregelventilen sowie vorzugsweise mit dem wenigstens einen Injektor wirkverbunden ist. Das Einspritzsystem, insbesondere das Steuergerät, ist dabei eingerichtet, um in einem Normalbetrieb einen Hochdruck in dem Hochdruckspeicher durch Ansteuern der Saugdrossel als Druckstellglied zu regeln. Bevorzugt wird im Normalbetrieb wenigstens ein erstes Druckregelventil der wenigstens zwei Druckregelventile zur Erzeugung einer Hochdruck-Störgröße angesteuert.
  • Das Einspritzsystem, insbesondere das Steuergerät, ist weiterhin eingerichtet, um in einer ersten Betriebsart eines Schutzbetriebs den Hochdruck in dem Hochdruckspeicher durch Ansteuern von wenigstens einem ersten Druckregelventil der wenigstens zwei Druckregelventile als Druckstellglied zu regeln. Das Einspritzsystem, insbesondere das Steuergerät, ist außerdem eingerichtet, um in einer zweiten Betriebsart des Schutzbetriebs wenigstens ein zweites Druckregelventil der wenigstens zwei Druckregelventile, wobei das wenigstens eine zweite Druckregelventil von dem wenigstens einen ersten Druckregelventil verschieden ist, zusätzlich zu dem wenigstens einen ersten Druckregelventil als Druckstellglied zur Regelung des Hochdrucks in dem Hochdruckspeicher anzusteuern.
  • In dem Normalbetrieb ist also eine konventionelle Regelung des Hochdrucks über die Saugdrossel vorgesehen, wobei bevorzugt zugleich mittels wenigstens eines ersten Druckregelventils eine Hochdruck-Störgröße erzeugt wird, indem Kraftstoff aus dem Hochdruckspeicher über das wenigstens eine erste Druckregelventil in das Kraftstoffreservoir abgesteuert wird. Eine solche Regelungsstrategie ist beispielsweise aus der deutschen Patentschrift DE 10 2009 031 529 B3 bekannt. Mittels der Hochdruck-Störgröße wird quasi eine Konstantleckage nachgebildet, wodurch die Stabilität der Hochdruckregelung im Schwachlastbereich erhöht wird.
  • In der ersten Betriebsart des Schutzbetriebs wird der Hochdruck in dem Hochdruckspeicher dagegen mittels wenigstens eines ersten Druckregelventils geregelt. Dadurch ist es möglich, dass auch bei einem Ausfall einer Regelung über die Saugdrossel - insbesondere bei einem Ausfall der Saugdrossel selbst als Druckstellglied, beispielsweise aufgrund eines Kabelbruchs, eines vergessenen Aufsteckens des Saugdrosselsteckers, einem Klemmen oder Verdrecken der Saugdrossel, oder einem anderen Fehler oder Defekt - noch eine Regelung des Hochdrucks möglich ist, nämlich mittels des wenigstens einen ersten Druckregelventils. Zum einen kann so das Einspritzsystem vor einem unzulässig hohen Hochdruck geschützt werden, zum anderen wird ein periodisches Schwanken des Hochdrucks vermieden. Dieser wird vielmehr durch Ansteuern des wenigstens einen ersten Druckregelventils auf einen Sollwert geregelt, sodass keine Verschlechterung eines Emissionsverhaltens der Brennkraftmaschine auftritt.
  • Es können allerdings Betriebssituationen eintreten, in welchen das wenigstens eine erste Druckregelventil für eine funktionierende Hochdruckregelung nicht mehr ausreicht, sodass der Hochdruck trotz Ansteuerung des wenigstens einen ersten Druckregelventils weiter ansteigt. Es ist dann in der zweiten Betriebsart des Schutzbetriebs möglich, das wenigstens eine zweite Druckregelventil zuzuschalten, sodass nunmehr das wenigstens eine erste Druckregelventil und das wenigstens eine zweite Druckregelventil gemeinsam zur Druckregelung des Hochdrucks als Druckstellglieder angesteuert werden. Hierdurch werden insbesondere größere Absteuermengen erzielt, sodass eine effiziente und sichere Druckregelung auch bei höherem Absteuerbedarf möglich ist.
  • In dem Normalbetrieb wird der Hochdruck vorzugsweise durch Ansteuern der Saugdrossel als Druckstellglied in einem ersten Hochdruck-Regelkreis geregelt. In der ersten Betriebsart des Schutzbetriebs wird der Hochdruck vorzugsweise durch Ansteuern des wenigstens einen ersten Druckregelventils in einem zweiten Hochdruck-Regelkreis, welcher von dem ersten Hochdruck-Regelkreis verschieden ist, geregelt. Dies ermöglicht eine Trennung der beiden Regelkreise und deren gezielte Abstimmung auf die Ansteuerung der Saugdrossel einerseits und das wenigstens eine erste Druckregelventil andererseits.
  • Unterscheiden sich das wenigstens eine erste Druckregelventil und das wenigstens eine zweite Druckregelventil - insbesondere in ihren Nenn-Durchflüssen - ist es möglich, dass das wenigstens eine zweite Druckregelventil in der zweiten Betriebsart des Schutzbetriebs durch einen dritten Hochdruck-Regelkreis angesteuert wird. Bevorzugt werden allerdings - zumindest in Hinblick auf ihre Kennwerte, insbesondere auf einen Nenn-Durchfluss - übereinstimmende erste und zweite Druckregelventile eingesetzt, wobei dann bevorzugt vorgesehen ist, dass in der zweiten Betriebsart des Schutzbetriebs das wenigstens eine erste Druckregelventil und das wenigstens eine zweite Druckregelventil von dem gleichen, zweiten Hochdruck-Regelkreis angesteuert werden. Bevorzugt können dabei allerdings getrennte Stromregler zur Bestromung der verschiedenen Druckregelventile vorgesehen sein.
  • Bei einem bevorzugten Ausführungsbeispiel des Einspritzsystems ist vorgesehen, dass in dem Normalbetrieb nur eines der Druckregelventile, insbesondere genau ein und nur ein erstes Druckregelventil, zur Erzeugung der Hochdruck-Störgröße angesteuert wird. Das wenigstens eine weitere Druckregelventil ist dann vorzugsweise geschlossen oder wird in einen geschlossenen Zustand angesteuert. Es ist aber auch möglich, dass in dem Normalbetrieb mehr als ein erstes Druckregelventil zur Erzeugung der Hochdruck-Störgröße angesteuert wird, wobei es insbesondere möglich ist, dass eine Untermenge der insgesamt vorhandenen Druckregelventile zur Erzeugung einer Hochdruck-Störgröße angesteuert wird. Schließlich ist es auch möglich, dass alle vorhandenen Druckregelventile zur Erzeugung einer Hochdruck-Störgröße angesteuert werden. Dabei kann eine Auswahl der Menge der tatsächlich angesteuerten Druckregelventile für die Erzeugung der Hochdruck-Störgröße insbesondere druckabhängig gewählt werden.
  • In der ersten Betriebsart des Schutzbetriebs wird bevorzugt nur ein und genau ein erstes Druckregelventil als Druckstellglied angesteuert. Andere Druckregelventile sind vorzugsweise geschlossen oder werden in einen geschlossenen Zustand angesteuert. Alternativ ist es möglich, dass eine Untermenge der vorhandenen Druckregelventile, insbesondere mehr als ein erstes Druckregelventil, als erste Druckregelventile und Druckstellglieder angesteuert werden. Es verbleibt aber vorzugsweise wenigstens ein Druckregelventil in der ersten Betriebsart, welches als ein zweites Druckregelventil nicht als Druckstellglied angesteuert wird, sondern geschlossen ist oder in einen geschlossenen Zustand angesteuert wird.
  • Dieses wenigstens eine, verbleibende zweite Druckregelventil wird in der zweiten Betriebsart des Schutzbetriebs zugeschaltet, also als weiteres Druckstellglied angesteuert. Dabei ist es möglich, dass in der zweiten Betriebsart genau ein zweites Druckregelventil zugeschaltet wird. Alternativ ist es möglich, dass eine Untermenge, insbesondere mehr als ein zweites Druckregelventil, als Druckstellglieder zugeschaltet werden. Vorzugsweise werden alle verbleibenden Druckregelventile, welche nicht bereits als erste Druckregelventile und Druckstellglieder in der ersten Betriebsart angesteuert werden, in der zweiten Betriebsart zusätzlich als Druckstellglieder und zweite Druckregelventile angesteuert. Dabei ist es möglich, dass eine Anzahl zugeschalteter, zweiter Druckregelventile druckabhängig gewählt wird. Insbesondere wird eine Anzahl zweiter Druckregelventile druckabhängig zugeschaltet.
  • Es wird ein Ausführungsbeispiel des Einspritzsystems bevorzugt, das sich dadurch auszeichnet, dass für das wenigstens eine erste Druckregelventil in dem Normalbetrieb eine Normalfunktion gesetzt wird, in welcher das wenigstens eine erste Druckregelventil in Abhängigkeit von einem Soll-Volumenstrom angesteuert wird. In dem Normalbetrieb stellt die Normalfunktion dabei eine Betriebsweise für das erste Druckregelventil bereit, bei welcher dieses eine Hochdruck-Störgröße erzeugt, indem es Kraftstoff aus dem Hochdruckspeicher in das Kraftstoffreservoir absteuert.
  • Bevorzugt wird für das wenigstens eine erste Druckregelventil auch in der ersten Betriebsart und in der zweiten Betriebsart des Schutzbetriebs die Normalfunktion gesetzt, sodass das Druckregelventil in Abhängigkeit von einem Soll-Volumenstrom angesteuert wird. Dies gilt in der zweiten Betriebsart des Schutzbetriebs bevorzugt auch für das wenigstens eine zweite Druckregelventil. Der Normalbetrieb einerseits sowie die erste und zweite Betriebsart des Schutzbetriebs andererseits unterscheiden sich in diesem Fall bevorzugt in der Art und Weise, in welcher der Soll-Volumenstrom zur Ansteuerung der Druckregelventile berechnet wird:
    In dem Normalbetrieb wird der Soll-Volumenstrom bevorzugt aus einem statischen und einem dynamischen Soll-Volumenstrom berechnet. Der statische Soll-Volumenstrom wird wiederum bevorzugt in Abhängigkeit einer Soll-Einspritzmenge und einer Drehzahl der Brennkraftmaschine über ein Soll-Volumenstrom-Kennfeld berechnet. Bei einer momentenorientierten Struktur kann dabei anstelle der Soll-Einspritzmenge auch eine Soll-Moment- oder eine Soll-Lastanforderung verwendet werden. Über den statischen Soll-Volumenstrom wird eine Konstantleckage nachgebildet, indem der Kraftstoff nur in einem Schwachlastbereich und in kleiner Menge abgesteuert wird. Von Vorteil ist dabei, dass weder eine signifikante Erhöhung der Kraftstofftemperatur noch eine signifikante Verringerung des Wirkungsgrads der Brennkraftmaschine auftreten. Durch die Nachbildung einer Konstantleckage für das Einspritzsystem über wenigstens ein Druckregelventil wird die Stabilität des Hochdruck-Regelkreises im Schwachlastbereich erhöht, was beispielsweise daran erkannt werden kann, dass der Hochdruck im Schubbetrieb etwa konstant bleibt. Der dynamische Soll-Volumenstrom wird über eine dynamische Korrektur in Abhängigkeit eines Soll-Hochdrucks und des Ist-Hochdrucks - oder eines im Folgenden noch näher definierten dynamischen Raildrucks - beziehungsweise der daraus abgeleiteten Regelabweichung berechnet. Ist die Regelabweichung negativ, beispielsweise bei einem Lastabwurf der Brennkraftmaschine, wird über den dynamischen Soll-Volumenstrom der statische Soll-Volumenstrom korrigiert. Anderenfalls, also insbesondere bei positiver Regelabweichung, erfolgt keine Veränderung des statischen Soll-Volumenstroms. Über den dynamischen Soll-Volumenstrom wird einer Druckerhöhung des Hochdrucks entgegengewirkt, mit dem Vorteil, dass die Ausregelzeit des Systems nochmals verbessert werden kann.
  • Diese Vorgehensweise ist detailliert in den deutschen Patentschriften DE 10 2009 031 529 B3 und insbesondere DE 10 2009 031 527 B3 beschrieben. Das wenigstens eine erste Druckregelventil wird also in dem Normalbetrieb mithilfe des Soll-Volumenstroms derart angesteuert, dass es über die Nachbildung einer Konstantleckage die Stabilität des Hochdruck-Regelkreises erhöht und mittels der Korrektur über den dynamischen Soll-Volumenstrom die Ausregelzeit des Einspritzsystems verbessert.
  • In der ersten und in der zweiten Betriebsart des Schutzbetriebs wird der Soll-Volumenstrom dagegen bevorzugt in dem zweiten Hochdruck-Regelkreis - insbesondere durch einen Druckregelventil-Druckregler - berechnet. In diesem Fall stellt der Soll-Volumenstrom eine Stellgröße des zweiten Hochdruck-Regelkreises dar, und dient der unmittelbaren Ausregelung des Hochdrucks.
  • Vorzugsweise ist eine Ansteuermimik für die Druckregelventile vorgesehen, welche als Eingangsgröße den Soll-Volumenstrom aufweist. Es wird dann vorzugsweise mittels eines - gegebenenfalls virtuellen - Schalters beim Umschalten von dem Normalbetrieb in die erste Betriebsart und/oder in die zweite Betriebsart des Schutzbetriebs von der Berechnung des Soll-Volumenstroms als resultierendem Volumenstrom aus dem statischen und dem dynamischen Soll-Volumenstrom umgeschaltet auf die Berechnung in dem zweiten Hochdruck-Regelkreis. Dabei wird bevorzugt der integrale Anteil des Druckregelventil-Druckreglers des zweiten Hochdruck-Regelkreises beim Umschalten mit dem zuletzt vor dem Umschalten berechneten, resultierenden Soll-Volumenstrom initialisiert, sodass eine störungsfreie, sanfte Umschaltung erfolgt.
  • Es wird auch ein Ausführungsbeispiel des Einspritzsystems bevorzugt, das sich dadurch auszeichnet, dass das Einspritzsystem, insbesondere das Steuergerät, eingerichtet ist, um in einer dritten Betriebsart des Schutzbetriebs das wenigstens eine erste Druckregelventil und das wenigstens eine zweite Druckregelventil dauerhaft zu öffnen. Dies bedeutet insbesondere, dass dauerhaft über die Druckregelventile ein großer, vorzugsweise ein maximaler Kraftstoff-Volumenstrom aus dem Hochdruckspeicher in das Kraftstoffreservoir abgesteuert wird. Es heißt insbesondere, dass die Druckregelventile in dem Schutzbetrieb in Richtung einer maximalen Öffnung angesteuert werden. Besonders bevorzugt werden die Druckregelventile in der dritten Betriebsart des Schutzbetriebs maximal weit geöffnet. Je nachdem, ob die Druckregelventile stromlos offen oder stromlos geschlossen ausgebildet sind, wird dabei bevorzugt ein großer, vorzugsweise maximaler Ansteuerstrom gewählt, oder ein kleiner oder auch kein Ansteuerstrom. Der dabei tatsächlich die Druckregelventile durchsetzende Kraftstoff-Volumenstrom hängt von dem Hochdruck in dem Hochdruckspeicher ab, wobei der Begriff "maximaler Kraftstoff-Volumenstrom" sich darauf bezieht, dass die Druckregelventile soweit wie möglich geöffnet sind. Hierbei wird ein unzulässig hoher Hochdruck in dem Hochdruckspeicher nicht nur temporär, sondern dauerhaft rasch und zuverlässig abgebaut, sodass das Einspritzsystem wirksam und zuverlässig geschützt ist. Diese Funktionalität ermöglicht es, auf ein mechanisches Überdruckventil zu verzichten, sodass Bauraum und Kosten eingespart werden können.
  • Der Begriff "dauerhaft" bedeutet insbesondere, dass die Druckregelventile in der dritten Betriebsart nicht mehr mit einem zeitlich variierenden Ansteuersignal angesteuert werden, sondern vielmehr kontinuierlich mit einem konstanten Ansteuersignal, welches eine vorbestimmte Öffnung der Druckregelventile, vorzugsweise eine maximal weite Öffnung, zur Folge hat. Dabei kann es sein, dass das Ansteuersignal konstant zu Null gewählt wird, wenn die Druckregelventile stromlos offen ausgebildet sind.
  • Vorzugsweise werden in der dritten Betriebsart des Schutzbetriebs alle Druckregelventile dauerhaft und insbesondere maximal weit geöffnet. Es ist aber auch möglich, dass nur eine Untermenge der vorhandenen Druckregelventile dauerhaft und vorzugsweise maximal weit geöffnet werden. Dabei kann eine Anzahl der dauerhaft und vorzugsweise maximal weit geöffneten Druckregelventile insbesondere druckabhängig gewählt werden.
  • Es wird ein Ausführungsbeispiel des Einspritzsystems bevorzugt, das sich dadurch auszeichnet, dass das Einspritzsystem, insbesondere das Steuergerät, eingerichtet ist, um - insbesondere von dem Normalbetrieb - in die erste Betriebsart des Schutzbetriebs zu schalten, wenn der Hochdruck einen ersten Druckgrenzwert erreicht oder überschreitet, oder wenn ein Defekt der Saugdrossel erkannt wird. Der erste Druckgrenzwert ist dabei insbesondere so gewählt, dass ein Erreichen oder Überschreiten desselben ein Indiz dafür ist, dass eine Druckregelung des Hochdrucks über die Saugdrossel nicht mehr möglich ist. Dies kann insbesondere ein Indiz für einen Defekt der Saugdrossel sein. Es ist aber auch möglich, dass ein Defekt der Saugdrossel erkannt wird, ohne dass der Hochdruck zunächst den ersten Druckgrenzwert erreicht oder überschreitet. Auch in diesem Fall ist aber eine Druckregelung über die Saugdrossel nicht mehr möglich. Es ist daher sinnvoll, in die erste Betriebsart des Schutzbetriebs zu schalten, und den Hochdruck in der Folge durch Ansteuern des wenigstens einen ersten Druckregelventils als Druckstellglied zu regeln.
  • Alternativ oder zusätzlich ist vorzugsweise vorgesehen, dass - insbesondere von der ersten Betriebsart - in die zweite Betriebsart geschaltet wird, wenn der Hochdruck einen zweiten Druckgrenzwert erreicht oder überschreitet. Das Erreichen oder Überschreiten des zweiten Druckgrenzwerts ist dabei ein Indiz dafür, dass ein Ansteuern des wenigstens einen ersten Druckregelventils zur Druckregelung nicht mehr ausreicht, sodass vorteilhaft die zweite Betriebsart gewählt wird, in welcher zusätzlich das wenigstens eine zweite Druckregelventil als Druckstellglied zur Regelung des Hochdrucks angesteuert wird.
  • Alternativ oder zusätzlich ist bevorzugt vorgesehen, dass - insbesondere von der zweiten Betriebsart - in die dritte Betriebsart geschaltet wird, wenn der Hochdruck einen dritten Druckgrenzwert erreicht oder überschreitet, oder wenn ein Defekt eines Hochdruck-Sensors erkannt wird. Dabei dient das Erreichen oder Überschreiten des dritten Druckgrenzwerts als Indiz dafür, dass in dem Hochdruckspeicher ein unzulässig hoher Druck erreicht wird, der die Betriebssicherheit des Einspritzsystems und insbesondere des Hochdruckspeichers gefährdet, wobei insbesondere eine Beschädigung des Einspritzsystems, besonders des Hochdruckspeichers, zu befürchten ist. Wird ein Defekt des Hochdrucksensors erkannt, kann prinzipiell nicht mehr gewährleistet werden, dass der Hochdruck sicher geregelt wird und insbesondere in einem zulässigen Bereich bleibt. Daher ist es in beiden Fällen sinnvoll, die dritte Betriebsart zu wählen und vorzugsweise dauerhaft über die Druckregelventile einen maximalen Kraftstoff-Volumenstrom aus dem Hochdruckspeicher in das Kraftstoffreservoir abzusteuern. Hierdurch wird ein sicherer und zuverlässiger Schutz für das Einspritzsystem bei unzulässig hohem Druckanstieg und/oder bei Ausfall des Hochdruck-Sensors gewährleistet. Insbesondere aus diesem Grund kann auf ein mechanisches Überdruckventil verzichtet werden.
  • Vorzugsweise ist der dritte Druckgrenzwert größer gewählt als der zweite Druckgrenzwert. Vorzugsweise ist der dritte Druckgrenzwert größer gewählt als der erste Druckgrenzwert. Vorzugsweise ist der zweite Druckgrenzwert größer gewählt als der erste Druckgrenzwert. Besonders bevorzugt ist der zweite Druckgrenzwert größer gewählt als der erste Druckgrenzwert, wobei der dritte Druckgrenzwert größer gewählt ist als der zweite Druckgrenzwert.
  • Indem die erste Betriebsart gesetzt wird, wenn der Hochdruck den ersten Druckgrenzwert erreicht oder überschreitet, wird gewährleistet, dass diese Betriebsart stets dann - und vorzugsweise nur dann - aktiviert wird, wenn eine Fehlfunktion in dem ersten Hochdruck-Regelkreis vorliegt. Hierzu wird der erste Druckgrenzwert bevorzugt so gewählt, dass er höher ist als ein typischerweise im fehlerfreien Betrieb des Einspritzsystems realisierter, höchster Druckwert für den Hochdruck.
  • Bei einem Ausführungsbeispiel des Einspritzsystems ist es beispielsweise möglich, dass der Hochdruck im Betrieb auf einen Wert von 2200 bar geregelt wird. Dabei ist eine Druckreserve für allfällig auftretende Druckschwankungen bis zu 2300 bar vorgesehen. In diesem Fall wird der erste Druckgrenzwert bevorzugt zu 2400 bar gewählt, um zu vermeiden, dass die erste Betriebsart aktiviert wird, ohne dass eine Fehlfunktion des ersten Hochdruck-Regelkreises oder der Saugdrossel vorliegt. Tritt allerdings eine solche Fehlfunktion auf - beispielsweise ein Kabelbruch in dem Saugdrosselstecker, ein Klemmen der Saugdrossel, ein Verdrecken derselben, oder ein vergessenes Aufstecken des Saugdrosselsteckers - kann der Hochdruck insbesondere in einem höheren Drehzahlbereich der Brennkraftmaschine über das vorgesehene Reserveniveau ansteigen, insbesondere wenn die Saugdrossel stromlos offen ausgebildet ist. In diesem Fall erreicht oder überschreitet der Hochdruck den ersten Druckgrenzwert, und das wenigstens eine erste Druckregelventil übernimmt die Regelung des Hochdrucks. Es ist dann trotz Ausfall des ersten Hochdruck-Regelkreises noch eine stabile Regelung des Hochdrucks möglich, sodass keine Verschlechterung eines Emissionsverhaltens der Brennkraftmaschine auftritt, wobei diese zugleich zuverlässig vor einem unzulässigen Anstieg des Hochdrucks geschützt wird.
  • Der dritte Druckgrenzwert kann beispielsweise bei 2500 bar liegen. Dies kann insbesondere einem Druck entsprechen, bei dem ein mechanisches Überdruckventil zur Öffnung ausgelegt würde. Dessen Funktion wird nun bevorzugt vollständig durch die Druckregelventile nachgebildet.
  • Wie bereits ausgeführt, wird der zweite Druckgrenzwert vorzugsweise zwischen dem ersten Druckgrenzwert und dem dritten Druckgrenzwert gewählt.
  • Es ergibt sich insgesamt insbesondere folgendes Bild: Fällt der erste Hochdruck-Regelkreis und/oder die Saugdrossel aus, und steigt in der Folge der Hochdruck in dem Hochdruckspeicher an, wird dieser zunächst in einem Bereich zwischen dem ersten Druckgrenzwert und dem zweiten Druckgrenzwert durch das wenigstens eine erste Druckregelventil in der ersten Betriebsart geregelt. Reicht dies zur Regelung nicht mehr aus, und wird der zweite Druckgrenzwert erreicht oder überschritten, wird das wenigstens eine zweite Druckregelventil zur Druckregelung in der zweiten Betriebsart zugeschaltet. Durch Druckregelung mittels der Druckregelventile kann auch ein stabiler Betrieb der Brennkraftmaschine bei guten Emissionswerten ermöglicht werden. Dies ist insbesondere der Fall in einem niedrigen bis mittleren Drehzahlbereich, in welchem aufgrund der niedrigen bis mittleren Drehzahl der Hochdruckpumpe selbst über eine vollständig geöffnete Saugdrossel eine noch mittels einer Regelung über die Druckregelventile beherrschbare Kraftstoffmenge aus dem Kraftstoffreservoir in den Hochdruckspeicher gefördert wird. Steigt der Hochdruck allerdings in dem Hochdruckspeicher unzulässig hoch über den dritten Druckgrenzwert hinaus an, beispielsweise in einem hohen Drehzahlbereich der Brennkraftmaschine, ist keine Druckregelung mehr über die Druckregelventile möglich. Diese werden dann vielmehr in der dritten Betriebsart möglichst vollständig geöffnet, sodass ein großer, bevorzugt maximaler Kraftstoff-Volumenstrom in das Kraftstoffreservoir abgesteuert werden kann. Dies entspricht der Funktionalität ansonsten vorgesehener mechanischer Überdruckventile.
  • Dabei ist es möglich, dass die erste Betriebsart, die zweite Betriebsart und die dritte Betriebsart sequentiell nacheinander durchlaufen werden, wobei beispielsweise bei Auftreten eines Defekts in dem ersten Hochdruck-Regelkreis bei zunächst geringer Drehzahl der Brennkraftmaschine die erste Betriebsart realisiert wird, wobei bei weiterem Ansteigen der Drehzahl dann die zweite Betriebsart und schließlich die dritte Betriebsart verwirklicht wird. Es ist aber auch möglich, dass der Hochdruck in dem Hochdruckspeicher schlagartig über den zweiten oder den dritten Druckgrenzwert ansteigt, wobei in diesem Fall die erste Betriebsart und/oder die zweite Betriebsart quasi übersprungen wird/werden, wobei vielmehr sofort die zweite oder die dritte Betriebsart verwirklicht wird.
  • Zum Vergleich mit den Druckgrenzwerten wird vorzugsweise ein dynamischer Raildruck verwendet, welcher aus einer Filterung des mittels eines Hochdrucksensors gemessenen Hochdrucks insbesondere mit einer vergleichsweise kurzen Zeitkonstante resultiert. Alternativ ist es aber auch möglich, den gemessenen Hochdruck direkt mit den Druckgrenzwerten zu vergleichen. Die Filterung hat demgegenüber den Vorteil, dass - wenn auch selten auftretende - Überschwinger über die Druckgrenzwerte nicht direkt zu einem Schalten der Betriebsarten führen.
  • In einem Ausführungsbeispiel wird eine Stellgröße für die Druckregelventile in der ersten und/oder in der zweiten Betriebsart in Abhängigkeit des Hochdrucks begrenzt. Dies hat den Vorteil, dass ein Druckregelventil nicht weiter geöffnet wird, als es für eine bei gegebenem Hochdruck überhaupt maximal sinnvolle
  • Absteuerung nötig ist. Auf diese Weise kann eine Übersteuerung des Druckregelventils vermieden werden. Zur
  • Begrenzung der Stellgröße wird vorzugsweise auf eine Kennlinie zurückgegriffen, durch welche ein maximaler Volumenstrom des Druckregelventils in Abhängigkeit von dem Hochdruck hinterlegt ist.
  • Bei einem Schalten von dem Normalbetrieb in die erste Betriebsart des Schutzbetriebs wird in einem Ausführungsbeispiel ein integrierender Anteil eines Druckreglers des zweiten Hochdruck-Regelkreises, welcher zur Ansteuerung des Druckregelventils vorgesehen ist, mit einem Ansteuerwert initialisiert, welcher in dem Normalbetrieb unmittelbar vor dem Umschalten in den Schutzbetrieb zur Ansteuerung des Druckregelventils verwendet wurde. Auf diese Weise wird ein sanfter, störungsfreier und kontinuierlicher Übergang in der Druckregelung zwischen der Regelung durch den ersten Hochdruck-Regelkreis in dem Normalbetrieb und der Regelung durch den zweiten Hochdruck-Regelkreis in dem Schutzbetrieb gewährleistet. Insbesondere wird auf diese Weise verhindert, dass Sprünge in dem Hochdruck auftreten, was zu einem instabilen Betrieb der Brennkraftmaschine führen würde.
  • Alternativ oder zusätzlich wird bevorzugt, dass für die Druckregelventile in der dritten Betriebsart des Schutzbetriebs eine Stillstandsfunktion gesetzt wird, wobei die Druckregelventile in der Stillstandsfunktion nicht angesteuert werden. Dies ist insbesondere dann der Fall, wenn ein Druckregelventil verwendet wird, welches stromlos offen ist. Dadurch, dass die Druckregelventile dann in der Stillstandsfunktion nicht angesteuert, also nicht bestromt werden, ergibt sich eine maximale Öffnung derselben, sodass ein maximaler Kraftstoff-Volumenstrom aus dem Hochdruckspeicher in das Kraftstoffreservoir über die Druckregelventile abgesteuert wird. Auf diese Weise können die Druckregelventile die Funktionalität eines ansonsten vorgesehenen mechanischen Überdruckventils vollständig übernehmen, sodass auf das mechanische Überdruckventil verzichtet werden kann. Dabei hat die stromlos offene Ausgestaltung der Druckregelventile den Vorteil, dass diese zuverlässig auch dann vollständig öffnen, wenn sie aufgrund eines Defekts nicht mehr bestromt werden.
  • Ein Übergang von der Normalfunktion in die Stillstandsfunktion wird vorzugsweise durchgeführt, wenn der Hochdruck, insbesondere der dynamische Raildruck, den dritten Druckgrenzwert erreicht oder überschreitet, oder wenn ein Defekt des Hochdrucksensors erkannt wird. Ist der Hochdrucksensor defekt, kann der Hochdruck nicht mehr geregelt werden, und es ist auch nicht mehr möglich, einen unzulässig hohen Druck in dem Hochdruckspeicher zu erkennen. Aus Sicherheitsgründen wird daher in diesem Fall die Stillstandsfunktion für die Druckregelventile gesetzt, sodass diese maximal öffnen und damit das Einspritzsystem in einen sicheren Zustand bringen, der einem Zustand entspricht, bei welchem im Stand der Technik das mechanische Überdruckventil geöffnet wäre. Es kann dann nicht mehr zu einer unzulässigen Erhöhung des Hochdrucks kommen. Bevorzugt wird die Stillstandsfunktion ausgehend von der Normalfunktion auch dann gesetzt, wenn ein Stillstand der Brennkraftmaschine festgestellt wird. Insbesondere wenn die Drehzahl der Brennkraftmaschine für eine vorherbestimmte Zeit unter einen vorherbestimmten Wert absinkt, wird ein Stillstand der Brennkraftmaschine erkannt, und die Stillstandsfunktion für die Druckregelventile wird gesetzt. Dies ist insbesondere dann der Fall, wenn die Brennkraftmaschine abgestellt wird. Ein Übergang zwischen der Stillstandsfunktion und der Normalfunktion erfolgt bei einem Start der Brennkraftmaschine vorzugsweise dann, wenn festgestellt wird, dass die Brennkraftmaschine läuft, wobei zugleich der Hochdruck einen Start-Druckwert überschreitet. Es erfolgt also bevorzugt zunächst ein gewisser Minimaldruckaufbau in dem Hochdruckspeicher, bevor ein Druckregelventil in der Normalfunktion zur Erzeugung der Hochdruck-Störgröße angesteuert wird. Dass die Brennkraftmaschine läuft, kann vorzugsweise dadurch erkannt werden, dass eine vorherbestimmte Grenzdrehzahl für eine vorherbestimmte Zeit überschritten wird.
  • Es wird auch ein Ausführungsbeispiel des Einspritzsystems bevorzugt, das sich dadurch auszeichnet, dass das Einspritzsystem, insbesondere das Steuergerät, eingerichtet ist, um die Saugdrossel in wenigsten einer der drei Betriebsarten des Schutzbetriebs, insbesondere in der dritten Betriebsart des Schutzbetriebs, zu einer dauerhaft geöffneten Position anzusteuern. Aufgrund der in der dritten Betriebsart insbesondere soweit wie möglich geöffneten Druckregelventile ist es möglich, dass der Druck in dem Hochdruckspeicher stark abfällt. Während es dann in einem hohen Drehzahlbereich der Brennkraftmaschine noch möglich ist, gleichwohl einen ausreichenden Hochdruck zum Betrieb der Brennkraftmaschine bereitzustellen, kann es bei nicht hinreichend geöffneter Saugdrossel in einem mittleren oder niedrigen Drehzahlbereich dazu kommen, dass der Hochdruck in dem Hochdruckspeicher so stark abfällt, dass nicht mehr genügend Kraftstoff über die Injektoren eingespritzt werden kann. Die Brennkraftmaschine wird in einem solchen Fall abgewürgt. Um dies zu vermeiden, wird die Saugdrossel in der dritten Betriebsart in einer Art Notbetrieb dauerhaft geöffnet, insbesondere zu einem dauerhaft geöffneten Betrieb angesteuert, um zu gewährleisten, dass auch im mittleren und niedrigen Drehzahlbereich der Brennkraftmaschine noch genügend Kraftstoff in den Hochdruckspeicher gefördert werden kann, um einen Betrieb der Brennkraftmaschine aufrechterhalten zu können. Vorzugsweise wird eine Saugdrossel verwendet, welche stromlos offen ist. Daher wird die Saugdrossel in der dritten Betriebsart vorzugsweise mit einem im Vergleich zu ihrem maximalen Schließstrom kleinen Strom, beispielsweise mit 0,5 A, oder aber gar nicht angesteuert, also nicht bestromt. Dabei ist sie in dem Fall, in welchem sie nicht bestromt wird, maximal weit geöffnet.
  • Alternativ oder zusätzlich wird die Saugdrossel in der ersten und/oder in der zweiten Betriebsart des Schutzbetriebs dauerhaft geöffnet, bevorzugt zu einem dauerhaft geöffneten Betrieb angesteuert, insbesondere nicht oder nur mit einem kleinen Strom bestromt. Dadurch wird insbesondere in einem Fall, in welchem die erste oder zweite Betriebsart durch ein Überschwingen des Hochdrucks bei intakter Saugdrossel aktiviert wird, eine zweifache, gleichzeitige Regelung des Hochdrucks einerseits über die Druckregelventile und andererseits über die Saugdrossel verhindert.
  • Das Steuergerät ist vorzugsweise eingerichtet zur Filterung des gemessenen Hochdrucks, insbesondere zur Filterung mit einer ersten, längeren Zeitkonstante, um einen im Rahmen der Druckregelung zu verwendenden Ist-Hochdruck zu berechnen, und zur Filterung des gemessenen Hochdrucks mit einer zweiten, kürzeren Zeitkonstante, um einen dynamischen Raildruck zu berechnen, der insbesondere mit den Druckgrenzwerten verglichen wird.
  • Es wird ein Ausführungsbeispiel des Einspritzsystems bevorzugt, das sich dadurch auszeichnet, dass wenigstens eines der wenigstens zwei Druckregelventile stromlos offen ausgebildet ist. Besonders bevorzugt sind alle Druckregelventile stromlos offen ausgebildet. Diese Ausgestaltung hat den Vorteil, dass ein stromlos offenes Druckregelventil in dem Fall, dass es nicht angesteuert oder bestromt wird, maximal weit öffnet, was einen besonders sicheren und zuverlässigen Betrieb insbesondere dann ermöglicht, wenn auf ein mechanisches Überdruckventil verzichtet wird. Ein unzulässiger Anstieg des Hochdrucks in dem Hochdruckspeicher kann dann auch vermieden werden, wenn eine Bestromung des Druckregelventils aufgrund eines technischen Fehlers nicht möglich ist.
  • Alternativ oder zusätzlich ist es möglich, dass wenigstens ein Druckregelventil der wenigstens zwei Druckregelventile drucklos und stromlos geschlossen ausgebildet ist. Insbesondere ist es möglich, dass alle Druckregelventile drucklos und stromlos geschlossen ausgebildet sind. Ein solches Druckregelventil ist so ausgebildet, dass es geschlossen ist, wenn der in dem Hochdruckspeicher herrschende Druck, also der Raildruck, kleiner ist als ein vorbestimmter Öffnungsdruckwert. Der Hochdruck liegt an einem Eingang des Druckregelventils an, wenn dieses bestimmungsgemäß an dem Einspritzsystem montiert ist. Das Druckregelventil öffnet, wenn der eingangsseitig anliegende Druck in stromlosem Zustand den Öffnungsdruckwert erreicht oder überschreitet. Ist also das Druckregelventil eingangsseitig drucklos und unbestromt, ist es in einen geschlossenen Zustand vorgespannt, beispielsweise mittels eines mechanischen Vorspannelements. Erreicht oder übersteigt der eingangsseitige Druck den Öffnungsdruckwert, und ist das Druckregelventil nicht bestromt, wird es - vorzugsweise gegen die Kraft des Vorspannelements - geöffnet, sodass es dann bei dem Öffnungsdruckwert und höheren Eingangsdrücken stromlos offen ist. Wird das Druckregelventil in diesem Zustand bestromt, schließt es in Abhängigkeit von dem Strom, mit welchem es angesteuert wird. Dabei ist es maximal weit geschlossen, wenn es mit einem vorherbestimmten, maximalen Stromwert angesteuert wird. Wird es nicht mehr bestromt oder fällt die Bestromung aus, öffnet es wieder vollständig, wobei es schließt, wenn der eingangsseitige Druck unter den Öffnungsdruckwert abfällt.
  • Der Öffnungsdruckwert ist vorzugsweise so gewählt, dass er niedriger ist als ein in einem normalen Regelbetrieb des Einspritzsystems minimal erreichter Hochdruck. Insbesondere ist es bei dem zuvor in Zusammenhang mit den Betriebsarten des Schutzbetriebs erwähnten, konkreten Beispiel möglich, dass der Öffnungsdruckwert 850 bar beträgt. Bevorzugt wird in diesem Fall auch der Startdruckwert, bei dem beim Starten der Brennkraftmaschine ein Übergang von der Stillstandsfunktion des Druckregelventils zu der Normalfunktion erfolgt, so gewählt, dass er ungefähr in der Größenordnung des Öffnungsdruckwerts liegt, wobei er vorzugsweise etwas geringer gewählt wird, um sicherzustellen, dass das Druckregelventil in jedem Fall angesteuert wird, sobald es durch Erreichen oder Überschreiten des Öffnungsdruckwerts öffnet. Dabei können auch Toleranzen des Druckregelventils berücksichtig werden. Beispielsweise kann es sein, dass der Startdruckwert zu 600 bar gewählt wird.
  • Es ergibt sich folgende Funktionalität: Steht die Brennkraftmaschine und ist demzufolge der Hochdruck in dem Hochdruckspeicher unter den Öffnungsdruckwert abgefallen, ist das Druckregelventil in seiner Stillstandsfunktion angeordnet und damit stromlos und drucklos. Es ist demnach geschlossen. Startet nun die Brennkraftmaschine, ermöglicht das geschlossene Druckregelventil zunächst einen raschen und zuverlässigen Druckaufbau in dem Hochdruckspeicher, da kein Kraftstoff über das Druckregelventil in das Kraftstoffreservoir abgesteuert wird. Typischerweise erreicht nun der Hochdruck in dem Hochdruckspeicher zunächst den Startdruckwert, wodurch ein Übergang von der Stillstandsfunktion in die Normalfunktion erfolgt, wobei das Druckregelventil in der Folge angesteuert wird. Es ist in diesem Fall allerdings typischerweise noch immer geschlossen, weil der Öffnungsdruckwert noch nicht erreicht wird. Der Hochdruck in dem Hochdruckspeicher steigt weiter und überschreitet schließlich auch den Öffnungsdruckwert, wobei das Druckregelventil dann öffnet und - bei fehlender Ansteuerung - auch stromlos offen wäre. Durch Bestromung und entsprechende Ansteuerung des Druckregelventils ist es nun möglich, dessen Öffnungsgrad zu beeinflussen und es insbesondere durch stärkere Bestromung weiter zu schließen beziehungsweise durch geringere Bestromung weiter zu öffnen. Erfolgt in der dritten Betriebsart des Schutzbetriebs wieder ein Übergang in die Stillstandsfunktion, wird das Druckregelventil nicht mehr angesteuert, wobei in diesem Fall im Moment des Übergangs ein Hochdruck vorherrscht, der größer ist als der dritte Druckgrenzwert, also insbesondere sehr viel größer als der Öffnungsdruckwert. Somit ist das Druckregelventil in diesem Zustand stromlos geöffnet und steuert daher durch die fehlende Ansteuerung einen maximalen Kraftstoff-Volumenstrom aus dem Hochdruckspeicher in das Kraftstoffreservoir ab, sodass es sicher und zuverlässig seine Schutzfunktion erfüllt. Dadurch ist es ohne weiteres möglich, auf ein mechanisches Überdruckventil zu verzichten. Das Druckregelventil schließt erst dann wieder, wenn der Hochdruck unter den Öffnungsdruckwert abfällt. Auf diese Weise wird ein sicherer Betrieb des Einspritzsystems erreicht, und es ist keine Beschädigung beziehungsweise kein unzulässig hoher Druck mehr zu befürchten.
  • Es wird auch ein Ausführungsbeispiel des Einspritzsystems bevorzugt, das sich dadurch auszeichnet, dass das Einspritzsystem, insbesondere das Steuergerät, eingerichtet ist, um ein erstes Ansteuersignal und ein zweites Ansteuersignal zu erzeugen, und um das wenigstens eine erste Druckregelventil und das wenigstens eine zweite Druckregelventil alternierend mit dem ersten Ansteuersignal und dem zweiten Ansteuersignal anzusteuern. Insbesondere ist dabei vorgesehen, dass zu einem ersten Zeitpunkt das wenigstens eine erste Druckregelventil mit dem ersten Ansteuersignal angesteuert wird, wobei das wenigstens eine zweite Druckregelventil zugleich mit dem zweiten Ansteuersignal angesteuert wird, wobei zu einem zweiten Zeitpunkt das wenigstens eine erste Druckregelventil mit dem zweiten Ansteuersignal angesteuert wird, wobei zugleich das wenigstens eine zweite Druckregelventil mit dem ersten Ansteuersignal angesteuert wird. Diese Ausgestaltung hat den Vorteil, dass die verschiedenen Druckregelventile gleichmäßig ausgelastet werden können. Dies gilt insbesondere für einen Fall, in dem nur eines der Druckregelventile angesteuert wird, sodass eines der Ansteuersignale aktiv, und das andere dauerhaft inaktiv ist. Ohne alternierende Ansteuerung würde nun dauerhaft nur eines der Druckregelventile angesteuert und damit belastet, während das andere Druckregelventil nicht verwendet würde. Durch alternierende Ansteuerung kann auch in einem solchen Fall gewährleistet werden, dass eine gleichmäßige Auslastung der Druckregelventile gewährleistet ist, sodass deren Wartungs- und Austauschzeiten homogenisiert und insgesamt längere Wartungsintervalle verwirklicht werden können. Auch in einem Fall, in welchem sowohl das erste Ansteuersignal als auch das zweite Ansteuersignal aktiv sind, werden durch alternierende Ansteuerung eventuell noch bestehende Unterschiede in den Ansteuersignalen ausgeglichen und homogen auf die verschiedenen Druckregelventile verteilt. Selbstverständlich ist es möglich, dass das Steuergerät eingerichtet ist, um mehr als zwei Ansteuersignale insbesondere für mehr als zwei Druckregelventile zu erzeugen. Dabei ist es möglich, dass die verschiedenen Ansteuersignale den verschiedenen Druckregelventilen alternierend, insbesondere zyklisch, in verschiedener Weise zugeordnet werden.
  • Bevorzugt ist für jedes Druckregelventil ein Regler zur Bestromung des Druckregelventils vorgesehen, wobei auch die Regler alternierend den verschiedenen Druckregelventilen zugeordnet werden. Dabei werden insbesondere die an den Druckregelventilen erfassten Ströme ebenfalls umgeschaltet, sodass diese von den richtigen, jeweils momentan zuständigen Reglern erfasst und zur Regelung verwendet werden können.
  • Eine Umschaltung der Ansteuersignale auf die verschiedenen Druckregelventile erfolgt bevorzugt nur dann, wenn die Brennkraftmaschine steht. Andernfalls kann es im Betrieb der Brennkraftmaschine kurzzeitig zu Störungen kommen.
  • Die Umschaltung der Ansteuersignale erfolgt vorzugsweise nach Ablauf einer vorherbestimmten Betriebszeit des Einspritzsystems, insbesondere nach Ablauf einer vorherbestimmten Zahl von Betriebsstunden. Beispielsweise kann eine Umschaltung nach 5000 Betriebsstunden erfolgen. Wird nach Ablauf der vorbestimmten Zahl von Betriebsstunden festgestellt, dass die Brennkraftmaschine nicht steht, wird vorzugsweise ein nächster Stillstand der Brennkraftmaschine abgewartet, bevor umgeschaltet wird.
  • Es wird auch ein Ausführungsbeispiel des Einspritzsystems bevorzugt, das sich dadurch auszeichnet, dass das Einspritzsystem frei ist von einem mechanischen Überdruckventil. Insbesondere weist das Einspritzventil kein mechanisches Überdruckventil auf. Auf ein mechanisches Überdruckventil kann verzichtet werden, weil eine Schutzfunktion des Einspritzsystems vor unzulässig hohen Drücken sicher und effizient über die Druckregelventile dargestellt werden kann. Somit können mit einem mechanischen Überdruckventil verbundene Kosten und Bauraum eingespart werden.
  • Die Aufgabe wird auch gelöst, indem eine Brennkraftmaschine geschaffen wird, welche ein Einspritzsystem nach einem der zuvor beschriebenen Ausführungsbeispiele aufweist. In Zusammenhang mit der Brennkraftmaschine verwirklichen sich die Vorteile, die bereits in Zusammenhang mit dem Einspritzsystem erläutert wurden.
  • Das Steuergerät ist vorzugsweise als Motor-Steuergerät (Engine Control Unit - ECU) der Brennkraftmaschine ausgebildet. Es ist alternativ allerdings auch möglich, dass ein gesondertes Steuergerät eigens zur Steuerung des Einspritzsystems verwendet wird.
  • Bevorzugt weist das Einspritzsystem eine Mehrzahl von Injektoren auf, wobei es genau einen und nur einen Hochdruckspeicher, oder alternativ zwei Hochdruckspeicher - für V-Motoren -, oder auch drei Hochdruckspeicher - für W-Motoren -, oder gegebenenfalls eine andere Konfigurationen von Hochdruckspeichern für eine andere Konfiguration von Brennräumen der Brennkraftmaschine, aufweist, wobei die verschiedenen Injektoren mit dem/den Hochdruckspeicher(n) fluidverbunden sind. Insbesondere sind jeweils eine Mehrzahl von Injektoren mit einem gemeinsamen Hochdruckspeicher verbunden. Der/die gemeinsame(n) Hochdruckspeicher ist/sind in diesem Fall als sogenannte gemeinsame Leiste, insbesondere als Rail ausgebildet, wobei das Einspritzsystem bevorzugt als Common-Rail-Einspritzsystem ausgebildet ist.
  • Die Brennkraftmaschine ist vorzugsweise als Hubkolbenmotor ausgebildet. Es ist möglich, dass die Brennkraftmaschine zum Antrieb eines Personenkraftwagens, eines Lastkraftwagens oder eines Nutzfahrzeugs eingerichtet ist. Bei einem bevorzugten Ausführungsbeispiel dient die Brennkraftmaschine dem Antrieb insbesondere schwerer Land- oder Wasserfahrzeuge, beispielsweise von Minenfahrzeugen, Zügen, wobei die Brennkraftmaschine in einer Lokomotive oder einem Triebwagen eingesetzt wird, oder von Schiffen. Auch ein Einsatz der Brennkraftmaschine zum Antrieb eines der Verteidigung dienenden Fahrzeugs, beispielsweise eines Panzers, ist möglich. Ein Ausführungsbeispiel der Brennkraftmaschine wird vorzugsweise auch stationär, beispielsweise zur stationären Energieversorgung im Notstrombetrieb, Dauerlastbetrieb oder Spitzenlastbetrieb eingesetzt, wobei die Brennkraftmaschine in diesem Fall vorzugsweise einen Generator antreibt. Auch eine stationäre Anwendung der Brennkraftmaschine zum Antrieb von Hilfsaggregaten, beispielsweise von Feuerlöschpumpen auf Bohrinseln, ist möglich. Weiterhin ist eine Anwendung der Brennkraftmaschine im Bereich der Förderung fossiler Roh- und insbesondere Brennstoffe, beispielswiese Öl und/oder Gas, möglich. Auch eine Verwendung der Brennkraftmaschine im industriellen Bereich oder im Konstruktionsbereich, beispielsweise in einer Konstruktions- oder Baumaschine, zum Beispiel in einem Kran oder einem Bagger, ist möglich. Die Brennkraftmaschine ist vorzugsweise als Dieselmotor, als Benzinmotor, als Gasmotor zum Betrieb mit Erdgas, Biogas, Sondergas oder einem anderen geeigneten Gas, ausgebildet. Insbesondere wenn die Brennkraftmaschine als Gasmotor ausgebildet ist, ist sie für den Einsatz in einem Blockheizkraftwerk zur stationären Energieerzeugung geeignet.
  • Es wird ein Ausführungsbeispiel der Brennkraftmaschine bevorzugt, bei welchem dieser als Großmotor ausgebildet ist. Dabei weist die Brennkraftmaschine bevorzugt acht Brennräume oder mehr auf, insbesondere zehn Brennräume, zwölf Brennräume, vierzehn Brennräume, sechzehn Brennräume, achtzehn Brennräume oder zwanzig Brennräume. Besonders bevorzugt wird eine Brennkraftmaschine, die als Hubkolbenmotor mit zwanzig Zylindern ausgebildet ist.
  • Durch die Ausgestaltung des hier vorgeschlagenen Einspritzsystems ist es insbesondere möglich, für eine Vielzahl verschiedener Brennkraftmaschinen mit einer Vielzahl verschiedener Konfigurationen und Anzahlen von Zylindern gleiche Druckregelventile zu verbauen, wobei lediglich mit der Größe der Brennkraftmaschine eine Anzahl von verbauten Druckregelventilen skaliert wird.
  • Die Erfindung wird im Folgenden anhand der Zeichnung näher erläutert. Dabei zeigen:
  • Figur 1
    eine schematische Darstellung eines Ausführungsbeispiels einer Brennkraftmaschine mit einem Einspritzsystem;
    Figur 2
    eine erste schematische Detaildarstellung einer Ansteuerung des Einspritzsystems;
    Figur 3
    eine zweite schematische Detaildarstellung einer Ansteuerung des Einspritzsystems;
    Figur 4
    eine dritte schematische Detaildarstellung einer Ansteuerung des Einspritzsystems;
    Figur 5
    eine vierte schematische Detaildarstellung einer Ansteuerung des Einspritzsystems;
    Figur 6
    eine fünfte schematische Detaildarstellung einer Ansteuerung des Einspritzsystems;
    Figur 7
    eine sechste schematische Detaildarstellung einer Ansteuerung des Einspritzsystems;
    Figur 8
    eine siebte schematische Detaildarstellung einer Ansteuerung des Einspritzsystems, und
    Figur 9
    eine achte schematische Detaildarstellung einer Ansteuerung des Einspritzsystems.
  • Fig. 1 zeigt eine schematische Darstellung eines Ausführungsbeispiels einer Brennkraftmaschine 1, welche ein Einspritzsystem 3 aufweist. Dieses ist bevorzugt als Common-Rail-Einspritzsystem ausgebildet. Es weist eine Niederdruckpumpe 5 zur Förderung von Kraftstoff aus einem Kraftstoffreservoir 7, eine verstellbare, niederdruckseitige Saugdrossel 9 zur Beeinflussung eines diese durchströmenden Kraftstoff-Volumenstroms, eine Hochdruckpumpe 11 zur Förderung des Kraftstoffs unter Druckerhöhung in einen Hochdruckspeicher 13, den Hochdruckspeicher 13 zum Speichern des Kraftstoffs, und eine Mehrzahl von Injektoren 15 zum Einspritzen des Kraftstoffs in Brennräume 16 der Brennkraftmaschine 1 auf. Optional ist es möglich, dass das Einspritzsystem 3 auch mit Einzelspeichern ausgeführt ist, wobei dann beispielsweise in dem Injektor 15 ein Einzelspeicher 17 als zusätzliches Puffervolumen integriert ist. Es ist ein erstes, insbesondere elektrisch ansteuerbares Druckregelventil 19 vorgesehen, über welches der Hochdruckspeicher 13 mit dem Kraftstoffreservoir 7 fluidverbunden ist. Über die Stellung des ersten Druckregelventils 19 wird ein Kraftstoff-Volumenstrom definiert, welcher aus dem Hochdruckspeicher 13 in das Kraftstoffreservoir 7 abgesteuert wird. Dieser Kraftstoff-Volumenstrom wird in Figur 1 sowie im folgenden Text mit VDRV1 bezeichnet und stellt eine Hochdruck-Störgröße des Einspritzsystems 3 dar.
  • Das Einspritzsystem 3 weist ein zweites, insbesondere elektrisch ansteuerbares Druckregelventil 20 auf, über welches der Hochdruckspeicher 13 ebenfalls mit dem Kraftstoffreservoir 7 fluidverbunden ist. Die beiden Druckregelventile 19, 20 sind demnach insbesondere fluidisch parallel zueinander angeordnet. Auch über das zweite Druckregelventil 20 ist ein Kraftstoff-Volumenstrom definierbar, welcher aus dem Hochdruckspeicher 13 in das Kraftstoffreservoir 7 abgesteuert werden kann. Dieser Kraftstoff-Volumenstrom wird in Figur 1 sowie im folgenden Text mit VDRV2 bezeichnet.
  • Das Einspritzsystem 3 weist kein mechanisches Überdruckventil auf, welches gemäß dem Stand der Technik herkömmlicherweise vorgesehen ist und dann den Hochdruckspeicher 13 mit dem Kraftstoffreservoir 7 verbindet. Auf das mechanische Überdruckventil kann erfindungsgemäß verzichtet werden, da dessen Funktion vollständig durch die Druckregelventile 19, 20 übernommen wird.
  • Es ist möglich, dass das Einspritzsystem 3 mehr als zwei Druckregelventile 19, 20 aufweist. Der einfacheren Darstellung wegen wird im Folgenden allerdings die Funktionsweise des erfindungsgemäßen Einspritzsystems 1 anhand des hier dargestellten Ausführungsbeispiels erläutert, welches genau zwei Druckregelventile 19, 20 aufweist.
  • Die Betriebsweise der Brennkraftmaschine 1 wird durch ein elektronisches Steuergerät 21, welches bevorzugt als Motorsteuergerät der Brennkraftmaschine 1, nämlich als sogenannte Engine Control Unit (ECU) ausgebildet ist, bestimmt. Das elektronische Steuergerät 21 beinhaltet die üblichen Bestandteile eines Mikrocomputersystems, beispielsweise einen Mikroprozessor, I/O-Bausteine, Puffer und Speicherbausteine (EEPROM, RAM). In den Speicherbausteinen sind die für den Betrieb der Brennkraftmaschine 1 relevanten Betriebsdaten in Kennfeldern/Kennlinien appliziert. Über diese berechnet das elektronische Steuergerät 21 aus Eingangsgrößen Ausgangsgrößen. In Figur 1 sind exemplarisch folgende Eingangsgrößen dargestellt: Ein gemessener, noch ungefilterter Hochdruck p, der in dem Hochdruckspeicher 13 herrscht und mittels eines Hochdrucksensors 23 gemessen wird, eine aktuelle Motordrehzahl nI, ein Signal FP zur Leistungsvorgabe durch einen Betreiber der Brennkraftmaschine 1, und eine Eingangsgröße E. Unter der Eingangsgröße E sind vorzugsweise weitere Sensorsignale zusammengefasst, beispielsweise ein Ladeluftdruck eines Abgasturboladers. Bei einem Einspritzsystem 3 mit Einzelspeichern 17 ist ein Einzelspeicherdruck pE bevorzugt eine zusätzliche Eingangsgröße des Steuergeräts 21.
  • In Figur 1 sind als Ausgangsgrößen des elektronischen Steuergeräts 21 beispielhaft ein Signal PWMSD zur Ansteuerung der Saugdrossel 9 als Druckstellglied, ein Signal ve zur Ansteuerung der Injektoren 15 - welches insbesondere einen Spritzbeginn und/oder ein Spritzende oder auch eine Spritzdauer vorgibt -, ein erstes Signal PWMDRV1 zur Ansteuerung eines ersten Druckregelventils der beiden Druckregelventile 19, 20, und ein zweites Signal PWMDRV2 zur Ansteuerung eines zweiten Druckregelventils der beiden Druckregelventile 19, 20 dargestellt. Wie im Folgenden noch erläutert wird, ist die in Figur 1 dargestellte Zuordnung des ersten Signals PWMDRV1 zu dem ersten Druckregelventil 19, und des zweiten Signals PWMDRV2 zu dem zweiten Druckregelventil 20 nicht für alle Zeiten festgelegt, vielmehr werden die Druckregelventile 19, 20 bevorzugt alternierend mit den Signalen PWMDRV1, PWMDRV2 angesteuert. Bei den Signalen PWMDRV1, PWMDRV2 handelt es sich bevorzugt um pulsweitenmodulierte Signale, über welche die Stellung eines Druckregelventils 19, 20 und damit der dem Druckregelventil 19, 20 jeweils zugeordnete Volumenstrom VDRV1, VDRV2 definiert werden kann. In Figur 1 ist außerdem noch eine Ausgangsgröße A dargestellt, die stellvertretend für weitere Stellsignale zur Steuerung und/oder Regelung der Brennkraftmaschine 1 steht, beispielsweise für ein Stellsignal zur Aktivierung eines zweiten Abgasturboladers bei einer Registeraufladung.
  • Fig. 2 zeigt eine erste schematische Darstellung einer Ausführungsförm eines Verfahrens, das als Beispiel gilt und nicht zur Erfindung gehört. Dabei wird im Folgenden zunächst die Funktionsweise des Verfahrens unter Ansteuerung nur eines der Druckregelventile 19, 20 erläutert, wobei dann in einem nächsten Schritt die Funktionalität erläutert wird, welche durch Hinzunahme eines weiteren Druckregelventils 20, 19 hinzutritt.
  • Es ist ein erster Hochdruck-Regelkreis 25 vorgesehen, über den in einem Normalbetrieb des Einspritzsystems 3 mittels der Saugdrossel 9 als Druckstellglied der Hochdruck in dem Hochdruckspeicher 13 geregelt wird. Der erste Hochdruck-Regelkreis 25 wird in Zusammenhang mit Figur 9 näher erläutert, wo er im Detail dargestellt ist. Der erste Hochdruck-Regelkreis 25 weist als Eingangsgröße einen Soll-Hochdruck ps für das Einspritzsystem 3 auf. Dieser wird vorzugsweise in Abhängigkeit von der Drehzahl nI der Brennkraftmaschine 1, einer Last- oder Drehmomentanforderung an die Brennkraftmaschine 1 und/oder in Abhängigkeit weiterer, insbesondere einer Korrektur dienender Größen, aus einem Kennfeld ausgelesen. Weitere Eingangsgrößen des ersten Hochdruck-Regelkreises 25 sind insbesondere die Drehzahl nI der Brennkraftmaschine 1 sowie eine - insbesondere ebenfalls aus einem Kennfeld ausgelesene - Soll-Einspritzmenge Qs. Als Ausgangsgröße weist der erste Hochdruck-Regelkreis 25 insbesondere den von dem Hochdrucksensor 23 gemessenen Hochdruck p auf, der vorzugsweise einer ersten Filterung mit einer größeren Zeitkonstanten unterzogen wird, um einen Ist-Hochdruck pI zu bestimmen, wobei er zugleich vorzugsweise einer zweiten Filterung mit einer kleineren Zeitkonstanten unterzogen wird, um einen dynamischen Raildruck pdyn zu berechnen. Diese beiden Druckwerte pI, pdyn stellen weitere Ausgangsgrößen des ersten Hochdruck-Regelkreises 25 dar.
  • In Figur 2 ist insbesondere die Ansteuerung eines ersten Druckregelventils der beiden Druckregelventile 19, 20, beispielsweise die Ansteuerung des ersten Druckregelventils 19, dargestellt. Es ist vorzugsweise ein erstes Schaltelement 27 vorgesehen, mit welchem abhängig von einem ersten logischen Signal SIG1 zwischen dem Normalbetrieb und einer ersten Betriebsart eines Schutzbetriebs umgeschaltet werden kann. Bevorzugt ist das Schaltelement 27 vollständig auf elektronischer oder Softwareebene verwirklicht. Dabei wird die im Folgenden beschriebene Funktionalität vorzugsweise abhängig von einem Wert einer dem ersten logischen Signal SIG1 entsprechenden Variable, die insbesondere als sogenanntes Flag ausgebildet ist und die Werte "wahr" oder "falsch" annehmen kann, umgeschaltet. Alternativ ist es allerdings selbstverständlich auch möglich, dass das Schaltelement 27 als realer Schalter, beispielsweise als Relais ausgebildet ist. Dieser Schalter kann dann beispielsweise abhängig von einem Niveau eines elektrischen Signals geschaltet werden. Bei der hier konkret dargestellten Ausgestaltung ist der Normalbetrieb gesetzt, wenn das erste logische Signal SIG1 den Wert "falsch" (false) aufweist. Dagegen ist die Betriebsart des Schutzbetriebs gesetzt, wenn das erste logische Signal SIG1 den Wert "wahr" (true) aufweist.
  • Es ist ein zweites Schaltelement 29 vorgesehen, welches eingerichtet ist, um das erste Ansteuersignal PWMDRV1 zwischen zwei Moden zu schalten, wobei insbesondere ein mit dem ersten Ansteuersignal PWMDRV1 angesteuertes Druckregelventil 19, 20 von einer Normalfunktion in eine Stillstandsfunktion und zurück geschaltet werden kann. Dabei wird das zweite Schaltelement 29 in Abhängigkeit von einem zweiten logischen Signal Z beziehungsweise dem Wert einer entsprechenden Variable gesteuert. Das zweite Schaltelement 29 kann als virtuelles, insbesondere Software-basiertes Schaltelement ausgestaltet sein, welches in Abhängigkeit von dem Wert einer insbesondere als Flag ausgestalteten Variable zwischen der Normalfunktion und der Stillstandsfunktion schaltet. Es ist alternativ aber auch möglich, dass das zweite Schaltelement als realer Schalter, beispielsweise als Relais ausgebildet ist, welches in Abhängigkeit von einem Signalwert eines elektrischen Signals schaltet. Bei der hier konkret dargestellten Ausführungsform entspricht das zweite logische Signal Z einer Zustandsvariablen, welche die Werte 1 für einen ersten Zustand und 2 für einen zweiten Zustand annehmen kann. Dabei wird hier die Normalfunktion für das angesteuerte Druckregelventil 19, 20 gesetzt, wenn das zweite logische Signal Z den Wert 2 annimmt, wobei die Stillstandsfunktion gesetzt wird, wenn das zweite logische Signal Z den Wert 1 annimmt. Selbstverständlich ist eine abweichende Definition des zweiten logischen Signals Z, insbesondere dergestalt möglich, dass eine entsprechende Variable die Werte 0 und 1 annehmen kann.
  • Zunächst wird nun die Ansteuerung eines ersten Druckregelventils 19, 20 in dem Normalbetrieb sowie bei gesetzter Normalfunktion beschrieben. Es ist ein erstes Berechnungsglied 31 vorgesehen, welches als Ausgangsgröße einen berechneten Sollvolumenstrom VS.ber ausgibt, wobei in das erste Berechnungsglied 31 als Eingangsgrößen die momentane Drehzahl nI, die Soll-Einspritzmenge Qs, der Sollhochdruck ps, der dynamische Raildruck pdyn und der Ist-Hochdruck pI eingehen. Die Funktionsweise des Berechnungsglieds 31 ist ausführlich in den deutschen Patentschriften DE 10 2009 031 528 B3 und DE 10 2009 031 527 B3 beschrieben. Dabei zeigt sich insbesondere, dass in einem Schwachlastbereich, beispielsweise im Leerlauf der Brennkraftmaschine 1, ein positiver Wert für einen statischen Soll-Volumenstrom berechnet wird, während in einem Normalbetriebsbereich ein statischer Soll-Volumenstrom von 0 berechnet wird. Der statische Soll-Volumenstrom wird bevorzugt durch Aufaddieren eines dynamischen Soll-Volumenstroms korrigiert, der seinerseits über eine dynamische Korrektur in Abhängigkeit von dem Soll-Hochdruck ps, dem Ist-Hochdruck pI und dem dynamischen Raildruck pdyn berechnet wird. Der berechnete Soll-Volumenstrom VS,ber ist schließlich die Summe aus dem statischen Soll-Volumenstrom und dem dynamischen Soll-Volumenstrom. Es handelt sich bei dem berechneten Soll-Volumenstrom VS,ber insoweit um einen resultierenden Soll-Volumenstrom.
  • Im Normalbetrieb, wenn das erste logische Signal SIG1 den Wert "falsch" aufweist, wird der berechnete Soll-Volumenstrom VS,ber als Soll-Volumenstrom VS an ein Druckregelventil-Kennfeld 33 übergeben. Das Druckregelventil-Kennfeld 33 bildet hierbei - wie in der deutschen Patentschrift DE 10 2009 031 528 B3 beschrieben - eine inverse Charakteristik eines verwendeten Druckregelventils 19, 20 ab. Bei einer bevorzugten Ausgestaltung weist das Einspritzsystem identische Druckregelventile 19, 20 auf, sodass für jedes der Druckregelventile 19, 20 das gleiche Druckregelventil-Kennfeld 33 verwendet werden kann. Alternativ ist es aber auch möglich, verschiedene Druckregelventile 19, 20 einzusetzen, wobei dann für jedes Druckregelventil 19, 20 ein diesen separat zugeordnetes Druckregelventil-Kennfeld verwendet wird. Ausgangsgröße des Druckregelventil-Kennfelds 33 ist ein Druckregelventil-Sollstrom Is, Eingangsgrößen sind der abzusteuernde Soll-Volumenstrom VS sowie der Ist-Hochdruck pI.
  • Bei einer alternativen Ausführungsform des Verfahrens, das nicht zur Erfindung gehört, ist es auch möglich, dass der Soll-Volumenstrom VS nicht mittels des ersten Berechnungsglieds 31 berechnet, sondern im Normalbetrieb konstant vorgegeben wird.
  • Der Druckregelventil-Sollstrom wird einem ersten Stromregler 35 zugeführt, der die Aufgabe hat, den Strom zur Ansteuerung des Druckregelventils 19, 20 zu regeln. Weitere Eingangsgrößen des ersten Stromreglers 35 sind beispielsweise ein Proportionalbeiwert kpI,DRV und ein Ohm'scher Widerstand RI,DRV des Druckregelventils 19, 20. Ausgangsgröße des ersten Stromreglers 35 ist eine erste Sollspannung US für das Druckregelventil 19, 20, welche durch Bezug auf eine Betriebsspannung UB in an sich üblicher Weise in eine Einschaltdauer für das erste, pulsweitenmodulierte Signal PWMDRV1 zur Ansteuerung des Druckregelventils 19, 20 umgerechnet und diesem in der Normalfunktion, wenn also das zweite logische Signal Z den Wert 2 aufweist, zugeführt wird. Zur Stromregelung wird der Strom an dem mit dem ersten Ansteuersignal PWMDRV1 angesteuerten Druckregelventil 19, 20 als erste Stromgröße IR gemessen, in einem ersten Stromfilter 37 gefiltert und als erster gefilterter Ist-Strom I1 dem Stromregler 35 wieder zugeführt.
  • Wie bereits angedeutet, wird die Einschaltdauer in Form des ersten, pulsweitenmodulierten Ansteuersignals PWMDRV1 zur Ansteuerung eines Druckregelventils 19, 20 in für sich genommen üblicher Weise gemäß folgender Gleichung aus der ersten Sollspannung US und der Betriebsspannung UB berechnet: PWMDRV 1 = U S / U B × 100 .
    Figure imgb0001
  • Auf diese Weise wird in dem Normalbetrieb eine Hochdruck-Störgröße, nämlich der abgesteuerte Soll-Volumenstrom VS über eines der Druckregelventile 19, 20 erzeugt.
  • Nimmt das erste logische Signal SIG1 den Wert "wahr" an, schaltet das erste Schaltelement 27 von dem Normalbetrieb in den Schutzbetrieb um. Unter welchen Bedingungen dies der Fall ist, wird in Zusammenhang mit Figur 3 erläutert. Bezüglich der Ansteuerung des Druckregelventils 19, 20 ergibt sich in der ersten und zweiten Betriebsart des Schutzbetriebs insoweit kein Unterschied, als auch hier das Druckregelventil 19, 20 mit dem Soll-Volumenstrom VS angesteuert wird, jedenfalls solange durch das Schaltelement 29 die Normalfunktion gesetzt ist. Insoweit ergibt sich in Figur 2 rechts von dem Schaltelement 27 keine Änderung zu den zuvor gegebenen Erläuterungen. Der Soll-Volumenstrom VS wird in der ersten und zweiten Betriebsart des Schutzbetriebs jedoch anders berechnet als in dem Normalbetrieb, nämlich über einen zweiten Hochdruck-Regelkreis 39.
  • Der Soll-Volumenstrom VS wird in diesem Fall mit einem begrenzten Ausgangsvolumenstrom VR aus einem Druckregelventil-Druckregler 41 - bis auf einen im Folgenden noch erläuterten Faktor fDRV - identisch gesetzt. Dies entspricht der oberen Schaltstellung des ersten Schaltelements 27. Der Druckregelventil-Druckregler 41 weist als Eingangsgröße eine Hochdruck-Regelabweichung ep auf, welche als Differenz von dem Soll-Hochdruck ps und dem dynamischen Raildruck pdyn berechnet wird. Weitere Eingangsgrößen des Druckregelventil-Druckreglers 41 sind bevorzugt ein maximaler Volumenstrom Vmax für das Druckregelventil 19, 20, der in dem ersten Berechnungsglied 31 berechnete Soll-Volumenstrom VS,ber und/oder ein Proportionalbeiwert kpDRV. Der Druckregelventil-Druckregler 41 wird vorzugsweise als PI(DT1)-Algorithmus ausgeführt, der in Figur 7 näher erläutert wird. Dabei wird - wie noch ausgeführt wird - ein integrierender Anteil (I-Anteil) zu dem Zeitpunkt, zu welchem das erste Schaltelement 27 von seiner in Figur 2 dargestellten unteren in seine obere Schaltstellung umgeschaltet wird, mit dem berechneten Soll-Volumenstrom VS,ber initialisiert. Nach oben wird der I-Anteil des Druckregelventil-Druckreglers 41 auf den Maximalvolumenstrom Vmax für das Druckregelventil 19, 20 begrenzt. Dabei ist der maximale Volumenstrom Vmax vorzugsweise - bis auf den Faktor fDRV- eine Ausgangsgröße einer zweidimensionalen Kennlinie 43, welche den das Druckregelventil 19, 20 maximal durchsetzenden Volumenstrom in Abhängigkeit von dem Hochdruck aufweist, wobei die Kennlinie 43 als Eingangsgröße den dynamischen Raildruck pdyn erhält. Wie bereits angedeutet, wird bei diesem Ausführungsbeispiel davon ausgegangen, dass die Druckregelventile 19, 20 identisch ausgebildet sind, sodass für beide Druckregelventile eine identische Kennlinie 43 verwendet werden kann. Es ist aber auch möglich, verschiedene Druckregelventile 19, 20 einzusetzen, wobei dann für jedes der Druckregelventile 19, 20 eine separate Kennlinie 43 verwendet wird. Unmittelbare Ausgangsgröße des Druckregelventil-Druckreglers 41 ist ein unbegrenzter Volumenstrom VU, der in einem Begrenzungselement 45 auf den maximalen Volumenstrom Vmax begrenzt wird. Das Begrenzungselement 45 gibt als Ausgangsgröße schließlich den begrenzten Soll-Volumenstrom VR aus. Mit diesem wird dann - bis auf den im Folgenden noch erläuterten Faktor fDRV - das Druckregelventil 19, 20 als Soll-Volumenstrom VS angesteuert, indem der Soll-Volumenstrom VS in bereits beschriebener Weise dem Druckregelventil-Kennfeld 33 zugeführt wird.
  • Es erfolgt demnach in dieser Weise in der ersten Betriebsart des Schutzbetriebs eine Ansteuerung eines Druckregelventils 19, 20 als Druckstellglied zur Regelung des Hochdrucks in dem Hochdruckspeicher 13 über den zweiten Hochdruck-Regelkreis 39.
  • Im Folgenden wird nun die Funktionsweise erläutert, die durch Hinzunahme eines zweiten Druckregelventils 20, 19 gegeben ist.
  • Wie in Zusammenhang mit Figur 3 noch näher erläutert werden wird, nimmt das erste logische Signal SIG1 den logischen Wert "wahr" an, wenn der dynamische Raildruck pdyn -beispielsweise infolge eines Kabelbruchs des Saugdrossel-Steckers -, einen ersten Druckgrenzwert pG1 erreicht. In der Folge wechselt das erste Schaltelement 27 in die in Figur 2 dargestellte obere Schaltstellung, sodass der Hochdruck nun mithilfe des zweiten Hochdruck-Regelkreises 39 und eines der Druckregelventile 19, 20 geregelt wird. Wie ebenfalls in Zusammenhang mit Figur 3 noch erläutert werden wird, weist ein drittes logisches Signal SIG2 den Wert "falsch" auf, wenn der dynamische Raildruck pdyn einen zweiten Druckgrenzwert pG2 noch nicht erreicht hat. Ein zweiter Druckregelventil-Sollstrom IS,2 für ein zweites Druckregelventil 20, 19 wird dann aus einem zweiten Druckregelventil-Kennfeld 49 ausgelesen, welches den Ist-Hochdruck pI und den Wert Null für den Soll-Volumenstrom als Eingangsgröße aufweist. Sind die beiden Druckregelventile 19, 20 identisch ausgebildet, ist das zweite Druckregelventil-Kennfeld 49 gleich dem ersten Druckregelventil-Kennfeld 33 und unterscheidet sich nur in Hinblick auf den zu Null gesetzten, eingehenden Soll-Volumenstrom. Werden verschiedene Druckregelventile 19, 20 verwendet, können sich die beiden Druckregelventil-Kennfelder 33, 49 unterscheiden. Dadurch, dass das zweite Druckregelventil-Kennfeld 49 als eingehenden Soll-Volumenstrom den Wert Null hat, wird das derart angesteuerte Druckregelventil 19, 20 so angesteuert, das es vollständig geschlossen ist, wobei es keinen Kraftstoff in das Kraftstoffreservoir 7 absteuert. Der Hochdruck wird daher solange, bis der dynamische Raildruck pdyn den zweiten Druckgrenzwert pG2 erreicht, nur mithilfe eines Druckregelventils 19, 20 geregelt.
  • Es ist ein viertes Schaltelement 44 vorgesehen, welches den Wert des bereits zuvor erwähnten Faktors fDRV bestimmt. Dieses vierte Schaltelement 44 wird ebenfalls abhängig von dem dritten logischen Signal SIG2 gesteuert, und nimmt seine in Figur 2 dargestellte untere Schaltstellung ein, wenn das dritte logische Signal SIG2 den Wert "falsch" (false) aufweist. In diesem Fall wird die Ausgangsgröße der Kennlinie 43 mit dem Faktor 1 multipliziert. Entsprechend wird der aus dem Begrenzungselement 45 resultierende begrenzte Sollvolumenstrom VR durch den Faktor 1 dividiert.
  • Steigt der dynamische Raildruck pdyn an und erreicht oder überschreitet den zweiten Druckgrenzwert pG2, so nimmt das dritte logische Signal SIG2 den Wert "wahr" (true) an. Dies führt dazu, dass das dritte Schaltelement 47 und das vierte Schaltelement 44 in ihre in Figur 2 obere Schaltstellung wechseln. Betrachtet man zunächst das dritte Schaltelement 47, so zeigt sich, dass hierdurch nun der zweite Druckregelventil-Sollstrom IS,2 bei dem hier konkret dargestellten Ausführungsbeispiel identisch wird mit dem ersten Druckregelventil-Sollstrom IS, sodass in der Folge beide Druckregelventile 19, 20 mit demselben Sollstrom beaufschlagt werden. Dies setzt wiederum voraus, dass die beiden Druckregelventil 19, 20 identisch ausgebildet sind, was einer bevorzugten Ausgestaltung entspricht. Selbstverständlich ist es aber möglich, diese mit separaten, insbesondere aus separaten Kennfeldern resultierenden Sollströmen zu beaufschlagen, wenn sich die Druckregelventile 19, 20 unterscheiden.
  • Zwei gleiche Druckregelventile 19, 20 können eine doppelte Kraftstoffmenge im Vergleich zu einem einzigen Druckregelventil 19, 20 absteuern. Aus diesem Grund nimmt - wenn man nun das vierte Schaltelement 44 betrachtet - der Faktor fDRV jetzt den Wert 2 an, wodurch der aus der Kennlinie 43 resultierende, maximale Volumenstrom Vmax verdoppelt wird. Der begrenzte Volumenstrom VR, der aus dem Begrenzungselement 45 resultiert, wird dagegen durch den Faktor fDRV und somit nun durch zwei geteilt, da letztlich der resultierende Druckregelventil-Sollvolumenstrom VS jeweils mit einem Druckregelventil 19, 20 korrespondiert und jeweils der Ansteuerung eines Druckregelventils 19, 20 dient. Auch diese Vorgehensweise ist abgestimmt auf die bevorzugte Ausgestaltung, bei welcher die beiden verwendeten Druckregelventile 19, 20 gleich ausgebildet sind. Sind sie verschieden ausgebildet, werden dagegen vorzugsweise verschiedene Kennlinien 43, verschiedene zweite Hochdruck-Regelkreise 39, und verschiedene Druckregelventil-Kennfelder 33, 49 zur Ansteuerung der verschiedenen Druckregelventile verwendet. Sind dagegen mehr als zwei gleich ausgebildete Druckregelventile vorgesehen, können diese völlig analog zu der Darstellung in Figur 2 durch eine Vervielfachung der dort für jedes Druckregelventil 19, 20 dargestellten Ansteuerelemente angesteuert werden, wobei als Faktor fDRV in der oberen Schaltstellung des vierten Schaltelements 44 die Zahl der verwendeten Druckregelventile eingesetzt werden kann.
  • Der zweite Druckregelventil-Sollstrom IS,2 ist die Eingangsgröße eines zweiten Stromreglers 51, der im Übrigen bevorzugt genau so ausgebildet ist, wie der erste Stromregler 35. Auch im Übrigen entspricht die Ansteuerungsmimik zur Erzeugung des zweiten Ansteuersignals PWMDRV2 derjenigen zur Erzeugung des ersten Ansteuersignals PWMDRV1, wobei hier zur Umschaltung zwischen der Normalfunktion und der Stillstandsfunktion noch ein fünftes Schaltelement 53 vorgesehen ist, und wobei zur Filterung einer zweiten, gemessenen Stromgröße IR,2 ein zweites Stromfilter 55 vorgesehen ist, welches als Ausgangsgröße einen zweiten Ist-Strom II,2 aufweist, welcher dem zweiten Stromregler 51 zugeführt wird. Die Reglerparameter des zweiten Stromreglers 51 werden vorzugsweise so eingestellt wie die entsprechenden Parameter des ersten Stromreglers 35.
  • Anhand des zweiten Schaltelements 29 und des fünften Schaltelements 53 zeigt sich noch, dass die Einschaltdauer der Ansteuersignale PWMDRV1, PWMDRV2 in der Stillstandsfunktion identisch zu 0 % ist. In der Normalfunktion wird dagegen das jeweilige Ansteuersignal PWMDRV1, PWMDRV2 durch die diesem zugeordnete Ansteuermimik erzeugt, wie dies zuvor bereits erläutert wurde.
  • Die beiden Ansteuersignale PWMDRV1, PWMDRV2 werden einer Umschaltlogik 57 zugeführt, die im Folgenden noch in Zusammenhang mit den Figuren 5 und 6 näher erläutert wird, wobei die Umschaltlogik 57 dafür sorgt, dass die Druckregelventile 19, 20 alternierend mit den Ansteuersignalen PWMDRV1, PWMDRV2 angesteuert werden. Ebenso werden die gemessenen Stromgrößen IR, IR,2 auch der Umschaltlogik 57 entnommen, wobei diese dafür sorgt, dass sie stets an den jeweiligen, den Ansteuersignalen PWMDRV1, PWMDRV2 korrekt zugeordneten Druckregelventilen 19, 20 gemessen werden, um eine definierte Regelung jedes der Druckregelventile 19, 20 über die Stromregler 35, 51 zu gewährleisten.
  • Fig. 3 zeigt, unter welchen Bedingungen das erste logische Signal SIG1 und das dritte logische Signal SIG2 jeweils die Werte "wahr" und "falsch" annehmen.
  • Dies wird im Folgenden zunächst anhand von Figur 3a) für das erste logische Signal SIG1 erläutert. Solange der dynamische Raildruck pdyn einen ersten Druckgrenzwert pG1 nicht erreicht oder überschreitet, weist der Ausgang eines ersten Komparatorelements 59 den Wert "falsch" auf. Beim Start der Brennkraftmaschine 1 wird der Wert des ersten logischen Signals SIG1 mit "falsch" initialisiert. Dadurch ist auch das Ergebnis eines ersten Veroderungsglieds 61 "falsch", solange der Ausgang des ersten Komparatorelements 59 den Wert "falsch" aufweist. Der Ausgang des ersten Veroderungsglieds 61 wird einem Eingang eines ersten Verundungsglieds 63 zugeführt, dessen anderem Eingang eine durch einen Querstrich dargestellte Verneinung einer Variablen MS zugeführt wird, wobei die Variable MS den Wert "wahr" aufweist, wenn die Brennkraftmaschine 1 steht, und wobei sie den Wert "falsch" aufweist, wenn die Brennkraftmaschine 1 läuft. Im Betrieb der Brennkraftmaschine 1 ist demnach der Wert der Verneinung der Variablen MS "wahr". Insgesamt zeigt sich nun, dass der Ausgang des Verundungsglieds 63 und damit der Wert des ersten logischen Signals SIG1 "falsch" ist, solange der dynamische Raildruck pdyn den ersten Druckgrenzwert pG1 nicht erreicht oder überschreitet. Erreicht oder überschreitet der dynamische Raildruck pdyn den ersten Druckgrenzwert pGI, springt der Ausgang des ersten Komparatorelements 59 von "falsch" auf "wahr". Somit springt auch der Ausgang des ersten Veroderungsglieds 61 von "falsch" auf "wahr". Läuft die Brennkraftmaschine 1, springt auch der Ausgang des ersten Verundungsglieds 63 von "falsch" auf "wahr", sodass der Wert des ersten logischen Signals SIG1 "wahr" wird. Dieser Wert wird dem ersten Veroderungsglied 61 wieder zugeführt, was jedoch nichts daran ändert, dass dessen Ausgang "wahr" bleibt. Selbst ein Abfall des dynamischen Raildrucks pdyn unter den ersten Druckgrenzwert pG1 kann den Wahrheitswert des ersten logischen Signals SIG1 nicht mehr ändern. Dieser bleibt vielmehr solange "wahr", bis die Variable MS und damit auch deren Verneinung ihren Wahrheitswert ändert, nämlich wenn die Brennkraftmaschine 1 nicht mehr läuft. Somit zeigt sich Folgendes: Der Normalbetrieb wird realisiert, solange der dynamische Raildruck pdyn den ersten Druckgrenzwert pG1 unterschreitet. In diesem Fall ist der Soll-Volumenstrom VS mit dem berechneten Soll-Volumenstrom VS,ber identisch. Erreicht oder überschreitet der dynamische Raildruck pdyn den ersten Druckgrenzwert pG1, nimmt das erste logische Signal SIG1 den Wert "wahr" an, und das erste Schaltelement 27 nimmt seine obere Schaltstellung ein. Damit wird der Soll-Volumenstrom VS in diesem Fall mit dem begrenzten Volumenstrom VR des zweiten Hochdruck-Regelkreises 39 - bis auf den Faktor FDRV - identisch. Dies bedeutet, dass im Normalbetrieb durch eines der Druckregelventile 19, 20 eine Hochdruck-Störgröße erzeugt wird, wobei in der ersten Betriebsart des Schutzbetriebs der Hochdruck immer dann, wenn der dynamische Raildruck pdyn den ersten Druckgrenzwert pGI erreicht, anschließend von dem Druckregelventil-Druckregler 41 geregelt wird, und dies solange, bis ein Stillstand der Brennkraftmaschine 1 erkannt wird. In der ersten Betriebsart des Schutzbetriebs übernimmt zumindest eines der Druckregelventile 19, 20 über den zweiten Hochdruck-Regelkreis 39 die Regelung des Hochdrucks.
  • In Figur 3b) ist die Logik zur Schaltung des dritten logischen Signals SIG2 dargestellt. Dabei zeigt sich, dass diese vollständig der Logik zur Schaltung des ersten logischen Signals SIG1 entspricht, wobei lediglich statt des ersten Druckgrenzwerts pG1 der zweite Druckgrenzwert pG2 als Eingangsgröße verwendet wird. Die entsprechenden logischen Schaltkomponenten sind hier in Vergleich zu Figur 3a) mit gestrichenen Bezugszeichen versehen. Aufgrund der völlig identischen Funktionsweise wird auf die Erläuterungen zu Figur 3a) verwiesen. Analog zu dem ersten logischen Signal SIG1 zeigt sich für das zweite logische Signal SIG2 Folgendes: Dieses wird zu Beginn des Betriebs der Brennkraftmaschine 1 mit dem Wert "falsch" initialisiert", wobei es seinen Wahrheitswert zu "wahr" ändert, wenn der dynamische Raildruck pdyn den zweiten Druckgrenzwert pG2 erreicht oder überschreitet. Daraufhin bleibt der Wahrheitswert des dritten logischen Signals SIG2 "wahr", bis ein Stillstand der Brennkraftmaschine 1 erkannt wird.
  • Mit Bezug auf Figur 2 zeigt sich, dass die zweite Betriebsart des Schutzbetriebs aktiviert wird, wenn das dritte logische Signal SIG2 seinen Wahrheitswert von "falsch" zu "wahr" ändert, wobei in diesem Fall das bisher nicht aktive Druckregelventil 20, 19 hinzugeschaltet wird, sodass der Hochdruck von beiden Druckregelventilen 19, 20 geregelt wird.
  • Zurückkommend auf Figur 2 wird im Folgenden auch die dritte Betriebsart des Schutzbetriebs erläutert: In diese wird geschaltet, wenn das zweite logische Signal Z den Wert 1 annimmt. In diesem Fall wird das zweite Schaltelement 29 und auch das fünfte Schaltelement 53 in seine in Figur 2 dargestellte obere Schaltposition gebracht, wobei hierdurch die Stillstandsfunktion für beide Druckregelventile 19, 20 gesetzt wird. In dieser Stillstandsfunktion werden die Druckregelventile 19, 20 nicht mehr angesteuert, das heißt, die Ansteuersignale PWMDRV1, PWMDRV2 werden zu Null gesetzt. Da vorzugsweise zumindest unter Eingangsdruck stromlos offene Druckregelventile 19, 20 verwendet werden, steuern diese nun dauerhaft einen maximalen Kraftstoff-Volumenstrom aus dem Hochdruckspeicher 13 in das Kraftstoffreservoir 7 ab.
  • Weist dagegen das zweite logische Signal Z den Wert 2 auf, ist - wie bereits erläutert - die Normalfunktion für die Druckregelventile 19, 20 gesetzt, und diese werden mit ihren jeweiligen Sollströmen IS, IS,2 und den hieraus berechneten Ansteuersignalen PWMDRV1, PWMDRV2 angesteuert.
  • Fig. 4 zeigt schematisch ein Zustandsübergangsdiagramm für die Druckregelventile 19, 20 von der Normalfunktion in die Stillstandsfunktion und zurück. Dabei sind die Druckregelventile 19, 20 bevorzugt so ausgebildet, dass sie drucklos und stromlos geschlossen ausgebildet sind, wobei sie weiter bevorzugt so ausgebildet sind, dass sie bei einem eingangsseitig anliegenden Druck bis zu einem Öffnungsdruckwert geschlossen sind, wobei sie öffnen, wenn der eingangsseitig anliegende Druck im stromlosen Zustand den Öffnungsdruckwert erreicht oder überschreitet. Sie sind dann unter Eingangsdruck stromlos offen und können durch Bestromen in Richtung des geschlossenen Zustands angesteuert werden. Der Öffnungsdruckwert kann beispielsweise bei 850 bar liegen.
  • In Figur 4 ist mit einem ersten Kreis K1 die Stillstandsfunktion symbolisiert, wobei rechts oben mit einem zweiten Kreis K2 die Normalfunktion symbolisiert ist. Ein erster Pfeil P1 stellt einen Übergang zwischen der Stillstandsfunktion und der Normalfunktion dar, wobei ein zweiter Pfeil P2 einen Übergang zwischen der Normalfunktion und der Stillstandsfunktion darstellt. Mit einem dritten Pfeil P3 ist eine Initialisierung der Brennkraftmaschine 1 nach dem Start angedeutet, wobei die Druckregelventile 19, 20 zunächst in der Stillstandsfunktion initialisiert werden. Erst wenn zugleich ein laufender Betrieb der Brennkraftmaschine 1 erkannt wird, und der Ist-Hochdruck pI einen vorbestimmten Startwert pSt überschreitet, wird für die Druckregelventile 19, 20 - entlang des Pfeils P1 - die Normalfunktion gesetzt und die Stillstandsfunktion zurückgesetzt, insbesondere indem das zweite logische Signal Z seinen Wert von 1 zu 2 ändert. Die Normalfunktion wird zurückgesetzt und die Stillstandsfunktion wird entlang des Pfeils P2 gesetzt, wenn der dynamische Raildruck pdyn den dritten Druckgrenzwert pG3 überschreitet, oder wenn ein Defekt eines Hochdrucksensors - hier dargestellt durch eine logische Variable HDSD - erkannt wird, oder wenn erkannt wird, dass die Brennkraftmaschine 1 steht. In der Stillstandsfunktion, in welcher das zweite logische Signal Z wiederum den Wert 1 annimmt, werden die Druckregelventile 19, 20 nicht angesteuert, wobei sie in der Normalfunktion - wie bereits in Zusammenhang mit Figur 2 erläutert - mittels der ihnen jeweils zugeordneten Sollströme IS, IS,2 angesteuert werden.
  • Es ergibt sich nun folgende Funktionalität: Startet die Brennkraftmaschine 1, liegt zunächst kein Hochdruck in dem Hochdruckspeicher 13 vor, und die Druckregelventile 19, 20 sind in ihrer Stillstandsfunktion angeordnet, sodass sie druck- und stromlos, also geschlossen sind. Beim Hochlaufen der Brennkraftmaschine 1 kann sich daher rasch ein Hochdruck in dem Hochdruckspeicher ausbilden, der irgendwann den Startwert pSt überschreitet. Dieser liegt bevorzugt niedriger als der Öffnungsdruckwert der Druckregelventile 19, 20, sodass für diese zunächst die Normalfunktion gesetzt wird, bevor sie öffnen. Hierdurch wird in vorteilhafter Weise sichergestellt, dass die Druckregelventile 19, 20 in jedem Fall angesteuert werden, wenn sie erstmals öffnen. Da sie drucklos geschlossen sind, bleiben sie auch unter Ansteuerung weiter geschlossen, bis der Ist-Hochdruck pI auch den Öffnungsdruckwert überschreitet, wobei sie dann öffnen und in der Normalfunktion angesteuert werden, nämlich entweder in dem Normalbetrieb oder in der ersten Betriebsart des Schutzbetriebs.
  • Tritt allerdings einer der zuvor beschriebenen Fälle auf, wird wiederum die Stillstandsfunktion für die Druckregelventile 19, 20 gesetzt.
  • Dies ist insbesondere der Fall, wenn der dynamische Raildruck pdyn den dritten Druckgrenzwert pG3 überschreitet, wobei dieser vorzugsweise größer gewählt ist als der erste Druckgrenzwert pG1 und der zweite Druckgrenzwert pG2, und insbesondere einen Wert aufweist, bei welchem in einer herkömmlichen Ausgestaltung des Einspritzsystems ein mechanisches Überdruckventil öffnen würde. Da die Druckregelventile 19, 20 unter Druck stromlos offen sind, öffnen diese in der Stillstandsfunktion in diesem Fall vollständig und erfüllen so sicher und zuverlässig die Funktion eines Überdruckventils.
  • Der Übergang von der Normalfunktion in die Stillstandsfunktion erfolgt auch, wenn ein Defekt an dem Hochdrucksensor 23 festgestellt wird. Liegt hier ein Defekt vor, kann der Hochdruck in dem Hochdruckspeicher 13 nicht mehr geregelt werden. Um die Brennkraftmaschine 1 trotzdem noch sicher betreiben zu können, wird der Übergang von der Normalfunktion in die Stillstandsfunktion für die Druckregelventile 19, 20 herbeigeführt, sodass diese öffnen und damit einen unzulässigen Anstieg des Hochdrucks verhindern.
  • Weiterhin erfolgt der Übergang von der Normalfunktion in die Stillstandsfunktion in einem Fall, in welchem ein Stillstand der Brennkraftmaschine 1 festgestellt wird. Dies entspricht einem Zurücksetzen der Druckregelventile 19, 20, sodass bei einem erneuten Start der Brennkraftmaschine 1 der hier beschriebene Zyklus wieder von neuem beginnen kann.
  • Wird für die Druckregelventile 19, 20 unter Druck in dem Hochdruckspeicher 13 die Stillstandsfunktion gesetzt, sind diese maximal weit geöffnet und steuern einen maximalen Volumenstrom aus dem Hochdruckspeicher 13 in das Kraftstoffreservoir 7 ab. Dies entspricht einer Schutzfunktion für die Brennkraftmaschine 1 und das Einspritzsystem 3, wobei diese Schutzfunktion insbesondere das Fehlen eines mechanischen Überdruckventils ersetzen kann.
  • Wichtig ist hier, dass die Druckregelventile 19, 20 nur zwei Funktionszustände, nämlich die Stillstandsfunktion und die Normalfunktion aufweisen, wobei diese beiden Funktionszustände vollauf genügen, um die gesamte relevante Funktionalität der Druckregelventile 19, 20 einschließlich der Schutzfunktion zum Ersetzen eines mechanischen Überdruckventils darzustellen.
  • Es zeigt sich, dass auch nach Überschreiten des zweiten Druckgrenzwerts pG2 noch eine stabile Regelung des Hochdrucks mittels der Druckregelventile möglich ist, da das Fördervermögen der Hochdruckpumpe 11 drehzahlabhängig ist. Damit können Motorbetriebswerte, vor allem Emissionswerte, in diesem Fall noch eingehalten werden. Erst im höheren Drehzahlbereich muss mit einem Überschreiten des dritten Druckgrenzwerts pG3 gerechnet werden. In diesem Fall öffnen die Druckregelventile 19, 20 vollständig, und es muss mit einer Verschlechterung der Motorbetriebswerte, vor allem der Emissionen, gerechnet werden. Zumindest ein stabiler Betrieb des Motors wird dann aber auch weiterhin gewährleistet.
  • Auch bei einem Ausfall des Hochdrucksensors 23 ist ein stabiler Motorbetrieb noch möglich, auch wenn eventuell in diesem Fall eine Verschlechterung der Motorbetriebswerte, insbesondere der Emissionswerte, eintritt.
  • Dadurch, dass der zweite Druckgrenzwert pG2 größer ist als der erste Druckgrenzwert pG1, wird vermieden, dass beide Druckregelventile 19, 20 gleichzeitig vom geschlossenen in einen geöffneten Zustand überführt werden. Auf diese Weise werden große Druckgradienten, welche sich schädigend auf das Einspritzsystem 3 auswirken könnten, vermieden.
  • Wie bereits angedeutet, werden die Druckregelventile 19, 20 alternierend mit den Ansteuersignalen PWMDRV1 und PWMDRV2 beaufschlagt. Dies bedeutet, dass eines der beiden Druckregelventile 19, 20 während eines vorbestimmten Zeitraums, beispielsweise von 5000 Betriebsstunden, mit dem ersten Ansteuersignal PWMDRV1 beaufschlagt wird. Zugleich wird das andere Druckregelventil 20, 19 mit dem zweiten Ansteuersignal PWMDRV2 beaufschlagt. Nach Ablauf des vorbestimmten Zeitraums wird umgekehrt das eine Druckregelventil 19, 20 mit dem zweiten Ansteuersignal PWMDRV2 und das andere Druckregelventil 20, 19 mit dem ersten Ansteuersignal PWMDRV1 - wiederum für die vorherbestimmte Zeitdauer - beaufschlagt. Dies wird nun in Zusammenhang mit den Figuren 5 und 6 näher erläutert.
  • Fig. 5 zeigt eine schematische Darstellung einer Logik zu einer alternierenden Ansteuerung der Druckregelventile 19, 20 anhand verschiedener Diagramme. Ein erstes Diagramm 1) zeigt dabei einen Zeitzähler ZDRV aufgetragen gegen die Zeit t. Mit geschweiften Klammern ist jeweils ein vorbestimmter Zeitraum tDRV dargestellt. Der Zeitzähler ZDRV weist zu einem ersten Zeitpunkt t1, nach Ablauf des vorbestimmten Zeitraums tDRV seinen Maximalwert, beispielsweise 5000 Betriebsstunden, auf.
  • Das zweite, mittlere Diagramm 2) zeigt die logische Variable MS in Abhängigkeit von der Zeit t, wobei diese den Wert 0 annimmt, wenn die Brennkraftmaschine 1 läuft, und den Wert 1, wenn die Brennkraftmaschine 1 steht. Bis zu einem zweiten Zeitpunkt t2 nimmt die Variable MS den Wert 0 an, das heißt die Brennkraftmaschine 1 läuft. Zu dem zweiten Zeitpunkt t2 nimmt sie den Wert 1 an, es wird also ein Stillstand der Brennkraftmaschine 1 erkannt. Anhand des ersten, oberen Diagramms zeigt sich, dass nun der Zeitzähler ZDRV auf 0 zurückgesetzt wird. Anschließend läuft er wieder bis zu seinem Maximalwert hoch, welcher dann wieder zu einem dritten Zeitpunkt t3 erreicht wird. Zwischen dem ersten Zeitpunkt t1 und dem zweiten Zeitpunkt t2 erfolgt keine Veränderung des Zeitzählers ZDRV, weil dieser seinen Maximalwert erreicht hat, wobei jedoch noch kein Stillstand der Brennkraftmaschine 1 erkannt wurde. Zu dem dritten Zeitpunkt t3 wird der Zeitzähler ZDRV wieder auf den Wert 0 zurückgesetzt, weil das zweite Diagramm einen stehenden Motor anzeigt. Anschließend wird der Zeitzähler ZDRV wieder hochgezählt, bis er zu einem vierten Zeitpunkt t4 schließlich wieder seinen Maximalwert erreicht. Da das zweite Diagramm erst zu einem fünften Zeitpunkt t5 einen stehenden Motor anzeigt, wird der Zeitzähler entsprechend dem ersten Diagramm zu dem fünften Zeitpunkt t5 auf den Wert 0 zurückgesetzt. Danach läuft der Zähler wieder auf seinen Maximalwert hoch, welchen er zu einem sechsten Zeitpunkt t6 wieder erreicht. Das dritte, untere Diagramm 3) stellt ein viertes logisches Signal SIG4 aufgetragen gegen die Zeit t dar. Dieses vierte logische Signal SIG4 zeigt an, wann ein Wechsel in der Zuordnung der Ansteuersignale PWMDRV1, PWMDRV2 zu den entsprechenden Druckregelventilen 19, 20 erfolgen soll. Dieses vierte logische Signal SIG4 hat zum Zeitpunkt 0 den Wert 0. Immer, wenn der Zeitzähler ZDRV seinen Maximalwert erreicht hat und gleichzeitig eine stehende Brennkraftmaschine 1 durch das logische Signal MS angezeigt wird, erfolgt ein Wechsel im Wert des vierten logischen Signals SIG4. Dies bedeutet, dass sich das Signal SIG4 zu dem zweiten Zeitpunkt t2 von dem Wert 0 auf den Wert 1, zu dem dritten Zeitpunkt t3 von dem Wert 1 auf den Wert 0 und zu dem fünften Zeitpunkt t5 wieder von dem Wert 0 auf den Wert 1 ändert. Insgesamt erfolgt also zu diesen Zeitpunkten ein Wechsel im Wert des vierten logischen Signals SIG4 und damit in der Zuordnung der Ansteuersignale PWMDRV1, PWMDRV2 zu den Druckregelventilen 19, 20.
  • Fig. 6 zeigt eine Funktion der Umschaltlogik 57 in schematischer Darstellung. Diese weist ein sechstes Schaltelement 65 und ein siebtes Schaltelement 67 auf, welche ihre Schaltstellung in Abhängigkeit von dem vierten logischen Signal SIG4 ändern. Nimmt das vierte logische Signal SIG4 den Wert 0 an, sind beide Schaltelemente 65, 67 in ihrer in Figur 6 dargestellten, oberen Schaltstellung. Damit wird das erste Ansteuersignal PWMDRV1 dem ersten Druckregelventil 19 zugeordnet, wobei zugleich das zweite Ansteuersignal PWMDRV2 dem zweiten Druckregelventil 20 zugeordnet wird. Zugleich wird - was gegebenenfalls durch zusätzliche physikalische Schaltelemente bewirkt, hier der einfacheren Darstellung wegen jedoch gemeinsam mit den Ansteuersignalen erläutert wird - die erste gemessene Stromgröße IR an dem ersten Druckregelventil 19 gemessen, wobei die zweite gemessene Stromgröße IR,2 an dem zweiten Druckregelventil 20 gemessen wird.
  • Nimmt das vierte logische Signal SIG4 den Wert 1 an, so wechseln die Schaltelemente 65, 67 in ihre in Figur 6 dargestellte, untere Schaltstellung. Damit wird nun das erste Ansteuersignal PWMDRV1 dem zweiten Druckregelventil 20 zugeordnet, wobei das zweite Ansteuersignal PWMDRV2 dem ersten Druckregelventil 19 zugeordnet wird. Zugleich wird die erste gemessene Stromgröße IR an dem zweiten Druckregelventil 20 gemessen, wobei die zweite gemessene Stromgröße IR,2 an dem ersten Druckregelventil 19 gemessen wird.
  • Die Umschaltlogik 57 bewirkt also in Abhängigkeit von dem vierten logischen Signal SIG4, dass die Druckregelventile 19, 20 wechselseitig mit den verschiedenen Ansteuersignalen PWMDRV1, PWMDRV2 angesteuert werden, wobei zugleich gewährleistet wird, dass den hierfür vorgesehenen Stromreglern 35, 51 jeweils die richtigen gemessenen Stromgrößen IR, IR,2 zugeführt werden.
  • Fig. 7 zeigt eine schematische Darstellung des Druckregelventil-Druckreglers 41, der hier als PI(DT1)-Druckregler ausgeführt ist. Dabei zeigt sich, dass die Ausgangsgröße VU des Druckregelventil-Druckreglers 41 aus drei summierten Regler-Anteilen besteht, nämlich einem Proportional-Anteil Ap, einem Integral-Anteil AI, und einem differenziellen Anteil ADTI. Diese drei Anteile werden in einer Summationsstelle 69 miteinander zu dem unbegrenzten Volumenstrom VU addiert. Der Proportional-Anteil AP stellt hierbei das Produkt der in einer Multiplikationsstelle 71 mit dem Wert -1 multiplizierten Regelabweichung ep mit dem Proportionalbeiwert kpDRV dar. Der integrierende Anteil AI resultiert aus der Summe zweier Summanden. Der erste Summand ist hierbei der aktuelle, um einen Abtastschritt Ta verzögerte Integral-Anteil AI. Der zweite Summand ist das Produkt eines Verstärkungsfaktors r2DRV und der Summe von aktueller und um einen Abtastschritt verzögerter Regelabweichung ep - wiederum in der Multiplikationsstelle 71 mit dem Faktor -1 multipliziert. Die Summe beider Summanden wird dabei nach oben auf den maximalen Volumenstrom Vmax in einem Begrenzungselement 73 begrenzt. Der Verstärkungsfaktor r2DRV wird nach folgender Formel berechnet, in welcher tnDRV eine Nachstellzeit ist: r 2 DRV = 64 kp DRV T a tn DRV .
    Figure imgb0002
  • Der integrierende Anteil AI hängt davon ab, ob der dynamische Raildruck pdyn den ersten Druckgrenzwert pGI nach dem Start der Brennkraftmaschine 1 erstmalig erreicht hat. Ist dies der Fall, nimmt das erste logische Signal SIG1 den Wert "wahr" an, und ein in Figur 7 dargestelltes, achtes Schaltelement 75 wechselt in seine untere Schaltstellung. In dieser Schaltstellung ist der integrierende Anteil AI identisch mit dem Ausgangssignal des Begrenzungselements 73, das heißt der integrierende Anteil AI wird auf den maximalen Volumenstrom Vmax begrenzt. Wird ein Stillstand der Brennkraftmaschine 1 erkannt, nimmt - wie bereits in Zusammenhang mit Figur 3 erläutert - das erste logische Signal SIG1 den Wert "falsch" an, und das achte Schaltelement 75 wechselt in seine obere Schaltstellung. Der integrierende Anteil AI wird in diesem Fall auf den berechneten Volumenstrom VS,ber gesetzt. Damit stellt der berechnete Soll-Volumenstrom VS,ber den Initialisierungswert des integrierenden Anteils AI für den Fall dar, dass der Druckregelventil-Druckregler 41 aktiviert wird, wenn der dynamische Raildruck pdyn den ersten Druckgrenzwert pGI überschreitet.
  • Die Berechnung des differenziellen Anteils ADTI ist im unteren Teil von Figur 7 dargestellt. Dieser Anteil ergibt sich als Summe zweier Produkte. Das erste Produkt resultiert aus einer Multiplikation des Faktor r4DRV mit dem um einen Abtastschritt verzögerten differenziellen Anteil ADTI. Das zweite Produkt ergibt sich aus der Multiplikation des Faktors r3DRV mit der Differenz der mit dem Faktor -1 multiplizierten Regelabweichung ep und der entsprechend um einen Abtastschritt verzögerten und mit dem Faktor -1 multiplizierten Regelabweichung ep.
  • Dabei berechnet sich der Faktor r3DRV nach folgender Gleichung, in welcher tvDRV eine Vorhaltzeit und t1DRV eine Verzögerungszeit ist: r 3 DRV = 2 kp DRV tv DRV 2 t 1 DRV + T a .
    Figure imgb0003
  • Der Faktor r4DRV errechnet sich gemäß folgender Gleichung: r 4 DRV = 2 t 1 DRV T a 2 t 1 DRV + T a .
    Figure imgb0004
  • Es zeigt sich damit, dass die Verstärkungsfaktoren r2DRV und r3DRV von dem Proportionalbeiwert kpDRV abhängen. Der Verstärkungsfaktor r2DRV hängt zusätzlich von der Nachstellzeit tnDRV, der Verstärkungsfaktor r3DRV von der Vorhaltzeit tvDRV und der Verzögerungszeit t1DRV ab. Der Verstärkungsfaktor r4DRV hängt ebenfalls von der Verzögerungszeit t1DRV ab.
  • Fig. 8 zeigt eine schematische Darstellung einer Logik zur Berechnung des Werts eines fünften logischen Signals SIG5, das verwendet wird, um zu gewährleisten, dass in der ersten und in der zweiten Betriebsart des Schutzbetriebs die Saugdrossel 9 zu einem dauerhaft geöffneten Betrieb angesteuert wird. Diese Vorgehensweise wird in Zusammenhang mit Figur 9 näher erläutert. Der Wert des fünften logischen Signals SIG5 resultiert aus einem dritten Verundungsglied 77, in dessen ersten Eingang wiederum die Verneinung der Variablen MS eingeht, wobei in den zweiten Eingang das Ergebnis einer vorangegangen Berechnung, die im Folgenden näher erläutert wird, eingeht. Das fünfte logische Signal SIG5 wird beim Start der Brennkraftmaschine 1 zunächst mit dem Wert "falsch" initialisiert. In einen ersten Eingang eines dritten Veroderungsglieds 79 geht das Ergebnis eines dritten Komparatorelements 81 ein, in welchem geprüft wird, ob der dynamische Raildruck pdyn größer oder gleich dem dritten Druckgrenzwert pG3 ist. In den zweiten Eingang des dritten Veroderungsglieds 79 geht das Ergebnis eines Vergleichselements 83 ein, welches prüft, ob der Wert der logischen Variablen HDSD, welche einen Sensordefekt des Hochdrucksensors 23 anzeigt, gleich 1 ist, wobei in diesem Fall ein Sensordefekt vorliegt, und wobei kein Sensordefekt vorliegt, wenn der Wert der Variablen HDSD gleich 0 ist. Somit zeigt sich, dass der Ausgang des dritten Veroderungsglieds 79 den Wert "wahr" annimmt, wenn zumindest einer der Ausgänge des dritten Komparatorelements 81 oder des Vergleichselements 83 den Wert "wahr" annimmt. Damit also der Ausgang des dritten Veroderungsglieds 79 den Wert "wahr" annimmt, muss wenigstens eine der folgenden Bedingungen erfüllt sein: Der dynamische Raildruck pdyn muss den dritten Druckgrenzwert pG3 erreicht oder überschritten haben, und/oder es muss ein Sensordefekt des Hochdrucksensors 23 festgestellt worden sein, sodass die Variable HDSD den Wert 1 annimmt. Ist keine dieser Bedingungen erfüllt, weist der Ausgang des dritten Veroderungsglieds 79 den Wert "falsch" auf.
  • Der Ausgang des dritten Veroderungsglieds 79 geht in einen ersten Eingang eines vierten Veroderungsglieds 85 ein, in dessen zweiten Eingang der Wert des fünften logischen Signals SIG5 eingeht. Da dieses ursprünglich mit dem Wert "falsch" initialisiert ist, weist der Ausgang des vierten Veroderungsglieds 85 solange den Wert "falsch" auf, bis der Ausgang des dritten Veroderungsglieds 79 den Wert "wahr" annimmt. Ist dies der Fall, springt auch der Ausgang des vierten Veroderungsglieds 85 auf den Wert "wahr". In diesem Fall springt auch der Wert des dritten Verundungsglieds 77 auf wahr, wenn die Brennkraftmaschine 1 läuft, sodass auch der Wert des fünften logischen Signals SIG5 auf "wahr" springt. Anhand von Figur 8 zeigt sich, dass der Wert des fünften logischen Signals SIG5 solange "wahr" bleibt, bis ein Stillstand der Brennkraftmaschine 1 erkannt wird, wobei in diesem Fall die Variable MS den Wert "wahr" und damit ihre Verneinung den Wert "falsch" annimmt.
  • Soll die Saugdrossel 9 auch in der zweiten und/oder in der ersten Betriebsart des Schutzbetriebs dauerhaft geöffnet werden - insbesondere um eine doppelte Regelung des Hochdrucks über die Saugdrossel 9 und die Druckregelventile 19, 20 zu verhindern -, kann dies erreicht werden, indem in dem dritten Komparatorelement 81 der zweite Druckgrenzwert pG2, oder der erste Druckgrenzwert pG1 statt des dritten Druckgrenzwerts pG3 verwendet und mit dem dynamischen Raildruck pdyn verglichen wird.
  • Fig. 9 zeigt eine schematische Darstellung des ersten Hochdruck-Regelkreises 25 inklusive eines neunten Schaltelements 87 zur Darstellung des dauerhaft geöffneten Betriebs der Saugdrossel 9 in der ersten, zweiten und/oder dritten Betriebsart des Schutzbetriebs, wobei in das neunte Schaltelement 87 zu dessen Ansteuerung das fünfte logische Signal SIG5 eingeht, dessen Berechnung in Zusammenhang mit Figur 8 beschrieben wurde. Es ist möglich, dass das neunte Schaltelement 87 als Softwareschalter, also als rein virtueller Schalter ausgebildet ist. Alternativ ist es selbstverständlich auch möglich, dass das neunte Schaltelement 87 als physikalischer Schalter, beispielsweise als Relais, ausgebildet ist.
  • Wie bereits erläutert, ist eine Eingangsgröße des ersten Hochdruck-Regelkreises 25 der Soll-Hochdruck pS, der hier in diesem Fall zur Berechnung der Regelabweichung ep mit dem Ist-Hochdruck pI verglichen wird. Diese Regelabweichung ep ist eine Eingangsgröße eines Hochdruckreglers 89, der vorzugsweise als PI(DT1)-Algorithmus ausgeführt ist. Eine weitere Eingangsgröße des Hochdruckreglers 89 ist bevorzugt ein Proportionalbeiwert kpSD. Ausgangsgröße des Hochdruckreglers 89 ist ein Kraftstoff-Volumenstrom VSD für die Saugdrossel 9, zu dem in einer Additionsstelle 91 ein Kraftstoff-Sollverbrauch VQ addiert wird. Dieser Kraftstoff-Sollverbrauch VQ wird in einem Berechnungsglied 93 in Abhängigkeit von der Drehzahl nI und der Soll-Einspritzmenge QS berechnet und stellt eine Störgröße des ersten Hochdruck-Regelkreises 25 dar. Als Summe der Ausgangsgröße VSD des Hochdruckreglers 89 und der Störgröße VQ ergibt sich ein unbegrenzter Kraftstoff-Sollvolumenstrom VU,DS. Dieser wird in einem Begrenzungselement 95 in Abhängigkeit von der Drehzahl nI auf einen maximalen -Volumenstrom Vmax,SD für die Saugdrossel 9 begrenzt. Als Ausgang des Begrenzungselements 95 ergibt sich ein begrenzter Kraftstoff-Sollvolumenstrom VS,SD für die Saugdrossel 9, welcher als Eingangsgröße in eine Pumpenkennlinie 97 eingeht. Diese rechnet den begrenzten Kraftstoff-Sollvolumenstrom VS,SD in einen Kennlinien-Saugdrosselstrom IKL,SD um.
  • Weist das neunte Schaltelement 87 den in Figur 9 dargestellten, oberen Schaltzustand auf, was der Fall ist, wenn das fünfte logische Signal SIG5 den Wert "falsch" aufweist, wird ein Saugdrossel-Sollstrom IS,SD mit dem Kennlinien-Saugdrosselstrom IKL,SD gleichgesetzt. Dieser Saugdrossel-Sollstrom IS,SD stellt die Eingangsgröße eines Saugdrossel-Stromreglers 99 dar, welcher die Aufgabe hat, den Saugdrosselstrom durch die Saugdrossel 9 zu regeln. Eine weitere Eingangsgröße des Saugdrossel-Stromreglers 99 ist unter anderem ein Ist-Saugdrosselstrom II,SD. Ausgangsgröße des Saugdrossel-Stromreglers 99 ist eine Saugdrossel-Sollspannung US,SD, welche schließlich in einem Berechnungsglied 101 in an sich bekannter Weise in eine Einschaltdauer eines pulsweitenmodulierten Signals PWMSD für die Saugdrossel 9 umgerechnet wird. Mit diesem wird die Saugdrossel 9 angesteuert, wobei das Signal somit insgesamt auf eine Regelstrecke 103 wirkt, welche insbesondere die Saugdrossel 9, die Hochdruckpumpe 11, und den Hochdruckspeicher 13 aufweist. Der Saugdrosselstrom wird gemessen, wobei ein Rohmesswert IR,SD resultiert, welcher in einem Stromfilter 105 gefiltert wird. Das Stromfilter 105 ist vorzugsweise als PT1-Filter ausgebildet. Ausgangsgröße dieses Filters ist der Ist-Saugdrosselstrom II,SD, welcher wiederum dem Saugdrossel-Stromregler 99 zugeführt wird.
  • Die Regelgröße des ersten Hochdruck-Regelkreises 25 ist der Hochdruck in dem Hochdruckspeicher 13. Rohwerte dieses Hochdrucks p werden durch den Hochdrucksensor 23 gemessen und durch ein erstes Hochdruck-Filterelement 107 gefiltert, welches als Ausgangsgröße den Ist-Hochdruck pI hat. Außerdem werden die Rohwerte des Hochdrucks p durch ein zweites Hochdruck-Filterelement 109 gefiltert, dessen Ausgangsgröße der dynamische Raildruck pdyn ist. Beide Hochdruck-Filterelemente sind vorzugsweise durch einen PT1-Algorithmus umgesetzt, wobei eine Zeitkonstante des ersten Hochdruck-Filterelements 107 größer ist als eine Zeitkonstante des zweiten Hochdruck-Filterelements 109. Insbesondere ist das zweite Hochdruck-Filterelement 109 als ein schnelleres Filter als das erste Hochdruck-Filterelement 107 ausgebildet. Die Zeitkonstante des zweiten Hochdruck-Filterelements 109 kann auch mit dem Wert Null identisch sein, sodass dann der dynamische Raildruck pdyn den gemessenen Rohwerten des Hochdrucks p entspricht beziehungsweise mit diesen identisch ist. Mit dem dynamischen Raildruck pdyn liegt somit ein hochdynamischer Wert für den Hochdruck vor, welcher insbesondere stets dann benötigt wird, wenn eine schnelle Reaktion auf bestimmte auftretende Ereignisse erfolgen muss.
  • Ausgangsgrößen des ersten Hochdruck-Regelkreises 25 sind somit neben dem ungefilterten Hochdruck p die gefilterten Hochdruckwerte pI, pdyn.
  • Nimmt das fünfte logische Signal SIG5 den Wert "wahr" an, schaltet das neunte Schaltelement 87 in seine in Figur 9 dargestellte, untere Schaltposition. In diesem Fall ist der Saugdrossel-Sollstrom IS,SD nicht mehr identisch mit dem Kennlinien-Saugdrosselstrom IKL,SD, sondern wird vielmehr mit einem Saugdrossel-Notstrom IN,SD gleichgesetzt. Der Saugdrossel-Notstrom IN,SD weist bevorzugt einen vorherbestimmten, konstanten Wert auf, beispielsweise 0 A, wobei dann die vorzugsweise stromlos offene Saugdrossel 9 maximal weit geöffnet ist, oder er weist einen im Vergleich zu einer maximalen Schließstellung der Saugdrossel 9 kleinen Stromwert, beispielsweise 0,5 A auf, sodass die Saugdrossel 9 zwar nicht vollständig, aber doch weitgehend geöffnet ist. Dabei verhindert der Saugdrossel-Notstrom IN,SD und die damit verbundene Öffnung der Saugdrossel 9 zuverlässig, dass die Brennkraftmaschine 1 stehen bleibt, wenn sie in der dritten Betriebsart des Schutzbetriebs mit maximal geöffneten Druckregelventilen 19, 20 betrieben wird. Die Öffnung der Saugdrossel 9 bewirkt dabei, dass auch in einem mittleren bis niedrigen Drehzahlbereich noch hinreichend viel Kraftstoff in den Hochdruckspeicher 13 gefördert werden kann, sodass ein Betrieb der Brennkraftmaschine 1 ohne Abwürgen möglich ist. In der ersten und/oder zweiten Betriebsart wird auf diese Weise eine doppelte Regelung des Hochdrucks einerseits über die Saugdrossel 9 und andererseits über die Druckregelventile 19, 20 verhindert.
  • Insgesamt zeigt sich, dass es mithilfe des Einspritzsystems 3 sowie der Brennkraftmaschine 1 möglich ist, eine stabile Druckregelung auch dann noch durchzuführen, wenn der erste Hochdruck-Regelkreis 25 die Druckregelung nicht mehr übernehmen kann, wobei alternativ oder zusätzlich ein mechanisches Überdruckventil eingespart werden kann, da dessen Funktionalität von den Druckregelventilen 19, 20 übernommen wird. Darüber hinaus zeigt sich, dass das Einspritzsystem 3 ohne weiteres in Hinblick auf eine Größe einer Brennkraftmaschine 1, mit welcher es verwendet wird, skaliert werden kann, indem die Zahl der Druckregelventile 19, 20 angepasst wird. Somit können insbesondere günstig herstellbare Druckregelventile 19, 20 verwendet werden, wie sie beispielsweise aus der Automobil-Serienproduktion bekannt sind. Tritt beispielsweise ein Kabelbruch eines Saugdrossel-Steckers im unteren Drehzahlbereich auf, so ist in diesem Bereich nach Erreichen oder Überschreiten des ersten oder zweiten Druckgrenzwerts pGI, pG2 noch eine stabile Regelung des Hochdrucks mittels der Druckregelventile 19, 20 möglich, da das Fördervermögen der Hochdruckpumpe drehzahlabhängig ist. Dabei können vorbestimmte Motorbetriebswerte, vor allem Emissionswerte, in diesem Fall noch eingehalten werden. Erst in höheren Drehzahlbereichen muss mit einem Überschreiten auch des dritten Druckgrenzwerts pG3 gerechnet werden. In diesem Fall öffnen die Druckregelventile 19, 20 vollständig, und es muss mit einer Verschlechterung der Motorbetriebswerte, vor allem der Emissionen, gerechnet werden.
  • Zumindest ein stabiler Betrieb der Brennkraftmaschine 1 wird dann aber weiterhin gewährleistet. Auch bei Ausfall des Hochdrucksensors 23 ist ein stabiler Betrieb der Brennkraftmaschine 1 möglich, auch wenn eventuell in diesem Fall eine Verschlechterung der Betriebswerte eintritt.
  • Dadurch, dass die Druckregelventile 19, 20 nicht gleichzeitig aktiviert werden, wird verhindert, dass das Einspritzsystem 3 durch zu große Hochdruckgradienten geschädigt wird. Sind mehr als zwei Druckregelventile 19, 20 vorhanden, ist es möglich, für ein Zuschalten jedes dieser Druckregelventile 19, 20 oder auch für ein Zuschalten von Gruppen dieser Druckregelventile 19, 20, separate Druckgrenzwerte festzulegen, die insbesondere in ihrer Größe gestaffelt werden können.
  • Die Druckregelventile 19, 20 werden durch wechselseitiges Ansteuern gleichmäßig ausgelastet.
  • Insgesamt zeigt sich auch folgende Funktionsweise für die Brennkraftmaschine 1 beziehungsweise das Einspritzsystem 3:
    Diese umfasst mindestens zwei Druckregelventile 19, 20, jedoch kein mechanisches Überdruckventil. Steigt der Hochdruck an, beispielsweise infolge eines Kabelbruchs eines Saugdrossel-Steckers, und erreicht der dynamische Raildruck pdyn dabei den ersten Druckgrenzwert pG1, so übernimmt der zweite Hochdruck-Regelkreis 39 durch Ansteuerung eines der Druckregelventile 19, 20 die Regelung des Hochdrucks. Das andere Druckregelventil 20, 19 wird dabei so angesteuert, dass es geschlossen bleibt.
  • Erreicht oder überschreitet der dynamische Raildruck pdyn bei laufender Brennkraftmaschine 1 trotz Aktivierung des einen Druckregelventils 19, 20, den zweiten Druckgrenzwert pG2, welcher bevorzugt größer ist als der erste Druckgrenzwert pG1, so wird zusätzlich das weitere Druckregelventil 20, 19 zur Regelung des Hochdrucks aktiviert. Vorzugsweise werden beide Druckregelventile 19, 20 mit demselben Sollstrom IS, IS,2 angesteuert.
  • Erreicht oder überschreitet der dynamische Raildruck pdyn den dritten Druckgrenzwert pG3, der vorzugsweise größer ist als der erste Druckgrenzwert pG1 und als der zweite Druckgrenzwert pG2, oder fällt der Hochdrucksensor 23 aus, so werden die Druckregelventile 19, 20 so angesteuert, dass sie zuverlässig, dauerhaft und bevorzugt vollständig öffnen. In allen Fällen wird bevorzugt zugleich die Saugdrossel 9 so angesteuert, dass sie ebenfalls in vollständig geöffnetem Zustand betrieben wird. Die Druckregelventile 19, 20 werden in vorgebbaren zeitlichen Abständen wechselseitig angesteuert. Ein Wechsel darf dabei nur bei stehender Brennkraftmaschine 1 erfolgen.

Claims (10)

  1. Einspritzsystem (3) für eine Brennkraftmaschine (1), mit
    - wenigstens einem Injektor (15), und mit
    - einem Hochdruckspeicher (13), der einerseits mit dem wenigstens einen Injektor (15) und andererseits über eine Hochdruckpumpe (11) mit einem Kraftstoffreservoir (7) in Fluidverbindung ist, wobei
    - der Hochdruckpumpe (11) eine Saugdrossel (9) als Druckstellglied zugeordnet ist, wobei
    - das Einspritzsystem (3) wenigstens zwei Druckregelventile (19,20) aufweist, über welche der Hochdruckspeicher (13) mit dem Kraftstoffreservoir (7) in Fluidverbindung bringbar ist,
    gekennzeichnet durch ein Steuergerät (21), welches mit der Saugdrossel (9) und den wenigstens zwei Druckregelventilen (19,20) wirkverbunden ist, wobei das Einspritzsystem (3) eingerichtet ist, um
    a) in einem Normalbetrieb einen Hochdruck in dem Hochdruckspeicher (13) durch Ansteuern der Saugdrossel (9) als Druckstellglied zu regeln, wobei bevorzugt wenigstens ein erstes Druckregelventil (19,20) der wenigstens zwei Druckregelventile (19,20) zur Erzeugung einer Hochdruck-Störgröße angesteuert wird; um
    b) in einer ersten Betriebsart eines Schutzbetriebs den Hochdruck in dem Hochdruckspeicher (13) durch Ansteuern des wenigstens einen ersten Druckregelventils (19,20) als Druckstellglied zu regeln, und um
    c) in einer zweiten Betriebsart des Schutzbetriebs wenigstens ein zweites Druckregelventil (20,19) der wenigstens zwei Druckregelventile (19,20), das von dem wenigstens einen ersten Druckregelventil (19,20) verschieden ist, zusätzlich zu dem wenigstens einen ersten Druckregelventil (19,20) als Druckstellglied zur Regelung des Hochdrucks in dem Hochdruckspeicher (13) anzusteuern.
  2. Einspritzsystem (3) nach Anspruch 1, dadurch gekennzeichnet, dass das Einspritzsystem (3) eingerichtet ist, um in einer dritten Betriebsart des Schutzbetriebs das wenigstens eine erste Druckregelventil (19,20) und das wenigstens eine zweite Druckregelventil (20,19) dauerhaft zu öffnen.
  3. Einspritzsystem (3) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Einspritzsystem (3) eingerichtet ist, um
    d) in die erste Betriebsart des Schutzbetriebs zu schalten, wenn der Hochdruck einen ersten Druckgrenzwert (pG1) erreicht oder überschreitet, oder wenn ein Defekt der Saugdrossel (9) erkannt wird, und/oder um
    e) in die zweite Betriebsart des Schutzbetriebs zu schalten, wenn der Hochdruck einen zweiten Druckgrenzwert (pG2) erreicht oder überschreitet.
  4. Einspritzsystem (3) nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, dass das Einspritzsystem (3) eingerichtet ist, um
    f) in die dritte Betriebsart des Schutzbetriebs zu schalten, wenn der Hochdruck einen dritten Druckgrenzwert (pG3) erreicht oder überschreitet, oder wenn ein Defekt eines Hochdruck-Sensors (23) erkannt wird.
  5. Einspritzsystem (3) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Einspritzsystem (3) eingerichtet ist, um in wenigstens einer Betriebsart des Schutzbetriebs die Saugdrossel (9) zu einer dauerhaft geöffneten Position anzusteuern.
  6. Einspritzsystem (3) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens eines der wenigstens zwei Druckregelventile (19,20) stromlos offen ausgebildet ist.
  7. Einspritzsystem (3) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Einspritzsystem (3) eingerichtet ist, um ein erstes Ansteuersignal (PWMDRV1) und ein zweites Ansteuersignal (PWMDRV2) zu erzeugen, und um das wenigstens eine erste Druckregelventil (19,20) und das wenigstens eine zweite Druckregelventil (20,19) alternierend mit dem ersten Ansteuersignal (PWMDRV1) und dem zweiten Ansteuersignal (PWMDRV2) anzusteuern.
  8. Einspritzsystem (3) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Einspritzsystem (3) frei ist von einem mechanischen Überdruckventil.
  9. Brennkraftmaschine (1), mit einem Einspritzsystem (3) nach einem der Ansprüche 1 bis 8.
  10. Brennkraftmaschine (1) nach Anspruch 9, dadurch gekennzeichnet, dass die Brennkraftmaschine (1) als Großmotor ausgebildet ist, wobei die Brennkraftmaschine acht oder mehr Brennräume (16) aufweist.
EP16711138.4A 2015-05-21 2016-03-16 Einspritzsystem für eine brennkraftmaschine sowie brennkraftmaschine mit einem solchen einspritzsystem Active EP3298260B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015209377.8A DE102015209377B4 (de) 2015-05-21 2015-05-21 Einspritzsystem für eine Brennkraftmaschine sowie Brennkraftmaschine mit einem solchen Einspritzsystem
PCT/EP2016/000468 WO2016184537A1 (de) 2015-05-21 2016-03-16 Einspritzsystem für eine brennkraftmaschine sowie brennkraftmaschine mit einem solchen einspritzsystem

Publications (2)

Publication Number Publication Date
EP3298260A1 EP3298260A1 (de) 2018-03-28
EP3298260B1 true EP3298260B1 (de) 2021-07-14

Family

ID=55588206

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16711138.4A Active EP3298260B1 (de) 2015-05-21 2016-03-16 Einspritzsystem für eine brennkraftmaschine sowie brennkraftmaschine mit einem solchen einspritzsystem

Country Status (6)

Country Link
US (1) US20180023502A1 (de)
EP (1) EP3298260B1 (de)
CN (1) CN107864661B (de)
DE (1) DE102015209377B4 (de)
HK (1) HK1253004A1 (de)
WO (1) WO2016184537A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017210147A1 (de) * 2017-06-19 2018-12-20 Robert Bosch Gmbh Vorrichtung und Verfahren zur Rücklaufdruckeinstellung für einen Injektor
DE102017214001B3 (de) * 2017-08-10 2019-02-07 Mtu Friedrichshafen Gmbh Verfahren zum Betreiben einer Brennkraftmaschine mit einem Einspritzsystem, Einspritzsystem, eingerichtet zur Durchführung eines solchen Verfahrens, und Brennkraftmaschine mit einem solchen Einspritzsystem
CH715207B1 (de) * 2018-07-25 2022-04-14 Liebherr Components Deggendorf Gmbh Verfahren zum Betrieb eines Verbrennungsmotors.
DE102018215847A1 (de) * 2018-09-18 2020-03-19 Robert Bosch Gmbh Kraftstoffdosiersystem für gasförmigen und flüssigen Kraftstoff
DE102019202004A1 (de) * 2019-02-14 2020-08-20 Mtu Friedrichshafen Gmbh Verfahren zum Betreiben eines Einspritzsystems einer Brennkraftmaschine, Einspritzsystem für eine Brennkraftmaschine sowie Brennkraftmaschine mit einem solchen Einspritzsystem
CN111720231B (zh) * 2020-05-26 2021-07-23 东风汽车集团有限公司 一种发动机油轨压力传感器故障后处理方法及系统
JP7439731B2 (ja) * 2020-11-04 2024-02-28 株式会社デンソー 燃圧制御システム

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4408718A (en) * 1981-09-25 1983-10-11 General Motors Corporation Electromagnetic unit fuel injector
JPS59208140A (ja) * 1983-05-12 1984-11-26 Hitachi Constr Mach Co Ltd 原動機のオ−バ−ラン防止装置
DE19646581A1 (de) * 1996-11-12 1998-05-14 Bosch Gmbh Robert Kraftstoffeinspritzsystem
JP4088738B2 (ja) * 1998-12-25 2008-05-21 株式会社デンソー 燃料噴射ポンプ
WO2001007779A1 (fr) * 1999-07-23 2001-02-01 Hitachi, Ltd. Pompe haute pression pour carburant et procede d'alimentation en carburant
JP2001207927A (ja) * 2000-01-26 2001-08-03 Mitsubishi Electric Corp 燃料供給装置
JP2003227428A (ja) * 2001-11-28 2003-08-15 Honda Motor Co Ltd エンジンの燃料噴射装置
DE10334615A1 (de) * 2003-07-29 2005-02-17 Robert Bosch Gmbh Druckregelventil für Speicherkraftstoffeinspritzsystem
KR100580699B1 (ko) * 2003-10-27 2006-05-15 현대자동차주식회사 커먼 레일 시스템의 2중 제어장치
DE102005010029B4 (de) * 2005-03-04 2009-02-26 Continental Automotive Gmbh Motorsteuerungssystem für eine Brennkraftmaschine mit mehreren Zylindern
DE102005059830B3 (de) * 2005-12-14 2007-05-03 Siemens Ag Einspritzanlage für eine Brennkraftmaschine
DE102006040441B3 (de) * 2006-08-29 2008-02-21 Mtu Friedrichshafen Gmbh Verfahren zum Erkennen des Öffnens eines passiven Druck-Begrenzungsventils
DE102007052092B4 (de) * 2007-10-31 2011-06-01 Continental Automotive Gmbh Verfahren und Kraftstoffsystem zum Steuern der Kraftstoffzufuhr für eine Brennkraftmaschine
DE102009031528B3 (de) 2009-07-02 2010-11-11 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE102009031529B3 (de) 2009-07-02 2010-11-11 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE102009031527B3 (de) 2009-07-02 2010-11-18 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE102009050467B4 (de) * 2009-10-23 2017-04-06 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE102009051390B4 (de) * 2009-10-30 2015-10-22 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
CN102220916B (zh) * 2011-05-12 2014-04-23 镇江恒驰科技有限公司 一种柴油-替代燃料混合燃烧发动机控制方法
US9194352B2 (en) * 2012-10-25 2015-11-24 Caterpillar Inc. Pressure relief valve for common rail fuel system
DE102014213648B3 (de) 2014-07-14 2015-10-08 Mtu Friedrichshafen Gmbh Verfahren zum Betreiben einer Brennkraftmaschine, Einspritzsystem für eine Brennkraftmaschine sowie Brennkraftmaschine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102015209377B4 (de) 2017-05-11
WO2016184537A1 (de) 2016-11-24
US20180023502A1 (en) 2018-01-25
EP3298260A1 (de) 2018-03-28
CN107864661B (zh) 2020-04-24
HK1253004A1 (zh) 2019-06-06
CN107864661A (zh) 2018-03-30
DE102015209377A1 (de) 2016-11-24

Similar Documents

Publication Publication Date Title
EP3298260B1 (de) Einspritzsystem für eine brennkraftmaschine sowie brennkraftmaschine mit einem solchen einspritzsystem
EP3169887B1 (de) Verfahren zum betreiben einer brennkraftmaschine, einspritzsystem für eine brennkraftmaschine sowie brennkraftmaschine
DE102009050468B4 (de) Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE102009051390B4 (de) Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
EP1735673B1 (de) Verfahren zum überwachen einer kraftstoffzuführeinrichtung einer brennkraftmaschine
EP3289205B1 (de) Verfahren zum erkennen einer dauereinspritzung im betrieb einer brennkraftmaschine, einspritzsystem für eine brennkraftmaschine und brennkraftmaschine
WO2010049203A1 (de) Kraftstoff-hochdruckpumpe für eine brennkraftmaschine
DE102013201997A1 (de) Verfahren und Vorrichtung zum Betrieb einer Kraftstoffeinspritzeinrichtung insbesondere eines Kraftfahrzeuges
WO2011047834A1 (de) Verfahren zur steuerung und regelung einer brennkraftmaschine
DE102015215688B4 (de) Ansteuerverfahren zum Ansteuern eines Kraftstoffeinspritzsystems sowie Kraftstoffeinspritzsystem
EP3665377B1 (de) Verfahren zum betreiben einer brennkraftmaschine mit einem einspritzsystem, einspritzsystem, eingerichtet zur durchführung eines solchen verfahrens, und brennkraftmaschine mit einem solchen einspritzsystem
EP3449111B1 (de) Verfahren zum betrieb einer brennkraftmaschine, einrichtung zum steuern und/oder regeln einer brennkraftmaschine, einspritzsystem und brennkraftmaschine
DE102010027858A1 (de) Kraftstoff-Hochdruckpumpe für eine Brennkraftmaschine
WO2020165333A1 (de) Verfahren zum betreiben eines einspritzsystems einer brennkraftmaschine, einspritzsystem für eine brennkraftmaschine sowie brennkraftmaschine mit einem solchen einspritzsystem
DE102007035718A1 (de) Verfahren zur Steuerung des Vorförderdruckes eines Common-Rail-Kraftstoffsystems
WO2017186325A1 (de) Verfahren zum betrieb einer brennkraftmaschine, einrichtung zum steuern und/oder regeln einer brennkraftmaschine, einspritzsystem und brennkraftmaschine
WO2008090135A1 (de) Verfahren zur ermittlung eines unkontrollierten beschleunigens einer brennkraftmaschine.
DE102017211770B4 (de) Verfahren zur Druckregelung in einem Hochdruck-Einspritzsystem einer Brennkraftmaschine, und Brennkraftmaschine zur Durchführung eines solchen Verfahrens
DE102019003815B4 (de) Verfahren zur Überwachung eines Injektors auf mechanische Schädigung
DE102015216016A1 (de) Verfahren zum Steuern eines einen Kraftstoffdrucksensor aufweisenden Verbrennungsmotors
DE102015212154A1 (de) Verfahren und Einrichtung zum Betrieb einer Common-Rail-Kraftstoffeinspritzeinrichtung insbesondere eines Kraftfahrzeugs

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170713

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200814

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210215

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016013413

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1410844

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210815

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211014

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211115

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211014

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016013413

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

26N No opposition filed

Effective date: 20220419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220316

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220316

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220316

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220316

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230327

Year of fee payment: 8

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1410844

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220316

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220316

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230328

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240320

Year of fee payment: 9