EP3449111B1 - Verfahren zum betrieb einer brennkraftmaschine, einrichtung zum steuern und/oder regeln einer brennkraftmaschine, einspritzsystem und brennkraftmaschine - Google Patents

Verfahren zum betrieb einer brennkraftmaschine, einrichtung zum steuern und/oder regeln einer brennkraftmaschine, einspritzsystem und brennkraftmaschine Download PDF

Info

Publication number
EP3449111B1
EP3449111B1 EP17711568.0A EP17711568A EP3449111B1 EP 3449111 B1 EP3449111 B1 EP 3449111B1 EP 17711568 A EP17711568 A EP 17711568A EP 3449111 B1 EP3449111 B1 EP 3449111B1
Authority
EP
European Patent Office
Prior art keywords
pressure
internal combustion
engine
combustion engine
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17711568.0A
Other languages
English (en)
French (fr)
Other versions
EP3449111A1 (de
Inventor
Armin DÖLKER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Solutions GmbH
Original Assignee
MTU Friedrichshafen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Friedrichshafen GmbH filed Critical MTU Friedrichshafen GmbH
Publication of EP3449111A1 publication Critical patent/EP3449111A1/de
Application granted granted Critical
Publication of EP3449111B1 publication Critical patent/EP3449111B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3863Controlling the fuel pressure by controlling the flow out of the common rail, e.g. using pressure relief valves
    • F02D41/3872Controlling the fuel pressure by controlling the flow out of the common rail, e.g. using pressure relief valves characterised by leakage flow in injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure

Definitions

  • a method for operating an internal combustion engine with an engine having a number of cylinders and an injection system with high-pressure components, in particular an injection system having a common rail with a number of injectors assigned to the cylinders, in particular with one injector being assigned an individual memory that is used to hold fuel is formed from the common rail for the injector.
  • the concept of an injector with an individual accumulator in the context of a common rail injection system is described by way of example.
  • the individual accumulator is supplied with fuel under pressure from the pressure connection via a fuel supply duct and is in direct flow connection with the high pressure duct for the fuel under high pressure in the common rail.
  • the volume of the individual reservoir is large compared to the volume of the high pressure channel and the nozzle antechamber in the injector. Due to the arrangement of the injector decoupled from the common rail via a throttle element - there is enough space in the individual reservoir in the housing of the fuel injector to hold fuel for at least an entire injection quantity for one working cycle of a cylinder, but in any case for a partial injection within the working cycle.
  • DE 10 2009 002 793 B4 discloses an individual accumulator or a high-pressure component such as a common rail with a pressure measuring device which is in the form of a strain sensor, the strain sensor being in the form of a strain gauge and being arranged on the outside of a wall of the individual accumulator and a hydraulic resistance directly to the individual accumulator is arranged upstream or downstream for integration into the high pressure duct.
  • the high pressure When starting the engine, it must be ensured on the one hand that the high pressure has a maximum value of z. B. does not exceed 600 bar, as the Otherwise the pump can be damaged due to the excessive counter pressure.
  • the high pressure when starting the engine should be as high as possible in order to ensure good acceleration behavior and low emissions.
  • the suction throttle is initially not supplied with current after the engine has been started, a maximum increase in the high pressure up to a specifiable high pressure threshold value is achieved.
  • This enables the engine to be started quickly and reliably, since, on the one hand, injections in common rail systems are only possible when the opening pressure of the injection nozzles has been reached. This is usually 350 ... 400 bar.
  • the engine can be accelerated faster at higher high pressures, since the fuel is burned better in this case, which results in a higher degree of efficiency.
  • the invention is based on the consideration that the high pressure in the injection system of an internal combustion engine should ideally be reduced to just below the target high pressure before starting.
  • the target high pressure must be specified in such a way that the maximum permissible high pressure is not exceeded when the engine is started. If the engine is started, the high pressure control should be activated as soon as possible in order to avoid a significant overshoot of the high pressure above the setpoint.
  • the object is preferably achieved in that the high pressure is reduced by activating a so-called "blank shot” function after the engine has been switched off.
  • the injectors are energized when the engine is not running, which creates a leak, but no injection takes place.
  • This "blank shot” function is activated until the high pressure is reduced to a value just below the target high pressure.
  • a significant overshoot of the high pressure after the engine is started is prevented according to the invention in that the high pressure regulation is activated as soon as the calculated high pressure gradient exceeds a predeterminable limit value.
  • the concept preferably provides the basis for an internal combustion engine that is operated in an improved manner.
  • the invention makes it possible to start the engine at the highest possible rail pressure without exceeding the maximum permissible rail pressure and thus without damaging the engine by a rail pressure that is too high. Starting at high rail pressure thus enables good acceleration behavior with low emissions.
  • Starting at high Rail pressure in the range of the maximum permissible rail pressure is achieved by lowering the rail pressure to a value just below the maximum pressure after the engine has been switched off with the help of the blank shot function and by activating the rail pressure control at an early stage when the engine is started by checking, whether the mean high pressure gradient exceeds a specifiable limit.
  • This method thus also makes it possible that the intake throttle does not have to be energized when the engine is not running, which extends its service life.
  • the method provides that when the internal combustion engine is started, the high-pressure control for regulating the fuel pressure is activated while the engine is at a standstill, as soon as a mean high-pressure gradient reaches or exceeds a defined limit value.
  • this includes, in particular, the activation of the high-pressure regulation for regulating the fuel pressure at a point in time at which, due to an engine speed that is still too low, there is still a state indicative of an engine standstill.
  • a suction throttle influencing the fuel supply is actuated in the closing direction by activating the high-pressure control, which leads to the fuel pressure remaining below a maximum value when the internal combustion engine is started.
  • a continuous signal for controlling a suction throttle is increased when the high-pressure regulation is activated, which results in a closing movement of the suction throttle.
  • the high pressure gradient is formed from a first and a second fuel pressure value, the first and the second fuel pressure value following one another at a predetermined time interval.
  • This procedure has the advantage that, instead of the absolute fuel pressure value, the high pressure gradient, that is to say its rate of increase, can be used as a criterion for activating the high pressure regulation. In this way, before the absolute maximum of the fuel pressure is reached, the point in time at which the increase in the fuel pressure value reaches a predetermined limit value can be determined.
  • a further preferred development provides that a mean high pressure gradient is formed from a finite amount of successive high pressure gradients by averaging.
  • This procedure has the advantage that by averaging high pressure gradients, a corresponding degree of reliability is achieved in the assessment. For example, short-term outliers in the measured fuel pressure values can be smoothed using such a mean value formation.
  • an engine is recognized as being in operation or running at an engine speed of 50-120 min -1.
  • the specified high pressure limit value is 560-600 bar.
  • the high pressure gradient is determined for a predetermined period of time as a mean high pressure gradient from a number (k) of certain high pressure gradients, the number (k) as a quotient from the predetermined period of time and a sampling time is formed.
  • Fig. 1 shows a device according to the prior art.
  • An internal combustion engine 1 has an injection system 3.
  • the injection system 3 is preferably designed as a common rail injection system. It has a low-pressure pump 5 for delivering fuel from a fuel reservoir 7, an adjustable, low-pressure-side suction throttle 9 for influencing a volume flow of fuel flowing to a high-pressure pump 11, the high-pressure pump 11 for delivering the fuel under increased pressure into a high-pressure accumulator 13, the high-pressure accumulator 13 for storing the fuel, and preferably a plurality of injectors 15 for injecting the fuel into combustion chambers 16 of the internal combustion engine 1.
  • the injection system 3 is also designed with individual stores, in which case, for example, an individual store 17 is integrated into the injector 15 as an additional buffer volume.
  • a particularly electrically controllable pressure control valve 19 is provided, via which the high-pressure accumulator 13 is fluidly connected to the fuel reservoir 7.
  • a fuel volume flow, which is diverted from the high-pressure accumulator 13 into the fuel reservoir 7, is defined via the position of the pressure regulating valve 19.
  • This fuel volume flow is shown in Fig. 1 as well as in the following text with VDRV and represents a high pressure disturbance of the injection system 3.
  • the injection system 3 does not have a mechanical pressure relief valve, since its function is taken over by the pressure regulating valve 19.
  • the mode of operation of the internal combustion engine 1 is determined by an electronic control unit 21, which is preferably designed as an engine control unit of the internal combustion engine 1, namely as a so-called engine control unit (ECU).
  • the electronic control unit 21 includes the usual components of a Microcomputer systems, for example a microprocessor, I / O modules, buffer and memory modules (EEPROM, RAM).
  • the operating data relevant to the operation of the internal combustion engine 1 are applied in characteristic diagrams / characteristic curves in the memory modules.
  • the electronic control unit 21 uses this to calculate output variables from input variables. In Fig.
  • a measured, still unfiltered high pressure p which prevails in the high pressure accumulator 13 and is measured by means of a pressure sensor 23, a current engine speed n 1 , a signal FP for the output specification by an operator of the internal combustion engine 1, and an input variable E. Further sensor signals are preferably combined under input variable E, for example a charge air pressure of an exhaust gas turbocharger.
  • an individual accumulator pressure p E is preferably an additional input variable of control unit 21.
  • the output variables of the electronic control unit 21 include, for example, a signal PWMSDR for controlling the suction throttle 9 as the first pressure actuator, a signal ve for controlling the injectors 15 - which in particular specifies a start and / or an end of injection or also an injection duration - a signal PWMDRV for control of the pressure control valve 19 and thus the high pressure disturbance variable VDRV is defined.
  • the output variable A is representative of further actuating signals for controlling and / or regulating the internal combustion engine 1, for example for an actuating signal for activating a second exhaust gas turbocharger during register charging.
  • Fig. 2 shows the block diagram of a high pressure control circuit according to the prior art.
  • the input variable of the high pressure control loop is the set high pressure P set of the common rail system, which is compared with the measured high pressure p mess . The difference between the two high pressures results in the high pressure control deviation e p .
  • This control deviation e p of the high pressure is the input variable of the high pressure regulator, which is preferably implemented as a PI (DT 1 ) algorithm.
  • Other input variables of the high pressure regulator include the proportional coefficient kp SDR .
  • the output variable of the high-pressure regulator is the fuel volume flow V PI ( DT1 ) SDR , which is added to the target fuel consumption V stör SDR .
  • the target fuel consumption V disturb SDR is calculated from the measured engine speed n mess and the target injection quantity Q Soll and represents a disturbance variable of the high pressure control loop .
  • V PI DTI
  • V disturb SDR disurbance variable injection
  • the limited target fuel volume flow V Soll SDR is the input variable of the pump characteristic.
  • the pump characteristic converts the limited target fuel volume flow V Soll SDR into the suction throttle target current I Soll SDR .
  • the suction throttle setpoint current I Soll SDR is the input variable of the suction throttle flow controller, which has the task of regulating the suction throttle current. Another input variable of the suction throttle current regulator is the measured suction throttle current I mess SDR.
  • the output variable of the suction throttle current regulator is the suction throttle setpoint voltage U Soll SDR , which is then converted into the PWM duty cycle PWM SDR as a specification for the suction throttle.
  • the controlled system of the high pressure control loop consists of the suction throttle, the high pressure pump and the fuel rail.
  • the controlled variable of the subordinate suction throttle current control circuit is the suction throttle current, the raw values I raw SDR still being passed through a filter which z. B. a PT 1 filter can be filtered.
  • the output variable of this filter is the measured suction throttle current I mess SDR .
  • the controlled variable of the high pressure control loop is the fuel rail pressure (high pressure).
  • the raw values of the fuel rail pressure p raw are filtered by a high pressure filter, which has the measured fuel rail pressure p mess as its output variable.
  • This filter can e.g. B. be implemented by a PT 1 algorithm.
  • Figures 3A and 3B represent a particularly advantageous calculation of the high pressure gradient Figure 3A
  • the time diagram shown shows the high pressure in the form of a solid curve as a function of time.
  • the current high pressure gradient (gradient Current HD (t 1 )) at time t 1 is corresponding Figure 3B calculated by subtracting the measured fuel pressure (p mess (t 1 - ⁇ t degrees HD )) that was past the time span ( ⁇ t degrees HD ) from the current fuel pressure (p mess (t 1 )) and dividing the difference by the time span ( ⁇ t degree HD ) is divided.
  • the high-pressure gradient at the time (t 1 - (k - 1) * Ta) is calculated by the by the time interval (t 1 - (k-1) * Ta - .DELTA.t degree HD) past measured fuel pressure ( p mess (t 1 - (k - 1) ⁇ Ta - ⁇ t degrees HD )) subtracted from the fuel pressure (p mess (t 1 - (k - 1) ⁇ Ta)) and subtract the difference by the time span ( ⁇ t degrees HD ) is divided.
  • FIG. 4A The connected figures Figures 4A, 4B, 4C , Figures 4D, 4E, 4F, 4G and 4H illustrate the invention in the form of several timing diagrams Figure 4A
  • the time diagram shown shows the measured engine speed (nmess).
  • the engine is switched off, which is shown in the timing diagram of Figure 4E
  • the "Motor Stop" signal shown changes from the value 0 to the value 1.
  • the motor speed (nmess) changes, starting from the value 1000 1 / min, to the value 0 1 / min.
  • the motor standstill is recognized, which is shown in the timing diagram of Figure 4F
  • the signal shown (“Motor stopped”) changes from the value 0 to the value 1.
  • the target high pressure (p target ) is shown as a solid, light curve.
  • the target high pressure is calculated as the output variable of a three-dimensional map with the input variables engine speed (nmess) and target torque (M Soll ). If the engine is switched off, the target torque is immediately reduced to the value 0 Nm, the engine speed drops to the value 0 1 / min with a time delay.
  • a falling target high pressure (P Soll ), represented by a solid, light curve with the initial value 1200 bar and the final value 600 bar, which is reached at time (t 2 ), results in this case becomes.
  • the fuel pressure (p mess 1 ) is shown in the timing diagram of Figure 4B represented by a dark solid curve. Since, in the event of an engine stop, there is no longer any injection and newer common rail systems have no or only very little system leakage, the fuel pressure (p mess 1 ) remains constant at the original target value of 1200 bar until time (t 2). Correspondingly, is shown in the timing diagram of Figure 4C , a mean high pressure gradient (gradient mean HD ) of 0 bar / s is calculated.
  • the timing diagram of the Figure 4D shows the duty cycle (PWM SDR ) of the PWM signal of the suction throttle. Until the point in time (t 1 ), with the engine running, this assumes the value 15%.
  • a greater duty cycle (PWM SDR ) of the PWM signal is calculated, ie the suction throttle is moved in the closing direction.
  • the time diagram shown increases the duty cycle (PWM SDR ) of the PWM signal to its maximum value of 25% and remains at this value until the point in time (t 2 ).
  • the duty cycle of the PWM signal is a calculated signal accordingly Fig. 2 , this is shown in the timing diagram of the Figure 4G indicated by the fact that the control mode assumes the value 0 up to time (t 2).
  • the engine is started at time (t 3).
  • the engine speed (nmess) increases and reaches the value 80 1 / min at time (t 5).
  • the signal "Motor Stall" changes from value 1 to value 0.
  • the switch-on duration (PWM SDR ) of the PWM signal is only calculated from this point in time and so that the fuel pressure is regulated, ie up to the point in time (t 5 ) the duty cycle (PWM SDR ) of the PWM signal is set to the value 0% and the fuel pressure is thus controlled.
  • control mode 1 is identical to the value 1 up to the point in time (t 5 ), ie the high pressure control is deactivated up to this point in time, so that the duty cycle of the PWM signal (PWM SDR ) is specified . Only at time (t 5 ) does the control mode (control mode 1 ) change to the value 0, so that the fuel pressure (p mess 1 ) is subsequently regulated.
  • FIG. 4C The diagram shown shows that the high pressure gradient (gradient mean HD ) from time (t 3 ) onwards corresponding to the increasing fuel pressure according to the in Figure 4B
  • the diagram shown increases and at time (t 4 ) the limit value (Limit HDGradient Start ) is reached.
  • the high pressure regulation is activated when this limit value is reached and thus at time (t 4 ).
  • the corresponding line is shown dotted and labeled (control mode 2 ).
  • the PWM signal rises corresponding to that in FIG Figure 4D
  • the PWM signal according to the invention is again shown dotted and designated (PWM SDR 2 ).
  • the high-pressure regulation which starts earlier according to the invention, means that the fuel pressure now remains below the maximum value (p max ) when the engine is started and settles at its setpoint (p setpoint ) earlier, already at time (t 8). This protects the engine when it starts.
  • the course of the fuel pressure resulting in this case is shown in the diagram of Figure 4B again shown dotted.
  • the fuel pressure is denoted by (pmess).
  • Fig. 5 represents the method according to the invention in the form of a flowchart.
  • step (S1) the mean gradient (gradient mean HD ) is correspondingly here Fig. 3 calculated.
  • step (S2) it is queried whether the engine is stationary. Is this the one If so, the process continues with step (S3).
  • step (S3) a flag, which is initialized with the value 0, is queried. If this flag is set, the process continues with step (S7). If the flag is not set, the process continues with step (S4).
  • step (S4) it is checked whether the gradient (gradient mean HD ) is greater than or equal to the limit value (limit HDGradient Start ). If this is the case, the process continues with step (S5).
  • step (S5) the flag is set to the value 1 and the control mode is set to the value 0.
  • step (S7) If the query result in step (S4) is negative, ie if the mean gradient (Gradient Mittel HD ) is less than the limit value (Limit HDGradient Start ), the control mode is set to the value 1 in step (S6). The process then continues with step (S7). The control mode is queried in step (S7). If the control mode is set, the duty cycle (PWM SDR ) of the PWM signal is set to the value 0 in step (S8).
  • PWM SDR duty cycle of the PWM signal
  • step (S9) the duty cycle (PWM SDR ) of the PWM signal is calculated in step (S9) as a function of the suction throttle target voltage (U Soll SDR ), the battery voltage (U Batt ) and the diode forward voltage (U Diode ). In both cases, this ends the program sequence.
  • step (S10) the flag and the control mode are reset to the value 0.
  • the duty cycle (PWM SDR ) of the PWM signal is calculated as a function of the suction throttle target voltage (U Soll SDR ), the battery voltage (U Batt ) and the diode forward voltage (U Diode ). The program sequence is thus also ended in this case.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

  • Verfahren zum Betrieb einer Brennkraftmaschine mit einem eine Anzahl von Zylindern aufweisenden Motor und einem Einspritzsystem mit Hochdruckkomponenten, insbesondere einem ein Common-Rail aufweisendes Einspritzsystem mit einer Anzahl von den Zylindern zugeordneten Injektoren, insbesondere wobei einem Injektor ein Einzelspeicher zugeordnet ist, der zum Vorhalten von Kraftstoff aus dem Common-Rail für den Injektor ausgebildet ist.
  • Bewährt hat sich das Konzept eines Injektors mit einem Einzelspeicher im Rahmen eines Common-Rail-Einspritzsystems, wie er beispielsweise in DE 199 35 519 C2 beispielhaft beschrieben ist. Der Einzelspeicher wird über einen Kraftstoffzulaufkanal von dem Druckanschluss mit unter Druck stehendem Kraftstoff versorgt und steht direkt in Strömungsverbindung mit dem Hochdruckkanal für den unter hohem Druck stehenden Kraftstoff im Common-Rail. Das Volumen des Einzelspeichers ist groß, verglichen mit dem Volumen des Hochdruckkanals und des Düsenvorraums im Injektor. Aufgrund der Anordnung des Injektorsggfs. entkoppelt vom Common-Rail über ein Drosselelement-- steht im Gehäuse des Kraftstoffinjektors genügend Raum im Einzelspeicher zur Verfügung, um Kraftstoff für wenigstens eine gesamte Einspritzmenge für ein Arbeitsspiel eines Zylinders, jedenfalls aber für eine Teileinspritzung im Rahmen des Arbeitsspiels, vorzuhalten.
  • DE 10 2009 002 793 B4 offenbart einen Einzelspeicher oder eine Hochdruck-Komponente wie ein Common-Rail mit einer Druckmesseinrichung, die in Form eines Dehnungssensors gebildet ist, wobei der Dehnungssensor in Form eines Dehnungsmessstreifens gebildet und auf der Außenseite einer Wandung des Einzelspeichers angeordnet ist und dem Einzelspeicher ein hydraulischer Widerstand unmittelbar zur Integration in die Hochdruckführung vorgeordnet oder nachgeordnet ist.
  • Beim Starten des Motors muss einerseits sichergestellt sein, dass der Hochdruck einen vom Pumpenhersteller vorgegebenen Maximalwert von z. B. 600 bar nicht überschreitet, da die Pumpe sonst aufgrund des zu großen Gegendruckes zu Schaden kommen kann. Andererseits sollte der Hochdruck beim Motorstart möglichst groß sein, um ein gutes Beschleunigungsverhalten sowie geringe Emissionen zu gewährleisten.
  • Das Ansteuern der Saugdrossel beim Motorstart entsprechend dem Stand der Technik ist in der Patentschrift DE 101 56 637 C1 beschrieben. Dabei wird die Saugdrossel bei stehendem Motor oder bei laufendem Motor bis zum Erreichen eines Hochdruck-Schwellwerts von z. B. 800 bar mit einem konstanten Bestromungswert, vorzugsweise 0 A, bestromt. Mit Erreichen des Schwellwerts wird die Hochdruck-Regelung aktiviert, wodurch die Saugdrossel so bestromt wird, dass der Hochdruck auf den Sollhochdruck geregelt wird. Besonders vorteilhaft ist dieses Verfahren für Common-Rail-Systeme, welche eine große Systemleckage aufweisen. Bei solchen Systemen fällt der Raildruck, d. h. der Kraftstoff-Druck im Common-Rail, nach dem Abstellen des Motors schnell auf einen niedrigen Wert, z. B. 0 bar, ab. Wird die Saugdrossel in diesem Fall nach dem Starten des Motors zunächst nicht bestromt, so wird ein maximaler Anstieg des Hochdruckes bis zu einem vorgebbaren Hochdruck-Schwellwert erreicht. Dies ermöglicht einen schnellen und zuverlässigen Motorstart, da einerseits Einspritzungen bei Common-Rail-Systemen erst dann möglich sind, wenn der Öffnungsdruck der Einspritzdüsen erreicht wird. Dieser beträgt üblicherweise 350... 400 bar. Andererseits kann der Motor bei höheren Hochdrücken schneller beschleunigt werden, da der Kraftstoff in diesem Fall besser verbrannt wird, wodurch sich ein höherer Wirkungsgrad ergibt.
  • Während dies grundsätzlich richtig ist, hat sich gleichwohl folgende Problematik als relevant erwiesen: Bei neueren Common-Rail-Systemen ist ein Ansteuern der Saugdrossel entsprechend dem Stand der Technik wenig vorteilhaft, da diese Systeme nur wenig Systemleckage aufweisen. Dies hat zur Folge, dass der Hochdruck beim Abstellen des Motors nicht abgebaut wird und deshalb bei Werten, welche zum Zeitpunkt des Abstellens vorliegen, stehen bleibt. Da der Motor bei Hochdrücken von 600 ... 2200 bar betrieben wird, herrscht vor dem Starten des Motors i. d. R. ein Hochdruck, der die Hochdruckpumpe des Einspritzsystems schädigen könnte.
  • Wünschenswert ist es daher, zum Zeitpunkt des Motorstarts den innerhalb des Einspritzsystems herrschenden Druck in einem vorbestimmten Wertebereich einzustellen, der niedrig genug ist, um die Hochdruckpumpe des Einspritzsystems nicht zu schädigen, und gleichzeitig hoch genug ist, um ein gutes Beschleunigungsverhalten sowie vorteilhaftes Emissionsverhalten aufzuweisen. Um den eingangs genannten Anforderungen in verbesserter Weise gerecht zu werden, muss ein Verfahren entwickelt werden, welches den innerhalb des Einspritzsystems herrschenden Druck passend zum Zeitpunkt des Motorstarts in einem vorbestimmten Wertebereich einstellt.
  • DE102013214831 A1 , US5711274 A und DE19857260 A1 offenbaren bekannte Verfahren zum Betrieb einer Brennkraftmaschine. An dieser Stelle setzt die Erfindung an, deren Aufgabe es ist, ein Verfahren zu entwickeln, welches vor dem Motorstart den Hochdruck bis knapp unterhalb des Sollhochdruckes abbaut und die Hochdruck-Regelung beim Starten des Motors schnellstmöglich aktiviert.
    Die Aufgabe, betreffend das Verfahren, wird durch die Erfindung mit einem Verfahren des Anspruchs 1 gelöst.
    Die Erfindung geht aus von einem Verfahren zum Betrieb einer Brennkraftmaschine mit einem eine Anzahl von Zylindern aufweisenden Motor und einem Einspritzsystem mit Hochdruckkomponenten, insbesondere einem ein Common-Rail aufweisendes Einspritzsystem mit einer Anzahl von den Zylindern zugeordneten Injektoren, insbesondere wobei einem Injektor ein Einzelspeicher zugeordnet ist, der zum Vorhalten von Kraftstoff aus dem Common-Rail für den Injektor ausgebildet ist, wobei das Verfahren die Schritte aufweist:
    • Starten der Brennkraftmaschine,
    • Betreiben der Brennkraftmaschine,
    • Abstellen der Brennkraftmaschine,
    Erfindungsgemäß sind bei dem Verfahren die Schritte vorgesehen, dass
    • ein einen Motorstillstand kennzeichnender Zustand erkannt wird, insbesondere nach Abstellen der Brennkraftmaschine,
    • ein Hochdruck-Grenzwert festgelegt und ein Sollhochdruck vorgegeben wird,
    • eine Leckage im Common-Rail ohne Einspritzung erzeugt wird,
    • mittels der Leckage der Kraftstoff-Druck im Common-Rail auf den festgelegten Hochdruck-Grenzwert unterhalb des Sollhochdruckes abgebaut wird.
    Die Erfindung führt im Rahmen der Aufgabenstellung auch auf eine Einrichtung des Anspruchs 10 und ein Einspritzsystem des Anspruchs 11 sowie eine Brennkraftmaschine des Anspruchs 12. Die Einrichtung dient zum Steuern und/oder Regeln einer Brennkraftmaschine, mit einem Motorregler und einem Einspritz-Rechenmodul, die ausgebildet sind zur Durchführung des erfindungsgemäßen Verfahrens. Das Einspritzsystem ist versehen mit einem ein Common-Rail für eine Brennkraftmaschine mit einem eine Anzahl von Zylindern aufweisenden Motor und mit einer Anzahl von den Zylindern zugeordneten Injektoren, wobei einem Injektor ein Einzelspeicher zugeordnet ist, der zum Vorhalten von Kraftstoff aus dem Common-Rail zur Injektion in den Zylinder ausgebildet ist und mit einer Einrichtung zum Steuern und/oder Regeln einer Brennkraftmaschine nach Anspruch 9. Die Brennkraftmaschine umfasst einen eine Anzahl von Zylindern aufweisenden Motor und ein Einspritzsystem nach Anspruch 10, mit einem Common-Rail und einer Anzahl von Injektoren.
  • Die Erfindung geht aus von der Überlegung dass der Hochdruck im Einspritzsystem einer Brennkraftmaschine vor dem Starten idealerweiser bis knapp unterhalb des Sollhochdruckes abgebaut werden sollte. Der Sollhochdruck muss dabei so vorgegeben werden, dass der maximal zulässige Hochdruck beim Motorstart nicht überschritten wird. Wird der Motor gestartet, sollte die Hochdruck-Regelung schnellstmöglich aktiviert werden, um ein signifikantes Überschwingen des Hochdruckes über den Sollwert zu vermeiden.
  • Die Erfindung hat erkannt, dass auf diese Weise gewährleistet wird, dass die Hochdruckpumpe einerseits durch Überlastung nicht geschädigt wird und andererseits der Hochdruck beim Motorstart möglichst groß ist, um ein gutes Emissions- und Beschleunigungsverhalten zu gewährleisten. Entsprechend dem erfindungsgemäßen Verfahren wird die Aufgabe vorzugsweise dadurch gelöst, dass der Hochdruck nach dem Abstellen des Motors durch Aktivierung einer sogenannten "Blank Shot" - Funktion abgebaut wird. Dabei werden die Injektoren bei stehendem Motor bestromt, wodurch eine Leckage erzeugt wird, jedoch keine Einspritzung erfolgt. Diese "Blank-Shot" - Funktion wird so lange aktiviert, bis der Hochdruck auf einen Wert knapp unterhalb des Sollhochdruckes abgebaut ist. Ein signifikantes Überschwingen des Hochdruckes nach dem Motorstart wird erfindungsgemäß dadurch verhindert, dass die Hochdruck-Regelung bereits dann aktiviert wird, wenn der berechnete Hochdruck-Gradient einen vorgebbaren Grenzwert überschreitet.
  • Das Konzept bietet vorzugsweise die Basis für eine in verbesserter Weise betriebene Brennkraftmaschine. Die Erfindung ermöglicht es, den Motor bei möglichst hohem Raildruck zu starten ohne den maximal zulassigen Raildruck zu überschreiten und damit ohne den Motor durch einen zu hohen Raildruck zu schädigen. Das Starten bei hohem Raildruck ermöglicht somit ein gutes Beschleunigungsverhalten bei geringen Emissionen. Das Starten bei hohem Raildruck im Bereich des maximal zulässigen Raildruckes wird erreicht, indem der Raildruck einerseits nach dem Abstellen des Motors mit Hilfe der Blank Shot - Funktion bis auf einen Wert knapp unterhalb des Maximaldruckes abgesenkt wird und andererseits die Raildruckregelung beim Motorstart frühzeitig aktiviert wird, indem überprüft wird, ob der mittlere Hochdruck-Gradient ein vorgebbares Limit überschreitet. Dieses Verfahren ermöglicht es somit weiterhin, dass die Saugdrossel bei stehendem Motor nicht bestromt werden muss, wodurch deren Haltbarkeit verlängert wird.
  • Erfindungsgemäß ist bei dem Verfahren vorgesehen, dass beim Starten der Brennkraftmaschine die Hochdruck-Regelung zur Regelung des Kraftstoff-Druckes noch während des den Motorstillstand kennzeichnenden Zustands aktiviert wird, sobald ein mittlerer Hochdruck-Gradient einen definierten Grenzwert erreicht oder überschreitet.
    Konkret beinhaltet dies insbesondere die Aktivierung der Hochdruck-Regelung zur Regelung des Kraftstoff-Druckes bereits zu einem Zeitpunkt, an dem aufgrund einer noch zu niedrigen Motordrehzahl noch ein einen Motorstillstand kennzeichnenden Zustand vorliegt.
    Hierdurch wird der Vorteil erreicht, dass der Kraftstoff-Druck beim Starten der Brennkraftmaschine unter einem Maximalwert verbleibt und sich früher auf einen vorgegebenen Sollwert einschwingt. Vorteilhafte Weiterbildungen der Erfindung sind den Unteransprüchen zu entnehmen und geben im Einzelnen vorteilhafte Möglichkeiten an, das oben erläuterte Konzept im Rahmen der Aufgabenstellung sowie hinsichtlich weiterer Vorteile zu realisieren.
    Insbesondere ist vorteilhaft vorgesehen, dass durch Aktivierung der Hochdruck-Regelung eine die Kraftstoffzufuhr beeinflussende Saugdrossel in Schließrichtung betätigt wird, was beim Starten der Brennkraftmaschine zu einem Verbleiben des Kraftstoff-Druckes unterhalb eines Maximalwertes führt.
    Konkret beinhaltet dies, dass ein kontinuierliches Signal zur Steuerung einer Saugdrossel bei Aktivierung der Hochdruck-Regelung erhöht wird, was eine Schließbewegung der Saugdrossel zur Folge hat.
    Hierdurch wird der Vorteil erreicht, dass ein Ansteigen des Kraftstoff-Druckes über einen Maximalwert durch ein frühzeitiges Schließen der Saugdrossel verhindert wird.
  • Im Rahmen einer weiteren bevorzugten Weiterbildung ist vorgesehen, dass der Hochdruck-Gradient aus einem ersten und einem zweiten Kraftstoff-Druck-Wert gebildet wird, wobei der erste und der zweite Kraftstoff-Druck-Wert in einem vorgegebenen Zeitabstand aufeinander folgen.
  • Konkret bedeutet dies beispielsweise, dass zwei zeitlich aufeinanderfolgende und mittels eines Drucksensors gemessene Kraftstoff-Druck-Werte voneinander subtrahiert werden und ein Quotient aus dieser Differenz und dem Zeitraum zwischen den beiden Aufnahmen der jeweiligen Werte gebildet werden.
  • Dieses Vorgehen hat den Vorteil, dass als Kriterium für die Aktivierung der Hochdruck-Regelung an Stelle des absoluten Kraftstoff-Druck-Wertes der Hochdruck-Gradient, also dessen Steigerungsrate, hinzugezogen werden kann. Auf diese Weise kann vor Erreichen des betragsmäßigen Maximums des Kraftstoff-Druckes der Zeitpunkt ermittelt werden, an dem die Zunahme des Kraftstoff-Druck-Wertes einen vorbestimmten Grenzwert erreicht.
  • Im Rahmen einer weiteren bevorzugten Weiterbildung ist vorgesehen, dass aus einer endlichen Menge aufeinander folgender Hochdruck-Gradienten durch Mittelwertbildung ein mittlerer Hochdruck-Gradient gebildet wird.
  • Dieses Vorgehen führt zu dem Vorteil, dass durch eine Mittelwertbildung von Hochdruck-Gradienten eine entsprechende Sicherheit bei der Beurteilung erreicht wird. So können beispielsweise kurzzeitige Ausreißer in den gemessenen Kraftstoff-Druck-Werten über eine derartige Mittelwertbildung geglättet werden.
  • Weiterhin ist vorteilhaft vorgesehen, dass ein Motor bei einer Motordrehzahl von 50 - 120 min-1 als in Betrieb bzw. laufend erkannt wird.
  • Weiterhin ist vorteilhaft vorgesehen, dass der festgelegte Hochdruck-Grenzwert 560 - 600 bar beträgt.
  • Im Rahmen einer weiteren bevorzugten Weiterbildung ist vorgesehen, dass der Hochdruck-Gradient für eine vorgegebene Zeitspanne bestimmt wird als mittlerer Hochdruck-Gradient aus einer Anzahl (k) von bestimmten Hochdruck-Gradienten, wobei die Anzahl (k) als ein Quotient aus der vorgegebenen Zeitspanne und einer Abtastzeit gebildet wird.
  • Ausführungsformen der Erfindung werden nun nachfolgend anhand der Zeichnung beschrieben. Diese soll die Ausführungsformen nicht notwendigerweise maßstäblich darstellen, vielmehr ist die Zeichnung, wo zur Erläuterung dienlich, in schematisierter und/oder leicht verzerrter Form ausgeführt. Im Hinblick auf Ergänzungen der aus der Zeichnung unmittelbar erkennbaren Lehren wird auf den einschlägigen Stand der Technik verwiesen. Dabei ist zu berücksichtigen, dass vielfältige Modifikationen und Änderungen betreffend die Form und das Detail einer Ausführungsform vorgenommen werden können, ohne von dem Umfang der Ansprüche abzuweichen.
  • Bei angegebenen Bemessungsbereichen sollen auch innerhalb der genannten Grenzen liegende Werte als Grenzwerte offenbart und beliebig einsetzbar und beanspruchbar sein. Der Einfachheit halber sind nachfolgend für identische oder ähnliche Teile oder Teile mit identischer oder ähnlicher Funktion gleiche Bezugszeichen verwendet.
  • Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung der bevorzugten Ausführungsformen sowie anhand der Zeichnung; diese zeigt in:
  • Fig. 1
    eine Einrichtung zur Steuerung eines Einspritzsystems einer Brennkraftmaschine
    Fig. 2
    ein Blockschaltbild eines Hochdruckregelkreises
    Fig. 3A
    ein Zeitdiagramm zur Darstellung des Hochdruck-Gradienten
    Fig. 3B
    Formeln zur Berechnung des Hochdruck-Gradienten und des mittleren Hochdruck-Gradienten
    Fig. 4A
    ein Zeitdiagramm der gemessenen Drehzahl nmess
    Fig. 4B
    ein Zeitdiagramm des gemessenen Kraftstoff-Druckes pmess und des Sollhochdruckes pSoll
    Fig. 4C
    ein Zeitdiagramm des Hochdruck-Gradienten des Kraftstoff-Druckes
    Fig. 4D
    ein Zeitdiagramm der Einschaltdauer PWMSDR des PWM-Signals
    Fig. 4E
    ein Zeitdiagramm des Signals "Motor Stop", welches ein Abstellen des Motors kennzeichnet
    Fig. 4F
    ein Zeitdiagramm des Signals "Motor Steht", welches einen Motorstillstand kennzeichnet
    Fig. 4G
    ein Zeitdiagramm des Signals "Steuermodus", welches eine Aktivierung der Hochdruck-Regelung kennzeichnet
    Fig. 4H
    ein Zeitdiagramm des Signals "Blank Shot Aktiv", welches eine Aktivierung der Blank-Shot-Funktion kennzeichnet
    Fig. 5
    ein Flussdiagramm eines Verfahrens einer bevorzugten Ausführungsform..
  • Fig. 1 zeigt eine Einrichtung entsprechend dem Stand der Technik. Eine solche Einrichtung ist in der DE 102014 213 648 B3 beschrieben. Eine Brennkraftmaschine 1 weist dabei ein Einspritzsystem 3 auf. Das Einspritzsystem 3 ist bevorzugt als Common-Rail-Einspritzsystem ausgebildet. Es weist eine Niederdruckpumpe 5 zur Förderung von Kraftstoff aus einem Kraftstoff-Reservoir 7, eine verstellbare, niederdruckseitige Saugdrossel 9 zur Beeinflussung eines zu einer Hochdruckpumpe 11 strömenden Kraftstoff-Volumenstroms, die Hochdruckpumpe 11 zur Förderung des Kraftstoffs unter Druckerhöhung in einen Hochdruckspeicher 13, den Hochdruckspeicher 13 zum Speichern des Kraftstoffs, und vorzugsweise eine Mehrzahl von Injektoren 15 zum Einspritzen des Kraftstoffs in Brennräume 16 der Brennkraftmaschine 1 auf. Optional ist es möglich, dass das Einspritzsystem 3 auch mit Einzelspeichern ausgeführt ist, wobei dann beispielsweise in dem Injektor 15 ein Einzelspeicher 17 als zusätzliches Puffervolumen integriert ist. Es ist bei dem hier dargestellten Ausführungsbeispiel ein insbesondere elektrisch ansteuerbares Druckregelventil 19 vorgesehen, über welches der Hochdruckspeicher 13 mit dem Kraftstoff-Reservoir 7 fluidverbunden ist. Über die Stellung des Druckregelventils 19 wird ein Kraftstoffvolumenstrom definiert, welcher aus dem Hochdruckspeicher 13 in das Kraftstoff-Reservoir 7 abgesteuert wird. Dieser Kraftstoffvolumenstrom wird in Fig. 1 sowie im folgenden Text mit VDRV bezeichnet und stellt eine Hochdruck-Störgröße des Einspritzsystems 3 dar.
  • Das Einspritzsystem 3 weist kein mechanisches Überdruckventil auf, da dessen Funktion durch das Druckregelventil 19 übernommen wird. Die Betriebsweise der Brennkraftmaschine 1 wird durch ein elektronisches Steuergerät 21, welches bevorzugt als Motorsteuergerät der Brennkraftmaschine 1, nämlich als sogenannte Engine Control Unit (ECU) ausgebildet ist, bestimmt. Das elektronische Steuergerät 21 beinhaltet die üblichen Bestandteile eines Microcomputersystems, beispielsweise einen Mikroprozessor, I/O-Bausteine, Puffer- und Speicherbausteine (EEPROM,RAM). In den Speicherbausteinen sind die für den Betrieb der Brennkraftmaschine 1 relevanten Betriebsdaten in Kennfeldem/Kennlinien appliziert. Über diese berechnet das elektronische Steuergerät 21 aus Eingangsgrößen Ausgangsgrößen. In Fig. 1 sind exemplarisch folgende Eingangsgrößen dargestellt: Ein gemessener, noch ungefilterter Hochdruck p, der in dem Hochdruckspeicher 13 herrscht und mittels eines Drucksensors 23 gemessen wird, eine aktuelle Motordrehzahl n1, ein Signal FP zur Leistungsvorgabe durch einen Betreiber der Brennkraftmaschine 1, und eine Eingangsgröße E. Unter der Eingangsgröße E sind vorzugsweise weitere Sensorsignale zusammengefasst, beispielsweise ein Ladeluftdruck eines Abgasturboladers. Bei einem Einspritzsystem 3 mit Einzelspeichern 17 ist ein Einzelspeicherdruck pE bevorzugt eine zusatzliche Eingangsgröße des Steuergeräts 21.
  • In Fig. 1 sind als Ausgangsgrößen des elektronischen Steuergeräts 21 beispielhaft ein Signal PWMSDR zur Ansteuerung der Saugdrossel 9 als erstes Druckstellglied, ein Signal ve zur Ansteuerung der Injektoren 15 - welches insbesondere einen Spritzbeginn und/oder ein Spritzende oder auch eine Spritzdauer vorgibt -, ein Signal PWMDRV zur Ansteuerung des Druckregelventils 19 und damit die Hochdruck-Störgröße VDRV definiert. Die Ausgangsgröße A steht stellvertretend für weitere Stellsignale zur Steuerung und/oder Regelung der Brennkraftmaschine 1, beispielsweise fur ein Stellsignal zur Aktivierung eines zweiten Abgasturboladers bei einer Registeraufladung.
  • Fig. 2 zeigt das Blockschaltbild eines Hochdruckregelkreises entsprechend dem Stand der Technik. Eingangsgröße des Hochdruckregelkreises ist der Sollhochdruck PSoll des Common-Rail-Systems, welcher mit dem gemessenen Hochdruck pmess verglichen wird. Die Differenz beider Hochdrücke ergibt dabei die Hochdruck-Regelabweichung ep. Diese Regelabweichung ep des Hochdruckes ist die Eingangsgröße des Hochdruckreglers, welcher bevorzugt als PI(DT1)-Algorithmus ausgeführt ist. Weitere Eingangsgrößen des Hochdruckreglers sind u. a. der Proportionalbeiwert kpSDR. Ausgangsgröße des Hochdruckreglers ist der KraftstoffVolumenstrom VPI(DT1)SDR, welcher mit dem Kraftstoff-Sollverbrauch Vstör SDR addiert wird. Der Kraftstoff-Sollverbrauch Vstör SDR wird aus der gemessenen Motordrehzahl nmess und der Soll-Einspritzmenge QSoll berechnet und stellt eine Störgröße des Hochdruckregelkreises dar. Als Summe der Hochdruckregler-Ausgangsgröße VPI(DTI)SDR und der Störgröße Vstör SDR (StörgrößenAufschaltung) ergibt sich der unbegrenzte Kraftstoff-Sollvolumenstrom VUnbeg SDR. Dieser wird anschließend in Abhängigkeit der Motordrehzahl nmess auf den maximalen Volumenstrom Vmax SDR begrenzt. Der begrenzte Kraftstoff-Sollvolumenstrom VSoll SDR ist die Eingangsgröße der Pumpenkennlinie. Die Pumpenkennlinie rechnet den begrenzten Kraftstoff-Sollvolumenstrom VSoll SDR in den Saugdrossel-Sollstrom ISoll SDR um. Der Saugdrossel-Sollstrom ISoll SDR ist die Eingangsgröße des Saugdrossel-Stromreglers, welcher die Aufgabe hat, den Saugdrosselstrom zu regeln. Eine weitere Eingangsgröße des Saugdrossel-Stromreglers ist u. a. der gemessene Saugdrosselstrom Imess SDR Ausgangsgröße des Saugdrossel-Stromreglers ist die Saugdrossel-Sollspannung USoll SDR, welche schließlich in die PWM-Einschaltdauer PWMSDR als Vorgabe für die Saugdrossel umgerechnet wird. Die Regelstrecke des Hochdruckregelkreises besteht insgesamt aus der Saugdrossel, der Hochdruckpumpe und dem Kraftstoff-Rail. Regelgröße des unterlagerten Saugdrosselstrom-Regelkreises ist hierbei der Saugdrosselstrom, wobei die Rohwerte IRoh SDR noch durch ein Filter, welches z. B. ein PT1-Filter sein kann, gefiltert werden. Ausgangsgröße dieses Filters ist der gemessene Saugdrosselstrom Imess SDR. Die Regelgröße des Hochdruckregelkreises ist der Kraftstoff-Raildruck (Hochdruck). Die Rohwerte des Kraftstoff-Raildruckes pRoh werden dabei durch ein Hochdruck-Filter gefiltert, welches als Ausgangsgröße den gemessenen Kraftstoff-Raildruck pmess hat. Dieses Filter kann z. B. durch einen PT1-Algorithmus umgesetzt sein.
  • Folgende Elemente des Hochdruckregelkreises sind bereits in diesen Patentschriften veröffentlicht: der Stromregelkreis in der US 7,240,667 B2 und die Störgrößenaufschaltung z. B. in der DE 10 2008 036 299 B3 bzw. der US 7,856,961 B2 für den Fall getrennter Kraftstoff-Rails.
  • Die Erfindung wird anhand Fig. 3A, Fig. 3B, Fig. 4 und Fig. 5 beschrieben.
  • Fig. 3A und Fig. 3B stellen eine besonders vorteilhafte Berechnung des Hochdruck-Gradienten dar. Das in Fig 3A dargestellte Zeitdiagramm zeigt den Hochdruck in Form einer durchgezogenen Kurve in Abhängigkeit der Zeit. Der aktuelle Hochdruck-Gradient (GradientAktuell HD(t1)) zum Zeitpunkt t1 wird entsprechend Fig. 3B berechnet, indem der um die Zeitspanne (ΔtGrad HD) zurückliegende gemessene Kraftstoff-Druck (pmess(t1 - ΔtGrad HD)) vom aktuellen Kraftstoff-Druck (pmess(t1)) subtrahiert und die Differenz durch die Zeitspanne (ΔtGrad HD) dividiert wird. Der Hochdruck-Gradient zum Zeitpunkt (t1 - Ta), wobei mit (Ta) die Abtastzeit bezeichnet ist, wird berechnet, indem der um die Zeitspanne (t1 - Ta - ΔtGrad HD) zurückliegende gemessene Kraftstoff-Druck (pmess(t1 - Ta - ΔtGrad HD)) vom Kraftstoff-Druck (pmess(t1 - Ta)) subtrahiert und die Differenz ebenfalls durch die Zeitspanne (ΔtGrad HD) dividiert wird. Ganz allgemein wird der Hochdruck-Gradient zum Zeitpunkt (t1 - (k - 1) Ta) berechnet, indem der um die Zeitspanne (t1 - (k- 1) Ta - ΔtGrad HD) zurückliegende gemessene Kraftstoff-Druck (pmess(t1 - (k - 1) Ta - ΔtGrad HD)) vom Kraftstoff-Druck (pmess(t1 - (k - 1) Ta)) subtrahiert und die Differenz durch die Zeitspanne (ΔtGrad HD) dividiert wird.
  • Eine vorteilhafte Ausgestaltung der Berechnung des Hochdruck-Gradienten ist es, wenn dieser über die vorgebbare Zeitspanne (ΔtMittel HD) gemittelt wird. Bei einer Abtastzeit (Ta) ergibt sich der mittlere Hochdruck-Gradient (GradientMittel HD(t1)) zum Zeitpunkt t1 dabei entsprechend Fig. 3B indem über insgesamt (k) Gradienten gemittelt wird, wobei die Anzahl (k) entsprechend Fig. 3B folgendermaßen berechnet wird: k = Δ t Mittel HD Ta
    Figure imgb0001
  • Die zusammenhängenden Figuren Fig. 4A, Fig. 4B, Fig. 4C, Fig. 4D, Fig. 4E, Fig. 4F, Fig. 4G und Fig. 4H stellen die Erfindung in Form mehrerer Zeitdiagramme dar. Das in Fig. 4A dargestellte Zeitdiagramm zeigt die gemessene Motordrehzahl (nmess). Zum Zeitpunkt (t1) wird der Motor abgestellt, das im Zeitdiagramm der Fig. 4E dargestellte "Motor Stop"-Signal wechselt vom Wert 0 auf den Wert 1. Als Folge ändert sich die Motordrehzahl (nmess), ausgehend vom Wert 1000 1/min, auf den Wert 0 1/min. Zum Zeitpunkt (t2) wird Motorstillstand erkannt, das im Zeitdiagramm der Fig. 4F dargestellte Signal ("Motor Steht") wechselt vom Wert 0 auf den Wert 1. Im Zeitdiagramm der Fig. 4B ist der Sollhochdruck (pSoll) als durchgezogene, helle Kurve dargestellt. Der Sollhochdruck wird als Ausgangsgröße eines dreidimensionalen Kennfelds mit den Eingangsgrößen Motordrehzahl (nmess) und Sollmoment (MSoll) berechnet. Wird der Motor abgestellt, wird das Sollmoment sofort auf den Wert 0 Nm reduziert, die Motordrehzahl fällt zeitverzögert auf den Wert 0 1/min. Entsprechend dem in Fig. 4B dargestellten Zeitdiagramm ergibt sich in diesem Fall, der Auslegung des Sollhochdruck-Kennfelds entsprechend, ebenfalls ein fallender Sollhochdruck (PSoll), dargestellt durch eine durchgezogene helle Kurve mit dem Anfangswert 1200 bar und dem Endwert 600 bar, welcher zum Zeitpunkt (t2) erreicht wird. Der Kraftstoff-Druck (pmess 1) wird im Zeitdiagramm der Fig. 4B durch eine dunkle durchgezogene Kurve dargestellt. Da im Falle eines Motorstops nicht mehr eingespritzt wird und neuere Common-Rail-Systeme keine oder nur sehr wenig Systemleckage haben, bleibt der Kraftstoff-Druck (pmess 1) bis zum Zeitpunkt (t2) konstant auf dem ursprünglichen Sollwert 1200 bar. Entsprechend wird, dargestellt im Zeitdiagramm der Fig. 4C, ein mittlerer Hochdruck-Gradient (GradientMittel HD) von 0 bar/s berechnet. Das Zeitdiagramm der Fig. 4D zeigt die Einschaltdauer (PWMSDR) des PWM-Signals der Saugdrossel. Bis zum Zeitpunkt (t1), bei laufendem Motor, nimmt dieses den Wert 15 % an. Da der Sollhochdruck (pSoll) vom Zeitpunkt (t1) an unter den Kraftstoff-Druck (pmess 1) fällt, ergibt sich eine negative Hochdruckregelabweichung (ep). Dies führt dazu, dass entsprechend Fig. 2 eine größere Einschaltdauer (PWMSDR) des PWM-Signals berechnet wird, d. h. die Saugdrossel wird in Schließrichtung bewegt. Entsprechend dem in Fig. 4D dargestellten Zeitdiagramm steigt die Einschaltdauer (PWMSDR) des PWM-Signals auf seinen Maximalwert 25 % an und verharrt auf diesem Wert bis zum Zeitpunkt (t2). Bei der Einschaltdauer des PWM-Signals handelt es sich dabei um ein berechnetes Signal entsprechend Fig. 2, dies wird im Zeitdiagramm der Fig. 4G dadurch angezeigt, dass der Steuermodus bis zum Zeitpunkt (t2) den Wert 0 annimmt.
  • Zum Zeitpunkt (t2) wird der Motor entsprechend dem in Fig. 4F dargestellten Zeitdiagramm als stehend erkannt, das Signal ("Motor Steht") wechselt vom Wert 0 auf den Wert 1. Wie das in Fig. 4H dargestellte Zeitdiagramm zeigt, wird zu diesem Zeitpunkt die Blank Shot-Funktion aktiviert, dies wird angezeigt durch das Signal "Blank Shot Aktiv", welches vom Wert 0 auf den Wert 1 wechselt. Dies führt dazu, dass der Kraftstoff-Druck (pmess 1), dargestellt in Fig. 4B, ausgehend vom Wert 1200 bar, abfällt und zum Zeitpunkt (t3) den Wert 580 bar erreicht. Zu diesem Zeitpunkt wird die Blank Shot - Funktion deaktiviert, so dass das Signal ("Blank Shot Aktiv") vom Wert 1 wieder auf den Wert 0 wechselt. Da der Kraftstoff-Druck vom Zeitpunkt (t2) bis zum Zeitpunkt (t3) abfällt, ergibt sich, wie im dritten Zeitdiagramm dargestellt, ein negativer Hochdruck-Gradient, angezeigt durch den Wert -100 bar/s.
  • Zum Zeitpunkt (t3) wird der Motor gestartet. Dies hat zur Folge, dass die Motordrehzahl (nmess) ansteigt und zum Zeitpunkt (t5) den Wert 80 1/min erreicht. Damit wird zu diesem Zeitpunkt ein laufender Motor erkannt, das Signal ("Motor Steht") wechselt vom Wert 1 auf den Wert 0. Entsprechend dem Stand der Technik wird die Einschaltdauer (PWMSDR) des PWM-Signals erst von diesem Zeitpunkt an berechnet und damit der Kraftstoff-Druck geregelt, d. h. bis zum Zeitpunkt (t5) wird die Einschaltdauer (PWMSDR) des PWM-Signals auf den Wert 0 % gesetzt und damit der Kraftstoff-Druck gesteuert. Dies hat zur Folge, dass der Kraftstoff-Druck (pmess 1) entsprechend dem Stand der Technik, beginnend mit dem Zeitpunkt (t3), ansteigt und erst zum Zeitpunkt (t7) und damit nach dem Aktivieren der Hochdruck-Regelung zum Zeitpunkt (t5), mit dem Wert 750 bar seinen Maximalwert erreicht. Nach dem Zeitpunkt (t7) fällt der Kraftstoff-Druck wieder und erreicht zum Zeitpunkt (t9) schließlich seinen Sollwert (pSoll). Das Zeitdiagramm in Fig. 4B zeigt, dass der Kraftstoff-Druck (pmess 1) den zulässigen Maximaldruck (pmax) beim Motorstart deutlich übersteigt. Das in Fig. 4D dargestellte Diagramm zeigt, dass die dem Stand der Technik entsprechende Einschaltdauer (PWMSDR 1) des PWM-Signals zum Zeitpunkt (t5) mit dem Aktivieren der Hochdruck-Regelung ansteigt und sich zum Zeitpunkt (t9) schließlich auf dem stationären Wert 20 % einschwingt. Das in Fig. 4G dargestellte Diagramm zeigt den Steuermodus (Steuermodus1) entsprechend dem Stand der Technik. Der Stand der Technik wird, wie bei den in Fig. 4B und Fig. 4D dargestellten Diagrammen, wiederum als durchgezogene Kurve dargestellt. Man erkennt, dass der Steuermodus (Steuermodus1) bis zum Zeitpunkt (t5) mit dem Wert 1 identisch ist, d. h. bis zu diesem Zeitpunkt ist die Hochdruck-Regelung deaktiviert, so dass die Einschaltdauer des PWM-Signals (PWMSDR)vorgegeben wird. Erst zum Zeitpunkt (t5) wechselt der Steuermodus (Steuermodus1) auf den Wert 0, so dass der Kraftstoff-Druck (pmess 1) in der Folge geregelt wird.
  • Das in Fig. 4C dargestellte Diagramm zeigt, dass der Hochdruck-Gradient (GradientMittel HD) vom Zeitpunkt (t3) an entsprechend dem steigenden Kraftstoff-Druck gemäß dem in Fig. 4B dargestellten Diagramm ansteigt und zum Zeitpunkt (t4) den Grenzwert (LimitHDGradient Start) erreicht. Im Sinne der Erfindung wird die Hochdruck-Regelung mit Erreichen dieses Grenzwerts und damit zum Zeitpunkt (t4) aktiviert. Damit wechselt der Steuermodus, dargestellt in Fig. 4G, bereits zum Zeitpunkt (t4) auf den Wert 0. Die entsprechende Linie ist punktiert dargestellt und mit (Steuermodus2) bezeichnet. Mit dem erfindungsgemäßen Aktivieren der Hochdruck-Regelung zum Zeitpunkt (t4) steigt das PWM-Signal entsprechend dem in Fig. 4D dargestellten Diagramm bereits zum Zeitpunkt (t4) an, so dass die Saugdrossel früher als dem Stand der Technik entsprechend, in Schließrichtung betätigt wird. Das PWM-Signal entsprechend der Erfindung ist wiederum punktiert dargestellt und mit (PWMSDR 2) bezeichnet. Die erfindungsgemäß früher einsetzende Hochdruck-Regelung führt dazu, dass der Kraftstoff-Druck nun beim Motorstart unter dem Maximalwert (pmax) verbleibt und sich früher, bereits zum Zeitpunkt (t8), auf seinem Sollwert (pSoll) einschwingt. Dadurch wird der Motor beim Start geschützt. Der sich in diesem Fall ergebende Verlauf des Kraftstoff-Druckes ist im Diagramm der Fig. 4B wiederum punktiert dargestellt. Der Kraftstoff-Druck ist dabei mit (pmess) bezeichnet.
  • Fig. 5 stellt das erfindungsgemäße Verfahren in Form eines Flussdiagramms dar. In Schritt (S1) wird hierbei der mittlere Gradient (GradientMittel HD) entsprechend Fig. 3 berechnet. Anschließend wird mit Schritt (S2) fortgefahren. In Schritt (S2) wird abgefragt, ob der Motor steht. Ist dies der Fall, wird mit Schritt (S3) fortgefahren. In Schritt (S3) wird ein Merker, welcher mit dem Wert 0 initialisiert ist, abgefragt. Ist dieser Merker gesetzt, wird mit Schritt (S7) fortgefahren. Ist der Merker nicht gesetzt, wird mit Schritt (S4) fortgefahren. In Schritt (S4) wird geprüft, ob der Gradient (GradientMittel HD) größer oder gleich als der Grenzwert (LimitHDGradient Start) ist. Ist dies der Fall, wird mit Schritt (S5) fortgefahren. In Schritt (S5) wird der Merker auf den Wert 1 gesetzt sowie der Steuermodus auf den Wert 0. Anschließend wird mit Schritt (S7) fortgefahren. Ist das Abfrageergebnis in Schritt (S4) negativ, d. h. ist der mittlere Gradient (GradientMittel HD) kleiner als der Grenzwert (LimitHDGradient Start), wird der Steuermodus in Schritt (S6) auf den Wert 1 gesetzt. Anschließend wird mit Schritt (S7) fortgefahren. In Schritt (S7) wird der Steuermodus abgefragt. Ist der Steuermodus gesetzt, wird die Einschaltdauer (PWMSDR) des PWM-Signals in Schritt (S8) auf den Wert 0 gesetzt. Ist der Steuermodus nicht gesetzt, wird die Einschaltdauer (PWMSDR) des PWM-Signals im Schritt (S9) in Abhängigkeit der Saugdrossel-Sollspannung (USoll SDR), der Batteriespannung (UBatt) und der Diodenflussspannung (UDiode) berechnet. In beiden Fällen ist der Programmablauf hiermit beendet.
  • Ist das Abfrageergebnis in Schritt (S2) negativ, wird mit Schritt (S10) fortgefahren. In Schritt (S10) werden der Merker und der Steuermodus auf den Wert 0 zurückgesetzt. Die Einschaltdauer (PWMSDR) des PWM-Signals wird in Abhängigkeit der Saugdrossel-Sollspannung (USoll SDR), der Batteriespannung (UBatt) und der Diodenflussspannung (UDiode) berechnet. Damit ist der Programmablauf auch in diesem Fall beendet.

Claims (12)

  1. Verfahren zum Betrieb einer Brennkraftmaschine mit einem eine Anzahl von Zylindern aufweisenden Motor und einem ein Common-Rail aufweisendes Einspritzsystem mit einer Anzahl von den Zylindern zugeordneten Injektoren und dergleichen Hochdruckkomponenten, wobei das Verfahren die Schritte aufweist:
    - Starten der Brennkraftmaschine,
    - Betreiben der Brennkraftmaschine,
    - Abstellen der Brennkraftmaschine, wobei
    - ein einen Motorstillstand kennzeichnender Zustand erkannt wird,
    - ein Hochdruck-Grenzwert festgelegt und ein Sollhochdruck vorgegeben wird,
    - eine Leckage im Common-Rail ohne Einspritzung erzeugt wird,
    - mittels der Leckage der Kraftstoff-Druck im Common-Rail auf den festgelegten Hochdruck-Grenzwert unterhalb des Sollhochdruckes abgebaut wird,
    dadurch gekennzeichnet, dass
    beim Starten der Brennkraftmaschine die Hochdruck-Regelung zur Regelung des Kraftstoff-Druckes noch während des den Motorstillstand kennzeichnenden Zustands aktiviert wird, sobald ein mittlerer Hochdruck-Gradient einen definierten Grenzwert erreicht oder überschreitet.
  2. Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass einem Injektor ein Einzelspeicher zugeordnet ist, der zum Vorhalten von Kraftstoff aus dem Common-Rail für den Injektor ausgebildet ist.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der einen Motorstillstand kennzeichnende Zustand nach Abstellen der Brennkraftmaschine erkannt wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass durch Aktivierung der Hochdruck-Regelung eine die Kraftstoffzufuhr beeinflussende Saugdrossel in Schließrichtung betätigt wird, was beim Starten der Brennkraftmaschine zu einem Verbleiben des Kraftstoff-Druckes unterhalb eines Maximalwertes führt.
  5. Verfahren nach einem der Ansprüche 1 bis 4 dadurch gekennzeichnet, dass der Hochdruck-Gradient aus einem ersten und einem zweiten Kraftstoff-Druck-Wert gebildet wird, wobei der erste und der zweite Kraftstoff-Druck-Wert in einem vorgegebenen Zeitabstand (ΔtGrad HD) aufeinander folgen.
  6. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass aus einer endlichen Menge aufeinander folgender Hochdruck-Gradienten durch Mittelwertbildung ein mittlerer Hochdruck-Gradient gebildet wird.
  7. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass der Motor bei einer Motordrehzahl von 50 - 120 min-1 als in Betrieb erkannt wird.
  8. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass der festgelegte Hochdruck-Grenzwert 560 - 600 bar beträgt.
  9. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass der Hochdruck-Gradient für eine vorgegebene Zeitspanne (ΔtMittel HD) bestimmt wird als mittlerer Hochdruck-Gradient aus einer Anzahl (k) von bestimmten Hochdruck-Gradienten, wobei die Anzahl (k) als ein Quotient aus der vorgegebenen Zeitspanne (ΔtMittel HD) und einer Abtastzeit (Ta) gebildet wird.
  10. Einrichtung zum Steuern und/oder Regeln einer Brennkraftmaschine, mit einem Motorregler und einem Einspritz-Rechenmodul, die ausgebildet sind zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 9.
  11. Einspritzsystem mit einem ein Common-Rail für eine Brennkraftmaschine mit einem eine Anzahl von Zylindern aufweisenden Motor und mit einer Anzahl von den Zylindern zugeordneten Injektoren, wobei einem Injektor ein Einzelspeicher zugeordnet ist, der zum Vorhalten von Kraftstoff aus dem Common-Rail zur Injektion in den Zylinder ausgebildet ist und mit einer Einrichtung nach Anspruch 10 zum Steuern und/oder Regeln einer Brennkraftmaschine.
  12. Brennkraftmaschine mit einem eine Anzahl von Zylindern aufweisenden Motor und einem Einspritzsystem mit einem Common-Rail und einer Anzahl von Injektoren und dergleichen Hochdruckkomponenten und mit einer Einrichtung zum Steuern und/oder Regeln nach Anspruch 10, insbesondere mit einem Einspritzsystem nach Anspruch 11.
EP17711568.0A 2016-04-28 2017-03-13 Verfahren zum betrieb einer brennkraftmaschine, einrichtung zum steuern und/oder regeln einer brennkraftmaschine, einspritzsystem und brennkraftmaschine Active EP3449111B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016207297.8A DE102016207297B3 (de) 2016-04-28 2016-04-28 Verfahren zum Betrieb einer Brennkraftmaschine, Einrichtung zum Steuern und/oder Regeln einer Brennkraftmaschine, Einspritzsystem und Brennkraftmaschine
PCT/EP2017/000324 WO2017186326A1 (de) 2016-04-28 2017-03-13 Verfahren zum betrieb einer brennkraftmaschine, einrichtung zum steuern und/oder regeln einer brennkraftmaschine, einspritzsystem und brennkraftmaschine

Publications (2)

Publication Number Publication Date
EP3449111A1 EP3449111A1 (de) 2019-03-06
EP3449111B1 true EP3449111B1 (de) 2021-04-28

Family

ID=58358540

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17711568.0A Active EP3449111B1 (de) 2016-04-28 2017-03-13 Verfahren zum betrieb einer brennkraftmaschine, einrichtung zum steuern und/oder regeln einer brennkraftmaschine, einspritzsystem und brennkraftmaschine

Country Status (5)

Country Link
US (1) US10641199B2 (de)
EP (1) EP3449111B1 (de)
CN (1) CN109072795B (de)
DE (1) DE102016207297B3 (de)
WO (1) WO2017186326A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109630301A (zh) * 2018-12-11 2019-04-16 潍柴动力股份有限公司 一种无泄漏喷油器空喷射的控制方法和装置
CN110185546B (zh) * 2019-05-20 2021-12-14 苏州国方汽车电子有限公司 一种无静态回油发动机共轨燃油系统的轨压释放方法及装置
CN113047975B (zh) * 2021-03-23 2023-06-09 无锡威孚高科技集团股份有限公司 一种柴油机燃油系统中电控泄压阀的控制方法

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4445586A1 (de) * 1994-12-20 1996-06-27 Bosch Gmbh Robert Verfahren zur Reduzierung des Kraftstoffdruckes in einer Kraftstoffeinspritzeinrichtung
JP3317202B2 (ja) * 1997-08-04 2002-08-26 トヨタ自動車株式会社 蓄圧式エンジンの燃料噴射制御装置
GB2332241B (en) * 1997-12-11 2001-12-19 Denso Corp Accumulator fuel injection system for diesel engine of automotive vehicles
DE19935519C2 (de) * 1999-07-28 2002-05-08 Mtu Friedrichshafen Gmbh Kraftstoffinjektor für eine Brennkraftmaschine
DE10156637C1 (de) * 2001-11-17 2003-05-28 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung des Startbetriebs einer Brennkraftmaschine
DE10343758B4 (de) * 2003-09-22 2015-02-19 Robert Bosch Gmbh Verfahren zur Begrenzung des Druckanstieges in einem Hochdruck-Kraftstoffsystem nach Abstellen eines Verbrennungsmotors
DE10360332A1 (de) * 2003-12-20 2005-07-21 Robert Bosch Gmbh Verfahren und Vorrichtung zum Bestimmen eines Förderintervalls einer Hochdruckpumpe
JP4075856B2 (ja) * 2004-05-24 2008-04-16 トヨタ自動車株式会社 燃料供給装置及び内燃機関
DE102004039311B4 (de) * 2004-08-13 2014-05-22 Robert Bosch Gmbh Verfahren und Steuergerät zur Steuerung eines Enspritzdruckaufbaus bei einem Start eines Verbrennungsmotors
DE602005003427T2 (de) * 2004-09-24 2008-09-18 Denso Corporation, Kariya Durchflussregelventil
JP4114654B2 (ja) * 2004-09-29 2008-07-09 株式会社デンソー コモンレール式燃料噴射装置
JP4428201B2 (ja) * 2004-11-01 2010-03-10 株式会社デンソー 蓄圧式燃料噴射装置
DE102004061474B4 (de) * 2004-12-21 2014-07-17 Mtu Friedrichshafen Gmbh Verfahren und Einrichtung zur Regelung des Raildrucks
US7441546B2 (en) * 2005-07-28 2008-10-28 Denso Corporation Valve apparatus
JP4609271B2 (ja) * 2005-10-12 2011-01-12 株式会社デンソー 燃料噴射弁
PL1803917T3 (pl) * 2005-12-28 2009-01-30 Magneti Marelli Powertrain Spa Sposób sterowania systemem typu common-rail bezpośredniego wtrysku paliwa do silnika spalania wewnętrznego
JP4600369B2 (ja) * 2006-09-05 2010-12-15 株式会社デンソー 減圧弁遅延補償装置、及びプログラム
JP2009079514A (ja) * 2007-09-26 2009-04-16 Denso Corp 筒内噴射式内燃機関の燃圧制御装置
JP4976318B2 (ja) * 2008-01-30 2012-07-18 日立オートモティブシステムズ株式会社 内燃機関の燃料噴射装置
WO2009125807A1 (ja) * 2008-04-10 2009-10-15 ボッシュ株式会社 噴射異常検出方法及びコモンレール式燃料噴射制御装置
DE102008036299B3 (de) * 2008-08-04 2009-12-03 Mtu Friedrichshafen Gmbh Verfahren zur Druckregelung
DE102009002793B4 (de) * 2009-05-04 2011-07-07 MTU Friedrichshafen GmbH, 88045 Common-Rail-Kraftstoffeinspritzsystem sowie Brennkraftmaschine, Elektronische Einrichtung und Verfahren zur Steuerung und/oder Regelung einer Brennkraftmaschine
DE102009031529B3 (de) * 2009-07-02 2010-11-11 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE102011100187B3 (de) * 2011-05-02 2012-11-08 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
KR101294072B1 (ko) * 2011-11-03 2013-08-07 현대자동차주식회사 연소압센서 이상상태 판단 시스템 및 방법
US8965667B2 (en) * 2012-06-27 2015-02-24 GM Global Technology Operations LLC Engine startup method
US9359963B2 (en) * 2012-09-20 2016-06-07 Ford Global Technologies, Llc Gaseous fuel rail depressurization during inactive injector conditions
US9903306B2 (en) * 2013-02-08 2018-02-27 Cummins Inc. System and method for acquiring pressure data from a fuel accumulator of an internal combustion engine
US9482165B2 (en) * 2013-04-19 2016-11-01 Caterpillar Inc. Dual fuel common rail depressurization during engine shutdown and machine using same
DE102013214831A1 (de) 2013-07-30 2015-02-05 Robert Bosch Gmbh Verfahren zum Vorbereiten eines Startens einer Brennkraftmaschine
DE102013017446A1 (de) * 2013-10-22 2015-04-23 Man Diesel & Turbo Se Motorsteuergerät
KR101519258B1 (ko) * 2013-12-13 2015-05-11 현대자동차주식회사 디젤커먼레일시스템의 릴리프밸브 제어방법
DE102014213648B3 (de) * 2014-07-14 2015-10-08 Mtu Friedrichshafen Gmbh Verfahren zum Betreiben einer Brennkraftmaschine, Einspritzsystem für eine Brennkraftmaschine sowie Brennkraftmaschine
US10378500B2 (en) * 2016-09-27 2019-08-13 Caterpillar Inc. Protection device for limiting pump cavitation in common rail system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102016207297B3 (de) 2017-10-19
EP3449111A1 (de) 2019-03-06
US10641199B2 (en) 2020-05-05
CN109072795B (zh) 2021-07-27
CN109072795A (zh) 2018-12-21
WO2017186326A1 (de) 2017-11-02
US20190136788A1 (en) 2019-05-09

Similar Documents

Publication Publication Date Title
DE10162989C1 (de) Schaltungsanordnung zum Regeln einer regelbaren Kraftstoffpumpe, Verfahren zum Regeln einer Förderleistung und Verfahren zum Überprüfen der Funktionsfähigkeit einer regelbaren Kraftstoffpumpe
DE102009050467B4 (de) Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE102011052138B4 (de) Steuervorrichtung für Druckreduzierungsventile
EP1086307B1 (de) Common-rail-system mit einer gesteuerten hochdruckpumpe als zweites druckregelmittel
EP1582709B1 (de) Regenerationsverfahren für ein Partikelfilter sowie Abgasanlage mit Partikelfilter
EP3169887B1 (de) Verfahren zum betreiben einer brennkraftmaschine, einspritzsystem für eine brennkraftmaschine sowie brennkraftmaschine
EP3298260B1 (de) Einspritzsystem für eine brennkraftmaschine sowie brennkraftmaschine mit einem solchen einspritzsystem
DE102008055747B4 (de) Verfahren und Vorrichtung zum Betreiben einer Einspritzanlage für eine Brennkraftmaschine
DE19913477B4 (de) Verfahren zum Betreiben einer Kraftstoffzuführeinrichtung einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
EP3449111B1 (de) Verfahren zum betrieb einer brennkraftmaschine, einrichtung zum steuern und/oder regeln einer brennkraftmaschine, einspritzsystem und brennkraftmaschine
EP3289205B1 (de) Verfahren zum erkennen einer dauereinspritzung im betrieb einer brennkraftmaschine, einspritzsystem für eine brennkraftmaschine und brennkraftmaschine
DE19726756A1 (de) System zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE19731995A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE102014225920A1 (de) Verfahren zum Betrieb eines Dieselmotors
EP0963514B1 (de) Verfahren zur regelung einer regelgrösse mit einem begrenzten reglereingriff
DE19833086A1 (de) Verfahren und Vorrichtung zur Erkennung einer Leckage in einem Kraftstoffversorgungssystem einer Brennkraftmaschine
DE10311141B4 (de) Verfahren, Computerprogramm, Speichermedium und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine insbesondere für ein Kraftfahrzeug
DE10303573B4 (de) Verfahren, Computerprogramm, Speichermedium und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine insbesondere für ein Kraftfahrzeug
EP3665377B1 (de) Verfahren zum betreiben einer brennkraftmaschine mit einem einspritzsystem, einspritzsystem, eingerichtet zur durchführung eines solchen verfahrens, und brennkraftmaschine mit einem solchen einspritzsystem
EP1278949B1 (de) Verfahren zum betreiben eines kraftstoffversorgungssystems für eine brennkraftmaschine insbesondere eines kraftfahrzeugs
EP1439293B1 (de) Regelung einer Brennkraftmaschine mit Bremskraftverstärker
EP3449112A1 (de) Verfahren zum betrieb einer brennkraftmaschine, einrichtung zum steuern und/oder regeln einer brennkraftmaschine, einspritzsystem und brennkraftmaschine
DE102019202004A1 (de) Verfahren zum Betreiben eines Einspritzsystems einer Brennkraftmaschine, Einspritzsystem für eine Brennkraftmaschine sowie Brennkraftmaschine mit einem solchen Einspritzsystem
DE102010004215A1 (de) Vorrichtung zur Verhinderung des Absterbens des Motors bei einem mit einem Dieseleinspritzsystem ausgestatteten Fahrzeug
DE102013218505A1 (de) Verfahren zum Betreiben eines Verbrennungsmotors in einem Notfahrbetrieb

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181128

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201203

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1387320

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017010202

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210729

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210828

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210830

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017010202

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502017010202

Country of ref document: DE

Owner name: ROLLS-ROYCE SOLUTIONS GMBH, DE

Free format text: FORMER OWNER: MTU FRIEDRICHSHAFEN GMBH, 88045 FRIEDRICHSHAFEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210828

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220313

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220313

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1387320

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220313

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240320

Year of fee payment: 8

Ref country code: GB

Payment date: 20240320

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240329

Year of fee payment: 8