EP3269454A1 - Jupe comprenant au moins trois séries de buses d'éjection d'air distinctes, projecteur rotatif de produit de revêtement avec une telle jupe et son procédé d'utilisation - Google Patents

Jupe comprenant au moins trois séries de buses d'éjection d'air distinctes, projecteur rotatif de produit de revêtement avec une telle jupe et son procédé d'utilisation Download PDF

Info

Publication number
EP3269454A1
EP3269454A1 EP17180567.4A EP17180567A EP3269454A1 EP 3269454 A1 EP3269454 A1 EP 3269454A1 EP 17180567 A EP17180567 A EP 17180567A EP 3269454 A1 EP3269454 A1 EP 3269454A1
Authority
EP
European Patent Office
Prior art keywords
nozzles
primary
air
skirt
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17180567.4A
Other languages
German (de)
English (en)
Other versions
EP3269454B1 (fr
EP3269454B2 (fr
Inventor
Cyrille MEDARD
Sylvain Perinet
Philippe Provenaz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Exel Industries SA
Original Assignee
Exel Industries SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56855724&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3269454(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Exel Industries SA filed Critical Exel Industries SA
Priority to PL17180567T priority Critical patent/PL3269454T3/pl
Publication of EP3269454A1 publication Critical patent/EP3269454A1/fr
Publication of EP3269454B1 publication Critical patent/EP3269454B1/fr
Application granted granted Critical
Publication of EP3269454B2 publication Critical patent/EP3269454B2/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/26Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with means for mechanically breaking-up or deflecting the jet after discharge, e.g. with fixed deflectors; Breaking-up the discharged liquid or other fluent material by impinging jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/04Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation
    • B05B13/0431Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation with spray heads moved by robots or articulated arms, e.g. for applying liquid or other fluent material to 3D-surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/005Nozzles or other outlets specially adapted for discharging one or more gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/14Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
    • B05B3/10Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces
    • B05B3/1007Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces characterised by the rotating member
    • B05B3/1014Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces characterised by the rotating member with a spraying edge, e.g. like a cup or a bell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
    • B05B3/10Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces
    • B05B3/1092Means for supplying shaping gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B9/00Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour
    • B05B9/03Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/04Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation
    • B05B13/0447Installation or apparatus for applying liquid or other fluent material to conveyed separate articles
    • B05B13/0452Installation or apparatus for applying liquid or other fluent material to conveyed separate articles the conveyed articles being vehicle bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
    • B05B3/10Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces
    • B05B3/1064Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces the liquid or other fluent material to be sprayed being axially supplied to the rotating member through a hollow rotating shaft

Definitions

  • the present invention relates to a skirt for a rotary coating product projector, of the type comprising a plurality of air ejection nozzles formed in said skirt for ejecting air jets forming a conformation air adapted to conform the jet of coating product, said air ejection nozzles comprising at least one series of nozzles consisting of a plurality of air ejection nozzles fluidly connected to a common supply chamber, specific to said series of nozzles.
  • a rotary coating product projection projector comprises a spraying member rotating at high speed under the effect of a rotating drive system, such as a compressed air turbine.
  • Such a spraying member generally has the shape of a rotationally symmetrical bowl and it comprises at least one spraying edge capable of forming a jet of coating product.
  • the rotating projector also comprises a fixed body housing the rotational drive system as well as means for supplying the spray member with a coating product.
  • the jet of coating material sprayed from the edge of the rotating member has a generally conical shape which depends on such parameters as the rotation speed of the bowl and the flow rate of the coating product.
  • the rotary projectors of the prior art are generally equipped with several air ejection nozzles formed in a skirt covering the body of the projector and arranged on a circle which is centered on the axis of symmetry of the bowl and which is located on the outer periphery of the bowl.
  • the air ejection nozzles are intended to emit air jets together forming a conformation air of the product jet.
  • This conformation air which is sometimes referred to as "skirt air" makes it possible to conform the product jet, in particular to adjust the width of this jet, according to the desired application.
  • Such a rotating projector is known for example from EP 2 328 689 .
  • a disadvantage of known rotary projectors is that they do not allow to vary the product jet width over a large amplitude without skirt change.
  • the variation of jet width is thus generally of an amplitude of between 50 and 300 mm or between 300 and 500 mm. If you want to be able to cover the entire spectrum ranging from 50 to 500 mm, it is necessary to change the skirt, which requires complex operations and in particular the preliminary stop of the rotating projector.
  • the rotating projectors it is desirable to allow the spraying of the coating product both in wide jet, that is to say with a jet width of between 300 and 500 mm, and in narrow jet , that is to say with a jet width of between 50 and 300 mm.
  • This need is found particularly in the automotive industry, for which the bodywork interiors must be painted with a narrow jet and the exterior bodywork with a wide jet.
  • the production lines used in the automotive industry usually include two paint booths: a first, dedicated to the painting of body interiors, including a paint projector adapted to make a width of narrow jet, and a second, dedicated to the painting of exterior bodywork, featuring a paint projector suitable for making a wide jet width.
  • This double equipment in paint booths is expensive, both in terms of machine equipment than building space and energy necessary for the operation of the installation.
  • An object of the invention is thus to allow, with the same rotating projector, to project a coating product either wide jet or narrow jet, without having to change the skirt of the rotating projector.
  • the subject of the invention is a rotating projector skirt of the aforementioned type, in which the air ejection nozzles comprise at least three sets of separate nozzles.
  • the subject of the invention is also a rotary projector for a coating product comprising at least one spraying member for the coating product, a drive system for driving the first spraying member in rotation about an axis, and a fixed skirt.
  • the skirt being constituted by a skirt as described above, and each of the supply chambers being formed in the rotating projector.
  • the invention further relates to a spray robot comprising an articulated arm, a wrist mounted at one end of the articulated arm, and a rotating projector attached to the wrist, wherein the rotating projector is a rotating projector as described above.
  • the coating plant 2 shown on the Figure 1 is intended for spraying a coating product on a surface to be coated. It comprises, in known manner, a multi-axis sprayer robot 4 and an electropneumatic control cabinet 6 for controlling the robot 4.
  • the spraying robot 4 comprises an articulated arm 8, a wrist 9 mounted at one end of the articulated arm 8, and a rotating projector 10 attached to the wrist 9.
  • the rotating projector 10 comprises a spraying member 12, a body 14, a system 16 for driving the spraying member 12 in rotation about an axis AA 'with respect to the body 14, a feed system 18 of the spraying member 12 in coating product, and a skirt 20 covering the outside of the body 14.
  • upstream and downstream are to be understood in reference to the direction of flow of the coating product through the rotating projector 10.
  • the spraying member 12 has a symmetry of revolution, that is to say that there exists an axis, referred to as the axis of the first spraying member, such as any image of the spraying member 12 obtained by rotation of the spraying member 12 around said axis, whatever the angle of this rotation, is identical to the spraying member 12.
  • the spraying member 12 has a distribution surface 22, oriented towards the axis of the first spraying member, which flares from a bottom 24 of the spraying member 12, close to the body 14, to a ridge 26, remote from the body 14 and defining a downstream end of the spray member 12 opposite the body 14.
  • the edge 26 is substantially circular and has a diameter, hereinafter referred to as "diameter of the spray member 12".
  • the spray member 12 also has an outer surface 28 facing away from the axis of the first spray member. This outer surface 28 also flattens, in the example shown, from the bottom 24 to the edge 26.
  • the spraying member 12 thus has a general shape of a bowl and will, therefore, designated in the continuation under the term of "bowl".
  • the bottom 24 has a coating substance introduction orifice 30, fluidly connected to the supply system 18.
  • a distributor 31 is secured to the bowl 12, facing the orifice 30, so as to channel and distribute the coating product. on the distribution area 22.
  • the bowl 12 is mounted on the body 14 so that its axis is substantially coaxial with the axis of rotation AA 'and so as to be connected to the drive system 16, so that the system drive 16 can drive the bowl 12 in rotation about the axis A-A '.
  • the bowl 12 is connected to the drive system 16 by means of a reversible connection member (not shown) identical to that described in the patent FR 2,868,342 , the contents of which should be considered as part of this application.
  • the bowl 12 is a mixed spraying device, that is to say adapted for the projection of the coating product both in wide jet and narrow jet.
  • the diameter of the bowl 12 is preferably between 30 and 90 mm, advantageously between 50 and 65 mm.
  • the bowl 12 is adapted only for the projection of the narrow jet coating product.
  • the rotating projector 10 also then comprises a second spraying member, separated from the body 14 and identical to the bowl 12 except for its diameter which, for this second spraying member, is greater than the diameter of the bowl 12.
  • the body 14 is attached to the wrist 9 of the spray robot 4.
  • the drive system 16 is typically formed by a compressed air turbine. Alternatively, the drive system 16 is formed by an electric motor.
  • the feed system 18 is fluidly connected to a source (not shown) of coating material, typically a paint, and is adapted to drive this coating material to the feed port 30 of the bowl 12.
  • a source typically a paint
  • the skirt 20 is fixed relative to the body 14 and covers at least partly an outer surface of the body 14. In addition, in the example shown, the skirt 20 radially surrounds the bottom 24 of the bowl 12, so that the bowl 12 is partially inserted into the skirt 20.
  • the skirt 20 has a plurality of air ejection nozzles 40, 42, 44, 46 formed in said skirt 20.
  • Each nozzle 40, 42, 44, 46 is formed in a planar radial surface 32 of said skirt 20.
  • This radial surface 32 is, in the example shown, common to all the nozzles 40, 42, 44, 46, and forms a downstream end of the skirt 20.
  • at least one of the nozzles 40, 42, 44, 46 is formed in a radial surface axially offset relative to another radial surface in which is formed at least one other nozzles 40, 42, 44, 46.
  • At least one of the nozzles 40, 42, 44, 46 is formed on a three-dimensional surface of any revolution around A-A '.
  • the air ejection nozzles 40, 42, 44, 46 communicate fluidly with air supply chambers 40A, 42A, 44A, 46A of said air ejection nozzles 40, 42, 44, 46, each of which is formed. in the rotating projector 10.
  • each of these feed chambers 40A, 42A, 44A, 46A is, in the example shown, formed in the skirt 20.
  • at least one of these feed chambers 40A , 42A, 44A, 46A is formed at the interface between the skirt 20 and the body 14.
  • at least one of these feed chambers 40A, 42A, 44A, 46A is formed in the body 14.
  • Each air ejection nozzle 40, 42, 44, 46 is preferably constituted by a through orifice formed in the skirt 20.
  • this through orifice opens, at a first end, into the radial surface 32 and, at a second end, in the air supply chamber 40A, 42A, 44A, 46A of said air ejection nozzle 40, 42, 44, 46.
  • each ejection nozzle of FIG. 40, 42, 44, 46 is constituted by an insert on the skirt 20.
  • the air ejection nozzles 40, 42, 44, 46 comprise four series of nozzles 41, 43, 45, 47 distinct, each series of nozzles, respectively 41, 43, 45, 47, being constituted by a plurality of nozzles, respectively 40, 42, 44, 46, fluidically connected to a common supply chamber, respectively 40A, 42A, 44A, 46A, specific to said series of nozzles 41, 43, 45, 47.
  • the Series of nozzles 41, 43, 45, 17 thus comprise a first series of primary nozzles 41, constituted by first primary nozzles 40 fluidly connected to a first primary chamber 40A, a first series of secondary nozzles 43, constituted by first secondary nozzles 42 fluidically connected to a first secondary chamber 42A, a second series of primary nozzles 45, constituted by second primary nozzles 44 fluidly connected to a second primary chamber 44A, and a second series of secondary nozzles 47, constituted by second secondary nozzles 46 fluidically connected to a second secondary chamber 46A.
  • first primary and secondary nozzles 40, 42 are, in the example shown, disposed on an inner ring 50, and the second primary and secondary nozzles 44, 46 are disposed on an outer ring 52.
  • the first primary and secondary nozzles 40 , 42 will therefore in the following also be referred to as “internal air ejection nozzles", and the second primary and secondary nozzles 44, 46 will also be referred to as “external air ejection nozzles”.
  • the inner and outer rings 50, 52 are substantially concentric and both have substantially centrally the axis of rotation A-A '.
  • the inner ring 50 is placed inside a separation perimeter 54 and the outer ring 50 is placed outside this separation perimeter 54, so that the outer ring 52 radially surrounds the inner ring 50.
  • the separation perimeter 54 is convex, that is, for any pair of points belonging to the perimeter 54, there is no point of the perimeter 54 interposed between the rope segment connecting said two points and the axis A-A '.
  • the separation perimeter 54 is, as shown, substantially circular.
  • the separation perimeter 54 is substantially centered on the axis A-A '.
  • Each of the inner and outer rings 50, 52 is delimited, on the side of the axis A-A ', by an inner perimeter and, on the opposite side to the axis A-A', by an outer perimeter.
  • the separation perimeter 54 constitutes the outer perimeter of the inner ring 50, and the inner perimeter of the outer ring 52.
  • the inner perimeter 56 of the inner ring 50 is constituted by a convex perimeter flush with at least a portion of the ejection nozzles indoor air 40, 42; it is preferably circular.
  • the outer perimeter 58 of the outer ring 52 is constituted by a convex perimeter flush with at least a portion of the outer air ejection nozzles 44, 46; it is preferably also circular.
  • Each of the air ejection nozzles 40, 42, 44, 46 is at a distance from the axis of rotation A-A 'taken as the distance from the center of the nozzle 40, 42, 44, 46 to 'axis of rotation A-A', greater than or equal to the half-diameter of the edge 26.
  • the inner ring 50 has a minimum radial distance d to the axis of rotation A-A ', constituted by the distance radial minimum of the inner perimeter 56 to the axis of rotation A-A ', greater than or equal to the half-diameter of the edge 26 of the bowl 12.
  • Each of the first primary nozzles 40 is adapted to eject a first primary air jet in a first primary direction defined by a first primary unit vector 60 having a first primary axial component 60A, a first primary radial divergence component 60B, and a first primary orthoradial component 60C.
  • unit vector it is understood that the vector 60 has a norm, equal to the square root of the sum of the squares of the axial components 60A, 60B of the radial divergence and orthoradial 60C, substantially equal to 1, some of said components 60A, 60B, 60C being zero.
  • the radial divergence component 60B is a relative value counted positively when the vector 60 is oriented away from the axis of rotation A-A ', and negatively when the vector 60 is oriented towards the axis of rotation A-A .
  • the first axial and orthoradial primary components 60A, 60C are each non-zero.
  • the diameter of the orifices constituting the first primary nozzles 40 is between 0.5 and 1.2 mm.
  • Each of the first secondary nozzles 42 is adapted to eject a first secondary air jet in a first secondary direction defined by a first secondary unit vector 62 having a first primary axial component 62A, a first primary radial divergence component 62B, and a first primary orthoradial component 62C.
  • the first secondary direction is different from the first primary direction, i.e. at least one of said components 62A, 62B, 62C of the first secondary unit vector 62 is different from the component 60A, 60B, 60C of the first vector corresponding primary unit 60.
  • the first secondary orthoradial component 62C is smaller than the first primary orthoradial component 60C.
  • the first Secondary orthoradial component 62C is chosen so that the angle formed in an orthoradial plane between the first secondary unit vector 66 and the axial direction passing through the first secondary nozzle 42 is less than 30 °.
  • the positions of the first primary nozzles 40 and the first secondary nozzles 42, as well as the components 60A, 60B, 60C of the first primary unit vector 60 and the components 62A, 62B, 62C of the first secondary unit vector 62, are chosen so that that the first primary and secondary directions are substantially intersecting one another in a first intersection region (not shown) located upstream of the edge 26
  • the diameter of the orifices constituting the first secondary nozzles 42 is between 0.5 and 1.2 mm.
  • the first primary and secondary nozzles 40, 42 are alternately arranged relative to one another, that is, for any pair of adjacent first primary nozzles 40, there is a first secondary nozzle 42 angularly interposed between said nozzles 40, and vice versa.
  • the first primary and secondary nozzles 40, 42 are thus in equal numbers.
  • the first primary and secondary nozzles 40, 42 are arranged on different contours 61, 63, said contours 61, 63 being substantially centered on the axis AA 'and being homotheties of each other, the first primary nozzles 40 being offset radially towards the axis AA 'relative to the first secondary nozzles 42.
  • the first primary and secondary nozzles 40, 42 are arranged on the same contour 68, substantially centered on the axis A-A', as in the second embodiment.
  • Each of the second primary nozzles 44 is adapted to eject a second primary air jet along a second primary direction defined by a second primary unit vector 64 having a second primary axial component 64A, a second primary radial divergence component 64B, and a second primary orthoradial component 64C.
  • the second axial and orthoradial primary components 64A, 64C are each non-zero.
  • the diameter of the orifices constituting the second primary nozzles 44 is between 0.5 and 1.2 mm.
  • Each of the second secondary nozzles 46 is adapted to eject a second secondary jet of air in a second secondary direction defined by a second secondary unit vector 66 having a second axial component.
  • the second secondary direction is different from the second primary direction, i.e. at least one of the components 66A, 66B, 66C of the second secondary unit vector 66 is different from the component 64A, 64B, 64C of the second vector corresponding primary unit 64.
  • the second secondary orthoradial component 66C is smaller than the second primary orthoradial component 64C.
  • the second secondary orthoradial component 66C is chosen such that the angle formed in an orthoradial plane between the second secondary unit vector 66 and the axial direction passing through the second secondary nozzle 46 is less than 30 °.
  • the positions of the second primary nozzles 44 and the second secondary nozzles 46, as well as the components 64A, 64B, 64C of the second primary unit vector 64 and the components 66A, 66B, 66C of the second secondary unit vector 66, are chosen so that that the second primary and secondary directions are substantially intersecting one another in a second intersection region (not shown) located upstream of the edge 26.
  • the second primary and secondary nozzles 44, 46 are alternately arranged relative to each other, that is, for any pair of adjacent second primary nozzles 44, there is a second secondary nozzle 46 angularly interposed between said nozzles 44, and vice versa.
  • the second primary and secondary nozzles 44, 46 are thus in equal numbers.
  • the number of external air ejection nozzles 44, 46 is greater than or equal to the number of inner air ejection nozzles 40, 42.
  • the diameter of the orifices constituting the second secondary nozzles 66 is between 0.5 and 1.2 mm.
  • the second primary and secondary nozzles 44, 46 are arranged on different contours 65, 67, said contours 65, 67 being substantially centered on the axis AA 'and being homotheties of one of the other, the second primary nozzles 44 being radially offset towards the axis AA 'relative to the second secondary nozzles 46.
  • the second primary and secondary nozzles 44, 46 are arranged on the same contour 69, substantially centered on the axis A-A ', as in the second embodiment.
  • the first series of primary nozzles 41 and the first series of secondary nozzles 43 together constitute a first pair of series 48 adapted so that, when said series 41, 43 are fed simultaneously with air, the first air jets ejected by the nozzles 40, 42 constituting these series 41, 43 together form a first conformation air adapted to conform the coating product jet in a narrow manner.
  • the second series of primary nozzles 45 and the second series of secondary nozzles 47 they together constitute a second pair of series 49 adapted so that, when said series 45, 47 are simultaneously supplied with air, the second jets of air ejected by the nozzles 44, 46 constituting these series 45, 47 together form a second conformation air adapted to conform the coating product jet broadly.
  • the first and second primary directions are different, that is to say that at least one of the components 64A, 64B, 64C of the second primary unit vector 64 is different from the component 60A, 60B, 60C of the first corresponding primary unit vector 60.
  • the second orthoradial primary component 64C is greater than the first primary orthoradial component 60C
  • the second primary radial divergence component 64B is greater than the first primary radial divergence component 60B.
  • the first orthoradial primary component 60C is chosen such that the angle formed in an orthoradial plane between the first primary unit vector 60 and the axial direction passing through the first primary nozzle 40 is between 20 ° and 50 °, preferably between 35 ° and 45 °, the first primary radial divergence component 60B being chosen such that the angle formed in a radial plane between the first primary unit vector 60 and the radial direction passing through the first primary nozzle 40 is substantially equal to 90 °, while the second orthoradial primary component 64C is chosen such that the angle formed in an orthoradial plane between the second primary unit vector 64 and the axial direction passing through the second primary nozzle 44 is between 40 ° and 80 ° , preferably between 50 ° and 60 °, the second primary radial divergence component 64B being chosen so that the angle formed in a radial plane in the second primary unit vector 64 and the radial direction passing through the second primary nozzle 44 is less than 85 ° and preferably between 75 ° and 85 °.
  • the coating installation 2 comprises, as shown in FIGS. Figures 5 to 8 , a system 70 for supplying the nozzles 40, 42, 44, 46 in air.
  • This feed system 70 comprises, according to a first exemplary embodiment shown on the Figures 5 to 8 , an air source 72, a primary channel 74 for supplying the primary air nozzles 40, 44 with air, specific to said primary air nozzles 40, 44, a secondary channel 76 for supplying the air nozzles secondary 42, 46 in air, specific to said secondary air nozzles 42, 46, a first primary valve 80 for regulating the supply of the first primary nozzles 40 with air, a first secondary valve 82 for regulating the supply of the first secondary nozzles 42 with air, a second valve primary 84 to regulate the supply of the second primary nozzles 44 in air, and a second secondary valve 86 to regulate the supply of the second secondary nozzles 46 in air.
  • the air source 72 is typically an air compressor.
  • the primary channel 74 comprises a first primary branch 90 specific to the first primary nozzles 40 and a second primary branch 94 specific to the second primary nozzles 44.
  • the first primary branch 90 is equipped with the first primary valve 80 so that said valve 80 regulates the flow of air flowing in the first primary branch 90.
  • the second primary branch 94 is equipped with the second primary valve 84 so that said valve 84 regulates the flow of air flowing in the second primary branch 94.
  • the primary channel 74 consists of said specific branches 90, 94.
  • Each of the valves 80, 84 is then constituted by a variable valve.
  • the primary channel 74 also comprises a branch 91 common to all the primary air nozzles 40, 44, extending between the source 72 and each of the specific branches 90, 94.
  • This common branch 91 is equipped with a primary valve common 93, preferably constituted by a variable valve, adapted to regulate the flow of air flowing in the common branch 91.
  • the valves 80, 84 are then constituted by all or nothing valves. This makes it possible, in comparison with the first variant, to simplify the management of the air supply at the PLC level, to reduce the number of pipes entering the rotating projector 10, and to reduce the material and integration cost.
  • the secondary channel 76 comprises a first secondary branch 92 specific to the first secondary nozzles 42 and a second secondary branch 96 specific to the second secondary nozzles 46.
  • the first secondary branch 92 is equipped with the first secondary valve 82 so that said valve 82 regulates the flow of air flowing in the first secondary branch 92.
  • the second secondary branch 96 is equipped with the second secondary valve 86 so that said valve 86 regulates the flow of air flowing in the second secondary branch 96.
  • the secondary channel 76 consists of said specific branches 92, 96.
  • Each of the valves 82, 86 is then constituted by a variable valve.
  • the secondary channel 76 also comprises a branch 95 common to all the secondary air nozzles 42, 46, extending between the source 72 and each of the specific branches 92, 96.
  • This common branch 95 is equipped with a primary valve common 97, preferably constituted by a variable valve, adapted to regulate the flow of air flowing in the common branch 95.
  • the valves 82, 86 are then constituted by all or nothing valves. This makes it possible, in comparison with the first variant, to simplify the management of the air supply at the PLC level, to reduce the number of pipes entering the rotating projector 10, and to reduce the material and integration cost.
  • valves 80, 82, 84, 86 are preferably integrated with the rotating projector 10, in particular with the skirt 20.
  • the valves 80, 82, 84, 86 are integrated in the articulated arm 8, or in the cabinet of electropneumatic control 6.
  • the coating installation 2 also comprises a system 100 for controlling the supply system 70.
  • This control system 100 is adapted to control each of the valves 80, 82, 84, 86.
  • the control system 100 preferably comprises two separate control modules 102, 104: a first control module 102 for controlling the supply of the first air nozzles 40, 42, and a second control module 104 for controlling the supplying the second air nozzles 44, 46, as in the third variant shown in FIG. Figure 7 .
  • the first control module 102 is then adapted to simultaneously control the valves 80 and 82 but not the valves 84 and 86
  • the second control module 104 is adapted to simultaneously control the valves 84 and 86 but not the valves 80 and 82.
  • Each of the control modules 102, 104 has a connection for a control member (not shown) and is adapted to actuate the valves 80, 82, 84, 86 which it controls when said control member is connected to said connection.
  • the control member is a pneumatic actuator
  • the control module 102, 104 then comprising a pneumatic circuit connecting the connection of said module 102, 104 to the valves 80, 82, 84, 86 controlled by said module 102, 104, said valves 80, 82, 84, 86 then being constituted by pneumatically controlled valves.
  • control member is a hydraulic actuator, the control module 102, 104 then comprising a hydraulic circuit connecting the connection of said module 102, 104 to the valves 80, 82, 84, 86 controlled by said module 102, 104, said valves 80, 82, 84, 86 then being constituted by hydraulically controlled valves.
  • control member is an electric actuator, the control module 102, 104 then comprising an electrical circuit connecting the connection of said module 102, 104 to the valves 80, 82, 84, 86 controlled by said module 102, 104 said valves 80, 82, 84, 86 then being constituted by electrically controlled valves.
  • control system 100 comprises a control module 110, 112, 114, 116 specific for each of the valves 80, 82, 84, 86, as in the second variant shown in FIG. Figure 6 .
  • Each of these control modules, respectively 110, 112, 114, 116, is then adapted to control only one valve, respectively 80, 82, 84, 86.
  • Each of the control modules 110, 112, 114, 116 has a branch for a control member (not shown) and is adapted to actuate the valve 80, 82, 84, 86 which it controls when said control member is connected to said connection.
  • the control member is a pneumatic actuator
  • the control module 110, 112, 114, 116 then comprising a pneumatic circuit connecting the connection of said module 110, 112, 114, 116 to the valve 80, 82, 84, 86 controlled by said module 110, 112, 114, 116, said valve 80, 82, 84, 86 then being constituted by a pneumatically controlled valve.
  • control member is a hydraulic actuator
  • control module 110, 112, 114, 116 then comprising a hydraulic circuit connecting the connection of said module 110, 112, 114, 116 to the valve 80, 82, 84, 86 controlled by said module 110, 112, 114, 116, said valve 80, 82, 84, 86 then being constituted by a hydraulically controlled valve.
  • control member is an electric actuator
  • control module 110, 112, 114, 116 then comprising an electrical circuit connecting the connection of said module 110, 112, 114, 116 to the valve 80, 82, 84 , 86 controlled by said module 110, 112, 114, 116, said valve 80, 82, 84, 86 then being constituted by an electrically controlled valve.
  • the primary inner nozzles 40 may be used simultaneously with the primary outer nozzles 44 and / or the secondary inner nozzles 42 with the secondary outer nozzles 46 and / or the inner primary nozzles 40 with the secondary outer nozzles 46 and / or the inner nozzles. with the primary outer nozzles 44 and / or the inner primary nozzles 40 with the secondary inner nozzles 42 and / or the primary outer nozzles 44 with the secondary outer nozzles 46.
  • the power supply system 70 differs from the first embodiment in that it does not include a primary supply path of the primary air nozzles 40, 44 in air, specific to said nozzles primary air 40, 44, and no secondary supply path of the secondary air nozzles 42, 46 with air, specific to said secondary air nozzles 42, 46, nor of clean valve for each of the series of nozzles 41, 43 , 45, 47.
  • the power supply system 70 comprises a first feed channel 120, specific to the first pair of series 48, a second feed path 122, specific to the second pair of series 49, a first valve 124 for regulating the supply of the first pair of series 48 in air, and a second valve 126 for regulating the supply of the second pair of series 49 in air.
  • the first primary channel 120 comprises a first primary branch 130 specific to the first primary nozzles 40 and a first secondary branch 132 specific to the first secondary nozzles 42.
  • the first primary branch 130 is equipped with a first primary rate reducer 140, preferably not adjustable, to reduce the flow in the branch 130 downstream of the flow restrictor 140.
  • the first secondary branch 132 is equipped with a first secondary flow restrictor 142, preferably non-adjustable, to reduce the flow in the branch 132 downstream flow reducer 142.
  • the first channel 120 also comprises a first common branch 131, common to all the first air nozzles 40, 42, extending between the source 72 and each of the specific branches 130, 132.
  • This common branch 131 is equipped with the first valve 124.
  • the second primary track 122 comprises a second primary branch 134 specific to the second primary nozzles 44 and a second secondary branch 134 specific to the second secondary nozzles 46.
  • the second primary branch 134 is equipped with a second primary flow restrictor 144, preferably not adjustable, to reduce the flow in the branch 134 downstream of the flow restrictor 144.
  • the second secondary branch 136 is equipped with a second secondary flow restrictor 146, preferably non-adjustable, to reduce the flow in the branch 136 downstream of the flow restrictor 146.
  • the second channel 122 also comprises a second common branch 135, common to all the second air nozzles 40, 42, extending between the source 72 and each of the specific branches 134, 136.
  • This common branch 135 is equipped with the second valve 126.
  • Each of the first and second valves 124, 126 is advantageously constituted by an on-off valve.
  • control system 100 comprises a first control module 154 for controlling the first valve 124, and a second control module 156 for controlling the second valve 126.
  • Each of the control modules 154, 156 has a branch for a control member (not shown) and is adapted to actuate the valve 124, 126 which it controls when said control member is connected to said branch.
  • the control member is a pneumatic actuator
  • the control module 154, 156 then comprising a pneumatic circuit connecting the connection of said module 154, 156 to the valve 124, 126 controlled by said module 154, 156, said valve 124 , 126 then being constituted by a pneumatically controlled valve.
  • control member is a hydraulic actuator, the control module 154, 156 then comprising a hydraulic circuit connecting the connection of said module 154, 156 to the valve 124, 126 controlled by said module 154, 156, said valve 124 , 126 then being constituted by a hydraulically controlled valve.
  • control member is an electric actuator, the control module 154, 156 then comprising an electrical circuit connecting the connection of said module 154, 156 to the valve 124, 126 controlled by said module 154, 156, said valve 124, 126 then being constituted by an electrically controlled valve.
  • a method of covering an object (not shown), typically a motor vehicle body, with the coating product, by means of the coating plant 2, will now be described.
  • the coating installation 2 is first provided with the bowl 12 mounted on the body 14.
  • a first narrow surface constituting for example the edge of a roof of the bodywork, is then placed facing the rotating projector 10 and the control module 102 (or 154 if it is in the second embodiment) is actuated, so as to open the supply of the inner air nozzles 40, 42 in air.
  • the rotating projector 10 is then activated, that is to say that the supply system 18 is turned on, and that the variable valves 93, 97 are open to allow the supply of the air nozzles 40, 42 in air.
  • the rotating projector 10 then starts to project a jet of coating product which, thanks to the air ejected by the inner nozzles 40, 42, is shaped in a narrow manner. The narrow surface can thus be covered without wasting coating product.
  • the rotating projector 10 is deactivated, and is placed in front of the rotating projector a second extended surface of the object, for example the center of the roof of the body.
  • the control module 102 (or 154 if it is in the second embodiment) is then deactivated so as to close the supply of the air nozzles 40, 42 in air, and the control module 104 (or 156 if it is in the second embodiment) is actuated to open the supply of the outside air nozzles 44, 46 in air, the bowl 12 remaining mounted on the body 14.
  • the bowl 12 is removed from the body 14 and replaced by the second pulverizer of diameter greater than that of the bowl 12.
  • the rotating projector 10 is reactivated.
  • the jet of coating product projected by the rotating projector 10 is then shaped broadly by the air ejected by the outer nozzles 44, 46.
  • the extended surface can thus be covered quickly and with a high quality of recovery.
  • the rotary projector 10 When it is desired to return to a stream of narrow coating product, the rotary projector 10 is deactivated, the control module 104 (or 156 if it is in the second embodiment) is deactivated so as to close the supplying the outside air nozzles 44, 46 with air, and operating the control module 102 (or 154 if it is in the second embodiment) so as to open the supply of the interior air nozzles 40 , 42 in air, the rotating projector 10 then being reactivated.
  • the nozzle series 41, 43, 45, 47 can be grouped into groups of three series 41, 43, 45, 47 or more. to form a conformation air, and / or some of the series 41, 43, 45, 47 may be isolated from the others to form a conformation air.
  • the invention is not limited to this single embodiment, and extends to all the relative positions of the nozzles 40, 42, 44, 46 possible, especially at the positions for which the second nozzles 44, 46 are arranged inside a separation perimeter, the first nozzles 40, 42 being disposed outside this separation perimeter, and at the positions for which the first and second nozzles 40, 42, 44, 46 are arranged on a common contour.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Nozzles (AREA)
  • Electrostatic Spraying Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Spray Control Apparatus (AREA)

Abstract

Jupe (20) destinée à équiper un projecteur rotatif de produit de revêtement, ainsi que le projecteur rotatif comprenant cette jupe. La jupe (20) présente une pluralité de buses d'éjection d'air (40, 42, 44, 46) ménagées dans ladite jupe (20) pour éjecter des jets d'air formant un air de conformation adapté pour conformer le jet de produit de revêtement, lesdites buses d'éjection d'air (40, 42, 44, 46) comprenant au moins trois séries de buses (41, 43, 45, 47) distinctes constituées chacune d'une pluralité de buses d'éjection d'air (40, 42, 44, 46) raccordées fluidiquement à une chambre d'alimentation commune, propre à ladite série de buses (41, 43, 45, 47). Procédé d'utilisation de cette jupe dans lequel on change entre deux étapes de peinture la série de buses d'air utilisée , obtenant ainsi un changement de la configuration du jet de peinture entre les deux jets de peinture, par exemple étroit et large.

Description

  • La présente invention concerne une jupe pour un projecteur rotatif de produit de revêtement, du type comportant une pluralité de buses d'éjection d'air ménagées dans ladite jupe pour éjecter des jets d'air formant un air de conformation adapté pour conformer le jet de produit de revêtement, lesdites buses d'éjection d'air comprenant au moins une série de buses constituée d'une pluralité de buses d'éjection d'air raccordées fluidiquement à une chambre d'alimentation commune, propre à ladite série de buses.
  • La pulvérisation conventionnelle au moyen de projecteurs rotatifs est utilisée pour appliquer sur des objets à revêtir, tels que des carrosseries de véhicules automobiles, un apprêt, une couche de base et/ou un vernis. Un projecteur rotatif de projection de produit de revêtement comporte un organe de pulvérisation tournant à haute vitesse sous l'effet d'un système d'entrainement en rotation, tel qu'une turbine à air comprimé.
  • Un tel organe de pulvérisation présente généralement la forme d'un bol à symétrie de révolution et il comporte au moins une arête de pulvérisation apte à former un jet de produit de revêtement. Le projecteur rotatif comporte également un corps fixe logeant le système d'entrainement en rotation ainsi que des moyens d'alimentation de l'organe de pulvérisation en produit de revêtement.
  • Le jet de produit de revêtement pulvérisé par l'arête de l'organe tournant présente une forme globalement conique qui dépend de paramètres tels que la vitesse de rotation du bol et le débit de produit de revêtement. Pour contrôler la forme de ce jet de produit, les projecteurs rotatifs de l'art antérieur sont généralement équipés de plusieurs buses d'éjection d'air formées dans une jupe habillant le corps du projecteur et disposées sur un cercle qui est centré sur l'axe de symétrie du bol et qui est situé sur le pourtour extérieur du bol. Les buses d'éjection d'air sont destinées à émettre des jets d'air formant ensemble un air de conformation du jet de produit. Cet air de conformation, qui est parfois dénommé « air de jupe », permet de conformer le jet de produit, en particulier de régler la largeur de ce jet, en fonction de l'application recherchée.
  • Un tel projecteur rotatif est connu par exemple de EP 2 328 689 .
  • Un inconvénient des projecteurs rotatifs connus est qu'ils ne permettent pas de faire varier la largeur de jet de produit sur une grande amplitude sans changement de jupe. La variation de largeur de jet est ainsi généralement d'une amplitude comprise entre 50 et 300 mm ou entre 300 et 500 mm. Si l'on souhaite pouvoir couvrir l'intégralité du spectre allant de 50 à 500 mm, il est nécessaire de changer la jupe, ce qui nécessite des opérations complexes et notamment l'arrêt préalable du projecteur rotatif.
  • Or, dans plusieurs applications des projecteurs rotatifs, il est souhaitable de permettre la pulvérisation du produit de revêtement à la fois en jet large, c'est-à-dire avec une largeur de jet comprise entre 300 et 500 mm, et en jet étroit, c'est-à-dire avec une largeur de jet comprise entre 50 et 300 mm. Ce besoin se rencontre notamment dans l'industrie automobile, pour laquelle les intérieurs de carrosserie doivent être peints avec un jet étroit et les extérieurs de carrosserie avec un jet large. Les projecteurs rotatifs connus ne permettant pas cette flexibilité, les lignes de production employées dans l'industrie automobile intègrent généralement deux cabines de peinture : une première, dédiée à la peinture des intérieurs de carrosserie, comportant un projecteur de peinture adapté pour faire une largeur de jet étroit, et une deuxième, dédiée à la peinture des extérieurs de carrosserie, comportant un projecteur de peinture adapté pour faire une largeur de jet large. Ce double équipement en cabines de peinture est coûteux, tant en termes d'équipement machine que d'espace bâtiment et d'énergie nécessaire au fonctionnement de l'installation.
  • Un objectif de l'invention est ainsi de permettre, avec un même projecteur rotatif, de projeter un produit de revêtement soit en jet large soit en jet étroit, sans avoir à changer la jupe du projecteur rotatif.
  • A cet effet, l'invention a pour objet une jupe pour projecteur rotatif du type précité, dans laquelle les buses d'éjection d'air comprennent au moins trois séries de buses distinctes.
  • Selon des modes de réalisation particuliers de l'invention, la jupe présente également une ou plusieurs des caractéristiques suivantes, prise(s) isolément ou suivant toute(s) combinaison(s) techniquement possible(s) :
    • les buses d'éjection d'air comprennent un premier groupe de buses, constitué par au moins une première série de buses parmi les séries de buses, et un deuxième groupe de buses, constitué par au moins une deuxième série de buses parmi les séries de buses, le premier groupe de buses étant tel que, lorsque la ou chaque première série de buses est alimentée en air, les buses de la ou chaque première série de buses éjectent des premiers jets d'air formant ensemble un premier air de conformation adapté pour conformer le jet de produit de revêtement de manière étroite, et le deuxième groupe de buses étant tel que, lorsque la ou chaque deuxième série de buses est alimentée en air, les buses de la ou chaque deuxième série de buses éjectent des deuxièmes jets d'air formant ensemble un deuxième air de conformation adapté pour conformer le jet de produit de revêtement de manière large,
    • le premier groupe de buses comprend une première série de buses primaires, constituée de premières buses primaires chacune adaptée pour éjecter un premier jet d'air primaire suivant une première direction primaire, et le deuxième groupe de buses comprend une deuxième série de buses primaires, distincte de la première série de buses primaires et constituée de deuxièmes buses primaires chacune adaptée pour éjecter un deuxième jet d'air primaire suivant une deuxième direction primaire différente de la première direction primaire,
    • la première direction primaire est définie par un premier vecteur unitaire primaire présentant une première composante de divergence radiale primaire, et la deuxième direction primaire est définie par un deuxième vecteur unitaire primaire présentant une deuxième composante de divergence radiale primaire, la deuxième composante de divergence radiale primaire étant supérieure à la première composante de divergence radiale primaire,
    • la première direction primaire est définie par un premier vecteur unitaire primaire présentant une première composante orthoradiale primaire, et la deuxième direction primaire est définie par un deuxième vecteur unitaire primaire présentant une deuxième composante orthoradiale primaire, la deuxième composante orthoradiale primaire étant supérieure à la première composante orthoradiale primaire,
    • chacune des première et deuxième directions primaires est définie par un vecteur unitaire primaire présentant une composante orthoradiale primaire non nulle,
    • le premier groupe de buses comprend une première série de buses secondaires, distincte des première et deuxième séries de buses primaires, et le deuxième groupe de buses comprend une deuxième série de buses secondaires, distincte des première et deuxième séries de buses primaires,
    • les première et deuxième séries de buses secondaires sont distinctes l'une de l'autre,
    • les premières buses des premières séries de buses primaires et secondaires sont disposées en alternance les unes par rapport aux autres, et/ou les deuxièmes buses des deuxièmes séries de buses primaires et secondaires sont disposées en alternance les unes par rapport aux autres ,
    • chacune des buses de la première série de buses secondaires est adaptée pour éjecter un premier jet d'air secondaire suivant une première direction secondaire différente de la première direction primaire et de préférence sensiblement sécante à la première direction primaire en une première région d'intersection,
    • chacune des buses de la deuxième série de buses secondaires est adaptée pour éjecter un deuxième jet d'air secondaire suivant une deuxième direction secondaire différente de la deuxième direction primaire et de préférence sensiblement sécante à la deuxième direction primaire en une deuxième région d'intersection,
    • les premières buses sont disposées à l'intérieur d'un périmètre de séparation, les deuxièmes buses étant disposées à l'extérieur du périmètre de séparation, ou les premières buses sont disposées à l'extérieur d'un périmètre de séparation, les deuxièmes buses étant disposées à l'intérieur du périmètre de séparation, et
    • chaque chambre d'alimentation est formée dans la jupe.
  • L'invention a également pour objet un projecteur rotatif pour produit de revêtement comportant au moins un organe de pulvérisation du produit de revêtement, un système d'entraînement pour entraîner le premier organe de pulvérisation en rotation autour d'un axe, et une jupe fixe, la jupe étant constituée par une jupe telle que décrite plus haut, et chacune des chambres d'alimentation étant formée dans le projecteur rotatif.
  • Selon un mode de réalisation particulier de l'invention, le procédé de recouvrement présente également la caractéristique suivante :
    • l'organe de pulvérisation présente au moins une arête globalement circulaire, chacune des buses d'éjection d'air étant à une distance de l'axe de rotation supérieure ou égale au demi-diamètre de l'arête.
  • L'invention a encore pour objet un robot pulvérisateur comprenant un bras articulé, un poignet monté à une extrémité du bras articulé, et un projecteur rotatif attaché sur le poignet, dans lequel le projecteur rotatif est un projecteur rotatif tel que décrit plus haut.
  • Enfin, l'invention a également pour objet un procédé de recouvrement d'au moins une partie d'au moins un objet avec un produit de revêtement projeté au moyen d'un projecteur rotatif tel que décrit plus haut, dans lequel les buses d'éjection d'air comprennent un premier groupe de buses, constitué par au moins une première série de buses parmi les séries de buses, et un deuxième groupe de buses, constitué par au moins une deuxième série de buses parmi les séries de buses, le procédé comprenant les étapes suivantes :
    • projection d'un premier jet de produit de revêtement au moyen du projecteur rotatif, seules les buses d'éjection d'air du premier groupe de buses étant alimentées en air, lesdites buses d'éjection d'air éjectant des premiers jets d'air formant ensemble un premier air de conformation conformant le premier jet de produit de revêtement de manière étroite, et
    • avant ou après l'étape de projection d'un premier jet de produit de revêtement, projection d'un deuxième jet de produit de revêtement au moyen du projecteur rotatif, seules les buses d'éjection d'air du deuxième groupe de buses étant alimentées en air, lesdites buses d'éjection d'air éjectant des deuxièmes jets d'air formant ensemble un deuxième air de conformation conformant le deuxième jet de produit de revêtement de manière large.
  • Selon des modes de réalisation particuliers de l'invention, le procédé de recouvrement présente également une ou plusieurs des caractéristiques suivantes, prise(s) isolément ou suivant toute(s) combinaison(s) techniquement possible(s) :
    • le procédé comprend, entre l'étape de projection du premier jet de produit de revêtement et l'étape de projection du deuxième jet de produit de revêtement, une étape de remplacement de l'organe de pulvérisation par un autre organe de pulvérisation,
    • le premier jet de produit de revêtement est projeté sur une première surface étroite et le deuxième jet de produit de revêtement est projeté sur une deuxième surface large,
    • le premier jet de produit de revêtement est projeté sur un premier objet de petites dimensions et le deuxième jet de produit de revêtement est projeté sur un deuxième objet de grandes dimensions, et
    • lors de la projection du premier jet de produit de revêtement, le projecteur rotatif est équipé d'un organe de pulvérisation mixte et, lors de la projection du deuxième jet de produit de revêtement, le projecteur rotatif est équipé du même organe de pulvérisation mixte.
  • D'autres caractéristiques et avantages de l'invention apparaîtront plus clairement à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins annexés, dans lesquels :
    • la Figure 1 est une vue en perspective d'une installation de revêtement selon l'invention,
    • la Figure 2 est une vue en coupe axiale d'un projecteur rotatif de l'installation de revêtement de la Figure 1, selon un premier mode de réalisation de l'invention,
    • la Figure 3 est une vue de dessus de la jupe du projecteur rotatif de la Figure 2, le plan de coupe de la Figure 2 étant matérialisé par la ligne marquée II sur cette Figure,
    • la Figure 4 est une vue de dessus de la jupe d'un projecteur rotatif de l'installation de revêtement de la Figure 1, selon un deuxième mode de réalisation de l'invention,
    • la Figure 5 est un schéma illustrant une première variante d'un premier exemple de réalisation d'un système d'alimentation en air de l'installation de revêtement de la Figure 1,
    • la Figure 6 est un schéma illustrant une deuxième variante du système d'alimentation en air de la Figure 5,
    • la Figure 7 est un schéma illustrant une troisième variante du système d'alimentation en air de la Figure 5, et
    • la Figure 8 est un schéma illustrant un deuxième exemple de réalisation du système d'alimentation en air de l'installation de revêtement de la Figure 1.
  • L'installation de revêtement 2 représentée sur la Figure 1 est destinée à la pulvérisation d'un produit de revêtement sur une surface à revêtir. Elle comprend, de façon connue, un robot pulvérisateur 4 multiaxe et une armoire de commande électropneumatique 6 pour la commande du robot 4.
  • Le robot pulvérisateur 4 comprend un bras articulé 8, un poignet 9 monté à une extrémité du bras articulé 8, et un projecteur rotatif 10 attaché sur le poignet 9.
  • En référence à la Figure 2, le projecteur rotatif 10 comprend un organe de pulvérisation 12, un corps 14, un système 16 d'entraînement de l'organe de pulvérisation 12 en rotation autour d'un axe A-A' par rapport au corps 14, un système 18 d'alimentation de l'organe de pulvérisation 12 en produit de revêtement, et une jupe 20 habillant l'extérieur du corps 14.
  • Dans la suite, les termes d'orientation sont à entendre de la manière suivante :
    • « axial » désigne des éléments orientés parallèlement à l'axe A-A',
    • « radial » désigne des éléments orientés perpendiculairement à l'axe A-A', et
    • « orthoradial désigne des éléments orientés orthogonalement à l'axe A-A' et perpendiculairement à une direction radiale.
  • Par ailleurs, les termes « amont » et « aval » sont à entendre en référence au sens d'écoulement du produit de revêtement à travers le projecteur rotatif 10.
  • L'organe de pulvérisation 12 présente une symétrie de révolution, c'est-à-dire qu'il existe un axe, qualifié d'axe du premier organe de pulvérisation, tel que toute image de l'organe de pulvérisation 12 obtenue par rotation de l'organe de pulvérisation 12 autour dudit axe, quel que soit l'angle de cette rotation, est identique à l'organe de pulvérisation 12.
  • L'organe de pulvérisation 12 présente une surface de répartition 22, orientée vers l'axe du premier organe de pulvérisation, qui s'évase depuis un fond 24 de l'organe de pulvérisation 12, proche du corps 14, jusqu'à une arête de pulvérisation 26, éloignée du corps 14 et définissant une extrémité aval de l'organe de pulvérisation 12 opposée au corps 14.
  • L'arête 26 est sensiblement circulaire et présente un diamètre, qualifié pour la suite de « diamètre de l'organe de pulvérisation 12 ».
  • L'organe de pulvérisation 12 présente également une surface externe 28 orientée à l'opposé de l'axe du premier organe de pulvérisation. Cette surface externe 28 s'évase elle aussi, dans l'exemple représenté, depuis le fond 24 jusqu'à l'arête 26. L'organe de pulvérisation 12 présente ainsi une forme générale de bol et sera, de ce fait, désigné dans la suite sous le vocable de « bol ».
  • Le fond 24 présente un orifice 30 d'introduction du produit de revêtement, raccordé fluidiquement au système d'alimentation 18. Un distributeur 31 est solidarisé au bol 12, face à l'orifice 30, de manière à canaliser et répartir le produit de revêtement sur la surface de répartition 22.
  • Dans l'exemple représenté, le bol 12 est monté sur le corps 14 de manière à ce que son axe soit sensiblement coaxial à l'axe de rotation A-A' et de manière à être raccordé au système d'entraînement 16, afin que le système d'entraînement 16 puisse entraîner le bol 12 en rotation autour de l'axe A-A'. Avantageusement, le bol 12 est raccordé au système d'entraînement 16 au moyen d'un organe de raccordement réversible (non représenté) identique à celui décrit dans le brevet FR 2 868 342 , dont le contenu doit être considéré comme faisant partie de la présente demande.
  • Dans l'exemple représenté, le bol 12 est un organe de pulvérisation mixte, c'est-à-dire adapté pour la projection du produit de revêtement aussi bien en jet large qu'en jet étroit. A cet effet, le diamètre du bol 12 est de préférence compris entre 30 et 90 mm, avantageusement entre 50 et 65 mm.
  • En variante (non représentée), le bol 12 est adapté uniquement pour la projection du produit de revêtement en jet étroit. Le projecteur rotatif 10 comprend alors également un deuxième organe de pulvérisation, séparé du corps 14 et identique au bol 12 sauf pour son diamètre qui, pour ce deuxième organe de pulvérisation, est supérieur au diamètre du bol 12.
  • Le corps 14 est fixé au poignet 9 du robot pulvérisateur 4.
  • Le système d'entraînement 16 est typiquement formé par une turbine à air comprimé. En variante, le système d'entraînement 16 est formé par un moteur électrique.
  • Le système d'alimentation 18 est raccordé fluidiquement à une source (non représentée) de produit de revêtement, typiquement constitué par une peinture, et est adapté pour entraîner ce produit de revêtement jusqu'à l'orifice d'introduction 30 du bol 12.
  • La jupe 20 est fixe par rapport au corps 14 et recouvre au moins en partie une surface extérieure du corps 14. Par ailleurs, dans l'exemple représenté, la jupe 20 entoure radialement le fond 24 du bol 12, de sorte que le bol 12 est partiellement inséré dans la jupe 20.
  • La jupe 20 présente une pluralité de buses d'éjection d'air 40, 42, 44, 46 ménagées dans ladite jupe 20.
  • Chaque buse 40, 42, 44, 46 est ménagée dans une surface radiale 32 plane de ladite jupe 20. Cette surface radiale 32 est, dans l'exemple représenté, commune à toutes les buses 40, 42, 44, 46, et forme une extrémité aval de la jupe 20. En variante (non représentée), au moins une des buses 40, 42, 44, 46 est ménagée dans une surface radiale décalée axialement par rapport à une autre surface radiale dans laquelle est ménagée au moins une autre des buses 40, 42, 44, 46.
  • En variante, au moins une des buses 40, 42, 44, 46 est ménagée sur une surface tridimensionnelle quelconque de révolution autour de A-A'.
  • Les buses d'éjection d'air 40, 42, 44, 46 communiquent fluidiquement avec des chambres 40A, 42A, 44A, 46A d'alimentation en air desdites buses d'éjection d'air 40, 42, 44, 46, chacune formée dans le projecteur rotatif 10. En particulier, chacune de ces chambres d'alimentation 40A, 42A, 44A, 46A est, dans l'exemple représenté, formée dans la jupe 20. En variante, au moins une de ces chambres d'alimentation 40A, 42A, 44A, 46A est formée à l'interface entre la jupe 20 et le corps 14. En variante encore, au moins une de ces chambres d'alimentation 40A, 42A, 44A, 46A est formée dans le corps 14.
  • Chaque buse d'éjection d'air 40, 42, 44, 46 est de préférence constituée par un orifice traversant ménagé dans la jupe 20. Dans l'exemple représenté, cet orifice traversant débouche, par une première extrémité, dans la surface radiale 32, et, par une deuxième extrémité, dans la chambre 40A, 42A, 44A, 46A d'alimentation en air de ladite buse d'éjection d'air 40, 42, 44, 46. En variante, chaque buse d'éjection d'air 40, 42, 44, 46 est constituée par un élément rapporté sur la jupe 20.
  • Pour des raisons de simplification, seule une partie de ces buses d'air 40, 42, 44, 46 est représentée sur les Figures, en particulier sur les Figures 3 et 4.
  • Les buses d'éjection d'air 40, 42, 44, 46 comprennent quatre séries de buses 41, 43, 45, 47 distinctes, chaque série de buses, respectivement 41, 43, 45, 47, étant constituée par une pluralité de buses, respectivement 40, 42, 44, 46, raccordées fluidiquement à une chambre d'alimentation commune, respectivement 40A, 42A, 44A, 46A, propre à ladite série de buses 41, 43, 45, 47. Les séries de buses 41, 43, 45, 17 comprennent ainsi une première série de buses primaires 41, constituée par des premières buses primaires 40 raccordées fluidiquement à une première chambre primaire 40A, une première série de buses secondaires 43, constituée par des premières buses secondaires 42 raccordées fluidiquement à une première chambre secondaire 42A, une deuxième série de buses primaires 45, constituée par des deuxièmes buses primaires 44 raccordées fluidiquement à une deuxième chambre primaire 44A, et une deuxième série de buses secondaires 47, constituée par des deuxièmes buses secondaires 46 raccordées fluidiquement à une deuxième chambre secondaire 46A.
  • En référence aux Figures 3 et 4, les premières buses primaires et secondaires 40, 42 sont, dans l'exemple représenté, disposées sur une couronne intérieure 50, et les deuxièmes buses primaires et secondaires 44, 46 sont disposées sur une couronne extérieure 52. Les premières buses primaires et secondaires 40, 42 seront donc dans la suite également qualifiées de « buses d'éjection d'air intérieures », et les deuxièmes buses primaires et secondaires 44, 46 seront également qualifiées de « buses d'éjection d'air extérieures ».
  • Les couronnes intérieure et extérieure 50, 52 sont sensiblement concentriques et ont toutes les deux sensiblement pour centre l'axe de rotation A-A'. La couronne intérieure 50 est placée à l'intérieur d'un périmètre de séparation 54 et la couronne extérieure 50 est placée à l'extérieur de ce périmètre de séparation 54, de sorte que la couronne extérieure 52 entoure radialement la couronne intérieure 50.
  • Le périmètre de séparation 54 est convexe, c'est-à-dire que, pour toute paire de points appartenant au périmètre 54, il n'existe pas de point du périmètre 54 interposé entre le segment de corde reliant lesdits deux points et l'axe A-A'. En particulier, le périmètre de séparation 54 est, comme représenté, sensiblement circulaire. Par ailleurs, le périmètre de séparation 54 est sensiblement centré sur l'axe A-A'.
  • Chacune des couronnes intérieure et extérieure 50, 52 est délimitée, du côté de l'axe A-A', par un périmètre intérieur et, du côté opposé à l'axe A-A', par un périmètre extérieur. Le périmètre de séparation 54 constitue le périmètre extérieur de la couronne intérieure 50, et le périmètre intérieur de la couronne extérieure 52. Le périmètre intérieur 56 de la couronne intérieure 50 est constitué par un périmètre convexe affleurant au moins une partie des buses d'éjection d'air intérieures 40, 42 ; il est de préférence circulaire. Le périmètre extérieur 58 de la couronne extérieure 52 est constitué par un périmètre convexe affleurant au moins une partie des buses d'éjection d'air extérieures 44, 46 ; il est de préférence lui aussi circulaire.
  • Chacune des buses d'éjection d'air 40, 42, 44, 46 est à une distance de l'axe de rotation A-A', prise comme étant la distance du centre de la buse 40, 42, 44, 46 à l'axe de rotation A-A', supérieure ou égale au demi-diamètre de l'arête 26. En particulier, la couronne intérieure 50 présente une distance radiale minimale d à l'axe de rotation A-A', constituée par la distance radiale minimale du périmètre intérieur 56 à l'axe de rotation A-A', supérieure ou égale au demi-diamètre de l'arête 26 du bol 12.
  • Chacune des premières buses primaires 40 est adaptée pour éjecter un premier jet d'air primaire suivant une première direction primaire définie par un premier vecteur unitaire primaire 60 présentant une première composante axiale primaire 60A, une première composante de divergence radiale primaire 60B, et une première composante orthoradiale primaire 60C.
  • Par « vecteur unitaire », on comprend que le vecteur 60 présente une norme, égale à la racine de carrée de la somme des carrés des composantes axiale 60A, de divergence radiale 60B et orthoradiale 60C, sensiblement égale à 1, certaines desdites composantes 60A, 60B, 60C pouvant être nulles. La composante de divergence radiale 60B est une valeur relative comptée positivement lorsque le vecteur 60 est orienté à l'opposé de l'axe de rotation A-A', et négativement lorsque le vecteur 60 est orienté vers l'axe de rotation A-A'. Ces définitions s'appliquent également aux autres vecteurs qualifiés d'unitaires dans la suite.
  • De préférence, les premières composantes axiale et orthoradiale primaires 60A, 60C sont chacune non nulles.
  • Le diamètre des orifices constituant les premières buses primaires 40 est compris entre 0,5 et 1,2 mm.
  • Chacune des première buses secondaires 42 est adaptée pour éjecter un premier jet d'air secondaire suivant une première direction secondaire définie par un premier vecteur unitaire secondaire 62 présentant une première composante axiale primaire 62A, une première composante de divergence radiale primaire 62B, et une première composante orthoradiale primaire 62C. La première direction secondaire est différente de la première direction primaire, c'est-à-dire qu'au moins une desdites composantes 62A, 62B, 62C du premier vecteur unitaire secondaire 62 est différente de la composante 60A, 60B, 60C du premier vecteur unitaire primaire 60 correspondante.
  • En particulier, la première composante orthoradiale secondaire 62C est inférieure à la première composante orthoradiale primaire 60C. De préférence, la première composante orthoradiale secondaire 62C est choisie de sorte que l'angle formé dans un plan orthoradial entre le premier vecteur unitaire secondaire 66 et la direction axiale passant par la première buse secondaire 42 soit inférieur à 30°.
  • Avantageusement, les positions des premières buses primaires 40 et des premières buses secondaires 42, ainsi que les composantes 60A, 60B, 60C du premier vecteur unitaire primaire 60 et les composantes 62A, 62B, 62C du premier vecteur unitaire secondaire 62, sont choisies de sorte que les premières directions primaire et secondaire soient sensiblement sécantes l'une à l'autre en une première région d'intersection (non représentée) située en amont de l'arête 26
  • Le diamètre des orifices constituant les premières buses secondaires 42 est compris entre 0,5 et 1,2 mm.
  • Les première buses primaires et secondaires 40, 42 sont disposées en alternance les unes par rapport aux autres, c'est-à-dire que, pour toute paire de première buses primaires 40 adjacentes, il existe une première buse secondaire 42 interposée angulairement entre lesdites buses 40, et vice-versa. Les première buses primaires et secondaires 40, 42 sont ainsi en nombres égaux.
  • Dans le premier mode de réalisation, représenté sur les Figures 2 et 3, les premières buses primaires et secondaires 40, 42 sont disposées sur des contours 61, 63 différents, lesdits contours 61, 63 étant sensiblement centrés sur l'axe A-A' et étant des homothéties l'un de l'autre, les premières buses primaires 40 étant décalées radialement vers l'axe A-A' par rapport aux premières buses secondaires 42. En variante, les premières buses primaires et secondaires 40, 42 sont disposées sur un même contour 68, sensiblement centré sur l'axe A-A', comme dans le deuxième mode de réalisation.
  • Chacune des deuxièmes buses primaires 44 est adaptée pour éjecter un deuxième jet d'air primaire suivant une deuxième direction primaire définie par un deuxième vecteur unitaire primaire 64 présentant une deuxième composante axiale primaire 64A, une deuxième composante de divergence radiale primaire 64B, et une deuxième composante orthoradiale primaire 64C.
  • De préférence, les deuxièmes composantes axiale et orthoradiale primaires 64A, 64C sont chacune non nulles.
  • Le diamètre des orifices constituant les deuxièmes buses primaires 44 est compris entre 0,5 et 1,2 mm.
  • Chacune des deuxièmes buses secondaires 46 est adaptée pour éjecter un deuxième jet d'air secondaire suivant une deuxième direction secondaire définie par un deuxième vecteur unitaire secondaire 66 présentant une deuxième composante axiale secondaire 66A, une deuxième composante de divergence radiale secondaire 66B, et une deuxième composante orthoradiale secondaire 66C. La deuxième direction secondaire est différente de la deuxième direction primaire, c'est-à-dire qu'au moins une des composantes 66A, 66B, 66C du deuxième vecteur unitaire secondaire 66 est différente de la composante 64A, 64B, 64C du deuxième vecteur unitaire primaire 64 correspondante.
  • En particulier, la deuxième composante orthoradiale secondaire 66C est inférieure à la deuxième composante orthoradiale primaire 64C. De préférence, la deuxième composante orthoradiale secondaire 66C est choisie de sorte que l'angle formé dans un plan orthoradial entre le deuxième vecteur unitaire secondaire 66 et la direction axiale passant par la deuxième buse secondaire 46 soit inférieur à 30°.
  • Avantageusement, les positions des deuxièmes buses primaires 44 et des deuxièmes buses secondaires 46, ainsi que les composantes 64A, 64B, 64C du deuxième vecteur unitaire primaire 64 et les composantes 66A, 66B, 66C du deuxième vecteur unitaire secondaire 66, sont choisies de sorte que les deuxièmes directions primaire et secondaire soient sensiblement sécantes l'une à l'autre en une deuxième région d'intersection (non représentée) située en amont de l'arête 26.
  • Les deuxièmes buses primaires et secondaires 44, 46 sont disposées en alternance les unes par rapport aux autres, c'est-à-dire que, pour toute paire de deuxièmes buses primaires 44 adjacentes, il existe une deuxième buse secondaire 46 interposée angulairement entre lesdites buses 44, et vice-versa. Les deuxièmes buses primaires et secondaires 44, 46 sont ainsi en nombres égaux.
  • Le nombre de buses d'éjection d'air extérieures 44, 46 est supérieur ou égal au nombre de buses d'éjection d'air intérieures 40, 42.
  • Le diamètre des orifices constituant les deuxièmes buses secondaires 66 est compris entre 0,5 et 1,2 mm.
  • Dans le premier mode de réalisation, les deuxièmes buses primaires et secondaires 44, 46 sont disposées sur des contours 65, 67 différents, lesdits contours 65, 67 étant sensiblement centrés sur l'axe A-A' et étant des homothéties l'un de l'autre, les deuxièmes buses primaires 44 étant décalées radialement vers l'axe A-A' par rapport aux deuxièmes buses secondaires 46. En variante, les deuxièmes buses primaires et secondaires 44, 46 sont disposées sur un même contour 69, sensiblement centré sur l'axe A-A', comme dans le deuxième mode de réalisation.
  • La première série de buses primaires 41 et la première série de buses secondaires 43 constituent ensemble une première paire de séries 48 adaptée pour que, lorsque lesdites séries 41, 43 sont alimentées simultanément en air, les premiers jets d'air éjectés par les buses 40, 42 constituant ces séries 41, 43 forment ensemble un premier air de conformation adapté pour conformer le jet de produit de revêtement de manière étroite. Quant à la deuxième série de buses primaires 45 et à la deuxième série de buses secondaires 47, elles constituent ensemble une deuxième paire de séries 49 adaptée pour que, lorsque lesdites séries 45, 47 sont alimentées simultanément en air, les deuxièmes jets d'air éjectés par les buses 44, 46 constituant ces séries 45, 47 forment ensemble un deuxième air de conformation adapté pour conformer le jet de produit de revêtement de manière large.
  • A cet effet, les première et deuxième directions primaires sont différentes, c'est-à-dire qu'au moins une des composantes 64A, 64B, 64C du deuxième vecteur unitaire primaire 64 est différente de la composante 60A, 60B, 60C du premier vecteur unitaire primaire 60 correspondante. En particulier, la deuxième composante orthoradiale primaire 64C est supérieure à la première composante orthoradiale primaire 60C, et la deuxième composante de divergence radiale primaire 64B est supérieure à la première composante de divergence radiale primaire 60B.
  • Ainsi, la première composante orthoradiale primaire 60C est choisie de sorte que l'angle formé dans un plan orthoradial entre le premier vecteur unitaire primaire 60 et la direction axiale passant par la première buse primaire 40 soit compris entre 20° et 50°, de préférence entre 35° et 45°, la première composante de divergence radiale primaire 60B étant choisie de sorte que l'angle formé dans un plan radial entre le premier vecteur unitaire primaire 60 et la direction radiale passant par la première buse primaire 40 soit sensiblement égal à 90°, alors que la deuxième composante orthoradiale primaire 64C est choisie de sorte que l'angle formé dans un plan orthoradial entre le deuxième vecteur unitaire primaire 64 et la direction axiale passant par la deuxième buse primaire 44 soit compris entre 40° et 80°, de préférence entre 50° et 60°, la deuxième composante de divergence radiale primaire 64B étant choisie de sorte que l'angle formé dans un plan radial entre le deuxième vecteur unitaire primaire 64 et la direction radiale passant par la deuxième buse primaire 44 soit inférieur à 85° et de préférence compris entre 75° et 85°.
  • Outre le robot 4 et l'armoire 6, l'installation de revêtement 2 comprend, comme représenté sur les Figures 5 à 8, un système 70 d'alimentation des buses 40, 42, 44, 46 en air.
  • Ce système d'alimentation 70 comprend, selon un premier exemple de réalisation représenté sur les Figures 5 à 8, une source d'air 72, une voie primaire 74 d'alimentation des buses d'air primaires 40, 44 en air, spécifique auxdites buses d'air primaires 40, 44, une voie secondaire 76 d'alimentation des buses d'air secondaires 42, 46 en air, spécifique auxdites buses d'air secondaires 42, 46, une première vanne primaire 80 pour réguler l'alimentation des premières buses primaires 40 en air, une première vanne secondaire 82 pour réguler l'alimentation des premières buses secondaires 42 en air, une deuxième vanne primaire 84 pour réguler l'alimentation des deuxièmes buses primaires 44 en air, et une deuxième vanne secondaire 86 pour réguler l'alimentation des deuxièmes buses secondaires 46 en air.
  • La source d'air 72 est typiquement constituée par un compresseur à air.
  • La voie primaire 74 comprend une première branche primaire 90 spécifique aux premières buses primaires 40 et une deuxième branche primaire 94 spécifique aux deuxièmes buses primaires 44. La première branche primaire 90 est équipée de la première vanne primaire 80 de manière à ce que ladite vanne 80 régule le débit d'air circulant dans la première branche primaire 90. La deuxième branche primaire 94 est équipée de la deuxième vanne primaire 84 de manière à ce que ladite vanne 84 régule le débit d'air circulant dans la deuxième branche primaire 94.
  • Dans la première variante de la Figure 5, la voie primaire 74 est constituée desdites branches spécifiques 90, 94. Chacune des vannes 80, 84 est alors constituée par une vanne variable.
  • Dans les deuxième et troisième variantes des Figures 6 et 7, la voie primaire 74 comprend également une branche 91 commune à toutes les buses d'air primaires 40, 44, s'étendant entre la source 72 et chacune des branches spécifiques 90, 94. Cette branche commune 91 est équipée d'une vanne primaire commune 93, de préférence constituée par une vanne variable, adaptée pour réguler le débit d'air circulant dans la branche commune 91. Les vannes 80, 84 sont alors constituées par des vannes tout ou rien. Cela permet, en comparaison avec la première variante, de simplifier la gestion de l'alimentation en air au niveau automate, de réduire le nombre de tuyaux entrant dans le projecteur rotatif 10, et de réduire le coût matériel et d'intégration.
  • La voie secondaire 76 comprend une première branche secondaire 92 spécifique aux premières buses secondaires 42 et une deuxième branche secondaire 96 spécifique aux deuxièmes buses secondaires 46. La première branche secondaire 92 est équipée de la première vanne secondaire 82 de manière à ce que ladite vanne 82 régule le débit d'air circulant dans la première branche secondaire 92. La deuxième branche secondaire 96 est équipée de la deuxième vanne secondaire 86 de manière à ce que ladite vanne 86 régule le débit d'air circulant dans la deuxième branche secondaire 96.
  • Dans la première variante de la Figure 5, la voie secondaire 76 est constituée desdites branches spécifiques 92, 96. Chacune des vannes 82, 86 est alors constituée par une vanne variable.
  • Dans les deuxième et troisième variantes des Figures 6 et 7, la voie secondaire 76 comprend également une branche 95 commune à toutes les buses d'air secondaires 42, 46, s'étendant entre la source 72 et chacune des branches spécifiques 92, 96. Cette branche commune 95 est équipée d'une vanne primaire commune 97, de préférence constituée par une vanne variable, adaptée pour réguler le débit d'air circulant dans la branche commune 95. Les vannes 82, 86 sont alors constituées par des vannes tout ou rien. Cela permet, en comparaison avec la première variante, de simplifier la gestion de l'alimentation en air au niveau automate, de réduire le nombre de tuyaux entrant dans le projecteur rotatif 10, et de réduire le coût matériel et d'intégration.
  • Les vannes 80, 82, 84, 86 sont de préférence intégrées au projecteur rotatif 10, en particulier à la jupe 20. En variante, les vannes 80, 82, 84, 86 sont intégrées au bras articulé 8, ou à l'armoire de commande électropneumatique 6.
  • L'installation de revêtement 2 comprend également un système 100 de pilotage du système d'alimentation 70. Ce système de pilotage 100 est adapté pour piloter chacune des vannes 80, 82, 84, 86.
  • Le système de pilotage 100 comprend, de préférence, deux modules de commandes 102, 104 distincts: un premier module de commande 102 pour piloter l'alimentation des premières buses d'air 40, 42, et un deuxième module de commande 104 pour piloter l'alimentation des deuxièmes buses d'air 44, 46, comme dans la troisième variante représentée sur la Figure 7. Le premier module de commande 102 est alors adapté pour commander simultanément les vannes 80 et 82 mais pas les vannes 84 et 86, et le deuxième module de commande 104 est adapté pour commander simultanément les vannes 84 et 86 mais pas les vannes 80 et 82.
  • Chacun des modules de commande 102, 104 présente un branchement pour un organe de commande (non représenté) et est adapté pour actionner les vannes 80, 82, 84, 86 qu'il commande lorsque ledit organe de commande est raccordé audit branchement. Par exemple, l'organe de commande est un actionneur pneumatique, le module de commande 102, 104 comprenant alors un circuit pneumatique raccordant le branchement dudit module 102, 104 aux vannes 80, 82, 84, 86 commandées par ledit module 102, 104, lesdites vannes 80, 82, 84, 86 étant alors constituées par des vannes à commande pneumatique. En variante, l'organe de commande est un actionneur hydraulique, le module de commande 102, 104 comprenant alors un circuit hydraulique raccordant le branchement dudit module 102, 104 aux vannes 80, 82, 84, 86 commandées par ledit module 102, 104, lesdites vannes 80, 82, 84, 86 étant alors constituées par des vannes à commande hydraulique. En variante encore, l'organe de commande est un actionneur électrique, le module de commande 102, 104 comprenant alors un circuit électrique raccordant le branchement dudit module 102, 104 aux vannes 80, 82, 84, 86 commandées par ledit module 102, 104, lesdites vannes 80, 82, 84, 86 étant alors constituées par des vannes à commande électrique.
  • Le fait d'avoir ainsi des modules de commande 102, 104 communs pour plusieurs vannes 80, 82, 84, 86 permet de réduire le nombre de connexions de pilotage, ainsi qu'une synchronisation parfaite de la commande des premières vannes 80, 82 d'une part et des deuxièmes vannes 84, 86 d'autre part.
  • En variante, le système de pilotage 100 comprend un module de commande 110, 112, 114, 116 propre pour chacune des vannes 80, 82, 84, 86, comme dans la deuxième variante représentée sur la Figure 6. Chacun de ces modules de commande, respectivement 110, 112, 114, 116, est alors adapté pour ne commander qu'une seule vanne, respectivement 80, 82, 84, 86.
  • Chacun des modules de commande 110, 112, 114, 116 présente un branchement pour un organe de commande (non représenté) et est adapté pour actionner la vanne 80, 82, 84, 86 qu'il commande lorsque ledit organe de commande est raccordé audit branchement. Par exemple, l'organe de commande est un actionneur pneumatique, le module de commande 110, 112, 114, 116 comprenant alors un circuit pneumatique raccordant le branchement dudit module 110, 112, 114, 116 à la vanne 80, 82, 84, 86 commandée par ledit module 110, 112, 114, 116, ladite vanne 80, 82, 84, 86 étant alors constituée par une vanne à commande pneumatique. En variante, l'organe de commande est un actionneur hydraulique, le module de commande 110, 112, 114, 116 comprenant alors un circuit hydraulique raccordant le branchement dudit module 110, 112, 114, 116 à la vanne 80, 82, 84, 86 commandées par ledit module 110, 112, 114, 116, ladite vanne 80, 82, 84, 86 étant alors constituée par une vanne à commande hydraulique. En variante encore, l'organe de commande est un actionneur électrique, le module de commande 110, 112, 114, 116 comprenant alors un circuit électrique raccordant le branchement dudit module 110, 112, 114, 116 à la vanne 80, 82, 84, 86 commandées par ledit module 110, 112, 114, 116, ladite vanne 80, 82, 84, 86 étant alors constituée par une vanne à commande électrique.
  • Cette variante permet une plus grande flexibilité dans la commande des vannes 80, 82, 84, 86, et donc dans l'utilisation des buses d'air 40, 42, 44, 46, et permet en particulier d'utiliser simultanément les buses intérieures primaires 40 avec les buses extérieures primaires 44 et/ou les buses intérieures secondaires 42 avec les buses extérieures secondaires 46 et/ou les buses intérieures primaires 40 avec les buses extérieures secondaires 46 et/ou les buses intérieures secondaires 42 avec les buses extérieures primaires 44 et/ou les buses intérieures primaires 40 avec les buses intérieures secondaires 42 et/ou les buses extérieures primaires 44 avec les buses extérieures secondaires 46.
  • En référence à la Figure 8, le système d'alimentation 70 selon le deuxième exemple de réalisation se distingue du premier exemple de réalisation en ce qu'il ne comprend pas de voie primaire d'alimentation des buses d'air primaires 40, 44 en air, spécifique auxdites buses d'air primaires 40, 44, ni de voie secondaire d'alimentation des buses d'air secondaires 42, 46 en air, spécifique auxdites buses d'air secondaires 42, 46, ni de vanne propre à chacune des séries de buses 41, 43, 45, 47. A la place, le système d'alimentation 70 comprend une première voie d'alimentation 120, propre à la première paire de séries 48, une deuxième voie d'alimentation 122, propre à la deuxième paire de séries 49, une première vanne 124 pour réguler l'alimentation de la première paire de séries 48 en air, et une deuxième vanne 126 pour réguler l'alimentation de la deuxième paire de séries 49 en air.
  • La première voie primaire 120 comprend une première branche primaire 130 spécifique aux premières buses primaires 40 et une première branche secondaire 132 spécifique aux premières buses secondaires 42. La première branche primaire 130 est équipée d'un premier réducteur de débit primaire 140, de préférence non réglable, pour réduire le débit dans la branche 130 en aval du réducteur de débit 140. La première branche secondaire 132 est équipée d'un premier réducteur de débit secondaire 142, de préférence non réglable, pour réduire le débit dans la branche 132 en aval du réducteur de débit 142.
  • La première voie 120 comprend également une première branche commune 131, commune à toutes les premières buses d'air 40, 42, s'étendant entre la source 72 et chacune des branches spécifiques 130, 132. Cette branche commune 131 est équipée de la première vanne 124.
  • La deuxième voie primaire 122 comprend quant à elle une deuxième branche primaire 134 spécifique aux deuxièmes buses primaires 44 et une deuxième branche secondaire 134 spécifique aux deuxièmes buses secondaires 46. La deuxième branche primaire 134 est équipée d'un deuxième réducteur de débit primaire 144, de préférence non réglable, pour réduire le débit dans la branche 134 en aval du réducteur de débit 144. La deuxième branche secondaire 136 est équipée d'un deuxième réducteur de débit secondaire 146, de préférence non réglable, pour réduire le débit dans la branche 136 en aval du réducteur de débit 146.
  • La deuxième voie 122 comprend également une deuxième branche commune 135, commune à toutes les deuxièmes buses d'air 40, 42, s'étendant entre la source 72 et chacune des branches spécifiques 134, 136. Cette branche commune 135 est équipée de la deuxième vanne 126.
  • Chacune des première et deuxième vannes 124, 126 est avantageusement constituée par une vanne tout ou rien.
  • Par ailleurs, dans ce deuxième exemple de réalisation, le système de commande 100 comprend un premier module de commande 154 pour piloter la première vanne 124, et un deuxième module de commande 156 pour piloter la deuxième vanne 126.
  • Chacun des modules de commande 154, 156 présente un branchement pour un organe de commande (non représenté) et est adapté pour actionner la vanne 124, 126 qu'il commande lorsque ledit organe de commande est raccordé audit branchement. Par exemple, l'organe de commande est un actionneur pneumatique, le module de commande 154, 156 comprenant alors un circuit pneumatique raccordant le branchement dudit module 154, 156 à la vanne 124, 126 commandée par ledit module 154, 156, ladite vanne 124, 126 étant alors constituée par une vanne à commande pneumatique. En variante, l'organe de commande est un actionneur hydraulique, le module de commande 154, 156 comprenant alors un circuit hydraulique raccordant le branchement dudit module 154, 156 à la vanne 124, 126 commandées par ledit module 154, 156, ladite vanne 124, 126 étant alors constituée par une vanne à commande hydraulique. En variante encore, l'organe de commande est un actionneur électrique, le module de commande 154, 156 comprenant alors un circuit électrique raccordant le branchement dudit module 154, 156 à la vanne 124, 126 commandées par ledit module 154, 156, ladite vanne 124, 126 étant alors constituée par une vanne à commande électrique.
  • Un procédé de recouvrement d'un objet (non représenté), typiquement une carrosserie de véhicule automobile, avec le produit de revêtement, au moyen de l'installation de revêtement 2, va maintenant être décrit.
  • L'installation de revêtement 2 est tout d'abord fournie avec le bol 12 monté sur le corps 14. Une première surface étroite, constituant par exemple le bord d'un toit de la carrosserie, est alors placée face au projecteur rotatif 10 et le module de commande 102 (ou 154 si l'on est dans le deuxième exemple de réalisation) est actionné, de manière à ouvrir l'alimentation des buses d'air intérieures 40, 42 en air.
  • Le projecteur rotatif 10 est ensuite activé, c'est-à-dire que le système d'alimentation 18 est mis en marche, et que les vannes variables 93, 97 sont ouvertes pour permettre l'alimentation des buses d'air 40, 42 en air. Le projecteur rotatif 10 commence alors à projeter un jet de produit de revêtement qui, grâce à l'air éjecté par les buses intérieures 40, 42, est conformé de manière étroite. La surface étroite peut ainsi être recouverte sans gaspillage de produit de revêtement.
  • Une fois la surface étroite recouverte, le projecteur rotatif 10 est désactivé, et on vient placer devant le projecteur rotatif une deuxième surface, étendue, de l'objet, par exemple le centre du toit de la carrosserie. Le module de commande 102 (ou 154 si l'on est dans le deuxième exemple de réalisation) est alors désactionné de manière à fermer l'alimentation des buses d'air intérieures 40, 42 en air, et le module de commande 104 (ou 156 si l'on est dans le deuxième exemple de réalisation) est lui actionné de manière à ouvrir l'alimentation des buses d'air extérieures 44, 46 en air, le bol 12 restant monté sur le corps 14. En variante, dans le cas où le bol 12 est adapté uniquement pour la projection du produit de revêtement en jet étroit, le bol 12 est démonté du corps 14 et remplacé par le deuxième organe de pulvérisation de diamètre supérieur à celui du bol 12.
  • Une fois ces changements effectués, le projecteur rotatif 10 est réactivé. Le jet de produit de revêtement projeté par le projecteur rotatif 10 est alors conformé de manière large grâce à l'air éjecté par les buses extérieures 44, 46. La surface étendue peut ainsi être recouverte rapidement et avec une grande qualité de recouvrement.
  • Lorsque l'on souhaite revenir à un jet de produit de revêtement étroit, on désactive le projecteur rotatif 10, on désactionne le module de commande 104 (ou 156 si l'on est dans le deuxième exemple de réalisation) de manière à fermer l'alimentation des buses d'air extérieures 44, 46 en air, et on actionne le module de commande 102 (ou 154 si l'on est dans le deuxième exemple de réalisation) de manière à ouvrir l'alimentation des buses d'air intérieures 40, 42 en air, le projecteur rotatif 10 étant ensuite réactivé.
  • On notera qu'il est également possible de revêtir, au moyen du procédé décrit ci-dessus, différents objets, certains grands et d'autres petits, l'ajustement de la largeur du jet étant effectué lorsque l'on passe d'un petit objet à un grand objet, et vice-versa.
  • Grâce à l'invention décrite ci-dessus, il est ainsi possible de produire des jets de produit de revêtement larges et étroits avec un même projecteur rotatif, ce qui confère une très grande flexibilité dans l'emploi de ce projecteur rotatif.
  • On notera que, bien que la description donnée ci-dessus soit réduite au cas dans lequel les séries de buses 41, 43, 45, 47 sont au nombre de quatre, l'invention ne se limite à ce seul mode de réalisation, et s'étend également à tous les cas dans lesquels les séries de buses 41, 43, 45, 47 sont au moins au nombre de trois, les paires de séries 48, 49 se partageant, dans le cas où les séries de buses 41, 43, 45, 47 sont au nombre de trois, une série de buse commune.
  • On notera également que, plutôt que d'être regroupées par paires, comme cela est décrit ci-dessus, les séries de buses 41, 43, 45, 47 peuvent être regroupées par groupes de trois séries 41, 43, 45, 47 ou plus pour former un air de conformation, et/ou certaines des séries 41, 43, 45, 47 peuvent être isolées des autres pour former un air de conformation.
  • On notera encore que, bien que la description donnée ci-dessus soit réduite au cas dans lequel les premières buses 40, 42 sont disposées à l'intérieur d'un périmètre de séparation 54, les deuxièmes buses 44, 46 étant disposées à l'extérieur de ce périmètre de séparation 54, l'invention ne se limite pas à ce seul mode de réalisation, et s'étend à toutes les positions relatives des buses 40, 42, 44, 46 possibles, notamment aux positions pour lesquelles les deuxièmes buses 44, 46 sont disposées à l'intérieur d'un périmètre de séparation, les premières buses 40, 42 étant disposées à l'extérieur de ce périmètre de séparation, et aux positions pour lesquelles les premières et deuxièmes buses 40, 42, 44, 46 sont disposées sur un contour commun.

Claims (15)

  1. Jupe (20) pour un projecteur rotatif (10) de produit de revêtement destiné à projeter un jet de produit de revêtement sur une surface à couvrir, la jupe (20) présentant une pluralité de buses d'éjection d'air (40, 42, 44, 46) ménagées dans ladite jupe (20) pour éjecter des jets d'air formant un air de conformation adapté pour conformer le jet de produit de revêtement,
    caractérisée en ce que les buses d'éjection d'air (40, 42, 44, 46) comprennent au moins trois séries de buses (41, 43, 45, 47) distinctes, chaque série de buses (41, 43, 45, 47) étant constituée d'une pluralité de buses d'éjection d'air (40, 42, 44, 46) raccordées fluidiquement à une chambre d'alimentation commune (40A, 42A, 44A, 46A) propre à ladite série de buses (41, 43, 45, 47).
  2. Jupe (20) selon la revendication 1, dans laquelle les buses d'éjection d'air (40, 42, 44, 46) comprennent un premier groupe de buses (48), constitué par au moins une première série de buses (41, 43) parmi les séries de buses (41, 43, 45, 47), et un deuxième groupe de buses (49), constitué par au moins une deuxième série de buses (45, 47) parmi les séries de buses (41, 43, 45, 47), le premier groupe de buses (48) étant tel que, lorsque la ou chaque première série de buses (41, 43) est alimentée en air, les buses (40, 42) de la ou chaque première série de buses (41, 43) éjectent des premiers jets d'air formant ensemble un premier air de conformation adapté pour conformer le jet de produit de revêtement de manière étroite, et le deuxième groupe de buses (49) étant tel que, lorsque la ou chaque deuxième série de buses (45, 47) est alimentée en air, les buses (44, 46) de la ou chaque deuxième série de buses (45, 47) éjectent des deuxièmes jets d'air formant ensemble un deuxième air de conformation adapté pour conformer le jet de produit de revêtement de manière large.
  3. Jupe (20) selon la revendication 2, dans laquelle la ou chaque première série de buses (41, 43) est distincte de la ou chaque deuxième série de buses (45, 47).
  4. Jupe (20) selon la revendication 2 ou 3, dans laquelle le premier groupe de buses (48) comprend une première série de buses primaires (41), constituée de premières buses primaires (40) chacune adaptée pour éjecter un premier jet d'air primaire suivant une première direction primaire, et le deuxième groupe de buses (49) comprend une deuxième série de buses primaires (45), distincte de la première série de buses primaires (41) et constituée de deuxièmes buses primaires (44) chacune adaptée pour éjecter un deuxième jet d'air primaire suivant une deuxième direction primaire différente de la première direction primaire.
  5. Jupe (20) selon la revendication 4, dans laquelle la première direction primaire est définie par un premier vecteur unitaire primaire (60) présentant une première composante de divergence radiale primaire (60B), et la deuxième direction primaire est définie par un deuxième vecteur unitaire primaire (64) présentant une deuxième composante de divergence radiale primaire (64B), la deuxième composante de divergence radiale primaire (64B) étant supérieure à la première composante de divergence radiale primaire (60B).
  6. Jupe (20) selon la revendication 4 ou 5, dans laquelle la première direction primaire est définie par un premier vecteur unitaire primaire (60) présentant une première composante orthoradiale primaire (60C), et la deuxième direction primaire est définie par un deuxième vecteur unitaire primaire (64) présentant une deuxième composante orthoradiale primaire (64C), la deuxième composante orthoradiale primaire (64C) étant supérieure à la première composante orthoradiale primaire (60C).
  7. Jupe (20) selon l'une quelconque des revendications 4 à 6, dans laquelle chacune des première et deuxième directions primaires est définie par un vecteur unitaire primaire (60, 64) présentant une composante orthoradiale primaire (60C, 64C) non nulle.
  8. Jupe (20) selon l'une quelconque des revendications 4 à 7, dans laquelle le premier groupe de buses (48) comprend une première série de buses secondaires (43), distincte des première et deuxième séries de buses primaires (41, 45), et le deuxième groupe de buses (49) comprend une deuxième série de buses secondaires (47), distincte des première et deuxième séries de buses primaires (41, 45).
  9. Jupe (20) selon la revendication 8, dans laquelle les premières buses (40, 42) des premières séries de buses primaires et secondaires (41, 43) sont disposées en alternance les unes par rapport aux autres, et/ou les deuxièmes buses (44, 46) des deuxièmes séries de buses primaires et secondaires (45, 47) sont disposées en alternance les unes par rapport aux autres.
  10. Jupe (20) selon l'une quelconque des revendications 4 à 9, dans laquelle les premières buses (40, 42) sont disposées à l'intérieur d'un périmètre de séparation (54), les deuxièmes buses (44, 46) étant disposées à l'extérieur du périmètre de séparation (54), ou les premières buses (40, 42) sont disposées à l'extérieur d'un périmètre de séparation (54), les deuxièmes buses (44, 46) étant disposées à l'intérieur du périmètre de séparation (54).
  11. Projecteur rotatif (10) de produit de revêtement, comportant au moins un organe (12) de pulvérisation du produit de revêtement, un système (16) d'entraînement pour entraîner le premier organe de pulvérisation (12) en rotation autour d'un axe (A-A'), et une jupe (20) fixe,
    caractérisé en ce que la jupe (20) est constituée par une jupe selon l'une quelconque des revendications précédentes, chacune des chambres d'alimentation (40A, 42A, 44A, 46A) étant formée dans le projecteur rotatif (10).
  12. Projecteur rotatif (10) selon la revendication 11, dans lequel l'organe de pulvérisation (12) présente au moins une arête (26) globalement circulaire, chacune des buses d'éjection d'air (40, 42, 44, 46) étant à une distance de l'axe de rotation (A-A') supérieure ou égale au demi-diamètre de l'arête (26).
  13. Robot pulvérisateur (4) comprenant un bras articulé (8), un poignet (9) monté à une extrémité du bras articulé (8), et un projecteur rotatif (10) attaché sur le poignet (9), dans lequel le projecteur rotatif (10) est un projecteur rotatif selon la revendication 11 ou 12.
  14. Procédé de recouvrement d'au moins une partie d'au moins un objet avec un produit de revêtement projeté au moyen d'un projecteur rotatif (10) selon la revendication 11 ou 12, dans lequel les buses d'éjection d'air (40, 42, 44, 46) comprennent un premier groupe de buses (48), constitué par au moins une première série de buses (41, 43) parmi les séries de buses (41, 43, 45, 47), et un deuxième groupe de buses (49), constitué par au moins une deuxième série de buses (45, 47) parmi les séries de buses (41, 43, 45, 47), le procédé comprenant les étapes suivantes :
    - projection d'un premier jet de produit de revêtement au moyen du projecteur rotatif (10), seules les buses d'éjection d'air (40, 42) du premier groupe de buses (48) étant alimentées en air, lesdites buses d'éjection d'air (40, 42) éjectant des premiers jets d'air formant ensemble un premier air de conformation conformant le premier jet de produit de revêtement de manière étroite, et
    - avant ou après l'étape de projection d'un premier jet de produit de revêtement, projection d'un deuxième jet de produit de revêtement au moyen du projecteur rotatif (10), seules les buses d'éjection d'air (44, 46) du deuxième groupe de buses (49) étant alimentées en air, lesdites buses d'éjection d'air (44, 46) éjectant des deuxièmes jets d'air formant ensemble un deuxième air de conformation conformant le deuxième jet de produit de revêtement de manière large.
  15. Procédé de recouvrement selon la revendication 14, comprenant, entre l'étape de projection du premier jet de produit de revêtement et l'étape de projection du deuxième jet de produit de revêtement, une étape de remplacement de l'organe de pulvérisation (12) par un autre organe de pulvérisation.
EP17180567.4A 2016-07-11 2017-07-10 Jupe comprenant au moins trois séries de buses d'éjection d'air distinctes, projecteur rotatif de produit de revêtement avec une telle jupe et son procédé d'utilisation Active EP3269454B2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL17180567T PL3269454T3 (pl) 2016-07-11 2017-07-10 Osłona zawierająca co najmniej trzy szeregi oddzielnych dysz wyrzucających powietrze, rozpylacz obrotowy produktu powlekającego z taką osłoną i sposób jego użycia

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1656633A FR3053608B1 (fr) 2016-07-11 2016-07-11 Jupe pour projecteur rotatif de produit de revetement comprenant au moins trois series de buses d'ejection d'air distinctes

Publications (3)

Publication Number Publication Date
EP3269454A1 true EP3269454A1 (fr) 2018-01-17
EP3269454B1 EP3269454B1 (fr) 2020-09-09
EP3269454B2 EP3269454B2 (fr) 2023-07-19

Family

ID=56855724

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17180567.4A Active EP3269454B2 (fr) 2016-07-11 2017-07-10 Jupe comprenant au moins trois séries de buses d'éjection d'air distinctes, projecteur rotatif de produit de revêtement avec une telle jupe et son procédé d'utilisation

Country Status (10)

Country Link
US (1) US10919065B2 (fr)
EP (1) EP3269454B2 (fr)
JP (1) JP6962728B2 (fr)
KR (1) KR102447336B1 (fr)
CN (1) CN107597463B (fr)
BR (1) BR102017014845A2 (fr)
ES (1) ES2824468T5 (fr)
FR (1) FR3053608B1 (fr)
PL (1) PL3269454T3 (fr)
RU (1) RU2737459C2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3593905A4 (fr) * 2017-06-01 2020-12-23 ABB Schweiz AG Machine de revêtement de type à tête d'atomisation rotative

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3108045B1 (fr) * 2020-03-11 2023-02-10 Exel Ind Installation comportant un pulvérisateur et procédé associé
US20210387213A1 (en) * 2021-05-28 2021-12-16 Graco Minnesota Inc. Rotory bell atomizer shaping air configuration and air cap apparatus
EP4094842A1 (fr) * 2021-05-28 2022-11-30 Graco Minnesota Inc. Configuration d'air de mise en forme d'atomiseur à cloche rotative, appareil de capuchon d'air et méthode correspondante

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200863A (ja) * 1987-02-18 1988-08-19 Asahi Okuma Ind Co Ltd 回転電極式静電塗装ガンの霧化塗料流放出角度調節方法
JP3473718B2 (ja) * 1994-07-22 2003-12-08 日産自動車株式会社 回転霧化静電塗装方法および装置
FR2868342A1 (fr) * 2004-04-02 2005-10-07 Sames Technologies Soc Par Act Bol de pulverisation, projecteur rotatif incorporant un tel bol et installation de projection incorporant un tel projecteur
FR2917309A1 (fr) * 2007-06-13 2008-12-19 Sames Technologies Soc Par Act Projecteur rotatif de produit de revetement et installation comprenant un tel projecteur.
WO2011125855A1 (fr) * 2010-04-01 2011-10-13 本田技研工業株式会社 Dispositif de revêtement électrostatique et procédé de revêtement électrostatique
JP2012040498A (ja) * 2010-08-19 2012-03-01 Honda Motor Co Ltd 回転霧化塗装装置
US20130040064A1 (en) * 2011-08-12 2013-02-14 Honda Motor Co., Ltd. Coating method and coating apparatus

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3254828B2 (ja) 1993-07-12 2002-02-12 トヨタ自動車株式会社 回転霧化静電塗装方法およびその装置
JPH07256156A (ja) * 1994-03-25 1995-10-09 Toyota Motor Corp 回転霧化静電塗装装置
JPH09996A (ja) 1995-06-12 1997-01-07 Toyota Motor Corp 回転霧化静電塗装装置
JPH0994488A (ja) 1995-07-27 1997-04-08 Mazda Motor Corp ベル型塗装装置
JP3307266B2 (ja) 1996-04-15 2002-07-24 トヨタ自動車株式会社 噴霧パターン可変回転霧化塗装装置
JP3433080B2 (ja) 1996-12-03 2003-08-04 Abb株式会社 回転霧化頭型塗装装置
US5954275A (en) * 1997-04-02 1999-09-21 Toyota Jidosha Kabushiki Kaisha Rotary atomizing electrostatic coating apparatus
JP4535552B2 (ja) 2000-02-29 2010-09-01 トヨタ自動車株式会社 多液混合塗装装置
DE10202712A1 (de) 2002-01-24 2003-07-31 Duerr Systems Gmbh Verfahren zum Steuern der Sprühstrahlbreite eines Zerstäubers und Zerstäuber für die Serienbeschichtung von Werkstücken
US9174230B2 (en) * 2004-09-23 2015-11-03 Abb As Paint dosage device and system adapted for a program controlled spray painting apparatus
FR2890876B1 (fr) * 2005-09-19 2007-11-30 Sames Technologies Soc Par Act Installation de projection de produit de revetement multi-composant
JP2007203257A (ja) 2006-02-03 2007-08-16 Duerr Japan Kk ベル型塗装装置の噴霧パターン可変機構及び噴霧パターン可変方法
JP2008093521A (ja) 2006-10-06 2008-04-24 Ransburg Ind Kk 回転式静電塗装装置
DE102006054786A1 (de) 2006-11-21 2008-05-29 Dürr Systems GmbH Betriebsverfahren für einen Zerstäuber und entsprechende Beschichtungseinrichtung
DE102006057596A1 (de) 2006-12-06 2008-06-19 Dürr Systems GmbH Lenkluftring mit einer Ringmulde und entsprechender Glockenteller
DE102007006547B4 (de) 2007-02-09 2016-09-29 Dürr Systems GmbH Lenkluftring und entsprechendes Beschichtungsverfahren
JP5490369B2 (ja) 2008-03-12 2014-05-14 ランズバーグ・インダストリー株式会社 回転式静電塗装装置及び塗装パターン制御方法
DE102008027997A1 (de) 2008-06-12 2009-12-24 Dürr Systems GmbH Universalzerstäuber
FR2936434B1 (fr) 2008-09-30 2014-07-25 Sames Technologies Projecteur rotatif et procede de projection de produit de revetement mettant en oeuvre un tel projecteur rotatif
RU109997U1 (ru) 2011-04-18 2011-11-10 Государственное образовательное учреждение высшего профессионального образования Балтийский государственный технический университет "ВОЕНМЕХ" им. Д.Ф. Устинова (БГТУ "ВОЕНМЕХ") Распылитель жидкости
CN110756345A (zh) 2013-06-07 2020-02-07 涂层国外知识产权有限公司 喷枪及喷涂方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200863A (ja) * 1987-02-18 1988-08-19 Asahi Okuma Ind Co Ltd 回転電極式静電塗装ガンの霧化塗料流放出角度調節方法
JP3473718B2 (ja) * 1994-07-22 2003-12-08 日産自動車株式会社 回転霧化静電塗装方法および装置
FR2868342A1 (fr) * 2004-04-02 2005-10-07 Sames Technologies Soc Par Act Bol de pulverisation, projecteur rotatif incorporant un tel bol et installation de projection incorporant un tel projecteur
FR2917309A1 (fr) * 2007-06-13 2008-12-19 Sames Technologies Soc Par Act Projecteur rotatif de produit de revetement et installation comprenant un tel projecteur.
WO2011125855A1 (fr) * 2010-04-01 2011-10-13 本田技研工業株式会社 Dispositif de revêtement électrostatique et procédé de revêtement électrostatique
JP2012040498A (ja) * 2010-08-19 2012-03-01 Honda Motor Co Ltd 回転霧化塗装装置
US20130040064A1 (en) * 2011-08-12 2013-02-14 Honda Motor Co., Ltd. Coating method and coating apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3593905A4 (fr) * 2017-06-01 2020-12-23 ABB Schweiz AG Machine de revêtement de type à tête d'atomisation rotative
US11213838B2 (en) 2017-06-01 2022-01-04 Abb Schweiz Ag Rotary atomizing head type coating machine

Also Published As

Publication number Publication date
RU2737459C2 (ru) 2020-11-30
CN107597463A (zh) 2018-01-19
CN107597463B (zh) 2021-01-05
KR20180006865A (ko) 2018-01-19
FR3053608A1 (fr) 2018-01-12
RU2017124331A3 (fr) 2020-06-18
ES2824468T5 (es) 2023-12-13
FR3053608B1 (fr) 2021-04-23
BR102017014845A2 (pt) 2018-01-23
EP3269454B1 (fr) 2020-09-09
ES2824468T3 (es) 2021-05-12
US10919065B2 (en) 2021-02-16
JP2018008267A (ja) 2018-01-18
US20180008997A1 (en) 2018-01-11
PL3269454T3 (pl) 2021-02-08
JP6962728B2 (ja) 2021-11-05
KR102447336B1 (ko) 2022-09-26
RU2017124331A (ru) 2019-01-10
EP3269454B2 (fr) 2023-07-19

Similar Documents

Publication Publication Date Title
EP3269454B2 (fr) Jupe comprenant au moins trois séries de buses d'éjection d'air distinctes, projecteur rotatif de produit de revêtement avec une telle jupe et son procédé d'utilisation
EP2429716B1 (fr) Projecteur et organe de pulverisation de produit de revetement et procede de projection mettant en oeuvre un tel projecteur
EP1207964B1 (fr) Procede et station de changement de produit dans une installation de projection de produit de revetement
EP3335801A1 (fr) Tête d'application d'un produit de revêtement sur une surface à revêtir et système d'application comprenant cette tête d'application
EP3725419B1 (fr) Applicateur de produit de revêtement, installation d'application comprenant un tel applicateur et procédé d'application au moyen d'un tel applicateur
FR2576225A1 (fr) Pulverisateur actionne manuellement, avec reglage de la configuration du liquide projete
EP2164644B1 (fr) Projecteur rotatif de produit de revetement et installation comprenant un tel projecteur
EP2361157B1 (fr) Projecteur de produit de revetement
WO1999007569A1 (fr) Dispositif d'aeration pour un vehicule automobile
EP3479906A1 (fr) Buse de pulvérisation avec rétrécissement de pré-atomisation, et tête de pulvérisation et dispositif de pulvérisation comprenant une telle buse
EP2441523B1 (fr) Dispositif de projection d'un fluide de traitement, et système de pulvérisation d'un fluide de traitement comprenant au moins un tel dispositif
EP1883478B1 (fr) Buse a chambre tourbillonnaire
EP2142307B1 (fr) Organe de pulverisation, dispositif de projection comportant un tel organe et installation de projection comprenant un tel dispositif
EP3820623A1 (fr) Turbine pour dispositif de projection de fluide, dispositif de projection de fluide, ainsi qu'ensemble comprenant un tel dispositif et un outil
EP3820627A1 (fr) Turbine, dispositif de projection de fluide, installation et procédé de fabrication associés
WO2018211023A1 (fr) Dispositif d'ejection pneumatique et machine de tri comportant un tel dispositif
WO2018109307A1 (fr) Applicateur de peinture comprenant plusieurs coupelles
EP3554715A1 (fr) Applicateur de peinture comprenant des airs de jupes réglables
JPS62114672A (ja) 塗装用スプレイノズル装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180703

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190719

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B05B 3/10 20060101AFI20200311BHEP

Ipc: B05B 13/04 20060101ALN20200311BHEP

INTG Intention to grant announced

Effective date: 20200409

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1310897

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017023146

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201210

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1310897

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200909

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210111

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2824468

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210109

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602017023146

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

26 Opposition filed

Opponent name: DUERR SYSTEMS AG

Effective date: 20210608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210710

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170710

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200923

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

27A Patent maintained in amended form

Effective date: 20230719

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 602017023146

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230710

Year of fee payment: 7

Ref country code: GB

Payment date: 20230725

Year of fee payment: 7

Ref country code: ES

Payment date: 20230807

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230727

Year of fee payment: 7

Ref country code: DE

Payment date: 20230712

Year of fee payment: 7

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Ref document number: 2824468

Country of ref document: ES

Kind code of ref document: T5

Effective date: 20231213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240628

Year of fee payment: 8