EP3248062A1 - Procédé de réduction des défauts dans un film ordonné de copolymère a blocs - Google Patents

Procédé de réduction des défauts dans un film ordonné de copolymère a blocs

Info

Publication number
EP3248062A1
EP3248062A1 EP16703349.7A EP16703349A EP3248062A1 EP 3248062 A1 EP3248062 A1 EP 3248062A1 EP 16703349 A EP16703349 A EP 16703349A EP 3248062 A1 EP3248062 A1 EP 3248062A1
Authority
EP
European Patent Office
Prior art keywords
todt
block copolymer
block
mixture
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16703349.7A
Other languages
German (de)
English (en)
Inventor
Xavier CHEVALIER
Raber INOUBLI
Christophe Navarro
Celia NICOLET
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of EP3248062A1 publication Critical patent/EP3248062A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/72Repair or correction of mask defects
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C08G81/021Block or graft polymers containing only sequences of polymers of C08C or C08F
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping

Definitions

  • the present invention relates to a method of reducing the number of defects in an ordered film comprising a block copolymer (BCP).
  • BCP block copolymer
  • the invention also relates to the compositions used to obtain these ordered films and the ordered films thus obtained which can be used in particular as masks in the field of lithography.
  • the method which is the subject of the invention is particularly useful when it is a question of obtaining large-area ordered films having a reduction in the number of defects compared to what is observed when only one block copolymer is used at a given period. equivalent.
  • the preferred form of nanostructuring is of the hexagonal cylindrical type.
  • the method for self-assembly of block copolymers on a treated surface according to the invention is governed by thermodynamic laws.
  • each cylinder is surrounded by 6 equidistant neighboring cylinders if there is no defect.
  • Several types of defects can thus be identified. The first type is based on the evaluation of the number of neighbors around a cylinder constituted by the arrangement of the block copolymer, also called coordination defects. If five or seven cylinders surround the cylinder considered, it will be considered that there is a lack of coordination.
  • the second type of defect considers the average distance between the cylinders surrounding the cylinder considered. [W.Li, F.Qiu, Y.Yang, and A.C.Shi,
  • the method of the invention makes it possible to obtain nanostructured assemblies in the form of ordered films with a reduction in the number of orientation defects, of coordination or of distances on large monocrystalline surfaces.
  • US Pat. No. 5,513,356 discloses a composition comprising at least one ordered polystyrene-poly (methyl methacrylate) diblock having a PS volume fraction of between 0.65 and 0.87, satisfying an arrangement equation at 225 ° C. and a polystyrene diblock.
  • the compositions show an improvement in the degree of perpendicularity of the rolls. There is no mention of the possibility of reducing, for example, coordination or distance defects.
  • Mixtures comprising at least one BCP are a solution to this problem, and it is shown in the present invention that in the case where it is sought to reduce the number of defects for PCOs having ordered morphologies, the mixtures comprising at least one BCP having an order-disorder temperature (TODT) associated with at least one compound having no TODT are a solution, when the order-disorder transition temperature (TODT) of the mixture is lower than the TODT of the BCP alone. In the case of these mixtures, there is a decrease in defects on the ordered films obtained with these mixtures compared to ordered films obtained with a block copolymer alone.
  • TODT order-disorder transition temperature
  • the invention relates to a method for reducing the number of defects of an ordered film of block copolymer, said ordered film comprising a mixture of at least one block copolymer having an order - disorder transition temperature (TODT) and at least one minus a Tg with at least one compound having no TODT, this mixture having a TODT lower than the TODT of the block copolymer alone, the process comprising the following steps: -Mixing at least one block copolymer having a TODT and at least a compound having no TODT in a solvent,
  • TODT order - disorder transition temperature
  • any copolymer with blocks may be used in the context of the invention, be it diblock copolymer, linear or star triblock, linear multiblock, comb or star .
  • the order-disorder transition temperature TODT which corresponds to a phase separation of the constituent blocks of the block copolymer can be measured in different ways, such as DSC (differential scanning calorimetry, differential thermal analysis), SAXS (small angle X ray scattering, small angle X-ray scattering), static birefringence, dynamic mechanical analysis, DMA or any other method to visualize the temperature at which a phase separation occurs (corresponding to the disorder order transition). A combination of these techniques can also be used.
  • the preferred method used in the present invention is DMA.
  • n being an integer between 1 and 10 inclusive.
  • n is between 1 and 5, including terminals, and preferably n is between 1 and 2, including terminals, and even more preferably n is 1, m being an integer between 1 and 10, terminals included.
  • m is between 1 and 5, inclusive, and preferably, m is between 1 and 4, including terminals, and more preferably m is equal to 1.
  • block copolymers may be synthesized by any techniques known to those skilled in the art, among which mention may be made of polycondensation, ring-opening polymerization, anionic, cationic or radical polymerization, these techniques being controllable or not, and combined between they or not.
  • radical polymerization they may be controlled by any known technique such as NMP ("Nitroxide Mediated Polymerization"), RAFT ("Reversible Addition and Fragmentation Transfer”), ATRP (“Atom Transfer Radical Polymerization”) , INIFERTER ("Initiator-Transfer-
  • ITP Iodine Transfer Polymerization
  • the block copolymers are prepared by controlled radical polymerization, more particularly by controlled polymerization with nitroxides, in particular N-tert-butyl-1-diethylphosphono-2,2-dimethylpropyl nitroxide.
  • the block copolymers are prepared by anionic polymerization.
  • the constituent monomers of the block copolymers will be chosen from the following monomers: at least one vinyl, vinylidene, diene, olefinic, allylic or (meth) acrylic monomer.
  • This monomer is chosen more particularly from vinylaromatic monomers such as styrene or substituted styrenes, in particular alpha-methylstyrene, silylated styrenes, acrylic monomers such as acrylic acid or its salts, alkyl acrylates and cycloalkyl acrylates.
  • vinylaromatic monomers such as styrene or substituted styrenes, in particular alpha-methylstyrene, silylated styrenes, acrylic monomers such as acrylic acid or its salts, alkyl acrylates and cycloalkyl acrylates.
  • aryl such as methyl acrylate, ethyl acrylate, butyl acrylate, ethylhexyl acrylate or phenyl acrylate, hydroxyalkyl acrylates such as 2-hydroxyethyl acrylate, alkyl ether acrylates such as 2-methoxyethyl acrylate, alkoxy- or aryloxy-polyalkylene glycol acrylates such as methoxypolyethylene glycol acrylates, ethoxypolyethylene glycol acrylates, methoxypolypropylene glycol acrylates, methoxypolyethylene glycol-polypropylene glycol acrylates or mixtures thereof, acrylates of aminoalkyl such as 2- (dimethylamino) ethyl acrylate (ADAME), fluorinated acrylates, silyl acrylates, phospho acrylates such as alkylene glycol phosphate acrylates, glycidyl acrylates, dicyclopenten
  • the monomers will be chosen, without limitation, from the following monomers:
  • At least one vinyl, vinylidene, diene, olefinic, allylic or (meth) acrylic monomer are chosen more particularly from vinylaromatic monomers such as styrene or substituted styrenes, in particular alpha-methylstyrene, and acrylic monomers such as alkyl, cycloalkyl or aryl acrylates, such as methyl acrylate, dicyclohexyl acrylate and the like.
  • ether alkyl acrylates such as 2-methoxyethyl acrylate, alkoxy- or aryloxy-polyalkyleneglycol acrylates such as methoxypolyethylene glycol acrylates, ethoxypolyethylene glycol acrylates and the like.
  • methoxypolypropylene glycol acrylates methoxypolyethylene glycol-polypropylene glycol acrylates or mixtures thereof, aminoalkyl acrylates such as 2- (dimethylamino) ethyl acrylate (ADAME), fluorinated acrylates, silyl acrylates, phosphorus acrylates such as alkylene glycol phosphate acrylates, glycidyl acrylates, dicyclopentenyloxyethyl acrylates, methylene glycol alkyl, cycloalkyl, alkenyl or aryl acrylates such as methyl methacrylate (MMA), lauryl, cyclohexyl, allyl, phenyl or naphthyl, methacrylates of ether alkyl such as methacrylate 2-ethoxyethyl methacrylates, alkoxy- or aryloxy-polyalkylene glycol methacrylates such as methoxypolyethylene glycol meth
  • the block copolymers having an order-disorder transition temperature consist of block copolymer having one of the blocks comprising a styrene monomer and the other block comprising a methacrylic monomer; more preferably, the block copolymers consist of block copolymer one of which blocks comprises styrene and the other block comprises methyl methacrylate.
  • the compounds which do not have an order-disorder transition temperature will be chosen from block copolymers, as defined above, but also random copolymers, homopolymers and gradient copolymers. According to a preferred variant, the compounds are homopolymers or random copolymers and have a monomer composition identical to that of one of the block copolymer blocks having a TOD.
  • the homopolymers or random copolymers comprise styrene or methacrylic monomers.
  • random homopolymers or copolymers include styrene or methyl methacrylate.
  • the compounds that do not have an order-disorder transition temperature will also be chosen from plasticizers, among which non-limiting examples are branched or linear phthalates such as di-n-octyl, dibutyl, -2-ethylhexyl phatalate, di-ethylhexyl, diisononyl, di-isodecyl, benzylbutyl, diethyl, di-cyclohexyl, dimethyl, linear di-undecyl, di-tridecyl linear, chlorinated paraffins, trimellitates, branched or linear, in particular di-trimellitate; hexyl-ethyl, aliphatic esters or esters polymers, epoxides, adipates, citrates, benzoates.
  • plasticizers among which non-limiting examples are branched or linear phthalates such as di-n-octyl, dibutyl, -2-ethy
  • the compounds that do not have an order-disorder transition temperature will also be chosen from fillers among which may be mentioned mineral fillers such as carbon black, nanotubes, of carbon or not, fibers, ground or not, stabilizing agents. (Light, in particular UV, and heat), dyes, inorganic or organic photosensitive pigments such as porphyrins, photoinitiators, that is to say compounds capable of generating radicals under irradiation.
  • mineral fillers such as carbon black, nanotubes, of carbon or not, fibers, ground or not, stabilizing agents. (Light, in particular UV, and heat), dyes, inorganic or organic photosensitive pigments such as porphyrins, photoinitiators, that is to say compounds capable of generating radicals under irradiation.
  • Compounds that do not have an order-disorder transition temperature will also be chosen from ionic compounds, polymeric or non-polymeric.
  • a combination of the compounds mentioned may also be used in the context of the invention, such as a block copolymer having no TODT and a statistical copolymer or homopolymer having no TODT.
  • a block copolymer having a TODT, a block copolymer which does not have TODT and a charge, a homopolymer or a random copolymer, for example having no TODT may be mixed.
  • the invention therefore also relates to compositions comprising at least one block copolymer having a TODT and at least one compound, this or these compounds having no TODT.
  • the TODT of the mixture which is the subject of the invention should be less than the TODT of the block copolymer organized alone, but should be greater than the transition temperature. vitreous, measured by DSC (differential enthalpy analysis, Tg) of the block with the highest Tg.
  • composition comprising a block copolymer having an order-disorder transition temperature and at least one compound having no order-disorder transition temperature will exhibit a self-assembly at a lower temperature than that of the block-only copolymer.
  • the ordered films obtained according to the invention have a reduction in the number of defects compared to ordered films obtained with one or more block copolymers having TODTs.
  • the baking temperatures allowing the self-assembly will be between the glass transition temperature, measured by DSC (differential enthalpy analysis, Tg) of the block having the highest Tg and the TODT of the mixture, preferably between 1 and 50 ° C. below the TODT of the mixture, preferably between 10 and 30 ° C below the TODT of the mixture, and more preferably between 10 and 20 ° C below the TODT of the mixture.
  • DSC differential enthalpy analysis
  • the method of the invention allows the deposition of ordered film on a surface such as silicon, silicon having a native or thermal oxide layer, germanium, platinum, tungsten, gold, titanium nitrides, graphenes, BARC (bottom anti-reflective coating) or any other anti-reflective layer used in lithography.
  • a surface such as silicon, silicon having a native or thermal oxide layer, germanium, platinum, tungsten, gold, titanium nitrides, graphenes, BARC (bottom anti-reflective coating) or any other anti-reflective layer used in lithography.
  • BARC bottom anti-reflective coating
  • the surfaces may be said to be “free” (planar and homogeneous surface both from a topographic and chemical point of view) or to have structures for guiding the block copolymer "pattern", whether this guidance is chemical guidance type (called “chemistry-epitaxy guidance”) or physical / topographical guidance (called “graphoepitaxy guidance”).
  • a solution of the block copolymer composition is deposited on the surface and then the solvent is evaporated according to techniques known to those skilled in the art such as the so-called “spin coating” technique, “Doctor Blade” “Knife system”, “slot die System” but any other technique can be used such as a dry deposit, that is to say without going through a prior dissolution.
  • a heat treatment or solvent vapor is carried out, a combination of the two treatments, or any other treatment known to those skilled in the art, which allows the block copolymer composition to organize itself properly by nanostructuring itself, and so to establish the ordered film.
  • the cooking is carried out thermally.
  • the nanostructuration of a mixture of block copolymer having a TODT and a compound deposited on a surface treated by the process of the invention can take the forms such as cylindrical (hexagonal symmetry (symmetry of hexagonal network primitive "6mm") according to the Hermann-mauguin notation, or tetragonal / quadratic ("4mm” tetragonal lattice symmetry), spherical (hexagonal symmetry (primitive hexagonal network symmetry "6mm” or "6 / mmm”), or tetragonal / quadratic ("4mm” quadrilateral lattice symmetry), or cubic (“i3 ⁇ 4n” lattice symmetry), lamellar, or gyroid.
  • the preferred form of nanostructuring is of the hexagonal cylindrical type.
  • Example 1 T odt measurement by dynamic mechanical analysis. Two different molecular weight PS- ⁇ -PAM copolymers are synthesized by anionic polymerization, but commercially available products can also be used. The characterizations of these products are summarized in Table No. 1.
  • the AMD makes it possible to measure the conservation modulus G 'and the loss module G''of the material and to determine the damping factor tanA defined as the ratio G''/G'.
  • the measurements are made on an ARES type viscoelastic meter, on which the PLANS 25mm geometry is installed.
  • the gap setting is made at the initial temperature of 100 ° C.
  • the sample pellet is placed between the planes inside the oven heated to 100 ° C, a slight normal force is applied to ensure the sample-to-plane contact and thus avoid slip problems that could distort the measurement. torque and therefore modules.
  • the temperature sweep is performed at the frequency of 1Hz.
  • the initial strain applied to the sample is 0.1%, then it is automatically adjusted to stay above the sensor sensitivity limit of 0.2 cm. boy Wut.
  • the temperature varies from 100 to 260 ° C in the bearing mode with one measurement every two degrees and a temperature equilibrium time of 30 seconds before the measurement.
  • the lower molecular weight block copolymer After the rubber tray, the lower molecular weight block copolymer has a G 'lower than G''thus reflecting the destructuring of the copolymer, hence the order-disorder transition.
  • the T odt is thus defined as being the first intersection between G 'and G''.
  • T odt is not observed in the case of the copolymer of higher molar mass, where at any time G 'remains greater than G ". This block copolymer therefore does not present T odt below its degradation temperature.
  • Table 2 T odt of the various PS-block copolymers>
  • Example 2 Films resulting from the self-assembly of block copolymers. Silicon substrates are cleaved into pieces of
  • the substrates can be cleaned with either an oxygen plasma or a piranha solution (H 2 SO 4 / H 2 O 2 mixture in a proportion of 2: 1 by volume) for a few minutes and rinsed with distilled water.
  • a solution of PS-r-PMMA as described in WO2013083919 typically 2% by weight in PGMEA (propylene glycol ether-methyl acetate)
  • PGMEA propylene glycol ether-methyl acetate
  • the substrate is annealed at 220 ° C for 10 minutes (or any other suitable temperature / time pair) so as to perform the covalent grafting of a monolayer of molecules on the substrate; the excess of non- grafted is removed by rinsing with PGMEA.
  • the block copolymer (“BCP") PS-fc-PMMA or block copolymer mixture solution (typically 1% by weight in the PGMEA) is dispensed onto the substrate functionalized by spin coating (or another technique). ) so as to obtain a dry film of desired thickness.
  • the film is then annealed according to the chosen technique, for example a thermal annealing at 230 ° C.
  • the substrate can be immersed for a few minutes in acetic acid and then rinsed with distilled water, or the film can undergo a very mild oxygen plasma, or a combination of these two techniques, in order to to increase the contrast between the different phases of the block copolymer film in order to facilitate imaging of the nanostructures by the chosen technique (SEM, AFM ).
  • the block copolymer mixture produced is a mixture between the reference BCPs No. 2 and No. 3, at a level of 8: 2 (80% of No. 2 mixed with 20% of No. 3).
  • the mixture can be carried out indifferently either in the solid state (for example by mixing the BCPs in powder form) or in the liquid state (for example by mixing solutions of pure BCPs of the same concentrations; solutions are different, mixing will be done in order to respect the fixed ratio).
  • PCO "Reference # 1" serves as a reference system for the study. Comparisons of characteristics of realized films:
  • the imaging is performed on a scanning electron microscope "CD - SEM H9300" from Hitachi. Images are taken at a constant magnification of 100,000, to facilitate comparison between different systems; each image measures 1349nm * 1349nm.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

La présente invention concerne un procédé de réduction du nombre de défauts d'un film ordonné comprenant un copolymère à blocs (BCP). L' invention concerne également les compositions utilisées obtenir ces films ordonnés et les films ordonnés ainsi obtenus pouvant être utilisés en particulier comme masques dans le domaine de la lithographie.

Description

Procédé de réduction des défauts dans un film ordonné de copolymère à blocs
La présente invention concerne un procédé de réduction du nombre de défauts dans un film ordonné comprenant un copolymère à blocs (BCP) . L' invention concerne également les compositions utilisées obtenir ces films ordonnés et les films ordonnés ainsi obtenus pouvant être utilisés en particulier comme masques dans le domaine de la lithographie.
Le procédé objet de l'invention est particulièrement utile lorsqu'il s'agit d'obtenir des films ordonnés de grande surface présentant une réduction du nombre de défauts par rapport à ce qui est observé lorsqu'un seul copolymère à blocs est utilisé à période équivalente.
Par période, on entend la distance minimale moyenne séparant deux domaines voisins de même composition chimique, séparés par un domaine de composition chimique différente .
L'utilisation des copolymères à blocs pour générer des masques de lithographie est maintenant bien connue. Si cette technologie est prometteuse, il subsiste des difficultés pour générer des surfaces importantes de masques pouvant être exploitées industriellement. Il est en particulier recherché des procédés de fabrication de masques pour la lithographie de surfaces conséquentes avec un minimum de défaut ou du moins un niveau de défaut acceptable pour les applications lithographiques. La nanostructuration d'un copolymère à bloc d'une surface traité par le procédé de l'invention peut prendre les formes telles que cylindriques (symétrie hexagonale
(symétrie de réseau hexagonal primitif « 6mm ») selon la notation de Hermann-Mauguin, ou tétragonale/quadratique
(symétrie de réseau tétragonal primitif « 4mm ») ) , , sphérique (symétrie hexagonale (symétrie de réseau hexagonal primitif « 6mm » ou « 6/mmm ») , ou tétragonale/quadratique (symétrie de réseau tétragonal primitif « 4mm ») , ou cubique (symétrie de réseau « i¾n ») ) , lamellaires, ou gyroïde. De préférence, la forme préférée que prends la nanostructuration est du type cylindrique hexagonal.
Le procédé d'auto-assemblage des copolymères à bloc sur une surface traitée selon l'invention est gouverné par des lois thermodynamiques. Lorsque l'auto-assemblage conduit à une morphologie de type cylindrique, chaque cylindre est entouré de 6 cylindres voisins équidistants s'il n'y a pas de défaut. Plusieurs types de défauts peuvent ainsi être identifiés. Le premier type est basé sur l'évaluation du nombre de voisins autour d'un cylindre que constitue l'arrangement du copolymère à bloc, aussi appelés défauts de coordinance. Si cinq ou sept cylindres entourent le cylindre considéré, on considérera qu'il y a un défaut de coordinance. Le deuxième type de défaut considère la distance moyenne entre les cylindres entourant le cylindre considéré. [W.Li, F.Qiu, Y.Yang, and A.C.Shi,
Macromolecules 43, 2644 (2010) ; K. Aissou, T. Baron, M. Kogelschatz, and A. Pascale, Macromol. 40, 5054 (2007) ; R. A. Segalman, H. Yokoyama, and E. J. Kramer, Adv. Matter. 13, 1152 (2003); R. A. Segalman, H. Yokoyama, and E. J. Kramer, Adv. Matter. 13, 1152 (2003)]. Lorsque cette distance entre deux voisins est supérieure à deux % de la distance moyenne entre deux voisins, on considérera qu'il y a un défaut. Pour déterminer ces deux types de défauts, on utilise classiquement les constructions de Voronoï et les triangulations de Delaunay associées. Après binarisation de l'image, le centre de chaque cylindre est identifié. La triangulation de Delaunay permet ensuite d' identifier le nombre de voisins de premier ordre et de calculer la distance moyenne entre deux voisins. On peut ainsi déterminer le nombre de défauts.
Cette méthode de comptage est décrite dans l'article de Tiron et al. (J. Vac. Sci . Technol. B 29(6), 1071-1023, 2011) . Un dernier type de défaut concerne l'angle de cylindres du copolymère à bloc déposé sur la surface. Lorsque le copolymère à bloc est non plus perpendiculaire à la surface mais couché parallèlement à celle-ci on considérera qu'un défaut d'orientation apparaît.
Le procédé de l'invention permet d'obtenir des assemblages nanostructurés sous forme de films ordonnés avec une réduction du nombre de défauts d'orientations, de coordinances ou de distances sur de grandes surfaces monocristallines.
Peu de travaux font état de technologies visant à obtenir des films ordonnés de copolymères à blocs déposés sur une surface présentant une réduction importante du nombre de défauts en vue de la fabrication de masques pour les applications de lithographie. US 8513356 divulgue une composition comprenant au moins un dibloc polystyrene-j -poly (méthacrylate de méthyle) ordonné, de fraction volumique en PS comprise entre 0.65 et 0.87, satisfaisant une équation d'arrangement à 225°C et un dibloc polystyrene-j -poly (méthacrylate de méthyle) non ordonné, de fraction volumique en PS comprise entre 0.50 et 0.99 satisfaisant une équation de non arrangement à 225°C. Les compositions présentent une amélioration du degré de perpendicularité des cylindres. Il est nullement fait mention de la possibilité de réduire par exemple les défauts de coordinance ou de distance.
Shin &al. Dans J. Mater. Chem, 2010, 20, 7241 mentionnent une amélioration de l'auto-organisation de films ordonnés de BCP de grande période via un mélange de BCP constitué de BCPs du type cylindrique sans toutefois donner de mesures précises de cette amélioration, et sans tenir compte du fait que la composition du mélange n'est pas la même que celle du polymère cylindrique initial. Il est donc très difficile de décorréler l'effet de la variation de composition de l'effet de l'ajout d'un BCP non ordonné et de celui de l'effet de la variation de période sur l'amélioration de l'auto-organisation. Les BCPs purs s' organisant en films ordonnés avec peu de défauts sont très difficiles à obtenir pour des films ordonnés de grande surface. Les mélanges comprenant au moins un BCP sont une solution à ce problème, et on montre dans la présente invention que dans le cas où l'on cherche à réduire le nombre de défauts pour des BCP présentant des morphologies ordonnées, les mélanges comprenant au moins un BCP présentant une température ordre-désordre (TODT) , associé à au moins un composé ne présentant pas de TODT sont une solution, lorsque que la température de transition ordre-désordre (TODT) du mélange est inférieure à la TODT du BCP seul. Dans le cas de ces mélanges, on note une diminution des défauts sur les films ordonnés obtenus à l'aide de ces mélanges par rapport aux films ordonnés obtenus avec un copolymère à blocs seul.
Résumé de l'invention :
L' invention concerne un procédé de réduction du nombre de défauts d'un film ordonné de copolymère à blocs, le dit film ordonné comprenant un mélange d'au moins un copolymère à blocs présentant une température de transition ordre- désordre (TODT) et au moins une Tg avec au moins un composé ne présentant pas de TODT, ce mélange présentant une TODT inférieure à la TODT du copolymère à blocs seul, le procédé comprenant les étapes suivantes : -Mélanger au moins un copolymère à blocs présentant une TODT et au moins un composé ne présentant pas de TODT dans un solvant,
-Déposer ce mélange sur une surface,
-Cuire le mélange déposé sur la surface à une température comprise entre la Tg la plus haute du copolymère à blocs et la TODT du mélange. Description détaillée :
S' agissant du ou des copolymères à blocs présentant une température de transition ordre-désordre, tout copolymère à blocs, quelle que soit sa morphologie associée, pourra être utilisé dans le cadre de l'invention, qu'il s'agisse de copolymère di-blocs, tri-blocs linéaire ou en étoile, multi-blocs linéaires, en peigne ou en étoile. De préférence, il s'agit de copolymères di-blocs ou tri-blocs, et de façon encore préférée de copolymères di-blocs.
La température de transition ordre-désordre TODT, qui correspond à une séparation de phase des blocs constitutifs du copolymère à blocs peut être mesurée de différente manière, telle que la DSC (differential scanning calorimetry, analyse thermique différentielle) , la SAXS (small angle X ray scattering, diffusion des rayons X aux petits angles), la biréfringence statique, l'analyse mécanique dynamique, DMA ou tout autre méthode permettant de visualiser la température à laquelle une séparation de phase apparaît (correspondant à la transition ordre désordre) . Une combinaison de ces techniques peut également être utilisée.
On peut citer de façon non limitative les références suivantes faisant état de la mesure de la TODT :
-N.P. Balsara et al, Macromolecules 1992, 25, 3896-3901 -N.Sakamoto et al, Macromolecules 1997, 30, 5321-5330 et Macromolecule 1997, 30, 1621-1632
-J.K.kim et al, Macromolecules 1998, 31, 4045-4048
La méthode préférée utilisée dans la présente invention est la DMA.
On pourra dans le cadre de l'invention mélanger n copolymères à blocs à m composés, n étant un nombre entier compris entre 1 et 10, bornes comprises. De façon préférée, n est compris entre 1 et 5, bornes comprises, et de façon préférée, n est compris entre 1 et 2, bornes comprises, et de façon encore préférée n est égal à 1, m étant un nombre entier compris entre 1 et 10, bornes comprises. De façon préférée, m est compris entre 1 et 5, bornes comprises, et de façon préférée, m est compris entre 1 et 4, bornes comprises, et de façon encore préférée m est égal à 1.
Ces copolymères à blocs pourront être synthétisés par toutes techniques connue de l'homme du métier parmi lesquelles on peut citer la polycondensation, la polymérisation par ouverture de cycle, la polymérisation anionique, cationique ou radicalaire ces techniques pouvant être contrôlées ou non, et combinées entre elles ou non. Lorsque les copolymères sont préparés par polymérisation radicalaire, celles-ci pourront être contrôlées par toute technique connue telle que NMP ("Nitroxide Mediated Polymerization") , RAFT ("Réversible Addition and Fragmentation Transfer") , ATRP ("Atom Transfer Radical Polymerization") , INIFERTER ("Initiator-Transfer-
Termination") , RITP (" Reverse Iodine Transfer
Polymerization") , ITP ("Iodine Transfer Polymerization) .
Selon une forme préférée de l'invention, les copolymères à blocs sont préparés par polymérisation radicalaire contrôlée, encore plus particulièrement par polymérisation contrôlée par les nitroxydes, en particulier le nitroxyde de N-tertiobutyl-l-diéthylphosphono-2 , 2-diméthyl-propyle . Selon une seconde forme préférée de l'invention, les copolymères à blocs sont préparés par polymérisation anionique . Lorsque la polymérisation est conduite de façon radicalaire, les monomères constitutifs des copolymères à blocs seront choisis parmi les monomères suivants : au moins un monomère vinylique, vinylidénique, diénique, oléfinique, allylique ou (méth) acrylique . Ce monomère est choisi plus particulièrement parmi les monomères vinylaromatiques tels que le styrène ou les styrènes substitués notamment l' alpha-méthylstyrène, les styrènes silylés, les monomères acryliques tels que l'acide acrylique ou ses sels, les acrylates d'alkyle, de cycloalkyle ou d' aryle tels que l'acrylate de méthyle, d'éthyle, de butyle, d' éthylhexyle ou de phényle, les acrylates d' hydroxyalkyle tels que l'acrylate de 2- hydroxyéthyle, les acrylates d' étheralkyle tels que l'acrylate de 2-méthoxyéthyle, les acrylates d' alcoxy- ou aryloxy-polyalkylèneglycol tels que les acrylates de méthoxypolyéthylèneglycol , les acrylates d' éthoxypolyéthylèneglycol , les acrylates de méthoxypolypropylèneglycol , les acrylates de méthoxy- polyéthylèneglycol-polypropylèneglycol ou leurs mélanges, les acrylates d' aminoalkyle tels que l'acrylate de 2- (diméthylamino) éthyle (ADAME) , les acrylates fluorés, les acrylates silylés, les acrylates phosphorés tels que les acrylates de phosphate d' alkylèneglycol , les acrylates de glycidyle, de dicyclopentenyloxyethyle, les monomères méthacryliques comme l'acide méthacrylique ou ses sels, les méthacrylates d'alkyle, de cycloalkyle, d' alcényle ou d' aryle tels que le méthacrylate de méthyle (MAM) , de lauryle, de cyclohexyle, d'allyle, de phényle ou de naphtyle, les méthacrylates d' hydroxyalkyle tels que le méthacrylate de 2-hydroxyéthyle ou le méthacrylate de 2- hydroxypropyle, les méthacrylates d' étheralkyle tels que le méthacrylate de 2-éthoxyéthyle, les méthacrylates d' alcoxy- ou aryloxy-polyalkylèneglycol tels que les méthacrylates de méthoxypolyéthylèneglycol , les méthacrylates d' éthoxypolyéthylèneglycol , les méthacrylates de méthoxypolypropylèneglycol , les méthacrylates de méthoxy- polyéthylèneglycol-polypropylèneglycol ou leurs mélanges, les méthacrylates d' aminoalkyle tels que le méthacrylate de 2- (diméthylamino) éthyle (MADAME), les méthacrylates fluorés tels que le méthacrylate de 2 , 2 , 2-trifluoroéthyle, les méthacrylates silylés tels que le 3- méthacryloylpropyltriméthylsilane, les méthacrylates phosphorés tels que les méthacrylates de phosphate d' alkylèneglycol , le méthacrylate d'hydroxy- éthylimidazolidone, le méthacrylate d'hydroxy- éthylimidazolidinone, le méthacrylate de 2- (2-oxo-l- imidazolidinyl) éthyle, 1 ' acrylonitrile, l'acrylamide ou les acrylamides substitués, la 4-acryloylmorpholine, le N- méthylolacrylamide, le méthacrylamide ou les méthacrylamides substitués, le N-méthylolméthacrylamide, le chlorure de méthacrylamido-propyltriméthyle ammonium (MAPTAC) , les méthacrylates de glycidyle, de dicyclopentenyloxyethyle, l'acide itaconique, l'acide maléique ou ses sels, l'anhydride maléique, les maléates ou hémimaléates d'alkyle ou d'alcoxy- ou aryloxy- polyalkylèneglycol, la vinylpyridine, la vinylpyrrolidinone, les (alcoxy) poly (alkylène glycol) vinyl éther ou divinyl éther, tels que le méthoxy poly (éthylène glycol) vinyl éther, le poly (éthylène glycol) divinyl éther, les monomères oléfiniques, parmi lesquels on peut citer l'éthylène, le butène, l'hexène et le 1-octène, les monomères dièniques dont le butadiène, l'isoprène ainsi que les monomères oléfiniques fluorés, et les monomères vinylidénique, parmi lesquels on peut citer le fluorure de vinylidène, seuls ou en mélange d'au moins deux monomères précités .
Lorsque la polymérisation est conduite par voie anionique les monomères seront choisis, de façon non limitative parmi les monomères suivants :
Au moins un monomère vinylique, vinylidénique, diénique, oléfinique, allylique ou (méth) acrylique . Ces monomères sont choisis plus particulièrement parmi les monomères vinylaromatiques tels que le styrène ou les styrènes substitués notamment l' alpha-méthylstyrène, les monomères acryliques tels les acrylates d'alkyle, de cycloalkyle ou d' aryle tels que l'acrylate de méthyle, d'éthyle, de butyle, d' éthylhexyle ou de phényle, les acrylates d' étheralkyle tels que l'acrylate de 2-méthoxyéthyle, les acrylates d' alcoxy- ou aryloxy-polyalkylèneglycol tels que les acrylates de méthoxypolyéthylèneglycol , les acrylates d' éthoxypolyéthylèneglycol , les acrylates de méthoxypolypropylèneglycol , les acrylates de méthoxy- polyéthylèneglycol-polypropylèneglycol ou leurs mélanges, les acrylates d' aminoalkyle tels que l'acrylate de 2- (diméthylamino) éthyle (ADAME) , les acrylates fluorés, les acrylates silylés, les acrylates phosphorés tels que les acrylates de phosphate d' alkylèneglycol , les acrylates de glycidyle, de dicyclopentenyloxyethyle, les méthacrylates d'alkyle, de cycloalkyle, d' alcényle ou d' aryle tels que le méthacrylate de méthyle (MAM) , de lauryle, de cyclohexyle, d'allyle, de phényle ou de naphtyle, les méthacrylates d' étheralkyle tels que le méthacrylate de 2-éthoxyéthyle, les méthacrylates d' alcoxy- ou aryloxy-polyalkylèneglycol tels que les méthacrylates de méthoxypolyéthylèneglycol, les méthacrylates d' éthoxypolyéthylèneglycol , les méthacrylates de méthoxypolypropylèneglycol, les méthacrylates de méthoxy-polyéthylèneglycol- polypropylèneglycol ou leurs mélanges, les méthacrylates d' aminoalkyle tels que le méthacrylate de 2- (diméthylamino) éthyle (MADAME), les méthacrylates fluorés tels que le méthacrylate de 2 , 2 , 2-trifluoroéthyle, les méthacrylates silylés tels que le 3- méthacryloylpropyltriméthylsilane, les méthacrylates phosphorés tels que les méthacrylates de phosphate d' alkylèneglycol , le méthacrylate d'hydroxy- éthylimidazolidone, le méthacrylate d'hydroxy- éthylimidazolidinone, le méthacrylate de 2- (2-oxo-l- imidazolidinyl) éthyle, 1 ' acrylonitrile, l'acrylamide ou les acrylamides substitués, la 4-acryloylmorpholine, le N- méthylolacrylamide, le méthacrylamide ou les méthacrylamides substitués, le N-méthylolméthacrylamide, le chlorure de méthacrylamido-propyltriméthyle ammonium (MAPTAC) , les méthacrylates de glycidyle, de dicyclopentenyloxyethyle, l'anhydride maléique, les maléates ou hémimaléates d'alkyle ou d' alcoxy- ou aryloxy- polyalkylèneglycol , la vinylpyridine, la vinylpyrrolidinone, les (alcoxy) poly (alkylène glycol) vinyl éther ou divinyl éther, tels que le méthoxy poly (éthylène glycol) vinyl éther, le poly (éthylène glycol) divinyl éther, les monomères oléfiniques, parmi lesquels on peut citer l' éthylène, le butène, l'hexène et le 1-octène, les monomères dièniques dont le butadiène, l'isoprène ainsi que les monomères oléfiniques fluorés, et les monomères vinylidénique, parmi lesquels on peut citer le fluorure de vinylidène, seuls ou en mélange d'au moins deux monomères précités.
De préférence les copolymères à blocs présentant une température de transition ordre-désordre sont constitués de copolymère à blocs dont un des blocs comprend un monomère styrènique et l'autre bloc comprend un monomère méthacrylique ; de façon encore préférée, les copolymères à blocs sont constitués de copolymère à blocs dont un des blocs comprend du styrène et l'autre bloc comprend du méthacrylate de méthyle.
Les composés ne présentant pas de température de transition ordre-désordre seront choisis parmi les copolymères à blocs, tels que définis ci-dessus mais également les copolymères statistiques, les homopolymères , les copolymères à gradients. Selon une variante préférée, les composés sont des homopolymères ou des copolymères statistiques et présentent une composition en monomère identique à celle de l'un des blocs du copolymère à blocs présentant une TOD .
Selon une forme encore préférée, les homopolymères ou copolymères statistiques comprennent des monomères styrèniques ou méthacryliques . Selon encore une forme préférée, les homopolymères ou copolymères statistiques comprennent du styrène ou du méthacrylate de méthyle.
Les composés ne présentant pas de température de transition ordre-désordre seront également choisis les plastifiants, parmi lesquels on peut citer de façon non limitative les phtalates branchés ou linéaires tels que les phatalate de di-n-octyle, dibutyle, -2-éthylhexyle, di-ethyl-hexyle, di- isononyle, di-isodécyle, benzylbutyle, diéthyle, di- cyclohexyle, diméthyle, di-undecyl linéaire, di tridecyl linéaire, les paraffines chlorées, les trimellitates , branchés ou linéaires , en particulier le trimellitate de di-ethyl hexyle, les esters aliphatiques ou les esters polymériques , les époxydes, les adipates, les citrates, les benzoates .
Les composés ne présentant pas de température de transition ordre-désordre seront également choisis parmi les charges parmi lesquelles on peut citer charges minérales telles que le noir de carbone, des nanotubes, de carbone ou non, des fibres, broyées ou non, des agents stabilisants (lumière, en particulier UV, et chaleur) , colorants, pigments minéraux ou organiques photosensibles comme par exemple les porphyrines, les photo-amorceurs , c'est-à-dire des composés susceptibles de générer des radicaux sous irradiation.
Les composés ne présentant pas de température de transition ordre-désordre seront également choisis parmi les composés ioniques, polymères ou non.
Une combinaison des composés cités pourra également être utilisée dans le cadre de l'invention, telle qu'un copolymère à blocs ne présentant pas de TODT et un copolymère statistique ou homopolymère ne présentant pas de TODT. On pourra par exemple mélanger un copolymère à blocs présentant une TODT, un copolymère à blocs ne présentant pas de TODT et une charge, un homopolymère ou un copolymère statistique par exemple ne présentant pas de TODT. L' invention concerne donc également les compositions comprenant au moins un copolymère à blocs présentant une TODT et au moins un composé, ce ou ces composés ne présentant pas de TODT. La TODT du mélange objet de l'invention devra être inférieure à la TODT du copolymère à blocs organisé seul, mais devra être supérieure à la température de transition vitreuse, mesurée par DSC (analyse enthalpique différentielle, Tg) du bloc présentant la plus haute Tg.
En termes de comportement morphologique du mélange lors de l'auto-assemblage, cela signifie que la composition comprenant un copolymère à blocs présentant une température de transition ordre-désordre et au moins un composé ne présentant pas de température de transition ordre-désordre présentera un auto-assemblage à plus basse température que celle du copolymère à bloc seul.
Les films ordonnés obtenus conformément à l'invention présentent une réduction du nombre de défaut par rapport à des films ordonnés obtenus avec un ou des copolymères à blocs présentant des TODT.
Les températures de cuisson permettant l'auto-assemblage seront comprises entre la température de transition vitreuse, mesurée par DSC (analyse enthalpique différentielle, Tg) du bloc présentant la plus haute Tg et la TODT du mélange, de préférence entre 1 et 50°C en dessous de la TODT du mélange, de façon préférée entre 10 et 30°C en dessous la TODT du mélange, et de façon encore préférée entre 10 et 20°C en dessous la TODT du mélange.
Le procédé de l'invention autorise le dépôt de film ordonné sur une surface telle que le silicium, le silicium présentant une couche d'oxyde natif ou thermique, le germanium, le platine, le tungstène, l'or, les nitrures de titane, les graphènes, le BARC (bottom anti reflecting coating) ou toute autre couche anti-réflective utilisée en lithographie. Parfois il peut être nécessaire de préparer la surface. Parmi les possibilités connues, on dépose sur la surface un copolymère statistique dont les monomères peuvent être identiques en tout ou partie à ceux utilisés dans la composition de copolymère à blocs et/ou du composé que l'on veut déposer. Dans un article pionnier Mansky et al. (Science, vol 275 pages 1458-1460, 1997) décrit bien cette technologie, maintenant bien connue de l'homme du métier .
Selon une variante de l'invention, Les surfaces peuvent être dites « libres » (surface plane et homogène tant d'un point de vue topographique que chimique) ou présenter des structures de guidage du copolymère à bloc « pattern », que ce guidage soit du type guidage chimique (appelé « guidage par chimie-épitaxie ») ou guidage physique/topographique (appelé « guidage par graphoépitaxie ».
Pour fabriquer le film ordonné, une solution de la composition de copolymère à blocs est déposée sur la surface puis le solvant est évaporé selon des techniques connues de l'homme de métier comme par exemple la technique dite « spin coating », « docteur Blade » « knife System », « slot die System » mais tout autre technique peut être utilisée telle qu'un dépôt à sec, c'est-à-dire sans passer par une dissolution préalable.
On effectue par la suite un traitement thermique ou par vapeur de solvant, une combinaison des deux traitements, ou tout autre traitement connu de l'homme du métier, qui permet à la composition de copolymère à blocs de s'organiser correctement en se nanostructurant , et ainsi d'établir le film ordonné. Dans le cadre préféré de l'invention, la cuisson s'effectue de façon thermique. La nanostructuration d'un mélange de copolymère à blocs présentant une TODT et d'un composé déposé sur une surface traitée par le procédé de l'invention peut prendre les formes telles que cylindriques (symétrie hexagonale (symétrie de réseau hexagonal primitif « 6mm ») selon la notation de Hermann-mauguin, ou tétragonale/quadratique (symétrie de réseau tétragonal primitif « 4mm ») ) , , sphérique (symétrie hexagonale (symétrie de réseau hexagonal primitif « 6mm » ou « 6/mmm ») , ou tétragonale/quadratique (symétrie de réseau tétragonal primitif « 4mm ») , ou cubique (symétrie de réseau « i¾n ») ) , lamellaires, ou gyroïde. De préférence, la forme préférée que prend la nanostructuration est du type cylindrique hexagonal.
Exemple 1 : mesure de Todt par analyse mécanique dynamique. Deux copolymères à blocs PS-j -PMMA de masse molaire différente sont synthétisés par polymérisation anionique, mais des produits commerciaux disponibles peuvent aussi être utilisés . Les caractérisations de ces produits sont résumées dans le Tableau n°l.
Tableau n°l : Caractérisations des copolymères PS-j -PMMA
Ces polymères sont analysés dans les mêmes conditions par analyse mécanique dynamique (AMD) . L'AMD permet de mesurer le module de conservation G' et le module de perte G' ' du matériau et de déterminer le facteur d'amortissement tanA défini comme le rapport G' '/G'. Les mesures sont réalisées sur un viscoélasticimètre type ARES, sur lequel est installée la géométrie PLANS 25mm. Le réglage entrefer est réalisé à la température initiale de 100°C. La pastille d'échantillon est placée entre les plans à l'intérieur du four chauffé à 100°C, on applique une légère force normale afin de s'assurer du contact échantillon - plans et éviter ainsi les problèmes de glissement qui pourraient fausser la mesure du couple et donc des modules. Le balayage en température est réalisé à la fréquence de 1Hz . La déformation initiale appliquée à l'échantillon est de 0.1%, elle est ensuite automatiquement ajustée afin de rester au-dessus de la limite de sensibilité du capteur qui est de 0.2 cm. g.
La température varie de 100 à 260°C en mode palier avec une mesure tous les deux degrés et un temps d'équilibre en température de 30 secondes avant la mesure.
Dans le cas des deux copolymères, certaines transitions sont bien observées : après passage de la transition vitreuse (Tg) caractérisée par l'atteinte d'un premier maximum pour tanA, le polymère atteint le plateau caoutchoutique où G' est supérieur à G' ' . Dans le cas d'un copolymère à blocs présentant un assemblage, le copolymère à blocs est structuré sur le plateau caoutchoutique.
Après le plateau caoutchoutique, le copolymère à blocs de plus petite masse molaire présente un G' inférieur à G' ' traduisant ainsi de la déstructuration du copolymère, donc de la transition ordre-désordre. La Todt est donc définie comme étant la première intersection entre G' et G' ' .
La Todt n'est pas observée dans le cas du copolymère de masse molaire plus élevée, où à tout moment G' reste supérieur à G' ' . Ce copolymère à blocs ne présente donc pas de Todt inférieure à sa température de dégradation. Les résultats de l'analyse AMD sont résumés dans le Tableau n°2 et les graphiques associés sont dans la Figure n°l. Tableau n°2 : Todt des différents copolymères à blocs PS-£>-
PMMA
En figure 1 on trouvera l'évolution des modules G' et G'' en fonction de la température pour les différents copolymères à blocs PS-fc-PMMA.
Exemple 2 : films résultants de 1 ' autoassemblage des copolymères à blocs. Les substrats de silicium sont clivés en pièces de
2.5x2.5cm, puis les particules résiduelles sont éliminées sous un flux d'azote. Optionnellement , les substrats peuvent être nettoyés soit avec un plasma d'oxygène, soit via une solution piranha (mélange H2SO4 / H2O2 en proportion de 2 : 1 en volume) durant quelques minutes et rincés à l'eau distillée. Une solution de PS-r-PMMA comme décrit dans WO2013083919 (typiquement à 2% massique dans le PGMEA (acétate d' éthermonométhylique de propylène glycol) ) de composition S/MMA appropriée est alors déposée sur le substrat propre par spin coating (ou tout autre technique appropriée connue de l'homme du métier pour réaliser ce dépôt) de façon à obtenir un film de ~70nm d'épaisseur. Puis le substrat est recuit durant 220°C durant 10 minutes (ou tout autre couple approprié température/temps) de façon à réaliser le greffage covalent d'une monocouche de molécules sur le substrat ; l'excès de molécules non- greffées est éliminé par un rinçage avec du PGMEA. Par la suite, la solution de copolymère à bloc (« BCP ») PS-fc-PMMA ou de mélange de copolymère à bloc (typiquement 1% massique dans le PGMEA) est dispensée sur le substrat fonctionnalisé par spin coating (ou une autre technique) de façon à obtenir un film sec d'épaisseur souhaitée. Le film est alors recuit selon la technique choisie, par exemple un recuit thermique à 230 °C durant 5 minutes, afin de procéder à l'auto-organisation du copolymère à bloc. Enfin, optionnellement le substrat peut être immergé durant quelques minutes dans l'acide acétique puis rincé à l'eau distillée, ou bien le film peut subir un plasma d'oxygène très doux, ou encore une combinaison de ces deux techniques, afin d'augmenter le contraste entre les différentes phase du film de copolymère à bloc pour faciliter d' imagerie des nano-structures par la technique choisie (MEB, AFM...) .
Trois copolymères à blocs synthétisés par polymérisation anionique ou disponibles commercialement sont utilisés. Leurs caractéristiques sont données au tableau 3 :
a) Déterminée par SEC (chromatographie d'exclusion de taille)
b) Déterminée par RMN 1E
c) Déterminée par DMA (analyse dynamique mécanique) , non détectable pour les copolymères 3 et 4.
Pour la suite, le mélange de copolymère à bloc réalisé est un mélange entre les BCP de référence n°2 et n°3 , à hauteur de 8:2 (80% de n°2 mélangé avec 20% de n°3) . On note que le mélange peut être réalisé indifféremment soit à l'état solide (par exemple en mélangeant les BCPs sous forme de poudre), soit à l'état liquide (par exemple en mélangeant des solutions des BCPs pur de mêmes concentrations ; si les concentrations des solutions sont différentes, le mélange sera effectué de façon à respecter le ratio fixé) . Le BCP « référence n°l » sert de système de référence pour l'étude. Comparaisons des caractéristiques des films réalisés :
L' imagerie est réalisée sur un microscope électronique à balayage « CD-SEM H9300 » de chez Hitachi. Les images sont prises à un grossissement constant de 100 000, afin de faciliter la comparaison entre les différents systèmes ; chaque image mesure 1349nm*1349nm.
En figure 2, on peut constater que les résultats obtenus avec les mélanges de copolymères à blocs sont bien meilleurs (moins de défaut pour des épaisseurs allant jusqu' à 45 nm) .
Pour l'étude comparative, on a réalisé des films d'épaisseurs équivalentes variables pour chaque système. La comparaison est réalisée pour chaque épaisseur identique. Le traitement des images ainsi obtenues est réalisé avec les logiciels appropriés et bien décrits, de façon à extraire pour chaque système et les épaisseurs de film correspondantes les valeurs des périodes et le nombre de défauts de coordinance (un défaut de coordinance est décrit comme étant un cylindre orienté perpendiculairement par rapport au substrat et présentant 5 ou 7 voisins au lieu de 6) . Un exemple de traitement des images obtenues est représenté en figure3 à titre indicatif. Les images représentées sont celles obtenues pour chaque système (BCP pur et le mélange réalisé) pour les films de 35nm d'épaisseur.
Pour les différentes épaisseurs de films de chaque système, les résultats des mesures de défectivité sont regroupés dans le tableau suivant :
On constate que les films obtenus avec un mélange copolymères à blocs présentent le moins de défaut.

Claims

Revendications
Procédé de réduction du nombre de défauts d'un film ordonné de copolymère à blocs, le dit film ordonné comprenant un mélange d'au moins un copolymère à blocs présentant une température de transition ordre-désordre (TODT) et au moins une Tg avec au moins un composé ne présentant pas de TODT, le ou les dit composés étant choisi parmi les copolymères à blocs, les stabilisants lumière ou chaleur, les photo-amorceurs les composés ioniques de type polymère ou non, les homopolymères ou les copolymères statistiques, ce mélange présentant une TODT inférieure à la TODT du copolymère à blocs seul, le procédé comprenant les étapes suivantes :
-Mélanger au moins un copolymère à blocs présentant une TODT et au moins un composé ne présentant pas de TODT dans un solvant,
-Déposer ce mélange sur une surface,
-Cuire le mélange déposé sur la surface à une température comprise entre la Tg la plus haute du copolymère à blocs et la TODT du mélange.
Procédé selon revendication 1 dans lequel copolymère à blocs présentant une TODT est copolymère di-blocs.
Procédé selon la revendication 2 selon laquelle des blocs du copolymère di-bloc comprend monomère styrènique et l'autre bloc comprend un monomère méthacrylique .
Procédé selon la revendication 3 selon laquelle un des blocs du copolymère di-bloc comprend du styrène et l'autre bloc comprend du méthacrylate de méthyle .
Procédé selon la revendication dans lequel le copolymère à blocs ne présentant pas de TODT est un copolymère di-blocs.
Procédé selon la revendication 5 selon laquelle un des blocs du copolymère di-blocs comprend un monomère styrènique et l'autre bloc comprend un monomère méthacrylique.
Procédé selon la revendication 6 selon laquelle un des blocs du copolymère di-blocs comprend du styrène et l'autre bloc comprend du méthacrylate de méthyle . Procédé selon la revendication 1 dans lequel la surface est libre.
Procédé selon la revendication 1 dans lequel la surface est guidée.
Composition comprenant au moins un copolymère à blocs présentant une TODT et au moins un composé, ce ou ces composés étant choisi parmi les copolymères à blocs, les stabilisants lumière ou chaleur, les photo-amorceurs les composés ioniques de type polymère ou non, les mélanges copolymères à blocs ne présentant pas de TODT avec un homopolymère ou un copolymère statistique ne présentant pas de TODT, ce mélange d'au moins un copolymère à blocs présentant une température de transition ordre-désordre (TODT) et au moins une Tg, avec au moins un composé ne présentant pas de TODT. Utilisation du procédé selon l'une des revendications 1 à 9 pour générer des masques de lithographie ou des films ordonnés.
Masque de lithographie ou film ordonné obtenu selon la revendication 11.
EP16703349.7A 2015-01-21 2016-01-21 Procédé de réduction des défauts dans un film ordonné de copolymère a blocs Withdrawn EP3248062A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1550470A FR3031751B1 (fr) 2015-01-21 2015-01-21 Procede de reduction des defauts dans un film ordonne de copolymere a blocs
PCT/FR2016/050115 WO2016116707A1 (fr) 2015-01-21 2016-01-21 Procédé de réduction des défauts dans un film ordonné de copolymère a blocs

Publications (1)

Publication Number Publication Date
EP3248062A1 true EP3248062A1 (fr) 2017-11-29

Family

ID=52779891

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16703349.7A Withdrawn EP3248062A1 (fr) 2015-01-21 2016-01-21 Procédé de réduction des défauts dans un film ordonné de copolymère a blocs

Country Status (9)

Country Link
US (1) US20180011399A1 (fr)
EP (1) EP3248062A1 (fr)
JP (1) JP6588555B2 (fr)
KR (1) KR20170118742A (fr)
CN (1) CN107430332A (fr)
FR (1) FR3031751B1 (fr)
SG (1) SG11201706000RA (fr)
TW (1) TW201708288A (fr)
WO (1) WO2016116707A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3031748B1 (fr) * 2015-01-21 2018-09-28 Arkema France Procede de reduction du temps d'assemblage des films ordones de copolymere a blocs
FR3075800B1 (fr) * 2017-12-21 2020-10-09 Arkema France Couches anti adhesives pour les procedes d'impression par transfert

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4127682B2 (ja) * 1999-06-07 2008-07-30 株式会社東芝 パターン形成方法
US8287957B2 (en) * 2004-11-22 2012-10-16 Wisconsin Alumni Research Foundation Methods and compositions for forming aperiodic patterned copolymer films
US8133534B2 (en) * 2004-11-22 2012-03-13 Wisconsin Alumni Research Foundation Methods and compositions for forming patterns with isolated or discrete features using block copolymer materials
US8425982B2 (en) * 2008-03-21 2013-04-23 Micron Technology, Inc. Methods of improving long range order in self-assembly of block copolymer films with ionic liquids
US20110111170A1 (en) * 2008-05-30 2011-05-12 Canon Kabushiki Kaisha Block copolymer film and method of producing the same
FR2983773B1 (fr) 2011-12-09 2014-10-24 Arkema France Procede de preparation de surfaces
US8710150B2 (en) * 2012-02-10 2014-04-29 Rohm And Haas Electronic Materials Llc Blended block copolymer composition
US8513356B1 (en) * 2012-02-10 2013-08-20 Dow Global Technologies Llc Diblock copolymer blend composition
JP5891075B2 (ja) * 2012-03-08 2016-03-22 東京応化工業株式会社 ブロックコポリマー含有組成物及びパターンの縮小方法
US9159558B2 (en) * 2013-03-15 2015-10-13 International Business Machines Corporation Methods of reducing defects in directed self-assembled structures
US20140377965A1 (en) * 2013-06-19 2014-12-25 Globalfoundries Inc. Directed self-assembly (dsa) formulations used to form dsa-based lithography films
FR3008986B1 (fr) * 2013-07-25 2016-12-30 Arkema France Procede de controle de la periode caracterisant la morphologie obtenue a partir d'un melange de copolymere a blocs et de (co) polymeres de l'un des blocs
EP2829567B1 (fr) * 2013-07-25 2017-03-15 Arkema France Procédé pour commander la période de caractérisation de la morphologie obtenue à partir d'un mélange de copolymères séquencés et de (co)polymères d'un des blocs
JP5865340B2 (ja) * 2013-12-10 2016-02-17 キヤノン株式会社 インプリント装置及び物品の製造方法
JP5971231B2 (ja) * 2013-12-10 2016-08-17 株式会社村田製作所 コモンモードチョークコイル及びその製造方法
JP6122906B2 (ja) * 2014-06-27 2017-04-26 ダウ グローバル テクノロジーズ エルエルシー ブロックコポリマーを製造するための方法およびそれから製造される物品
JP6356096B2 (ja) * 2014-06-27 2018-07-11 ダウ グローバル テクノロジーズ エルエルシー ブロックコポリマーを製造するための方法およびそれから製造される物品

Also Published As

Publication number Publication date
FR3031751B1 (fr) 2018-10-05
TW201708288A (zh) 2017-03-01
FR3031751A1 (fr) 2016-07-22
SG11201706000RA (en) 2017-08-30
CN107430332A (zh) 2017-12-01
US20180011399A1 (en) 2018-01-11
WO2016116707A1 (fr) 2016-07-28
JP2018502967A (ja) 2018-02-01
JP6588555B2 (ja) 2019-10-09
KR20170118742A (ko) 2017-10-25

Similar Documents

Publication Publication Date Title
EP2788442B1 (fr) Procede de preparation de surfaces
FR3037071B1 (fr) Procede de reduction de la defectivite d'un film de copolymere a blocs
FR3008987A1 (fr) Procede de controle de la periode caracterisant la morphologie obtenue a partir d'un melange de copolymere a blocs et de (co) polymeres de l'un des blocs
FR3010413A1 (fr) Procede de controle de la periode d'un assemblage nano-structure comprenant un melange de copolymeres a blocs
FR3045645B1 (fr) Procede de reduction des defauts dans un film ordonne de copolymeres a blocs
FR3010414A1 (fr) Procede d'obtention de films epais nano-structures obtenus a partir d'une composition de copolymeres a blocs
EP3247747A1 (fr) Procédé d'amélioration de l'uniformité de dimension critique de films ordonnés de copolymères à blocs
EP3248062A1 (fr) Procédé de réduction des défauts dans un film ordonné de copolymère a blocs
WO2016116706A1 (fr) Procédé d'obtention de films ordonnes épais et de périodes élevées comprenant un copolymère a blocs
EP3019915A1 (fr) Procede d'orientation perpendiculaire de nanodomaines de copolymeres a blocs par l'utilisation de copolymeres statistiques ou a gradient dont les monomeres sont au moins en partie differents de ceux presents respectivement dans chacun des blocs du copolymere a blocs
FR3045643A1 (fr) Procede d'amelioration de l'uniformite de dimension critique de films ordonnes de copolymere a blocs
FR3045644A1 (fr) Procede d'obtention de films ordonnes epais et de periodes elevees comprenant un copolymere a blocs
WO2016116708A1 (fr) Procédé de réduction du temps d'assemblage des films ordonnes de copolymère a blocs
FR3010411A1 (fr) Procede de controle de la periode d'un assemblage nano-structure comprenant un melange de copolymeres a blocs
FR3032713A1 (fr) Procede de reduction des defauts dans un film ordonne de copolymeres a blocs
EP3191894A1 (fr) Procede de controle du taux de defauts dans des films obtenus avec des melanges de copolymeres a blocs et de polymeres
FR3032714A1 (fr) Procede de reduction du temps d'assemblage des films ordonnes de copolymeres a blocs
FR3032712A1 (fr) Procede d'obtention de films ordonnes epais et de periodes elevees comprenant un copolymere a blocs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20170720

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: INOUBLI, RABER

Inventor name: CHEVALIER, XAVIER

Inventor name: NAVARRO, CHRISTOPHE

Inventor name: NICOLET, CELIA

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180309