EP3202945B1 - Verfahren zur nitrocarburierung metallischer werkstücke - Google Patents

Verfahren zur nitrocarburierung metallischer werkstücke Download PDF

Info

Publication number
EP3202945B1
EP3202945B1 EP16154353.3A EP16154353A EP3202945B1 EP 3202945 B1 EP3202945 B1 EP 3202945B1 EP 16154353 A EP16154353 A EP 16154353A EP 3202945 B1 EP3202945 B1 EP 3202945B1
Authority
EP
European Patent Office
Prior art keywords
urea
treatment
treatment atmosphere
water
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16154353.3A
Other languages
English (en)
French (fr)
Other versions
EP3202945A1 (de
Inventor
Heinrich-Peter Lankes
Peter Haase
Dirk Miller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iva Schmetz GmbH
Original Assignee
Iva Schmetz GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iva Schmetz GmbH filed Critical Iva Schmetz GmbH
Priority to EP16154353.3A priority Critical patent/EP3202945B1/de
Publication of EP3202945A1 publication Critical patent/EP3202945A1/de
Application granted granted Critical
Publication of EP3202945B1 publication Critical patent/EP3202945B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere

Definitions

  • the invention relates to a method for nitrocarburizing metallic workpieces in a furnace chamber, the workpieces being exposed to a treatment atmosphere at a treatment temperature during at least one treatment phase, with nitrogen and carbon diffusing into the workpieces.
  • the GB 311 588 A shows a process for surface hardening of molybdenum steel in which a nitrogen-containing solid which decomposes at temperatures below the temperatures at which nitriding takes place with nitrogen in the presence of the steel to be hardened with or without addition of air, water or steam and nitrogen releases.
  • the metal parts to be hardened are embedded in an embedding material, which is impregnated with a nitrogen-containing carrier material.
  • the nitrogen-containing carrier material used is urea or a urea derivative.
  • the amount of nitrogenous carrier material which is bound in solid form to the potting material is initially predetermined and can not be changed during nitriding.
  • Nitrocarburizing is a heat treatment process for surface hardening workpieces made of steel, in which the workpieces are heated in a furnace chamber of an industrial furnace in a heating phase and exposed to a treatment atmosphere during a holding phase at a treatment temperature of about 500 ° C to 600 ° C, wherein nitrogen and carbon atoms diffuse into the surface layer of the workpieces. This is followed by a cooling phase. This results in the edge region of the workpieces, a bonding layer and a diffusion layer. Nitrocarburizing focuses on the formation of the bonding layer. The two layers are relatively thin. The aim of this thermochemical process is to improve the wear resistance and corrosion resistance, in particular of unalloyed, low to medium-alloyed steels.
  • a treatment atmosphere customary in practice for gas nitrocarburizing of metallic workpieces or components is a gas mixture of carbon dioxide (CO 2 ), ammonia (NH 3 ), hydrogen (H 2 ) and nitrogen (N 2 ).
  • the CO 2 serves as a carbon donor and the NH 3 as a nitrogen donor.
  • the treatment atmosphere is generated in practice in the furnace room of the industrial furnace.
  • gaseous ammonia (NH 3 ), carbon dioxide (CO 2 ) and nitrogen (N 2 ) are fed directly into the furnace chamber.
  • hydrogen (H 2 ) there is an additional supply of hydrogen (H 2 ).
  • nitrogen and carbon For introduction of nitrogen and carbon by diffusion into the edge region of workpieces made of steel or of steel components, the nitrogen and the carbon must be present in atomic form.
  • the generation of atomic nitrogen takes place under predetermined temperature and pressure conditions by cleavage of ammonia in the furnace chamber.
  • Ammonia (NH 3 ) in gaseous form is a very unpleasant-smelling, irritating and poisonous gas which can cause irritation, poisoning and asphyxiation. Occupational safety during the heat treatment is therefore in need of improvement. In addition, ammonia is relatively expensive, so that the heat treatment costs are high.
  • the object of the invention is therefore to improve a method for heat treating metallic workpieces, in particular for nitrocarburizing, in such a way that the aforementioned problems are avoided.
  • the object is achieved by a method according to claim 1.
  • the treatment atmosphere is produced from urea or carbonic acid diamide (CH 4 N 2 O) and water (H 2 O).
  • Urea with the chemical formula CH 4 N 2 O, has a molecular weight of 60.06 g / mol and is water-soluble.
  • the invention is based on the finding that urea contains carbon and nitrogen and thus provides both necessary for the nitrocarburizing reactants C and N.
  • Urea unlike ammonia, is non-toxic and relatively inexpensive.
  • the urea decomposes into ammonia (NH 3 ) and isocyanic acid (HNCO). This in turn reacts with water (molar mass 18.015 g / mol) by hydrolysis to ammonia (NH 3 ) and carbon dioxide (CO 2 ).
  • Urea CH 4 N 2 O in combination with a metered addition of water (H 2 O) ideally creates a treatment atmosphere of 66% ammonia (NH 3 ) and 33% carbon dioxide (CO 2 ). This makes urea, in combination with water, ideal for nitrocarburizing.
  • the CO 2 is used during the heat treatment as a carbon donor and the NH 3 as a nitrogen donor.
  • the urea (CH 4 N 2 O) is dissolved in the water (H 2 O), the urea (CH 4 N 2 O) is fed into the furnace chamber in the form of an aqueous solution and the treatment atmosphere is generated in the furnace chamber or the urea ( CH 4 N 2 O) and the water (H 2 O) is fed into a presplitter, which is heated to a temperature of at least 130 ° C, wherein the treatment atmosphere is generated in the Vorspalter and is passed from the presplitter in the furnace chamber.
  • the desired gaseous treatment atmosphere is generated by chemical reaction in the presplitter.
  • urea CH 4 N 2 O
  • isocyanic acid HNCO
  • ammonia NH 3
  • the molar ratio of urea (CH 4 N 2 O) to water (H 2 O) is about 1 to 1.
  • the inventive method is characterized in that the urea (CH 4 N 2 O) is sprayed in the form of an aqueous solution in the furnace chamber.
  • urea (CH 4 N 2 O) in the form of an aqueous solution and additionally urea (CH 4 N 2 O) in solid form in the furnace chamber can be introduced in order to change the composition of the treatment atmosphere.
  • a variant of the method is characterized in that the presplinter is heated to a temperature of preferably 140 ° C.
  • the carbon availability of the treatment atmosphere can be increased by adding a carbon-containing additional gas.
  • Carbon monoxide, carbon dioxide or propane, for example, can be used as additional gas.
  • the workpieces are exposed during a holding phase at a treatment temperature of 500 ° C to 600 ° C of the treatment atmosphere.
  • the holding phase is preceded by a warm-up phase.
  • the holding phase is followed by a cooling phase.
  • the workpieces At the end of the heat treatment, the workpieces have an increased surface hardness and good corrosion resistance.
  • nitrocarburizing workpieces made of steel are heated in a furnace chamber during a heating phase and exposed during a holding phase at a treatment temperature of 500 ° C to 600 ° C a gaseous treatment atmosphere.
  • the holding phase is followed by a cooling phase.
  • urea or carbonic acid diamide (CH 4 N 2 O) and water (H 2 O) is generated directly in the furnace chamber.
  • Urea (CH 4 N 2 O) contains carbon and nitrogen and thus both necessary for the nitrocarburizing reactants C and N.
  • the urea (CH 4 N 2 O) is dissolved outside the furnace chamber in the water (H 2 O) and the urea ( CH 4 N 2 O) in the form of an aqueous solution sprayed directly into the furnace chamber at the beginning of the holding phase.
  • the molar ratio of urea (CH 4 N 2 O) to water (H 2 O) is about 1 to 1.
  • the molar ratio of urea (CH 4 N 2 O) to water (H 2 O) can also be changed, however only to a small extent.
  • the urea decomposes by thermolysis in ammonia (NH 3 ) and isocyanic acid (HNCO). This in turn reacts with water (molar mass 18.015 g / mol) by hydrolysis to ammonia (NH 3 ) and carbon dioxide (CO 2 ).
  • NH 3 + CO 2 ⁇ 2 [N] + 3H 2 + CO 2 is known per se and is therefore not described in detail.
  • the aqueous urea solution ideally reacts in the furnace chamber to a treatment atmosphere of 66% ammonia (NH 3 ) and 33% carbon dioxide (CO 2 ).
  • nitrogen and carbon atoms diffuse into the edge area of the workpieces.
  • the result is an outer connection layer and a diffusion layer.
  • Nitrocarburizing focuses on the formation of the bonding layer.
  • the carbon atoms only diffuse into the bonding layer.
  • the workpieces At the end of the heat treatment, the workpieces have an increased surface hardness and good corrosion resistance.
  • urea (CH 4 N 2 O) in the form of an aqueous solution and additionally urea (CH 4 N 2 O) in solid form in order to increase the nitrogen availability of the treatment atmosphere.
  • the carbon availability of the treatment atmosphere can be increased by adding a carbon-containing additional gas into the furnace chamber.
  • the urea (CH 4 N 2 O) and the water (H 2 O) is fed into a presplitter, which is heated to a temperature of at least 130 ° C, preferably at least 140 ° C.
  • a presplitter which is heated to a temperature of at least 130 ° C, preferably at least 140 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Nitrocarburieren metallischer Werkstücke in einem Ofenraum, wobei die Werkstücke während mindestens einer Behandlungsphase einer Behandlungsatmosphäre bei einer Behandlungstemperatur ausgesetzt sind, wobei Stickstoff und Kohlenstoff in die Werkstücke diffundieren.
  • Die GB 311 588 A zeigt ein Verfahren zum Oberflächenhärten von Molybdänstahl, bei dem ein stickstoffhaltiger fester Stoff, der bei Temperaturen, unterhalb der Temperaturen, bei denen eine Nitrierung mit Stickstoff stattfindet, in Gegenwart des zu härtenden Stahls mit oder ohne Beigabe von Luft, Wasser oder Wasserdampf zerfällt und Stickstoff freisetzt.
  • Bei einem aus der DE 26 47 668 A1 bekannten Verfahren zur Nitrierhärtung werden die zu härtenden Metallteile in ein Einbettmaterial eingebettet, welches mit einem stickstoffhaltigen Trägermaterial, imprägniert ist. Als stickstoffhaltiges Trägermaterial wird Harnstoff oder ein Harnstoffderivat eingesetzt. Die Menge des stickstoffhaltigen Trägermaterials, welches in fester Form an das Einbettmaterial gebunden ist, ist anfänglich vorgegeben und kann während der Nitrierhärtung nicht geändert werden.
  • In der DE 15 21 167 A1 wird ein Verfahren beschrieben, bei dem eine Flüssigkeit zur Erzeugung einer Gasatmoshäre zum Weichnitrieren von Stählen mit Gas offenbart, bei dem die Flüssigkeit ausser gelöstem Ammoniak, Alkohole, Amine, Wasser und Harnstoff enthalten kann.
  • Aus der DE 187 19 225 C1 ist ein Verfahren und eine Vorrichtung zur Regelung einer Nitrier-bzw. Nitrocarburier-Atmospäre bekannt, bei dem mittels eines Vorspalters ein Spaltgas erzeugt wird, indem Ammoniak bei Temperaturen zwischen 400°C und 1000°C über einen Katalysator geleitet und dabei in 25% Stickstoff und 75% Wasserstoff gespaltet wird.
  • Das Nitrocarburieren ist ein Wärmebehandlungsverfahren zum Randschichthärten von Werkstücken aus Stahl, bei dem die Werkstücke in einem Ofenraum eines Industrieofens in einer Aufheizphase aufgeheizt und während einer Haltephase bei einer Behandlungstemperatur von ca. 500°C bis 600°C einer Behandlungsatmosphäre ausgesetzt sind, wobei Stickstoff- und Kohlenstoffatome in die Randschicht der Werkstücke eindiffundieren. Anschließend folgt eine Abkühlphase. Es entstehen im Randbereich der Werkstücke eine Verbindungsschicht und eine Diffusionsschicht. Beim Nitrocarburieren steht die Ausbildung der Verbindungsschicht im Vordergrund. Die beiden Schichten sind relativ dünn. Ziel dieses thermochemischen Verfahrens ist es, die Verschleißfestigkeit und die Korrosionsbeständigkeit, insbesondere von unlegierten, niedrig bis mittellegierten Stählen zu verbessern.
  • Eine in der Praxis übliche Behandlungsatmosphäre zum Gasnitrocarburieren von metallischen Werkstücken oder Bauteilen ist ein Gasgemisch aus Kohlenstoffdioxid (CO2), Ammoniak (NH3), Wasserstoff (H2) und Stickstoff (N2). Dabei dient das CO2 als Kohlenstoffspender und das NH3 als Stickstoffspender.
  • Die Behandlungsatmosphäre wird in der Praxis in dem Ofenraum des Industrieofens erzeugt. Dazu wird gasförmiges Ammoniak (NH3), Kohlenstoffdioxid (CO2) und Stickstoff (N2) direkt in den Ofenraum eingespeist. In bestimmten Fällen erfolgt aus regelungstechnischen Gründen zusätzlich eine Einspeisung von Wasserstoff (H2).
    Zum Einbringen von Stickstoff und Kohlenstoff durch Diffusion in den Randbereich von Werkstücken aus Stahl bzw. von Stahlbauteilen müssen der Stickstoff und der Kohlenstoff in atomarer Form vorliegen. Die Erzeugung von atomarem Stickstoff erfolgt unter vorbestimmten Temperatur- und Druckbedingungen durch Spaltung von Ammoniak im Ofenraum.
  • Ammoniak (NH3) ist in gasförmiger Form ein stark unangenehm riechendes, reizendes und giftiges Gas, welches zu Reizungen, Vergiftungen und Erstickungen führen kann. Die Arbeitssicherheit während der Wärmebehandlung ist daher verbesserungsbedürftig. Zudem ist Ammoniak relativ teuer, so dass die Wärmebehandlungskosten hoch sind.
  • Die Aufgabe der Erfindung besteht demgemäß darin, ein Verfahren zum Wärmebehandeln metallischer Werkstücke, insbesondere zum Nitrocarburieren, dahingehend zu verbessern, dass die vorgenannten Problematiken vermieden werden.
  • Gemäß der Erfindung wird die Aufgabe durch ein Verfahren nach Anspruch 1 gelöst.
  • Erfindungsgemäß wird die Behandlungsatmosphäre aus Harnstoff bzw. Kohlensäurediamid (CH4N2O) und Wasser (H2O) erzeugt. Harnstoff, mit der chemischen Summenformel CH4N2O, hat eine Molmasse von 60,06 g/mol und ist wasserlöslich. Der Erfindung liegt die Erkenntnis zugrunde, dass Harnstoff Kohlenstoff und Stickstoff enthält und somit beide für das Nitrocarburieren notwendige Reaktionspartner C und N liefert. Harnstoff ist im Gegensatz zu Ammoniak ungiftig und relativ preisgünstig. Durch Thermolyse im Ofenraum bei Behandlungstemperaturen von 500°C bis 600°C zerfällt der Harnstoff in Ammoniak (NH3) und Isocyansäure (HNCO). Diese wiederum reagiert mit Wasser (Molmasse 18,015 g/mol) durch Hydrolyse zu Ammoniak (NH3) und Kohlenstoffdioxid (CO2).
  • Die ablaufenden Reaktionen sind:

            CH4N2O → NH3 + HNCO

            HNCO + H2O → NH3 + CO2

            CH4N2O + H2O → 2NH3 + CO2

  • Harnstoff (CH4N2O) erzeugt in Verbindung mit einer dosierten Zugabe von Wasser (H2O) idealerweise eine Behandlungsatmosphäre aus 66% Ammoniak (NH3) und 33% Kohlenstoffdioxid (CO2). Damit ist Harnstoff in Kombination mit Wasser zum Nitrocarburieren ideal verwendbar. Das CO2 dient während der Wärmebehandlung als Kohlenstoffspender und das NH3 als Stickstoffspender.
  • Erfindungsgemäß wird der Harnstoff (CH4N2O) in dem Wasser (H2O) gelöst, der Harnstoff (CH4N2O) in Form einer wässrigen Lösung in den Ofenraum eingespeist und die Behandlungsatmosphäre in dem Ofenraum erzeugt oder der Harnstoff (CH4N2O) und das Wasser (H2O) werden in einen Vorspalter eingespeist, der auf eine Temperatur von mindestens 130°C beheizt ist, wobei die Behandlungsatmosphäre in dem Vorspalter erzeugt wird und von dem Vorspalter in den Ofenraum geleitet wird.
  • In dem Vorspalter wird durch chemische Reaktion die gewünschte gasförmige Behandlungsatmosphäre erzeugt. Beim Erhitzen über den Schmelzpunkt von 406 K zerfällt Harnstoff (CH4N2O) in Isocyansäure (HNCO) und Ammoniak (NH3). Vorzugsweise beträgt das molare Verhältnis von Harnstoff (CH4N2O) zu Wasser (H2O) etwa 1 zu 1.
  • Alternativ ist das erfindungsgemäße Verfahren dadurch gekennzeichnet, dass der Harnstoff (CH4N2O) in Form einer wässrigen Lösung in den Ofenraum eingesprüht wird.
    Je nach Anforderung kann in den Ofenraum Harnstoff (CH4N2O) in Form einer wässrigen Lösung und zusätzlich Harnstoff (CH4N2O) in fester Form eingebracht werden, um die Zusammensetzung der Behandlungsatmosphäre zu verändern.
  • Eine Verfahrensvariante ist dadurch gekennzeichnet, dass der Vorspalter auf eine Temperatur von vorzugsweise 140°C beheizt ist.
  • Die Kohlenstoffverfügbarkeit der Behandlungsatmosphäre kann mittels Zugabe eines kohlenstoffhaltigen Zusatzgases erhöht werden. Als Zusatzgas kann beispielsweise Kohlenmonoxid, Kohlendioxid oder Propan verwendet werden.
  • Vorzugsweise werden die Werkstücke während einer Haltephase bei einer Behandlungstemperatur von 500°C bis 600°C der Behandlungsatmosphäre ausgesetzt. Der Haltephase geht eine Aufheizphase voraus. Ferner schließt sich an die Haltephase eine Abkühlphase an. Am Ende der Wärmebehandlung weisen die Werkstücke eine gesteigerte Oberflächenhärte und eine gute Korrosionsbeständigkeit auf.
  • Die Erfindung wird im Folgenden anhand eines bevorzugten Ausführungsbeispiels näher erläutert.
  • Beim Nitrocarburieren werden Werkstücke aus Stahl in einem Ofenraum während einer Aufheizphase aufgeheizt und während einer Haltephase bei einer Behandlungstemperatur von 500°C bis 600°C einer gasförmigen Behandlungsatmosphäre ausgesetzt. An die Haltephase schließt sich eine Abkühlphase an.
  • Erfindungsgemäß wird die Behandlungsatmosphäre aus Harnstoff bzw. Kohlensäurediamid (CH4N2O) und Wasser (H2O) direkt im Ofenraum erzeugt. Harnstoff (CH4N2O) enthält Kohlenstoff und Stickstoff und somit beide für das Nitrocarburieren notwendigen Reaktionspartner C und N. Der Harnstoff (CH4N2O) wird außerhalb des Ofenraums in dem Wasser (H2O) gelöst und der Harnstoff (CH4N2O) in Form einer wässrigen Lösung zu Beginn der Haltephase direkt in den Ofenraum gesprüht. Das molare Verhältnis von Harnstoff (CH4N2O) zu Wasser (H2O) beträgt etwa 1 zu 1. Das molare Verhältnis von Harnstoff (CH4N2O) zu Wasser (H2O) kann auch verändert werden, allerdings nur in einem geringen Maß.
  • Bei Behandlungstemperaturen von 500°C bis 600°C im Ofenraum zerfällt der Harnstoff durch Thermolyse in Ammoniak (NH3) und Isocyansäure (HNCO). Diese wiederum reagiert mit Wasser (Molmasse 18,015 g/mol) durch Hydrolyse zu Ammoniak (NH3) und Kohlenstoffdioxid (CO2). Die daraufhin folgende Spaltung des Ammoniaks im Ofenraum nach der Formel

            2NH3 + CO2 → 2[N] + 3H2 + CO2

    ist an sich bekannt und wird daher nicht näher beschrieben.
  • Die wässrige Harnstofflösung reagiert im Ofenraum idealerweise zu einer Behandlungsatmosphäre aus 66% Ammoniak (NH3) und 33% Kohlenstoffdioxid (CO2).
  • Während der Haltephase diffundieren Stickstoff- und Kohlenstoffatome in den Randbereich der Werkstücke. Es entsteht eine äußere Verbindungsschicht und eine Diffusionsschicht. Beim Nitrocarburieren steht die Ausbildung der Verbindungsschicht im Vordergrund. Die Kohlenstoffatome diffundieren nur in die Verbindungsschicht. Am Ende der Wärmebehandlung weisen die Werkstücke eine gesteigerte Oberflächenhärte und eine gute Korrosionsbeständigkeit auf.
  • Je nach Anforderung besteht im Rahmen der Erfindung die Möglichkeit, in den Ofenraum Harnstoff (CH4N2O) in Form einer wässrigen Lösung und zusätzlich Harnstoff (CH4N2O) in fester Form einzubringen, um die Stickstoffverfügbarkeit der Behandlungsatmosphäre zu erhöhen.
  • Im Rahmen der Erfindung kann die Kohlenstoffverfügbarkeit der Behandlungsatmosphäre mittels Zugabe eines kohlenstoffhaltigen Zusatzgases in den Ofenraum erhöht werden.
  • Bei einer Verfahrensvariante wird der Harnstoff (CH4N2O) und das Wasser (H2O) in einen Vorspalter eingespeist, der auf eine Temperatur von mindestens 130°C, vorzugsweise mindestens 140°C, beheizt ist. Durch die Temperatureinwirkung entsteht in dem Vorspalter die gasförmige Behandlungsatmosphäre, welche aus dem Vorspalter in den Ofenraum geleitet wird.

Claims (7)

  1. Verfahren zum Nitrocarburieren metallischer Werkstücke in einem Ofenraum, wobei die Werkstücke während mindestens einer Behandlungsphase einer Behandlungsatmosphäre bei einer Behandlungstemperatur ausgesetzt sind, wobei Stickstoff und Kohlenstoff in die Werkstücke diffundieren, dadurch gekennzeichnet,
    dass die Behandlungsatmosphäre aus Harnstoff (CH4N2O) und Wasser (H2O) erzeugt wird und
    - dass der Harnstoff (CH4N2O) in dem Wasser (H2O) gelöst, der Harnstoff (CH4N2O) in Form einer wässrigen Lösung in den Ofenraum eingespeist und die Behandlungsatmosphäre in dem Ofenraum erzeugt wird oder
    - dass der Harnstoff (CH4N2O) und das Wasser (H2O) in einen Vorspalter eingespeist werden, der auf eine Temperatur von mindestens 130°C beheizt ist, dass die Behandlungsatmosphäre in dem Vorspalter erzeugt wird und von dem Vorspalter in den Ofenraum geleitet wird.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass das molare Verhältnis von Harnstoff (CH4N2O) zu Wasser (H2O) etwa 1 zu 1 beträgt.
  3. Verfahren nach wenigstens einem der vorangegangenen Ansprüche 1 oder 2,
    dadurch gekennzeichnet, dass der Harnstoff (CH4N2O) in Form einer wässrigen Lösung in den Ofenraum eingesprüht wird.
  4. Verfahren nach Anspruch 3,
    dadurch gekennzeichnet, dass in den Ofenraum Harnstoff (CH4N2O) in Form einer wässrigen Lösung und zusätzlich Harnstoff (CH4N2O) in fester Form eingebracht wird, um die Stickstoffverfügbarkeit der Behandlungsatmosphäre zu erhöhen.
  5. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Vorspalter auf eine Temperatur von vorzugsweise 140°C beheizt ist.
  6. Verfahren nach wenigstens einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet, dass die Kohlenstoffverfügbarkeit der Behandlungsatmosphäre mittels Zugabe eines kohlenstoffhaltigen Zusatzgases erhöht wird.
  7. Verfahren nach wenigstens einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet, dass die Werkstücke während einer Behandlungssphase in Form einer Haltephase bei einer Behandlungstemperatur von 500° C bis 600°C der Behandlungsatmosphäre ausgesetzt sind und dass der Haltephase eine Aufheizphase vorausgeht und eine Abkühlphase anschließt.
EP16154353.3A 2016-02-04 2016-02-04 Verfahren zur nitrocarburierung metallischer werkstücke Active EP3202945B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16154353.3A EP3202945B1 (de) 2016-02-04 2016-02-04 Verfahren zur nitrocarburierung metallischer werkstücke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16154353.3A EP3202945B1 (de) 2016-02-04 2016-02-04 Verfahren zur nitrocarburierung metallischer werkstücke

Publications (2)

Publication Number Publication Date
EP3202945A1 EP3202945A1 (de) 2017-08-09
EP3202945B1 true EP3202945B1 (de) 2019-04-24

Family

ID=55345697

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16154353.3A Active EP3202945B1 (de) 2016-02-04 2016-02-04 Verfahren zur nitrocarburierung metallischer werkstücke

Country Status (1)

Country Link
EP (1) EP3202945B1 (de)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB311588A (en) * 1928-07-04 1929-05-16 Julius Leonard Fox Vogel Improvements in the hardening of molybdenum irons or steels
DE2647668A1 (de) * 1975-12-15 1977-06-16 Ford Werke Ag Verfahren zur nitrierhaertung von metallteilen

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1521167A1 (de) * 1966-06-18 1969-07-31 Bbc Brown Boveri & Cie Verfahren zum Weichnitrieren von Staehlen mit Gasen
DE19719225C1 (de) * 1997-05-07 1998-08-06 Volker Dipl Ing Leverkus Verfahren zur Regelung einer Nitrier- bzw. Nitrocarburier-Atmosphäre sowie Vorrichtung zur Durchführung des Verfahrens

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB311588A (en) * 1928-07-04 1929-05-16 Julius Leonard Fox Vogel Improvements in the hardening of molybdenum irons or steels
DE2647668A1 (de) * 1975-12-15 1977-06-16 Ford Werke Ag Verfahren zur nitrierhaertung von metallteilen

Also Published As

Publication number Publication date
EP3202945A1 (de) 2017-08-09

Similar Documents

Publication Publication Date Title
DE2135763C3 (de) 31 08 70 Japan 45 76202 Verfahren zur Behandlung von Eisen- und Stahlgegenstanden zur Bildung einer Nitrid schicht
DE2658174A1 (de) Verfahren zum nitrierhaerten martensitischer staehle
WO2011157690A1 (de) Verfahren zum herstellen eines warmgeformten und gehärteten, mit einer metallischen korrosionsschutzbeschichtung überzogenen stahlbauteils aus einem stahlflachprodukt
DE1521660B2 (de)
EP3202945B1 (de) Verfahren zur nitrocarburierung metallischer werkstücke
DE69902169T2 (de) Verfahren zum niederdrück-nitrocarburieren metallischer werkstücke
DE3810892A1 (de) Verfahren zur nitrokarburierung und nitrierung von eisenhaltigen oberflaechen
DE2133284A1 (de) Waermebehandlung von Stahl und Gusseisen in Gasatmosphaere
DE4442328C1 (de) Verfahren zur Vorbehandlung von Stahlteilen vor dem Salzbadnitrieren
DE102014112286A1 (de) Verfahren zur Herstellung eines aufgestickten Verpackungsstahls
EP1745158B1 (de) Verfahren zur oberflächenbehandlung
DE3853064T2 (de) Behandlungsverfahren für einen Cyanid enthaltenden flüssigen Abfall.
DE2000060A1 (de) Verfahren zur Beschleunigung des Aufkohlens von Werkstuecken aus Stahl nach dem Generator-Traegergasverfahren
RU2600612C1 (ru) Способ нитроцементации деталей из конструкционных и инструментальных сталей
DE2105549C3 (de) Verfahren zum Gasnitrieren von Eisen und Eisenlegierungen
EP3183378B1 (de) Verfahren zur herstellung einer retorte für einen nitrierofen sowie retorte
DE299141C (de)
DE1521660C (de) Verfahren zur Erhöhung der Verschleiß festigkeit von durch Kaltbearbeitung verfestig tem Metall
WO2023104385A1 (de) Verfahren und einrichtung zum örtlich begrenzten nitrieren oder nitrocarburieren der oberfläche eines bauteils
DD152945A1 (de) Verfahren zum sulfonitrieren metallischer werkstoffe
DD156877A3 (de) Regenerierungsmittel fuer nitriersalzbaeder
DE2310815C3 (de) Verfahren zum Regenerleren von Nitrier- und Kohlungssatzbädern
DD156718A1 (de) Verfahren zur erzeugung nitridhaltiger schichten auf passiven metallen
DE1263447B (de) Verfahren zur Herstellung eines cyanathaltigen Salzschmelzbades fuer die Einsatzhaertung von Stahl
DE1521167A1 (de) Verfahren zum Weichnitrieren von Staehlen mit Gasen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17P Request for examination filed

Effective date: 20180202

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20180228

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C21D 1/74 20060101ALI20181120BHEP

Ipc: C21D 1/06 20060101ALI20181120BHEP

Ipc: C23C 8/32 20060101AFI20181120BHEP

Ipc: C21D 1/76 20060101ALI20181120BHEP

INTG Intention to grant announced

Effective date: 20181217

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20190313

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1124252

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016004293

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190424

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190725

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190824

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016004293

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

26N No opposition filed

Effective date: 20200127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200204

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200204

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240119

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240117

Year of fee payment: 9