EP3191712B1 - Dispositif de compression, dispositif de refroidissement équipé de celui-ci et procédé pour faire fonctionner le dispositif de compression et le dispositif de refroidissement - Google Patents

Dispositif de compression, dispositif de refroidissement équipé de celui-ci et procédé pour faire fonctionner le dispositif de compression et le dispositif de refroidissement Download PDF

Info

Publication number
EP3191712B1
EP3191712B1 EP15774869.0A EP15774869A EP3191712B1 EP 3191712 B1 EP3191712 B1 EP 3191712B1 EP 15774869 A EP15774869 A EP 15774869A EP 3191712 B1 EP3191712 B1 EP 3191712B1
Authority
EP
European Patent Office
Prior art keywords
gas
pressure
compressor
working
working gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15774869.0A
Other languages
German (de)
English (en)
Other versions
EP3191712A1 (fr
Inventor
Jens HÖHNE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pressure Wave Systems GmbH
Original Assignee
Pressure Wave Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pressure Wave Systems GmbH filed Critical Pressure Wave Systems GmbH
Priority to EP18195959.4A priority Critical patent/EP3434897B1/fr
Publication of EP3191712A1 publication Critical patent/EP3191712A1/fr
Application granted granted Critical
Publication of EP3191712B1 publication Critical patent/EP3191712B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/12Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/02Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having bellows
    • F04B45/022Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having bellows with two or more bellows in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/18Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use for specific elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/02Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having bellows
    • F04B45/024Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having bellows with two or more bellows in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/02Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having bellows
    • F04B45/033Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having bellows having fluid drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/02Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect

Definitions

  • the invention relates to a compressor device, a cooling device equipped therewith and a method for operating the compressor device.
  • pulse tube coolers or Gifford-McMahon coolers are used for cooling magnetic resonance tomographs, cryopumps, etc.
  • Gas and especially helium compressors are used in combination with rotary or rotary valves.
  • the rate at which compressed helium is introduced and re-circulated to the cooling device is in the range of 1 Hz.
  • a problem with conventional screw or piston compressors is that oil from the compressor may enter and contaminate the working gas and thus the cooling device ,
  • acoustic compressors or high-frequency compressors in which one or more pistons are caused by a magnetic field in linear resonant vibrations. These resonant frequencies are in the range of a few 10 Hz and are therefore not suitable for use with pulse tube coolers and Gifford-McMahon coolers to produce very low temperatures in the lower than 10 K range.
  • a membrane compressor or pump which has a working space that is divided into a gas volume and a liquid volume by an elastic, gas and liquid-tight membrane.
  • a liquid pump liquid is periodically pressed into the liquid volume of the working space, whereby the elastic membrane expands in the direction of gas volume and this compresses - compressor function - or pushing out of the gas volume - pump function.
  • a disadvantage is the fact that the gas-, liquid-tight and pressure-resistant sealing of the elastic membrane in the working space is relatively expensive. Especially in the field of sealing, the membrane is heavily loaded, so that either very expensive materials must be used or a shorter life has to be accepted.
  • CH 457 147 A also shows a membrane compressor and mentions the lack of tightness of the membrane to helium.
  • DE 20 2007 018538 U1 shows a multi-stage diaphragm suction pump whose pumping chambers work in parallel or serially.
  • a heat pump and a refrigerator with a compressor device are known.
  • the compressor device comprises a compressor chamber in which a balloon is arranged.
  • the balloon is periodically pressurized with liquid so that the gas surrounding the balloon is periodically compressed and relaxed again.
  • the disadvantage here is that the balloon envelope can scrape or rub in certain operating conditions on the hard and possibly edged inner surface of the compressor chamber. As a result, due to the pressure conditions hole or cracking in the balloon envelope occur.
  • the permeability - permeability - of the balloon envelope for helium as a working gas is too large, so you quickly lose substantial amounts of helium. Thus, the service life of such systems with balloon is unsatisfactory.
  • a diaphragm pump for liquids which can also serve as a "gas compression pump".
  • a liquid must be introduced between the membrane and pump valves, ie a liquid is provided in the gas space. It is thus a compression device with a liquid stamp. A physical separation between compressed gas and hydraulic fluid therefore does not take place.
  • DE 10 2008 060598 A1 shows an apparatus for compressing a gas, comprising two cylinder filled with a hydraulic fluid or a working gas. The hydraulic fluid is preferably pumped back and forth between these cylinders with a hydraulic pump. Again, the physical separation between gas and liquid is not sufficient.
  • US 1 580 479 A describes a diaphragm pump with two chambers (or bellows) without working fluid, which are mutually compressed or relaxed via a yoke separating the chambers.
  • WO2014 / 016415A2 is a compressor device with a metal bellows known as a compressor element, which is impermeable to hydrogen except for all possible working gases.
  • the working gas may be due to the Metal bellows are also kept oil-free.
  • the efficiency due to the interaction with the working fluid balance tank is unsatisfactory.
  • the common pumping device is used twice. In each flow direction of the working fluid is a compression of the working gas; in the one flow direction in the first compressor stage and in the opposite direction of flow in the second compressor stage. This increases the efficiency of the compressor device. Characterized in that the high and low pressure gas line are designed so that they act as a gas storage due to their volume, the operating frequency of a compressor operated with the device cooler can be decoupled from the pumping frequency of the pumping device.
  • the compressed working gas is cooled after each compression stroke.
  • first working gas in the first compressor stage is compressed or precompressed and stored temporarily in a buffer memory.
  • the second compressor stage is operated virtually idle and serves as a working fluid expansion tank. If in the buffer memory, a working gas at a mean pressure p mid is reached, which corresponds to the second gas volume in the second compressor stage, in the next compressor stroke in the second compressor stage, the pre-compressed working gas from the buffer memory to the final pressure p end is compressed. The compressed to the final pressure p end working gas is then discharged to the outside or stored in a high-pressure gas storage.
  • first working gas in the first compressor stage is compressed or precompressed and simultaneously transferred to the second gas volume of the second compressor stage.
  • the pre-compressed working gas to the mean pressure p mid is then compressed to the final pressure p end .
  • the compressed to the final pressure p end working gas is then discharged to the outside or stored in a high-pressure gas storage.
  • a working fluid preferably hydraulic oil according to DIN 51524 is used, which is additionally dehydrated or anhydrous.
  • the hydraulic oil is in a closed system of pumping device, working fluid equalizing device and fluid volume in the compressor chamber, so that during operation no water from the environment can be absorbed by the hydraulic oil.
  • water can also be used as the working fluid.
  • Water as a working fluid is also advantageous because in the event of defects, water that has penetrated into a downstream cryocooler can be removed more easily than hydraulic oil that has entered a downstream cooler.
  • water is suitable as a working medium in explosion-protected applications, since water is non-flammable and non-explosive. In addition, water is non-toxic and therefore environmentally friendly.
  • helium, neon or nitrogen is preferably used as working gas.
  • Fig. 1 shows an unclaimed compressor device with a first and a second compressor stage 2-1, 2-2, in the form of a non-promoting compressor device.
  • Each of the two compressor devices 2-1, 2-2 has a gas-tight closed compressor chamber 4-1, 4-2.
  • a metal bellows 6-1, 6-2 is arranged in each of the two compressor rooms 4-1, 4-2.
  • the metal bellows 6-1, 6-2 subdivide the compressor chambers 4-1, 4-2 into a first and a second gas volume 8-1, 8-2 for a working gas 10 and into a first and second fluid volume 12-1, 12, respectively -2 for a working liquid 14.
  • the gas volumes 8-1, 8-2 are inside the metal bellows 6-1, 6-2, and the liquid volumes are outside the bellows 6-1, 6-2.
  • the gas volumes 8-1, 8-2 are each provided with a high pressure working gas port 18-1, 18-2 and a low pressure working gas port 20-1, 20-2 connected.
  • the low pressure working gas ports 20-1, 20-2 are provided with check valves 22 which are permeable toward the compressor stages 2-1, 2-2.
  • the high pressure working gas ports 18-1, 18-2 are also provided with check valves 22 having opposite directions of passage as compared to the check valves 22 on the low pressure working gate ports 20-1, 20-2.
  • the high pressure working gas ports 18-1, 18-2 are connected via the check valves 22 to a common high pressure gas line 24, and the low pressure working gas ports 20-1, 20-2 are connected to a low pressure gas line 26 via the check valves 22.
  • the check valves 22 in the high-pressure working gas ports 18-1, 18-2 are in the direction of common high-pressure gas line 24 and the check valves 22 on the low-pressure working gas ports 20-1, 20-2 are in the direction of compressor stages 2-1, 2-2 permeable.
  • the common high pressure gas line 24 and the common low pressure gas line 26 terminate in a motorized rotary valve 28 which alternately the high pressure gas line 24 and the low pressure gas line 26 with a cooling device 30, for.
  • the high and low pressure gas line 24, 26 act due to their volume as a gas storage or it is explicitly a low-pressure gas storage 27 and a high-pressure gas storage 25 in the low-pressure or high-pressure gas line 26, 24 are provided.
  • the check valves 22 at the two high pressure working gas ports 18-1, 18-2 are each followed by heat exchangers 32-1, 32-2 for cooling the compressed working gas.
  • the two compressor stages 2-1, 2-1 are constructed analogously, ie, the gas volumes 8-1, 8-2 and the liquid volumes 12-1, 12-2 are equal.
  • the two working fluid ports 16-1, 16-2 are connected to a common electromotive pumping device 34, which alternately pumps working fluid 14 into the first and second fluid volumes 12-1, 12-2 of the first and second compressor stages 2-1, 2-2. Ie. either working fluid 14 is pumped from the second fluid volume 12-2 into the first fluid volume 12-1 or vice versa.
  • FIGS. 2a to 2e illustrate the various phases of operation of the compressor device Fig. 1 , In the in Fig. 2a phase shown by the common Pumping 34 working fluid 14 from the second fluid volume 12-2 of the second compressor stage 2-2 in the first fluid volume 12-1 in the first compressor stage 2-1 pumped.
  • the first metal bellows 6-1 is compressed and the working gas 10 therein is pressed into the high pressure gas reservoir 25 via the first high pressure working gas port 18-1, the first heat exchanger 32-1 and the common high pressure gas line 24.
  • the second metal bellows 6-2 expands through working gas 10, which flows back out of the low-pressure working gas reservoir 27 via the low-pressure gas line 26 and the second low-pressure working gas connection 20-2.
  • the rotary valve 28 connects the cooling device 30 via the low pressure gas line 26 with the low pressure gas storage 27th
  • the working fluid flow is reversed and the pumping device 34 now pumps working fluid 14 from the first fluid volume 12-1 of the first compressor stage 2-1 in the second fluid volume 12-2 in the second compressor stage 2-2.
  • the second metal bellows 6-2 is compressed and the working gas 10 therein is compressed and pressed into the high pressure gas reservoir 25 via the second high pressure working gas port 18-1, the second heat exchanger 32-2 and the common high pressure gas line 24.
  • the first metal bellows 6-1 expands through working gas 10 flowing back from the low-pressure gas reservoir 27 via the low-pressure gas line 26 and the first low-pressure working gas port 20-1.
  • Fig. 2e phase shown is again the first phase and the compression takes place in the first compressor stage 2-1.
  • Fig. 2a and 2e differ only in that in Fig. 2e the first metal bellows 6-1 still relaxed and the second metal bellows 6-2 is still compressed.
  • Fig. 2a is the compression in the first compressor stage 2-1 completed and the first metal bellows 6-1 is compressed, while the second metal bellows 6-2 is relaxed.
  • the rotational frequency of the rotary valve 28 is decoupled from the frequency of the compression in the two compressor stages.
  • the rotational frequency of the rotary valve 28 may be synchronized with the frequency of the compressor strokes.
  • the high-pressure and low-pressure gas storage 25, 27 could be dispensed with.
  • Fig. 3 shows the invention with two compressor stages 2-1, 2-2 in the form of a working gas 10 promotional compressor device.
  • the structure of the two compressor stages 2-1, 2-2 and the connection of the two compressor stages 2-1, 2-2 with the common pumping device (34) corresponds to the structure in Fig. 1 and 2
  • that of the two heat exchangers 32-1, 32-2 corresponds to the arrangement according to the first embodiment.
  • the working gas 10 is first compressed in the first compressor stage 2-1 from an initial pressure po to a first average pressure p mid1 and then subsequently in the second compressor stage 2-2 from a second average pressure p mid2 to the final pressure p end .
  • a buffer store 42 is connected via a first gas line 40-1 and a first shut-off valve 44-1 to the second low-pressure working gas port 20-2 of the second compressor stage 2-2.
  • the first high pressure Pakistangansan gleich 20-1 is connected to the buffer memory 42.
  • a low-pressure gas storage 27 is connected via a third gas line 40-3 to a first low-pressure working gas connection 20-1 with a check valve 22 in the first compressor stage 2-1.
  • the second high pressure working gas connection 18-2 of the second compressor stage 2-2 is connected via a check valve 22, a second heat exchanger 32- 2 and a fourth gas line 40-4 with a high-pressure gas storage 25.
  • the first compressor stage 2-1 is supplied with working gas 10 to be compressed from the low-pressure gas reservoir 27.
  • FIGS. 4a to 4d the operation of the compressor device after Fig. 3 described.
  • first phase is pumped by the common pumping device 34 working fluid 14 from the first fluid volume 12-1 of the first compressor stage 2-1 in the second fluid volume 12-2 in the second compressor stage 2-1.
  • the first metal bellows 6-1 expands and uncompressed working gas 10 flows via the third gas line 40-3 and the first low-pressure working gas connection 20-1 with check valve 22 into the first gas volume 8-1.
  • the first check valve 44-1 in the first gas line is closed.
  • the second compressor stage 2-2 serves only as a working fluid expansion tank. In the second gas volume 8-2 prevails in the relaxed state, the second average pressure p mid2 and in the compressed state in about the final pressure p end .
  • the first shut-off valve 40-1 is opened during the next compression stroke in the first compressor stage 2-1, so that the working gas 10 pre-compressed to the first average pressure p mid1 from the buffer reservoir 42 via the open first shut-off valve 44th -1 and the first gas line 40-1 can flow into the second gas volume 8-2 of the second compressor stage 2-2, wherein the second average pressure p mid2 sets - see Fig. 4c ,
  • the working fluid 14 is pumped through the common pumping device 34 in the second compressor stage 2-2.
  • the working gas 10 pre-compressed to the second average pressure p mid2 in the second gas volume 8-2 is at the final pressure p end . further compressed and pressed via the second heat exchanger 32-2 and the fourth gas line 40-4 in the high-pressure gas storage 25.
  • the first high-pressure working gas connection 18-1 is connected via a gas line 40-1, 40-2 to the low-pressure working gas connection 20-2 of the second compressor stage 2-2.
  • the buffer memory 42 and the first shut-off valve 44-1 are unnecessary.
  • the working gas 10 is pre-compressed in the first compressor stage 2-1 to a mean pressure p mid and in the countermovement of the common electromotive Pumpeninheimtung 34, the working gas 10 in the second compressor stage 2-2 then compressed to the final pressure p end .
  • the compressed to the final pressure p end working gas is then discharged to the outside or stored in a high-pressure gas storage 25.
  • Fig. 5 shows an application as a drive of a Joule-Thomson refrigerator 50 with closed working gas circuit.
  • Hydraulic oils according to DIN 51524 are suitable as working fluids. These H, HL, HLP and HVLP oils are oils which are well tolerated with common sealants such as NBR (acrylonitrile-butadiene rubber) etc. NBR, however, is not sufficiently helium-tight. HF oils are often incompatible with common sealing materials ( http://de.wikipedia.org/wiki/List of plastics ).
  • water can also be used as the working fluid.
  • Water as a working fluid is also advantageous because in the event of defects, water that has penetrated into a downstream cryocooler can be removed more easily than hydraulic oil that has entered a downstream cooler.
  • water is suitable as a working medium in explosion-protected applications, since water is non-flammable and non-explosive. In addition, water is non-toxic and therefore environmentally friendly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Reciprocating Pumps (AREA)

Claims (9)

  1. Dispositif compresseur avec
    un premier étage compresseur (2-1), qui comporte
    un premier espace de compression (4-1) avec un volume défini, dans lequel un premier soufflet métallique (6-1) subdivise le premier espace de compression (4-1) en un premier volume de gaz (8-1) avec un gaz de travail (10) et un premier volume de fluide (12-1) avec un fluide de travail (14),
    un premier raccord de gaz de travail à haute pression (18-1) et un premier raccord de gaz de travail à basse pression (20-1) qui débouchent dans le premier volume de gaz (8-1) et
    un premier raccord de fluide de travail (16-1) qui débouche dans le premier volume de fluide (12-1) ; et
    un dispositif de pompage (34), qui pompe périodiquement le fluide de travail (14) jusque dans le volume de fluide (12-1) via le premier raccord de fluide de travail (16-1) et qui comprime ainsi périodiquement le gaz de travail (10) dans le volume de gaz (8-1),
    caractérisé en ce que
    il est prévu un deuxième étage compresseur (2-2), qui comprend un deuxième espace de compression (4-2) qu'un deuxième soufflet métallique (8-2) subdivise en un deuxième volume de gaz (8-2) avec du gaz de travail (10) et un deuxième volume de fluide (12-2) avec du fluide de travail (14),
    le deuxième étage compresseur (2-2) comprend un deuxième raccord de gaz de travail à haute pression (18-2) et un deuxième raccord de gaz de travail à basse pression (20-2) qui débouchent dans le deuxième volume de gaz (8-2),
    le deuxième étage compresseur (2-2) comprend un deuxième raccord de fluide de travail (16-2) qui débouche dans le deuxième volume de fluide (12-2),
    le dispositif de pompage (34) est un dispositif de pompage commun,
    le dispositif de pompage commun (34) est relié au deuxième étage compresseur (2-2) via le deuxième raccord de fluide de travail (16-2),
    le deuxième raccord de gaz de travail à basse pression (20-2) du deuxième étage compresseur (2-2) est relié à un réservoir tampon (42) via une première conduite de gaz (40-1) et un premier clapet anti-retour (44-1), et
    le premier raccord de gaz de travail à haute pression (18-1) du premier étage compresseur (2-1) est relié au réservoir tampon (42) via une deuxième conduite de gaz (40-2).
  2. Dispositif compresseur avec
    un premier étage compresseur (2-1), qui comporte
    un premier espace de compression (4-1) avec un volume défini, dans lequel un premier soufflet métallique (6-1) subdivise le premier espace de compression (4-1) en un premier volume de gaz (8-1) avec un gaz de travail (10) et un premier volume de fluide (12-1) avec un fluide de travail (14),
    un premier raccord de gaz de travail à haute pression et un premier raccord de gaz de travail à basse pression (18-1, 20-1) qui débouchent dans le premier volume de gaz (8-1) et
    un premier raccord de fluide de travail (16-1) qui débouche dans le premier volume de fluide (12-1) ; et
    un dispositif de pompage (34), qui pompe périodiquement le fluide de travail (14) jusque dans le volume de fluide (12-1) via le premier raccord de fluide de travail (16-1) et qui comprime ainsi périodiquement le gaz de travail (10) dans le volume de gaz (8-1),
    caractérisé en ce que
    il est prévu un deuxième étage compresseur (2-2), qui comprend un deuxième espace de compression (4-2) qu'un deuxième soufflet métallique (8-2) subdivise en un deuxième volume de gaz (8-2) avec du gaz de travail (10) et un deuxième volume de fluide (12-2) avec du fluide de travail (14),
    le deuxième étage compresseur (2-2) comprend un deuxième raccord de gaz de travail à haute pression et un deuxième raccord de gaz de travail à basse pression (18-2, 20-2) qui débouchent dans le deuxième volume de gaz (8-2),
    le deuxième étage compresseur (2-2) comprend un deuxième raccord de fluide de travail (16-2) qui débouche dans le deuxième volume de fluide (12-2),
    le dispositif de pompage (34) est un dispositif de pompage commun,
    le dispositif de pompage commun (34) est relié au deuxième étage compresseur (2-2) via le deuxième raccord de fluide de travail (16-2),
    le deuxième raccord de gaz de travail à basse pression (20-2) du deuxième étage compresseur (2-2) est relié au premier raccord de gaz de travail à haute pression (18-1) du premier étage compresseur (2-1) via une conduite de gaz (40-1 ; 40-2).
  3. Dispositif compresseur selon la revendication 1 ou 2, caractérisé en ce que
    les raccords de gaz de travail à haute pression (18-1, 18-2) et les raccords de gaz de travail à basse pression (20-1, 20-2) des deux étages compresseurs (2-1, 2-2) sont munis à chaque fois de clapets anti-retour (22),
    les clapets anti-retour (22) au niveau des raccords de gaz de travail à basse pression (20-1, 20-2) sont passants à chaque fois en direction des étages compresseurs (2-1, 2-2), et
    les clapets anti-retour (22) au niveau des raccords de gaz de travail à haute pression (18-1, 18-2) sont passants dans la direction opposée en comparaison des clapets anti-retour au niveau des raccords de gaz de travail à basse pression (20-1, 20-2).
  4. Dispositif compresseur selon l'une quelconque des revendications précédentes 1 à 3, caractérisé en ce qu'un échangeur de chaleur (32-1, 32-2) est placé à chaque fois en aval des raccords de gaz de travail à haute pression (18-1, 18-2) des deux étages compresseurs (2-1, 2-2) afin de refroidir le gaz de travail (10) comprimé.
  5. Dispositif compresseur selon l'une quelconque des revendications précédentes 1 à 4, caractérisé en ce que
    la première conduite de gaz de travail à basse pression (20-1) est reliée à un réservoir de gaz à basse pression (27) via une troisième conduite de gaz (40-3), et
    la deuxième conduite de gaz de travail à haute pression (18-1) du deuxième étage compresseur (2-2) est reliée à un réservoir de gaz à haute pression (25) via une quatrième conduite de gaz (40-4).
  6. Dispositif de refroidissement avec un dispositif compresseur selon la revendication 5 et avec un refroidisseur de Joule-Thomson (50) qui est relié au réservoir de gaz à basse pression (27) et au réservoir de gaz à haute pression (25).
  7. Procédé de fonctionnement d'un dispositif compresseur selon l'une quelconque des revendications 1, 3, 4 ou 5 et d'un dispositif de refroidissement selon la revendication 6, avec les étapes de procédé :
    - compression multiple de gaz de travail (10) dans le premier étage compresseur (2-1) d'une pression initiale (p0) à une première pression moyenne (pmid1), le deuxième étage compresseur (2-2) servant de récipient de compensation de fluide de travail ;
    - stockage temporaire du gaz de travail (10), précomprimé à la première pression moyenne (pmid1), dans un réservoir tampon (42) ;
    - répétition des étapes de procédé précédentes jusqu'à ce que, lors de la liaison du réservoir tampon (42) avec le deuxième volume de gaz (8-2) dans le deuxième étage compresseur (2-2), il s'installe dans le deuxième volume de gaz (8-2) une deuxième pression moyenne (pmid2), avec pmid1 > pmid2 ;
    - transfert du gaz de travail (10), précomprimé à la première pression moyenne (pmid1), du réservoir tampon (42) au volume de gaz (8-2) du deuxième étage compresseur (2-1) ; et
    - compression du gaz de travail (10) précomprimé à la deuxième pression moyenne (pmid2) dans le deuxième étage compresseur (2-2) à la pression finale (pend).
  8. Procédé de fonctionnement d'un dispositif compresseur selon l'une quelconque des revendications 2 à 5 et d'un dispositif de refroidissement selon la revendication 6, avec les étapes de procédé :
    - compression de gaz de travail (10) dans le premier étage compresseur (2-1) d'une pression initiale (p0) à une pression moyenne (pmid) et transfert du gaz de travail (10) précomprimé à la pression moyenne (pmid) jusque dans le deuxième volume de gaz (8-2) du deuxième étage compresseur (2-2) ; et
    - compression du gaz de travail (10) précomprimé à la pression moyenne (pmid) dans le deuxième étage compresseur (2-2) à la pression finale (pend).
  9. Procédé selon la revendication 7 ou 8, caractérisé en ce que le gaz de travail comprimé (10) issu des deux étages compresseurs (2-1, 2-2) est refroidi après chaque course de compresseur.
EP15774869.0A 2014-09-08 2015-09-08 Dispositif de compression, dispositif de refroidissement équipé de celui-ci et procédé pour faire fonctionner le dispositif de compression et le dispositif de refroidissement Active EP3191712B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18195959.4A EP3434897B1 (fr) 2014-09-08 2015-09-08 Dispositif compresseur, dispositif de refroidissement équipé d'un tel dispositif compresseur et procédé de fonctionnement du dispositif compresseur et du dispositif de refroidissement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014217897.5A DE102014217897A1 (de) 2014-09-08 2014-09-08 Kompressorvorrichtung, eine damit ausgerüstete Kühlvorrichtung und ein Verfahren zum Betreiben der Kompressorvorrichtung und der Kühlvorrichtung
PCT/EP2015/070507 WO2016038041A1 (fr) 2014-09-08 2015-09-08 Dispositif de compression, dispositif de refroidissement équipé de celui-ci et procédé pour faire fonctionner le dispositif de compression et le dispositif de refroidissement

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP18195959.4A Division EP3434897B1 (fr) 2014-09-08 2015-09-08 Dispositif compresseur, dispositif de refroidissement équipé d'un tel dispositif compresseur et procédé de fonctionnement du dispositif compresseur et du dispositif de refroidissement
EP18195959.4A Division-Into EP3434897B1 (fr) 2014-09-08 2015-09-08 Dispositif compresseur, dispositif de refroidissement équipé d'un tel dispositif compresseur et procédé de fonctionnement du dispositif compresseur et du dispositif de refroidissement

Publications (2)

Publication Number Publication Date
EP3191712A1 EP3191712A1 (fr) 2017-07-19
EP3191712B1 true EP3191712B1 (fr) 2019-03-13

Family

ID=54251480

Family Applications (2)

Application Number Title Priority Date Filing Date
EP15774869.0A Active EP3191712B1 (fr) 2014-09-08 2015-09-08 Dispositif de compression, dispositif de refroidissement équipé de celui-ci et procédé pour faire fonctionner le dispositif de compression et le dispositif de refroidissement
EP18195959.4A Active EP3434897B1 (fr) 2014-09-08 2015-09-08 Dispositif compresseur, dispositif de refroidissement équipé d'un tel dispositif compresseur et procédé de fonctionnement du dispositif compresseur et du dispositif de refroidissement

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP18195959.4A Active EP3434897B1 (fr) 2014-09-08 2015-09-08 Dispositif compresseur, dispositif de refroidissement équipé d'un tel dispositif compresseur et procédé de fonctionnement du dispositif compresseur et du dispositif de refroidissement

Country Status (6)

Country Link
US (1) US11028841B2 (fr)
EP (2) EP3191712B1 (fr)
JP (1) JP6594959B2 (fr)
CN (1) CN107094367B (fr)
DE (1) DE102014217897A1 (fr)
WO (1) WO2016038041A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11262105B2 (en) * 2018-03-07 2022-03-01 Sumitomo Heavy Industries, Ltd. Cryocooler and cryocooler pipe system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220010934A1 (en) * 2020-07-10 2022-01-13 University Of Maryland, College Park System and method for efficient isothermal compression
DE102021002178A1 (de) * 2021-04-24 2022-10-27 Hydac Technology Gmbh Fördereinrichtung
DE102022115715A1 (de) 2022-06-23 2023-12-28 Pressure Wave Systems Gmbh Kompressorvorrichtung und Kühlvorrichtung mit Kompressorvorrichtung

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE91837C (fr) *
US1580479A (en) * 1924-12-27 1926-04-13 Frankenfield Budd Diaphragm pump
US2613607A (en) * 1949-10-27 1952-10-14 Milton Roy Co Bellows pump
US2772543A (en) * 1953-03-24 1956-12-04 Berry Frank Multiple hydraulic compressor in a refrigeration system
DE1077367B (de) * 1959-02-12 1960-03-10 Basf Ag Verfahren und Vorrichtung zum Umwaelzen von heissen Gasen
US3205679A (en) * 1961-06-27 1965-09-14 Air Prod & Chem Low temperature refrigeration system having filter and absorber means
CH457147A (de) * 1967-01-20 1968-05-31 Hannes Keller Unterwassertechn Membrankompressor oder -pumpe
US4553397A (en) * 1981-05-11 1985-11-19 Soma Kurtis Method and apparatus for a thermodynamic cycle by use of compression
US4551979A (en) * 1981-05-11 1985-11-12 Soma Kurtis Method and apparatus for a thermodynamic cycle by use of distillation
US4617801A (en) * 1985-12-02 1986-10-21 Clark Robert W Jr Thermally powered engine
JPH0776641B2 (ja) * 1986-05-16 1995-08-16 ダイキン工業株式会社 極低温冷凍機
US4673415A (en) * 1986-05-22 1987-06-16 Vbm Corporation Oxygen production system with two stage oxygen pressurization
DE3801160A1 (de) * 1988-01-16 1989-09-21 Filox Gmbh Kolbenmembranpumpe mit oelmotor
JPH062971A (ja) * 1992-06-22 1994-01-11 Aisin Seiki Co Ltd スターリング機関一体型圧縮機
US5381675A (en) * 1993-09-07 1995-01-17 Siegel; Israel Force-sparing balanced bellows refrigeration device
US5375430A (en) * 1993-10-05 1994-12-27 Siegel; Israel Gravity powered shoe air conditioner
US6192695B1 (en) * 1997-11-14 2001-02-27 Tgk Co., Ltd. Refrigerating cycle
JP2001330329A (ja) * 2000-05-23 2001-11-30 Cryodevice Inc リニア圧縮機
US6378312B1 (en) * 2000-05-25 2002-04-30 Cryomech Inc. Pulse-tube cryorefrigeration apparatus using an integrated buffer volume
DE10245694A1 (de) 2002-09-30 2004-04-15 Luther, Gerhard, Dr.rer.nat. Verfahren und Vorrichtung zur Realisierung einer Wärmepumpe oder einer Kältemaschine mittels kombinierter Verdichtung und Verflüssigung durch eine Verdrängungsblase
US7249465B2 (en) * 2004-03-29 2007-07-31 Praxair Technology, Inc. Method for operating a cryocooler using temperature trending monitoring
DE102004020168A1 (de) * 2004-04-24 2005-11-17 Bruker Biospin Gmbh Magnetresonanzapparatur mit gemeinsamem Kompressor
DE102005034907A1 (de) * 2005-07-26 2007-02-01 Linde Ag Verdichter, insbesondere Kolbenverdichter
FR2903456B1 (fr) * 2006-07-07 2008-10-17 Siemens Automotive Hydraulics Pompe transfert a plusieurs pistons
CN2856477Y (zh) * 2006-07-13 2007-01-10 孔照根 柱塞式气泵改良结构
JP2008286109A (ja) * 2007-05-17 2008-11-27 Toyota Industries Corp 固定容量型ピストン式圧縮機における冷媒吸入構造
US8049351B2 (en) * 2007-06-15 2011-11-01 E-Net, Llc Turbine energy generating system
DE202007018538U1 (de) * 2007-12-01 2008-10-23 Knf Neuberger Gmbh Mehrstufige Membran-Saugpumpe
US9518577B2 (en) * 2008-06-27 2016-12-13 Lynntech, Inc. Apparatus for pumping a fluid
US11078897B2 (en) * 2008-06-27 2021-08-03 Lynntech, Inc. Apparatus for pumping fluid
DE102008060598A1 (de) * 2008-12-05 2010-06-10 Thermea. Energiesysteme Gmbh Vorrichtung und Verfahren zur Verdichtung oder Kompression eines Gases
JP5356983B2 (ja) 2009-11-18 2013-12-04 大陽日酸株式会社 極低温冷凍装置及びその運転方法
EP2531729B1 (fr) * 2010-02-02 2020-03-04 Dajustco Ip Holdings Inc. Pompe à diaphragme avec système de commande de fluide hydraulique
US9316419B2 (en) * 2011-03-31 2016-04-19 Carrier Corporation Expander system
GB201209243D0 (en) * 2012-05-25 2012-07-04 Oxford Instr Nanotechnology Tools Ltd Apparatus for reducing vibrations in a pulse tube refrigerator
WO2014005229A1 (fr) * 2012-07-04 2014-01-09 Kairama Inc. Gestion de température pour compression et expansion de gaz
DE102012213293B4 (de) 2012-07-27 2018-03-29 Pressure Wave Systems Gmbh Kompressorvorrichtung sowie eine damit ausgerüstete Kühlvorrichtung und eine damit ausgerüstete Kältemaschine
US9512835B2 (en) * 2012-11-01 2016-12-06 Alloy Bellows and Precision Welding, Inc. High pressure bellows assembly
US20160069359A1 (en) * 2013-04-12 2016-03-10 Edward John Hummelt Pressure vessel having plurality of tubes for heat exchange
DE102013213575A1 (de) * 2013-07-11 2015-01-15 Mahle International Gmbh Wärmerückgewinnungssystem für einen Verbrennungsmotor
WO2015042220A1 (fr) * 2013-09-19 2015-03-26 Halliburton Energy Services, Inc. Collecte et retrait d'un condensat provenant d'un système d'extraction de gaz
KR101885017B1 (ko) * 2014-07-10 2018-08-02 이글 고오교 가부시키가이샤 액체 공급 시스템
JP6353732B2 (ja) * 2014-08-04 2018-07-04 日本ピラー工業株式会社 ベローズポンプ装置
WO2016021350A1 (fr) * 2014-08-08 2016-02-11 日本ピラー工業株式会社 Dispositif de pompe à soufflet
JP6362535B2 (ja) * 2014-12-25 2018-07-25 日本ピラー工業株式会社 ベローズポンプ装置
CN106322807B (zh) * 2015-07-03 2021-05-28 开利公司 喷射器热泵
US10739052B2 (en) * 2015-11-20 2020-08-11 Carrier Corporation Heat pump with ejector
US10551093B2 (en) * 2016-03-16 2020-02-04 Sumitomo Heavy Industries, Ltd. Cryocooler and rotary valve mechanism

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11262105B2 (en) * 2018-03-07 2022-03-01 Sumitomo Heavy Industries, Ltd. Cryocooler and cryocooler pipe system

Also Published As

Publication number Publication date
EP3434897B1 (fr) 2019-12-11
US20170175729A1 (en) 2017-06-22
JP6594959B2 (ja) 2019-10-23
EP3191712A1 (fr) 2017-07-19
DE102014217897A1 (de) 2016-03-10
WO2016038041A1 (fr) 2016-03-17
EP3434897A1 (fr) 2019-01-30
CN107094367B (zh) 2019-10-25
JP2017528644A (ja) 2017-09-28
CN107094367A (zh) 2017-08-25
US11028841B2 (en) 2021-06-08

Similar Documents

Publication Publication Date Title
EP3191712B1 (fr) Dispositif de compression, dispositif de refroidissement équipé de celui-ci et procédé pour faire fonctionner le dispositif de compression et le dispositif de refroidissement
DE69910821T2 (de) Verdichtervorrichtung
DE102005052873A1 (de) Kolbenverdichter und Kältemaschine mit demselben
DE4320529C2 (de) Verdichter
DE102011086476A1 (de) Hochtemperaturwärmepumpe und Verfahren zur Verwendung eines Arbeitsmediums in einer Hochtemperaturwärmepumpe
DE102017116805A1 (de) Tieftemperatur-expander mit kragenstossleiste für reduzierte lärm- und vibrationseigenschaften
EP1812759B1 (fr) Dispositif combine d'expansion-compression a pistons
EP2877748B1 (fr) Dispositif compresseur ainsi qu'un dispositif de réfrigération ainsi équipé et une machine frigorifique ainsi équipée
JP2017528644A5 (fr)
EP2710263B1 (fr) Dispositif de compresseur
DE202012100995U1 (de) Kompressorvorrichtung
DE102011080377B4 (de) Kühlvorrichtung mit Kompressorvorrichtung sowie Gifford-McMahon-Kühler oder Pulsrohrkühler
DE102013114210B3 (de) Vorrichtung zur Verdichtung eines gasförmigen Fluids und Verfahren zum Betreiben der Vorrichtung
DE102011088207A1 (de) Thermische Einrichtung zum Erzeugen von mechanischer und/oder elektrischer Energie
DE102012004801A1 (de) Anordnung für eine Wärmepumpe mit Schraubenverdichter
DE102022115715A1 (de) Kompressorvorrichtung und Kühlvorrichtung mit Kompressorvorrichtung
DE102021102648A1 (de) Kolbenkompressor, insbesondere für eine Wärmepumpe
DE673232C (de) Leistungsregeleinrichtung
WO2016045841A1 (fr) Dispositif de pompage, en particulier pompe à piston axial, pour dispositif de récupération de chaleur perdue d'un véhicule automobile
WO2020141016A1 (fr) Dispositif de connexion, ainsi que compresseur de fluide réfrigérant
DE19635424A1 (de) Hochdruckverdrängerpumpe
DE2000375A1 (de) Gaspumpe- bzw.-verdichter
WO2018166763A1 (fr) Moteur thermique
DE102017011394A1 (de) Gasprozess mit reduzierter Kondensation
DE1080729B (de) Unterdruck- und Kaeltekammer

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170313

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180918

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTC Intention to grant announced (deleted)
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

INTG Intention to grant announced

Effective date: 20190204

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1108055

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015008357

Country of ref document: DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: PRESSURE WAVE SYSTEMS GMBH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190613

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502015008357

Country of ref document: DE

Representative=s name: WINTER, BRANDL, FUERNISS, HUEBNER, ROESS, KAIS, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502015008357

Country of ref document: DE

Owner name: PRESSURE WAVE SYSTEMS GMBH, DE

Free format text: FORMER OWNER: PRESSURE WAVE SYSTEMS GMBH, 80337 MUENCHEN, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502015008357

Country of ref document: DE

Representative=s name: WINTER, BRANDL - PARTNERSCHAFT MBB, PATENTANWA, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190614

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190613

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190713

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015008357

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190713

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

26N No opposition filed

Effective date: 20191216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190908

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190908

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150908

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1108055

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230920

Year of fee payment: 9

Ref country code: GB

Payment date: 20230921

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230918

Year of fee payment: 9

Ref country code: DE

Payment date: 20230817

Year of fee payment: 9