EP3191712B1 - Compressor device, cooling device equipped therewith, and method for operating the compressor device and the cooling device - Google Patents

Compressor device, cooling device equipped therewith, and method for operating the compressor device and the cooling device Download PDF

Info

Publication number
EP3191712B1
EP3191712B1 EP15774869.0A EP15774869A EP3191712B1 EP 3191712 B1 EP3191712 B1 EP 3191712B1 EP 15774869 A EP15774869 A EP 15774869A EP 3191712 B1 EP3191712 B1 EP 3191712B1
Authority
EP
European Patent Office
Prior art keywords
gas
pressure
compressor
working
working gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15774869.0A
Other languages
German (de)
French (fr)
Other versions
EP3191712A1 (en
Inventor
Jens HÖHNE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pressure Wave Systems GmbH
Original Assignee
Pressure Wave Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pressure Wave Systems GmbH filed Critical Pressure Wave Systems GmbH
Priority to EP18195959.4A priority Critical patent/EP3434897B1/en
Publication of EP3191712A1 publication Critical patent/EP3191712A1/en
Application granted granted Critical
Publication of EP3191712B1 publication Critical patent/EP3191712B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/12Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/02Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having bellows
    • F04B45/022Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having bellows with two or more bellows in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/18Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use for specific elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/02Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having bellows
    • F04B45/024Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having bellows with two or more bellows in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/02Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having bellows
    • F04B45/033Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having bellows having fluid drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/02Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect

Definitions

  • the invention relates to a compressor device, a cooling device equipped therewith and a method for operating the compressor device.
  • pulse tube coolers or Gifford-McMahon coolers are used for cooling magnetic resonance tomographs, cryopumps, etc.
  • Gas and especially helium compressors are used in combination with rotary or rotary valves.
  • the rate at which compressed helium is introduced and re-circulated to the cooling device is in the range of 1 Hz.
  • a problem with conventional screw or piston compressors is that oil from the compressor may enter and contaminate the working gas and thus the cooling device ,
  • acoustic compressors or high-frequency compressors in which one or more pistons are caused by a magnetic field in linear resonant vibrations. These resonant frequencies are in the range of a few 10 Hz and are therefore not suitable for use with pulse tube coolers and Gifford-McMahon coolers to produce very low temperatures in the lower than 10 K range.
  • a membrane compressor or pump which has a working space that is divided into a gas volume and a liquid volume by an elastic, gas and liquid-tight membrane.
  • a liquid pump liquid is periodically pressed into the liquid volume of the working space, whereby the elastic membrane expands in the direction of gas volume and this compresses - compressor function - or pushing out of the gas volume - pump function.
  • a disadvantage is the fact that the gas-, liquid-tight and pressure-resistant sealing of the elastic membrane in the working space is relatively expensive. Especially in the field of sealing, the membrane is heavily loaded, so that either very expensive materials must be used or a shorter life has to be accepted.
  • CH 457 147 A also shows a membrane compressor and mentions the lack of tightness of the membrane to helium.
  • DE 20 2007 018538 U1 shows a multi-stage diaphragm suction pump whose pumping chambers work in parallel or serially.
  • a heat pump and a refrigerator with a compressor device are known.
  • the compressor device comprises a compressor chamber in which a balloon is arranged.
  • the balloon is periodically pressurized with liquid so that the gas surrounding the balloon is periodically compressed and relaxed again.
  • the disadvantage here is that the balloon envelope can scrape or rub in certain operating conditions on the hard and possibly edged inner surface of the compressor chamber. As a result, due to the pressure conditions hole or cracking in the balloon envelope occur.
  • the permeability - permeability - of the balloon envelope for helium as a working gas is too large, so you quickly lose substantial amounts of helium. Thus, the service life of such systems with balloon is unsatisfactory.
  • a diaphragm pump for liquids which can also serve as a "gas compression pump".
  • a liquid must be introduced between the membrane and pump valves, ie a liquid is provided in the gas space. It is thus a compression device with a liquid stamp. A physical separation between compressed gas and hydraulic fluid therefore does not take place.
  • DE 10 2008 060598 A1 shows an apparatus for compressing a gas, comprising two cylinder filled with a hydraulic fluid or a working gas. The hydraulic fluid is preferably pumped back and forth between these cylinders with a hydraulic pump. Again, the physical separation between gas and liquid is not sufficient.
  • US 1 580 479 A describes a diaphragm pump with two chambers (or bellows) without working fluid, which are mutually compressed or relaxed via a yoke separating the chambers.
  • WO2014 / 016415A2 is a compressor device with a metal bellows known as a compressor element, which is impermeable to hydrogen except for all possible working gases.
  • the working gas may be due to the Metal bellows are also kept oil-free.
  • the efficiency due to the interaction with the working fluid balance tank is unsatisfactory.
  • the common pumping device is used twice. In each flow direction of the working fluid is a compression of the working gas; in the one flow direction in the first compressor stage and in the opposite direction of flow in the second compressor stage. This increases the efficiency of the compressor device. Characterized in that the high and low pressure gas line are designed so that they act as a gas storage due to their volume, the operating frequency of a compressor operated with the device cooler can be decoupled from the pumping frequency of the pumping device.
  • the compressed working gas is cooled after each compression stroke.
  • first working gas in the first compressor stage is compressed or precompressed and stored temporarily in a buffer memory.
  • the second compressor stage is operated virtually idle and serves as a working fluid expansion tank. If in the buffer memory, a working gas at a mean pressure p mid is reached, which corresponds to the second gas volume in the second compressor stage, in the next compressor stroke in the second compressor stage, the pre-compressed working gas from the buffer memory to the final pressure p end is compressed. The compressed to the final pressure p end working gas is then discharged to the outside or stored in a high-pressure gas storage.
  • first working gas in the first compressor stage is compressed or precompressed and simultaneously transferred to the second gas volume of the second compressor stage.
  • the pre-compressed working gas to the mean pressure p mid is then compressed to the final pressure p end .
  • the compressed to the final pressure p end working gas is then discharged to the outside or stored in a high-pressure gas storage.
  • a working fluid preferably hydraulic oil according to DIN 51524 is used, which is additionally dehydrated or anhydrous.
  • the hydraulic oil is in a closed system of pumping device, working fluid equalizing device and fluid volume in the compressor chamber, so that during operation no water from the environment can be absorbed by the hydraulic oil.
  • water can also be used as the working fluid.
  • Water as a working fluid is also advantageous because in the event of defects, water that has penetrated into a downstream cryocooler can be removed more easily than hydraulic oil that has entered a downstream cooler.
  • water is suitable as a working medium in explosion-protected applications, since water is non-flammable and non-explosive. In addition, water is non-toxic and therefore environmentally friendly.
  • helium, neon or nitrogen is preferably used as working gas.
  • Fig. 1 shows an unclaimed compressor device with a first and a second compressor stage 2-1, 2-2, in the form of a non-promoting compressor device.
  • Each of the two compressor devices 2-1, 2-2 has a gas-tight closed compressor chamber 4-1, 4-2.
  • a metal bellows 6-1, 6-2 is arranged in each of the two compressor rooms 4-1, 4-2.
  • the metal bellows 6-1, 6-2 subdivide the compressor chambers 4-1, 4-2 into a first and a second gas volume 8-1, 8-2 for a working gas 10 and into a first and second fluid volume 12-1, 12, respectively -2 for a working liquid 14.
  • the gas volumes 8-1, 8-2 are inside the metal bellows 6-1, 6-2, and the liquid volumes are outside the bellows 6-1, 6-2.
  • the gas volumes 8-1, 8-2 are each provided with a high pressure working gas port 18-1, 18-2 and a low pressure working gas port 20-1, 20-2 connected.
  • the low pressure working gas ports 20-1, 20-2 are provided with check valves 22 which are permeable toward the compressor stages 2-1, 2-2.
  • the high pressure working gas ports 18-1, 18-2 are also provided with check valves 22 having opposite directions of passage as compared to the check valves 22 on the low pressure working gate ports 20-1, 20-2.
  • the high pressure working gas ports 18-1, 18-2 are connected via the check valves 22 to a common high pressure gas line 24, and the low pressure working gas ports 20-1, 20-2 are connected to a low pressure gas line 26 via the check valves 22.
  • the check valves 22 in the high-pressure working gas ports 18-1, 18-2 are in the direction of common high-pressure gas line 24 and the check valves 22 on the low-pressure working gas ports 20-1, 20-2 are in the direction of compressor stages 2-1, 2-2 permeable.
  • the common high pressure gas line 24 and the common low pressure gas line 26 terminate in a motorized rotary valve 28 which alternately the high pressure gas line 24 and the low pressure gas line 26 with a cooling device 30, for.
  • the high and low pressure gas line 24, 26 act due to their volume as a gas storage or it is explicitly a low-pressure gas storage 27 and a high-pressure gas storage 25 in the low-pressure or high-pressure gas line 26, 24 are provided.
  • the check valves 22 at the two high pressure working gas ports 18-1, 18-2 are each followed by heat exchangers 32-1, 32-2 for cooling the compressed working gas.
  • the two compressor stages 2-1, 2-1 are constructed analogously, ie, the gas volumes 8-1, 8-2 and the liquid volumes 12-1, 12-2 are equal.
  • the two working fluid ports 16-1, 16-2 are connected to a common electromotive pumping device 34, which alternately pumps working fluid 14 into the first and second fluid volumes 12-1, 12-2 of the first and second compressor stages 2-1, 2-2. Ie. either working fluid 14 is pumped from the second fluid volume 12-2 into the first fluid volume 12-1 or vice versa.
  • FIGS. 2a to 2e illustrate the various phases of operation of the compressor device Fig. 1 , In the in Fig. 2a phase shown by the common Pumping 34 working fluid 14 from the second fluid volume 12-2 of the second compressor stage 2-2 in the first fluid volume 12-1 in the first compressor stage 2-1 pumped.
  • the first metal bellows 6-1 is compressed and the working gas 10 therein is pressed into the high pressure gas reservoir 25 via the first high pressure working gas port 18-1, the first heat exchanger 32-1 and the common high pressure gas line 24.
  • the second metal bellows 6-2 expands through working gas 10, which flows back out of the low-pressure working gas reservoir 27 via the low-pressure gas line 26 and the second low-pressure working gas connection 20-2.
  • the rotary valve 28 connects the cooling device 30 via the low pressure gas line 26 with the low pressure gas storage 27th
  • the working fluid flow is reversed and the pumping device 34 now pumps working fluid 14 from the first fluid volume 12-1 of the first compressor stage 2-1 in the second fluid volume 12-2 in the second compressor stage 2-2.
  • the second metal bellows 6-2 is compressed and the working gas 10 therein is compressed and pressed into the high pressure gas reservoir 25 via the second high pressure working gas port 18-1, the second heat exchanger 32-2 and the common high pressure gas line 24.
  • the first metal bellows 6-1 expands through working gas 10 flowing back from the low-pressure gas reservoir 27 via the low-pressure gas line 26 and the first low-pressure working gas port 20-1.
  • Fig. 2e phase shown is again the first phase and the compression takes place in the first compressor stage 2-1.
  • Fig. 2a and 2e differ only in that in Fig. 2e the first metal bellows 6-1 still relaxed and the second metal bellows 6-2 is still compressed.
  • Fig. 2a is the compression in the first compressor stage 2-1 completed and the first metal bellows 6-1 is compressed, while the second metal bellows 6-2 is relaxed.
  • the rotational frequency of the rotary valve 28 is decoupled from the frequency of the compression in the two compressor stages.
  • the rotational frequency of the rotary valve 28 may be synchronized with the frequency of the compressor strokes.
  • the high-pressure and low-pressure gas storage 25, 27 could be dispensed with.
  • Fig. 3 shows the invention with two compressor stages 2-1, 2-2 in the form of a working gas 10 promotional compressor device.
  • the structure of the two compressor stages 2-1, 2-2 and the connection of the two compressor stages 2-1, 2-2 with the common pumping device (34) corresponds to the structure in Fig. 1 and 2
  • that of the two heat exchangers 32-1, 32-2 corresponds to the arrangement according to the first embodiment.
  • the working gas 10 is first compressed in the first compressor stage 2-1 from an initial pressure po to a first average pressure p mid1 and then subsequently in the second compressor stage 2-2 from a second average pressure p mid2 to the final pressure p end .
  • a buffer store 42 is connected via a first gas line 40-1 and a first shut-off valve 44-1 to the second low-pressure working gas port 20-2 of the second compressor stage 2-2.
  • the first high pressure Pakistangansan gleich 20-1 is connected to the buffer memory 42.
  • a low-pressure gas storage 27 is connected via a third gas line 40-3 to a first low-pressure working gas connection 20-1 with a check valve 22 in the first compressor stage 2-1.
  • the second high pressure working gas connection 18-2 of the second compressor stage 2-2 is connected via a check valve 22, a second heat exchanger 32- 2 and a fourth gas line 40-4 with a high-pressure gas storage 25.
  • the first compressor stage 2-1 is supplied with working gas 10 to be compressed from the low-pressure gas reservoir 27.
  • FIGS. 4a to 4d the operation of the compressor device after Fig. 3 described.
  • first phase is pumped by the common pumping device 34 working fluid 14 from the first fluid volume 12-1 of the first compressor stage 2-1 in the second fluid volume 12-2 in the second compressor stage 2-1.
  • the first metal bellows 6-1 expands and uncompressed working gas 10 flows via the third gas line 40-3 and the first low-pressure working gas connection 20-1 with check valve 22 into the first gas volume 8-1.
  • the first check valve 44-1 in the first gas line is closed.
  • the second compressor stage 2-2 serves only as a working fluid expansion tank. In the second gas volume 8-2 prevails in the relaxed state, the second average pressure p mid2 and in the compressed state in about the final pressure p end .
  • the first shut-off valve 40-1 is opened during the next compression stroke in the first compressor stage 2-1, so that the working gas 10 pre-compressed to the first average pressure p mid1 from the buffer reservoir 42 via the open first shut-off valve 44th -1 and the first gas line 40-1 can flow into the second gas volume 8-2 of the second compressor stage 2-2, wherein the second average pressure p mid2 sets - see Fig. 4c ,
  • the working fluid 14 is pumped through the common pumping device 34 in the second compressor stage 2-2.
  • the working gas 10 pre-compressed to the second average pressure p mid2 in the second gas volume 8-2 is at the final pressure p end . further compressed and pressed via the second heat exchanger 32-2 and the fourth gas line 40-4 in the high-pressure gas storage 25.
  • the first high-pressure working gas connection 18-1 is connected via a gas line 40-1, 40-2 to the low-pressure working gas connection 20-2 of the second compressor stage 2-2.
  • the buffer memory 42 and the first shut-off valve 44-1 are unnecessary.
  • the working gas 10 is pre-compressed in the first compressor stage 2-1 to a mean pressure p mid and in the countermovement of the common electromotive Pumpeninheimtung 34, the working gas 10 in the second compressor stage 2-2 then compressed to the final pressure p end .
  • the compressed to the final pressure p end working gas is then discharged to the outside or stored in a high-pressure gas storage 25.
  • Fig. 5 shows an application as a drive of a Joule-Thomson refrigerator 50 with closed working gas circuit.
  • Hydraulic oils according to DIN 51524 are suitable as working fluids. These H, HL, HLP and HVLP oils are oils which are well tolerated with common sealants such as NBR (acrylonitrile-butadiene rubber) etc. NBR, however, is not sufficiently helium-tight. HF oils are often incompatible with common sealing materials ( http://de.wikipedia.org/wiki/List of plastics ).
  • water can also be used as the working fluid.
  • Water as a working fluid is also advantageous because in the event of defects, water that has penetrated into a downstream cryocooler can be removed more easily than hydraulic oil that has entered a downstream cooler.
  • water is suitable as a working medium in explosion-protected applications, since water is non-flammable and non-explosive. In addition, water is non-toxic and therefore environmentally friendly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Reciprocating Pumps (AREA)

Description

Die Erfindung betrifft eine Kompressorvorrichtung, eine damit ausgerüstete Kühlvorrichtung und ein Verfahren zum Betreiben der Kompressorvorrichtung.The invention relates to a compressor device, a cooling device equipped therewith and a method for operating the compressor device.

Zur Kühlung von Kernspintomographen, Kryo-Pumpen etc. werden Pulsrohrkühler oder Gifford-McMahon-Kühler eingesetzt. Hierbei kommen Gas- und insbesondere Heliumkompressoren in Kombination mit Rotations- bzw. Drehventilen zum Einsatz. Die Rate mit der verdichtetes Helium in die Kühlvorrichtung eingeführt und wieder ausgeführt wird liegt im Bereich von 1 Hz. Ein Problem von herkömmlichen Schrauben- oder Kolbenkompressoren besteht darin, dass Öl aus dem Kompressor in das Arbeitsgas und damit in die Kühleinrichtung gelangen und diese verunreinigen kann.For cooling magnetic resonance tomographs, cryopumps, etc., pulse tube coolers or Gifford-McMahon coolers are used. Gas and especially helium compressors are used in combination with rotary or rotary valves. The rate at which compressed helium is introduced and re-circulated to the cooling device is in the range of 1 Hz. A problem with conventional screw or piston compressors is that oil from the compressor may enter and contaminate the working gas and thus the cooling device ,

Es sind auch akustische Kompressoren oder Hochfrequenzkompressoren bekannt, bei denen ein oder mehrere Kolben durch ein Magnetfeld in lineare Resonanzschwingungen versetzt werden. Diese Resonanzfrequenzen liegen im Bereich von einigen 10 Hz und sind daher nicht für die Verwendung mit Pulsrohrkühlern und Gifford-McMahon-Kühlern zur Erzeugung sehr tiefer Temperaturen im Bereich kleiner 10 K geeignet.There are also known acoustic compressors or high-frequency compressors in which one or more pistons are caused by a magnetic field in linear resonant vibrations. These resonant frequencies are in the range of a few 10 Hz and are therefore not suitable for use with pulse tube coolers and Gifford-McMahon coolers to produce very low temperatures in the lower than 10 K range.

Aus der CH 457147 B ist ein Membrankompressor oder -pumpe bekannt, die einen Arbeitsraum aufweist, dass durch eine elastische, gas- und flüssigkeitsdichte Membran in ein Gasvolumen und ein Flüssigkeitsvolumen unterteilt ist. Mittels einer Flüssigkeitspumpe wird Flüssigkeit periodisch in das Flüssigkeitsvolumen des Arbeitsraums gedrückt, wodurch die elastische Membran sich in Richtung Gasvolumen ausdehnt und dieses komprimiert - Kompressorfunktion - oder aus dem Gasvolumen herausschiebt - Pumpenfunktion. Nachteilig ist herbei, dass die gas-, flüssigkeitsdichte und drückresistente Abdichtung der elastischen Membran in dem Arbeitsraum vergleichsweise aufwendig ist. Insbesondere im Bereich der Abdichtung wird die Membran stark belastet, so dass entweder sehr teuere Materialien verwendet werden müssen oder eine geringere Lebensdauer in Kauf genommen werden muss.From the CH 457147 B For example, a membrane compressor or pump is known, which has a working space that is divided into a gas volume and a liquid volume by an elastic, gas and liquid-tight membrane. By means of a liquid pump liquid is periodically pressed into the liquid volume of the working space, whereby the elastic membrane expands in the direction of gas volume and this compresses - compressor function - or pushing out of the gas volume - pump function. A disadvantage is the fact that the gas-, liquid-tight and pressure-resistant sealing of the elastic membrane in the working space is relatively expensive. Especially in the field of sealing, the membrane is heavily loaded, so that either very expensive materials must be used or a shorter life has to be accepted.

CH 457 147 A zeigt ebenfalls einen Membrankompressor und erwähnt hierbei die fehlende Dichtheit der Membran gegenüber Helium. DE 20 2007 018538 U1 zeigt eine mehrstufige Membran-Saugpumpe, deren Pumpräume parallel oder seriell arbeiten. CH 457 147 A also shows a membrane compressor and mentions the lack of tightness of the membrane to helium. DE 20 2007 018538 U1 shows a multi-stage diaphragm suction pump whose pumping chambers work in parallel or serially.

Aus der DE10344698B4 sind eine Wärmepumpe und eine Kältemaschine mit einer Kompressoreinrichtung bekannt. Die Kompressoreinrichtung umfasst einen Verdichterraum in dem ein Ballon angeordnet ist. Der Ballon wird periodisch mit Flüssigkeit beaufschlagt, so dass das den Ballon umgebende Gas periodisch verdichtet und wieder entspannt wird. Nachteilig hierbei ist, dass der Ballonhülle bei bestimmten Betriebszuständen an der harten und eventuell kantigen Innenoberfläche des Verdichterraums in schaben oder reiben kann. Hierdurch können aufgrund der Druckverhältnisse Loch- bzw. Rissbildung in der Ballonhülle auftreten. Zudem ist die Durchlässigkeit - Permeabilität - der Ballonhülle für Helium als Arbeitsgas zu groß, so dass man schnell substantielle Mengen von Helium verliert. Damit ist die Standzeit derartiger Systeme mit Ballon unbefriedigend.From the DE10344698B4 For example, a heat pump and a refrigerator with a compressor device are known. The compressor device comprises a compressor chamber in which a balloon is arranged. The balloon is periodically pressurized with liquid so that the gas surrounding the balloon is periodically compressed and relaxed again. The disadvantage here is that the balloon envelope can scrape or rub in certain operating conditions on the hard and possibly edged inner surface of the compressor chamber. As a result, due to the pressure conditions hole or cracking in the balloon envelope occur. In addition, the permeability - permeability - of the balloon envelope for helium as a working gas is too large, so you quickly lose substantial amounts of helium. Thus, the service life of such systems with balloon is unsatisfactory.

Aus der DE-A-91837 ist eine Membranpumpe für Flüssigkeiten bekannt, die auch als "Gascompressionspumpe" dienen kann. Hierzu wird angegeben, dass zwischen Membran und Pumpventilen eine Flüssigkeit eingebracht werden muss, d. h. im Gasraum ist eine Flüssigkeit vorgesehen. Es handelt sich somit um eine Kompressionsvorrichtung mit einem Flüssigkeitsstempel. Eine physische Trennung zwischen zu komprimierendem Gas und Hydraulikflüssigkeit findet daher nicht statt. DE 10 2008 060598 A1 zeigt eine Vorrichtung zur Kompression eines Gases, umfassend zwei mit einer Hydraulikflüssigkeit bzw. einem Arbeitsgas gefüllte Zylinder. Die Hydraulikflüssigkeit wird vorzugsweise mit einer Hydraulikpumpe zwischen diesen Zylindern hin und her gepumpt. Auch hier ist die physische Trennung zwischen Gas und Flüssigkeit nicht ausreichend.From the DE-A-91837 is known a diaphragm pump for liquids, which can also serve as a "gas compression pump". For this purpose it is stated that a liquid must be introduced between the membrane and pump valves, ie a liquid is provided in the gas space. It is thus a compression device with a liquid stamp. A physical separation between compressed gas and hydraulic fluid therefore does not take place. DE 10 2008 060598 A1 shows an apparatus for compressing a gas, comprising two cylinder filled with a hydraulic fluid or a working gas. The hydraulic fluid is preferably pumped back and forth between these cylinders with a hydraulic pump. Again, the physical separation between gas and liquid is not sufficient.

US 1 580 479 A beschreibt eine Membranpumpe mit zwei Kammern (bzw. Faltenbälgen) ohne Arbeitsflüssigkeit, welche über ein die Kammern trennendes Joch wechselseitig komprimiert bzw. entspannt werden. US 1 580 479 A describes a diaphragm pump with two chambers (or bellows) without working fluid, which are mutually compressed or relaxed via a yoke separating the chambers.

Aus der WO2014/016415A2 ist eine Kompressorvorrichtung mit einem Metallfaltenbalg als Verdichterelement bekannt, der mit Ausnahme von Wasserstoff für alle möglichen Arbeitsgase undurchlässig ist. Das Arbeitsgas kann aufgrund des Metallfaltenbalgs auch ölfrei gehalten werden. Allerdings ist die Effizienz aufgrund der Wechselwirkung mit dem Arbeitsflüssigkeitsausgleichbehälter unbefriedigend.From the WO2014 / 016415A2 is a compressor device with a metal bellows known as a compressor element, which is impermeable to hydrogen except for all possible working gases. The working gas may be due to the Metal bellows are also kept oil-free. However, the efficiency due to the interaction with the working fluid balance tank is unsatisfactory.

Ausgehend von der WO2014/016415A2 ist es daher Aufgabe der Erfindung, eine Kompressorvorrichtung mit einem Metallfaltenbalg als Verdichterelement anzugeben, die effizienter ist. Weiter ist es Aufgabe der Erfindung eine Kühlvorrichtung sowie ein Verfahren zum Betreiben der Kompressorvorrichtung anzugeben.Starting from the WO2014 / 016415A2 It is therefore an object of the invention to provide a compressor device with a metal bellows as the compressor element, which is more efficient. It is another object of the invention to provide a cooling device and a method for operating the compressor device.

Die Lösung dieser Aufgaben erfolgt durch die Merkmale der Ansprüche.The solution of these objects is achieved by the features of the claims.

Dadurch, dass der aus der WO2014/016415A2 bekannte Arbeitsflüssigkeitsausgleichbehälter zu einer zweiten Verdichterstufe erweitert wird, wird die gemeinsame Pumpeinrichtung doppelt genutzt. In jeder Strömungsrichtung der Arbeitsmittelflüssigkeit erfolgt eine Verdichtung des Arbeitsgases; in der einen Strömungsrichtung in der ersten Verdichterstufe und in der entgegen gesetzten Strömungsrichtung in der zweiten Verdichterstufe. Damit erhöht sich die Effizienz der Kompressorvorrichtung. Dadurch, dass die Hoch- und Niederdruckgasleitung so ausgestaltet werden, dass sie aufgrund ihres Volumens als Gasspeicher wirken, kann die Arbeitsfrequenz eines mit der Kompressorvorrichtung betriebenen Kühlers von der Pumpfrequenz der Pumpeinrichtung entkoppelt werden.Because of that from the WO2014 / 016415A2 known working fluid balance tank is extended to a second compressor stage, the common pumping device is used twice. In each flow direction of the working fluid is a compression of the working gas; in the one flow direction in the first compressor stage and in the opposite direction of flow in the second compressor stage. This increases the efficiency of the compressor device. Characterized in that the high and low pressure gas line are designed so that they act as a gas storage due to their volume, the operating frequency of a compressor operated with the device cooler can be decoupled from the pumping frequency of the pumping device.

Durch Rückschlagventile an den Hochdruck- und Niederdruck-Arbeitsgasanschlüssen wird der Gasstrom bei Verdichtung und Entspannung auf einfache Weise gesteuert.By check valves at the high pressure and low pressure working gas connections, the gas flow is controlled in compression and expansion in a simple manner.

Durch den Hochdruck-Arbeitsgasanschlüssen in den beiden Verdichterstufen nach geschalteten Wärmetauschern wird das komprimierte Arbeitsgas nach jedem Verdichtungshub gekühlt.By the high pressure working gas connections in the two compressor stages after switched heat exchangers, the compressed working gas is cooled after each compression stroke.

Mehrstufiger Metallfaltenbalg-KompressorMulti-stage metal bellows compressor

Bei dem fördernden Verdichter nach der Erfindung der Ansprüche 1 und 5 wird zunächst Arbeitsgas in der ersten Verdichterstufe verdichtet bzw. vorverdichtet und in einem Pufferspeicher zwischengespeichert. Die zweite Verdichterstufe wird quasi im Leerlauf betrieben und dient als Arbeitsflüssigkeitsausgleichsbehälter. Wenn in dem Pufferspeicher eine Arbeitsgasmenge bei einem mittleren Druck pmid erreicht ist, die dem zweiten Gasvolumen in der zweiten Verdichterstufe entspricht, wird in nächsten Verdichterhub in der zweiten Verdichterstufe das vorverdichtete Arbeitsgas aus dem Pufferspeicher auf den Enddruck pend verdichtet. Das auf den Enddruck pend verdichtete Arbeitsgas wird dann nach außen abgegeben oder in einem Hochdruckgasspeicher gespeichert.In the conveying compressor according to the invention of claims 1 and 5, first working gas in the first compressor stage is compressed or precompressed and stored temporarily in a buffer memory. The second compressor stage is operated virtually idle and serves as a working fluid expansion tank. If in the buffer memory, a working gas at a mean pressure p mid is reached, which corresponds to the second gas volume in the second compressor stage, in the next compressor stroke in the second compressor stage, the pre-compressed working gas from the buffer memory to the final pressure p end is compressed. The compressed to the final pressure p end working gas is then discharged to the outside or stored in a high-pressure gas storage.

Bei dem Verdichter der Ansprüche 2 und 5 wird zunächst Arbeitsgas in der ersten Verdichterstufe verdichtet bzw. vorverdichtet und gleichzeitig in das zweite Gasvolumen der zweiten Verdichterstufe überführt. In der zweiten Verdichterstufe wird dann das auf den mittleren Druck pmid vorverdichtete Arbeitsgas auf den Enddruck pend verdichtet. Das auf den Enddruck pend verdichtete Arbeitsgas wird dann nach außen abgegeben oder in einem Hochdruckgasspeicher gespeichert.In the compressor of claims 2 and 5, first working gas in the first compressor stage is compressed or precompressed and simultaneously transferred to the second gas volume of the second compressor stage. In the second compressor stage, the pre-compressed working gas to the mean pressure p mid is then compressed to the final pressure p end . The compressed to the final pressure p end working gas is then discharged to the outside or stored in a high-pressure gas storage.

Als Arbeitsflüssigkeit wird bevorzugt Hydrauliköl nach DIN 51524 eingesetzt, das zusätzlich entwässert bzw. wasserfrei ist. Das Hydrauliköl befindet sich in einem geschlossenen System aus Pumpeinrichtung, Arbeitsflüssigkeitsausgleichseinrichtung und Flüssigkeitsvolumen im Verdichterraum, so dass während des Betriebs kein Wasser aus der Umgebung durch das Hydrauliköl aufgenommen werden kann. Alternativ kann auch Wasser als Arbeitsflüssigkeit verwendet werden. Wasser als Arbeitsmittel ist auch vorteilhaft, da bei Defekten ein in einen nachgeschalteten Kryo-Kühler eingedrungenes Wasser leichter wieder entfernt werden kann als in einen nachgeschalteten Kühler eingedrungenes Hydrauliköl. Auch bietet sich Wasser als Arbeitsmittel bei explosionsgeschützten Anwendungen an, da Wasser nicht brennbar und nicht explosiv ist. Außerdem ist Wasser ungiftig und damit umweltfreundlich.As a working fluid preferably hydraulic oil according to DIN 51524 is used, which is additionally dehydrated or anhydrous. The hydraulic oil is in a closed system of pumping device, working fluid equalizing device and fluid volume in the compressor chamber, so that during operation no water from the environment can be absorbed by the hydraulic oil. Alternatively, water can also be used as the working fluid. Water as a working fluid is also advantageous because in the event of defects, water that has penetrated into a downstream cryocooler can be removed more easily than hydraulic oil that has entered a downstream cooler. Also, water is suitable as a working medium in explosion-protected applications, since water is non-flammable and non-explosive. In addition, water is non-toxic and therefore environmentally friendly.

Für Kryo-Anwendungen wird je nach Temperaturbereich vorzugsweise Helium, Neon oder Stickstoff als Arbeitsgas verwendet.For cryogenic applications, depending on the temperature range, helium, neon or nitrogen is preferably used as working gas.

Mehrstufiger Metallfaltenbalg-KompressorMulti-stage metal bellows compressor

Die übrigen Unteransprüche beziehen sich auf weitere vorteilhafte Ausgestaltungen der Erfindung. Weitere Einzelheiten, Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung verschiedener Ausführungsformen.The remaining subclaims relate to further advantageous embodiments of the invention. Further details, features and advantages of the invention will become apparent from the following description of various embodiments.

Es zeigt:

  • Fig. 1 eine schematische Darstellung eines nicht beanspruchten Verdichters mit zwei Verdichterstufen als nicht-fördernde Kompressorvorrichtung,
  • Fig. 2a bis 2e schematische Darstellungen dieses Verdichters,
  • Fig. 3 eine schematische Darstellung der Erfindung mit zwei Verdichterstufen als fördernde Kompressorvorrichtung,
  • Fig. 4a bis 4d schematische Darstellungen der zum Betrieb dieses Verdichters, und
  • Fig. 5 eine Anwendung der Erfindung als Antrieb eines Joule-Thomson-Kühlers.
It shows:
  • Fig. 1 a schematic representation of an unclaimed compressor with two compressor stages as a non-promotional compressor device,
  • Fig. 2a to 2e schematic representations of this compressor,
  • Fig. 3 a schematic representation of the invention with two compressor stages as a promotional compressor device,
  • Fig. 4a to 4d schematic representations of the operation of this compressor, and
  • Fig. 5 an application of the invention as a drive a Joule-Thomson cooler.

Fig. 1 zeigt eine nicht beanspruchte Kompressorvorrichtung mit einer ersten und einer zweiten Verdichterstufe 2-1, 2-2, in Form einer nichtfördernden Kompressorvorrichtung. Jede der zwei, Verdichtereinrichtungen 2-1, 2-2 weist einen gasdicht geschlossenen Verdichterraum 4-1, 4-2 auf. In jedem der beiden Verdichterräume 4-1, 4-2 ist ein Metallfaltenbalg 6-1, 6-2 angeordnet. Die Metallfaltenbälge 6-1, 6-2 unterteilen die Verdichterräume 4-1, 4-2 in ein erstes bzw. zweites Gasvolumen 8-1, 8-2 für ein Arbeitsgas 10 und in ein erstes bzw. zweites Flüssigkeitsvolumen 12-1, 12-2 für eine Arbeitsflüssigkeit 14. Die Gasvolumen 8-1, 8-2 sind im Inneren der Metallfaltenbälge 6-1, 6-2 und die Flüssigkeitsvolumina sind außerhalb der Faltenbälge 6-1, 6-2. Aus den Flüssigkeitsvolumina 12-1, 12-2 führt ein jeweils Arbeitsflüssigkeitsanschluss 16-1, 16-2 heraus. Die Gasvolumina 8-1, 8-2 sind jeweils mit einem Hochdruck-Arbeitsgasanschluss 18-1, 18-2 und einem Niederdruck-Arbeitsgasanschluss 20-1, 20-2 verbunden. Die Niederdruck-Arbeitsgasanschlüsse 20-1, 20-2 sind mit Rückschlagventilen 22 versehen, die in Richtung zu den Verdichterstufen 2-1, 2-2 durchlässig sind. Die Hochdruck-Arbeitsgasanschlüsse 18-1, 18-2 sind ebenfalls mit Rückschlagventilen 22 versehen, die eine im Vergleich zu den Rückschlagventilen 22 an den Niederdruck-Arbeitsgansanschlüssen 20-1, 20-2 entgegengesetzte Durchlassrichtungen aufweisen. Die Hochdruck-Arbeitsgasanschlüsse 18-1, 18-2 sind über die Rückschlagventile 22 mit einer gemeinsamen Hochdruckgasleitung 24 und die Niederdruck-Arbeitsgasanschlüsse 20-1, 20-2 sind über die Rückschlagventile 22 mit einer Niederdruckgasleitung 26 verbunden. Die Rückschlagventile 22 in den Hochdruck-Arbeitgasanschlüssen 18-1, 18-2 sind in Richtung gemeinsamer Hochdruckgasleitung 24 und die Rückschlagventile 22 an den Niederdruck-Arbeitsgasanschlüssen 20-1, 20-2 sind in Richtung Verdichterstufen 2-1, 2-2 durchlässig. Die gemeinsame Hochdruckgasleitung 24 und die gemeinsame Niederdruckgasleitung 26 enden in einem motorischen Drehventil 28, das abwechselnd die Hochdruckgasleitung 24 und die Niederdruckgasleitung 26 mit einer Kühlvorrichtung 30, z. B. in Form eines Gifford-McMahon-Kühler oder eines Pulsrohrkühlers, verbindet. Die Hoch- und Niederdruckgasleitung 24, 26 wirken aufgrund Ihres Volumens als Gasspeicher bzw. es sind explizit ein Niederdruckgasspeicher 27 und ein Hochdruckgasspeicher 25 in der Niederdruck- bzw. Hochdruckgasleitung 26, 24 vorgesehen. Den Rückschlagventilen 22 an den beiden Hochdruck-Arbeitsgasanschlüssen 18-1, 18-2 sind jeweils Wärmetauscher 32-1, 32-2 zum Kühlen des komprimierten Arbeitsgases nachgeschaltet. Die beiden Verdichterstufen 2-1, 2-1 sind analog aufgebaut, d. h. auch die Gasvolumen 8-1, 8-2 und die Flüssigkeitsvolumen 12-1, 12-2 sind gleich. Fig. 1 shows an unclaimed compressor device with a first and a second compressor stage 2-1, 2-2, in the form of a non-promoting compressor device. Each of the two compressor devices 2-1, 2-2 has a gas-tight closed compressor chamber 4-1, 4-2. In each of the two compressor rooms 4-1, 4-2, a metal bellows 6-1, 6-2 is arranged. The metal bellows 6-1, 6-2 subdivide the compressor chambers 4-1, 4-2 into a first and a second gas volume 8-1, 8-2 for a working gas 10 and into a first and second fluid volume 12-1, 12, respectively -2 for a working liquid 14. The gas volumes 8-1, 8-2 are inside the metal bellows 6-1, 6-2, and the liquid volumes are outside the bellows 6-1, 6-2. From the liquid volumes 12-1, 12-2 performs a respective working fluid port 16-1, 16-2 out. The gas volumes 8-1, 8-2 are each provided with a high pressure working gas port 18-1, 18-2 and a low pressure working gas port 20-1, 20-2 connected. The low pressure working gas ports 20-1, 20-2 are provided with check valves 22 which are permeable toward the compressor stages 2-1, 2-2. The high pressure working gas ports 18-1, 18-2 are also provided with check valves 22 having opposite directions of passage as compared to the check valves 22 on the low pressure working gate ports 20-1, 20-2. The high pressure working gas ports 18-1, 18-2 are connected via the check valves 22 to a common high pressure gas line 24, and the low pressure working gas ports 20-1, 20-2 are connected to a low pressure gas line 26 via the check valves 22. The check valves 22 in the high-pressure working gas ports 18-1, 18-2 are in the direction of common high-pressure gas line 24 and the check valves 22 on the low-pressure working gas ports 20-1, 20-2 are in the direction of compressor stages 2-1, 2-2 permeable. The common high pressure gas line 24 and the common low pressure gas line 26 terminate in a motorized rotary valve 28 which alternately the high pressure gas line 24 and the low pressure gas line 26 with a cooling device 30, for. In the form of a Gifford-McMahon cooler or a pulse tube refrigerator. The high and low pressure gas line 24, 26 act due to their volume as a gas storage or it is explicitly a low-pressure gas storage 27 and a high-pressure gas storage 25 in the low-pressure or high-pressure gas line 26, 24 are provided. The check valves 22 at the two high pressure working gas ports 18-1, 18-2 are each followed by heat exchangers 32-1, 32-2 for cooling the compressed working gas. The two compressor stages 2-1, 2-1 are constructed analogously, ie, the gas volumes 8-1, 8-2 and the liquid volumes 12-1, 12-2 are equal.

Die beiden Arbeitsflüssigkeitsanschlüsse 16-1, 16-2 sind mit einer gemeinsamen elektromotorischen Pumpeinrichtung 34 verbunden, die abwechselnd Arbeitsflüssigkeit 14 in das erste und zweite Flüssigkeitsvolumen 12-1, 12-2 der ersten und zweiten Verdichterstufe 2-1, 2-2 pumpt. D. h. es wird entweder Arbeitsflüssigkeit 14 aus dem zweiten Flüssigkeitsvolumen 12-2 in das erste Flüssigkeitsvolumen 12-1 gepumpt oder umgekehrt.The two working fluid ports 16-1, 16-2 are connected to a common electromotive pumping device 34, which alternately pumps working fluid 14 into the first and second fluid volumes 12-1, 12-2 of the first and second compressor stages 2-1, 2-2. Ie. either working fluid 14 is pumped from the second fluid volume 12-2 into the first fluid volume 12-1 or vice versa.

Die Figuren 2a bis 2e illustrieren die verschiedenen Betriebsphasen der Kompressorvorrichtung nach Fig. 1. In der in Fig. 2a gezeigten Phase wird durch die gemeinsame Pumpeinrichtung 34 Arbeitsflüssigkeit 14 aus dem zweiten Flüssigkeitsvolumen 12-2 der zweiten Verdichterstufe 2-2 in das erste Flüssigkeitsvolumen 12-1 in der ersten Verdichterstufe 2-1 gepumpt. Der erste Metallfaltenbalg 6-1 wird zusammengepresst und das darin befindliche Arbeitsgas 10 wird über den ersten Hochdruck-Arbeitsgasanschluss 18-1, den ersten Wärmetauscher 32-1 und die gemeinsame Hochdruckgasleitung 24 in den Hochdruckgasspeicher 25 gepresst. Der zweite Metallfaltenbalg 6-2 dehnt sich durch Arbeitsgas 10 aus, das über die Niederdruckgasleitung 26 und den zweiten Niederdruck-Arbeitsgasanschluss 20-2 aus dem Niederdruck-Arbeitsgasspeicher 27 zurückströmt. Das Drehventil 28 verbindet die Kühleinrichtung 30 über die Niederdruckgasleitung 26 mit dem Niederdruckgasspeicher 27.The FIGS. 2a to 2e illustrate the various phases of operation of the compressor device Fig. 1 , In the in Fig. 2a phase shown by the common Pumping 34 working fluid 14 from the second fluid volume 12-2 of the second compressor stage 2-2 in the first fluid volume 12-1 in the first compressor stage 2-1 pumped. The first metal bellows 6-1 is compressed and the working gas 10 therein is pressed into the high pressure gas reservoir 25 via the first high pressure working gas port 18-1, the first heat exchanger 32-1 and the common high pressure gas line 24. The second metal bellows 6-2 expands through working gas 10, which flows back out of the low-pressure working gas reservoir 27 via the low-pressure gas line 26 and the second low-pressure working gas connection 20-2. The rotary valve 28 connects the cooling device 30 via the low pressure gas line 26 with the low pressure gas storage 27th

In der in Fig. 2b gezeigten zweiten Phase ist die Verdichtung in der ersten Verdichterstufe 2-1 vollständig und das Drehventil 28 verbindet den Hochdruckgasspeicher 25 mit der Kühleinrichtung 30, so dass verdichtetes und in dem ersten Wärmetauscher 32-1 gekühltes Arbeitsgas 10 in die Kühleinrichtung 30 gelangt.In the in Fig. 2b As shown in the second phase, the compression in the first compressor stage 2-1 is complete and the rotary valve 28 connects the high-pressure gas storage 25 with the cooling device 30, so that compressed and cooled in the first heat exchanger 32-1 working gas 10 enters the cooling device 30.

In der in Fig. 2c gezeigten dritten Phase kehrt sich der Arbeitsflüssigkeitsstrom um und die Pumpeinrichtung 34 pumpt nun Arbeitsflüssigkeit 14 aus dem ersten Flüssigkeitsvolumen 12-1 der ersten Verdichterstufe 2-1 in das zweite Flüssigkeitsvolumen 12-2 in der zweiten Verdichterstufe 2-2. Dadurch wird der zweite Metallfaltenbalg 6-2 zusammengepresst und das darin befindliche Arbeitsgas 10 wird komprimiert und über den zweiten Hochdruck-Arbeitsgasanschluss 18-1, den zweiten Wärmetauscher 32-2 und die gemeinsame Hochdruckgasleitung 24 in den Hochdruckgasspeicher 25 gepresst. Der erste Metallfaltenbalg 6-1 dehnt sich durch aus dem Niederdruckgasspeicher 27 über die Niederdruckgasleitung 26 und den ersten Niederdruck-Arbeitsgasanschluss 20-1 zurückströmendes Arbeitsgas 10 aus.In the in Fig. 2c shown third phase, the working fluid flow is reversed and the pumping device 34 now pumps working fluid 14 from the first fluid volume 12-1 of the first compressor stage 2-1 in the second fluid volume 12-2 in the second compressor stage 2-2. Thereby, the second metal bellows 6-2 is compressed and the working gas 10 therein is compressed and pressed into the high pressure gas reservoir 25 via the second high pressure working gas port 18-1, the second heat exchanger 32-2 and the common high pressure gas line 24. The first metal bellows 6-1 expands through working gas 10 flowing back from the low-pressure gas reservoir 27 via the low-pressure gas line 26 and the first low-pressure working gas port 20-1.

In der in Fig. 2d gezeigten vierten Phase ist die Verdichtung in der zweiten Verdichterstufe 2-2 vollständig und das Drehventil 28 verbindet wieder über die gemeinsame Hochdruckgasleitung 24 den Hochdruckgasspeicher 25 mit der Kühleinrichtung 30, so dass verdichtetes und in dem zweiten Wärmetauscher 32-2 gekühltes Arbeitsgas 10 in die Kühleinrichtung 30 gelangt.In the in Fig. 2d shown fourth phase, the compression in the second compressor stage 2-2 is complete and the rotary valve 28 connects again via the common high-pressure gas line 24, the high-pressure gas storage 25 with the cooling device 30, so that compressed and cooled in the second heat exchanger 32-2 working gas 10 in the cooling device 30 arrives.

Die in Fig. 2e gezeigte Phase ist wieder die erste Phase und die Verdichtung erfolgt in der ersten Verdichterstufe 2-1. Fig. 2a und 2e unterscheiden sich lediglich dadurch, dass in Fig. 2e der erste Metallfaltenbalg 6-1 noch entspannt und der zweite Metallfaltenbalg 6-2 noch komprimiert ist. In Fig. 2a ist die Verdichtung in der ersten Verdichterstufe 2-1 abgeschlossen und der erste Metallfaltenbalg 6-1 ist komprimiert, während der zweite Metallfaltenbalg 6-2 entspannt ist.In the Fig. 2e phase shown is again the first phase and the compression takes place in the first compressor stage 2-1. Fig. 2a and 2e differ only in that in Fig. 2e the first metal bellows 6-1 still relaxed and the second metal bellows 6-2 is still compressed. In Fig. 2a is the compression in the first compressor stage 2-1 completed and the first metal bellows 6-1 is compressed, while the second metal bellows 6-2 is relaxed.

Durch das Vorsehen des Hochdruckspeichers 25 und des Niederdruckspeichers 27 ist die Drehfrequenz des Drehventils 28 von der Frequenz der Verdichtung in den beiden Verdichterstufen entkoppelt. Alternativ kann die Drehfrequenz des Drehventils 28 mit der Frequenz der Verdichterhübe synchronisiert sein. In diesem Fall könnte auf den Hochdruck- und Niederdruckgasspeicher 25, 27 verzichtet werden.By providing the high-pressure accumulator 25 and the low-pressure accumulator 27, the rotational frequency of the rotary valve 28 is decoupled from the frequency of the compression in the two compressor stages. Alternatively, the rotational frequency of the rotary valve 28 may be synchronized with the frequency of the compressor strokes. In this case, the high-pressure and low-pressure gas storage 25, 27 could be dispensed with.

Fig. 3 zeigt die Erfindung mit zwei Verdichterstufen 2-1, 2-2 in Form einer Arbeitsgas 10 fördernden Kompressorvorrichtung. Für in den beiden Ausführungsformen entsprechende Komponenten werden die gleichen Bezugszeichen verwendet. Der Aufbau der beiden Verdichterstufen 2-1, 2-2 und die Verbindung der beiden Verdichterstufen 2-1, 2-2 mit der gemeinsamen Pumpeinrichtung (34) entspricht dem Aufbau in Fig. 1 und 2. Ebenso entspricht die der beiden Wärmetauscher 32-1, 32-2 der Anordnung gemäß der ersten Ausführungsform. Bei der Ausführungsform nach Fig. 3 wird das Arbeitsgas 10 zunächst in der ersten Verdichterstufe 2-1 von einem Ausgangsdruck po auf einen ersten mittleren Druck pmid1 und dann anschließend in der zweiten Verdichterstufe 2-2 von einem zweiten mittleren Druck pmid2 auf den Enddruck pend verdichtet. Es gilt: pmid1 > pmid2. Fig. 3 shows the invention with two compressor stages 2-1, 2-2 in the form of a working gas 10 promotional compressor device. For components corresponding in the two embodiments, the same reference numerals are used. The structure of the two compressor stages 2-1, 2-2 and the connection of the two compressor stages 2-1, 2-2 with the common pumping device (34) corresponds to the structure in Fig. 1 and 2 , Likewise, that of the two heat exchangers 32-1, 32-2 corresponds to the arrangement according to the first embodiment. In the embodiment according to Fig. 3 the working gas 10 is first compressed in the first compressor stage 2-1 from an initial pressure po to a first average pressure p mid1 and then subsequently in the second compressor stage 2-2 from a second average pressure p mid2 to the final pressure p end . The following applies: p mid1 > p mid2 .

Nachfolgend werden insbesondere die Unterschiede in den beiden Verdichtern beschrieben. Ein Pufferspeicher 42 ist über eine erste Gasleitung 40-1 und ein erstes Sperrventil 44-1 mit dem zweiten Niederdruck-Arbeitsgasanschluss 20-2 der zweiten Verdichterstufe 2-2 verbunden. Über einen ersten Wärmetauscher 32-1 und eine zweite Gasleitung 40-2 ist der erste Hochdruck-Arbeitsgansanschluss 20-1 mit dem Pufferspeicher 42 verbunden. Ein Niederdruckgasspeicher 27 ist über eine dritte Gasleitung 40-3 mit einem ersten Niederdruck-Arbeitsgasanschluss 20-1 mit Rückschlagventil 22 in der ersten Verdichterstufe 2-1 verbunden. Der zweite Hochdruck-Arbeitsgasanschluss 18-2 der zweiten Verdichterstufe 2-2 ist über ein Rückschlagventil 22, einen zweiten Wärmetauscher 32- 2 und eine vierte Gasleitung 40-4 mit einem Hochdruckgasspeicher 25 verbunden. Über den ersten Niederdruck-Arbeitsgasanschluss 20-1 wird der ersten Verdichterstufe 2-1 zu verdichtendes Arbeitsgas 10 aus dem Niederdruckgasspeicher 27 zugeführt.In particular, the differences in the two compressors will be described below. A buffer store 42 is connected via a first gas line 40-1 and a first shut-off valve 44-1 to the second low-pressure working gas port 20-2 of the second compressor stage 2-2. Via a first heat exchanger 32-1 and a second gas line 40-2, the first high pressure Arbeitsgansanschluss 20-1 is connected to the buffer memory 42. A low-pressure gas storage 27 is connected via a third gas line 40-3 to a first low-pressure working gas connection 20-1 with a check valve 22 in the first compressor stage 2-1. The second high pressure working gas connection 18-2 of the second compressor stage 2-2 is connected via a check valve 22, a second heat exchanger 32- 2 and a fourth gas line 40-4 with a high-pressure gas storage 25. Via the first low-pressure working gas connection 20-1, the first compressor stage 2-1 is supplied with working gas 10 to be compressed from the low-pressure gas reservoir 27.

Nachfolgend wird anhand der Figuren 4a bis 4d der Betrieb der Kompressorvorrichtung nach Fig. 3 beschrieben.The following is based on the FIGS. 4a to 4d the operation of the compressor device after Fig. 3 described.

In einer in Fig. 4a gezeigten ersten Phase wird durch die gemeinsame Pumpeinrichtung 34 Arbeitsflüssigkeit 14 aus dem ersten Flüssigkeitsvolumen 12-1 der ersten Verdichterstufe 2-1 in das zweite Flüssigkeitsvolumen 12-2 in der zweiten Verdichterstufe 2-1 gepumpt. Der erste Metallfaltenbalg 6-1 dehnt sich aus und unverdichtetes Arbeitsgas 10 strömt über die dritte Gasleitung 40-3 und den ersten Niederdruck-Arbeitsgasanschluss 20-1 mit Rückschlagventil 22 in das erste Gasvolumen 8-1. Das erste Sperrventil 44-1 in der ersten Gasleitung ist geschlossen. Die zweite Verdichterstufe 2-2 dient lediglich als Arbeitsflüssigkeitsausgleichsbehälter. In dem zweiten Gasvolumen 8-2 herrscht im entspannten Zustand der zweite mittlere Druck pmid2 und im verdichteten Zustand in etwa der Enddruck pend.In an in Fig. 4a shown first phase is pumped by the common pumping device 34 working fluid 14 from the first fluid volume 12-1 of the first compressor stage 2-1 in the second fluid volume 12-2 in the second compressor stage 2-1. The first metal bellows 6-1 expands and uncompressed working gas 10 flows via the third gas line 40-3 and the first low-pressure working gas connection 20-1 with check valve 22 into the first gas volume 8-1. The first check valve 44-1 in the first gas line is closed. The second compressor stage 2-2 serves only as a working fluid expansion tank. In the second gas volume 8-2 prevails in the relaxed state, the second average pressure p mid2 and in the compressed state in about the final pressure p end .

In der zweiten in Fig. 4b gezeigten Betriebsphase dreht sicht die Strömungsrichtung der Arbeitsflüssigkeit 14 um und Arbeitsgas 10 in der ersten Verdichterstufe 2-1 wird komprimiert und über den ersten Hochdruck-Arbeitsgasanschluss 20-2 mit Rückschlagventil 22, den ersten Wärmetauscher 32-1 und die zweite Gasleitung 40-2 in den Pufferspeicher 42 gepresst. Das Rückschlagventil 22 an dem ersten Hochdruck-Arbeitsgasanschluss 18-2 verhindert das Zurückströmen des auf den mittleren Druck pmid komprimierten Arbeitsgases 10. Das erste Sperrventil 44-1 ist weiter geschlossen und die zweite Verdichterstufe 2-2 wirkt lediglich als Arbeitsflüssigkeitsausgleichbehälter.In the second in Fig. 4b operating phase shown rotates view the flow direction of the working fluid 14 and working gas 10 in the first compressor stage 2-1 is compressed and the first high-pressure working gas port 20-2 with check valve 22, the first heat exchanger 32-1 and the second gas line 40-2 in pressed the buffer memory 42. The check valve 22 at the first high-pressure working gas port 18-2 prevents the backflow of the working gas 10 compressed to the mean pressure p mid . The first shut-off valve 44-1 is further closed and the second compressor stage 2-2 functions merely as a working fluid equalizing reservoir.

Die Betriebsphasen nach Fig. 4a und 4b werden wiederholt durchgeführt und zwar solange bis die Menge des auf den ersten mittleren Druck pmid1 komprimierten Arbeitsgases 10 in dem Pufferspeicher 42 ausreicht, bei Verbindung mit dem zweiten Gasvolumen 8-2 über die erste Gasleitung 40-1 und das offene Sperrventil 44-1 den zweiten mittleren Druck pmid2 in dem zweiten Gasvolumen 8-2 zu erzeugen.The operating phases after Fig. 4a and 4b are repeatedly carried out until the amount of compressed to the first average pressure p mid1 working gas 10 in the buffer memory 42 is sufficient, when connected to the second gas volume 8-2 via the first gas line 40-1 and the open check valve 44-1 to generate the second average pressure p mid2 in the second gas volume 8-2.

Ist diese Gasmenge in dem Pufferspeicher 42 erreicht wird beim nächsten Verdichtungshub in der ersten Verdichterstufe 2-1 das erste Sperrventil 40-1 geöffnet, so dass das auf den ersten mittleren Druck pmid1 vorverdichtete Arbeitsgas 10 aus dem Pufferspeicher 42 über das offene erste Sperrventil 44-1 und die erste Gasleitung 40-1 in das zweite Gasvolumen 8-2 der zweiten Verdichterstufe 2-2 strömen kann, wobei sich der zweite mittlere Druck pmid2 einstellt - siehe Fig. 4c.If this amount of gas is reached in the buffer memory 42, the first shut-off valve 40-1 is opened during the next compression stroke in the first compressor stage 2-1, so that the working gas 10 pre-compressed to the first average pressure p mid1 from the buffer reservoir 42 via the open first shut-off valve 44th -1 and the first gas line 40-1 can flow into the second gas volume 8-2 of the second compressor stage 2-2, wherein the second average pressure p mid2 sets - see Fig. 4c ,

In der nächsten in Fig. 4d dargestellten Betriebsphase wird die Arbeitsflüssigkeit 14 durch die gemeinsame Pumpeinrichtung 34 in die zweite Verdichterstufe 2-2 gepumpt. Das in dem zweiten Gasvolumen 8-2 befindliche auf den zweiten mittleren Druck pmid2 vorverdichtete Arbeitsgas 10 wird auf den Enddruck pend. weiterverdichtet und über den zweiten Wärmetauscher 32-2 und die vierte Gasleitung 40-4 in den Hochdruckgasspeicher 25 gepresst.In the next in Fig. 4d shown operating phase, the working fluid 14 is pumped through the common pumping device 34 in the second compressor stage 2-2. The working gas 10 pre-compressed to the second average pressure p mid2 in the second gas volume 8-2 is at the final pressure p end . further compressed and pressed via the second heat exchanger 32-2 and the fourth gas line 40-4 in the high-pressure gas storage 25.

Damit ist ein Verdichtungszyklus von dem Ausgangsdruck po auf den Enddruck pend abgeschlossen und der Zyklus beginnt von vorne.Thus, a compression cycle from the output pressure po to the final pressure p end is completed and the cycle starts again.

Bei einer alternativen Ausführungsform zu der Ausgestaltung nach Fig. 3 ist der erste Hochdruck-Arbeitsgasanschluss 18-1 über eine Gasleitung 40-1, 40-2 mit dem Niederdruck-Arbeitsgasanschluss 20-2 der zweiten Verdichterstufe 2-2 verbunden. Der Pufferspeicher 42 und das erste Sperrventil 44-1 erübrigen sich. Hierbei wird das Arbeitsgas 10 in der ersten Verdichterstufe 2-1 auf einen mittleren Druck pmid vorverdichtet und in der Gegenbewegung der gemeinsamen elektromotorischen Pumpeinreichtung 34 wird das Arbeitsgas 10 in der zweiten Verdichterstufe 2-2 dann auf den Enddruck pend verdichtet. Das auf den Enddruck pend verdichtete Arbeitsgas wird dann nach außen abgegeben oder in einem Hochdruckgasspeicher 25 gespeichert.In an alternative embodiment of the embodiment according to Fig. 3 the first high-pressure working gas connection 18-1 is connected via a gas line 40-1, 40-2 to the low-pressure working gas connection 20-2 of the second compressor stage 2-2. The buffer memory 42 and the first shut-off valve 44-1 are unnecessary. Here, the working gas 10 is pre-compressed in the first compressor stage 2-1 to a mean pressure p mid and in the countermovement of the common electromotive Pumpeninreichtung 34, the working gas 10 in the second compressor stage 2-2 then compressed to the final pressure p end . The compressed to the final pressure p end working gas is then discharged to the outside or stored in a high-pressure gas storage 25.

Fig. 5 zeigt eine Anwendung als Antrieb einer Joule-Thomson-Kältemaschine 50 mit geschlossenem Arbeitsgaskreislauf. Fig. 5 shows an application as a drive of a Joule-Thomson refrigerator 50 with closed working gas circuit.

Als Arbeitsflüssigkeit eignen sich Hydrauliköle nach DIN 51524. Diese H, HL, HLP und HVLP Öle sind Öle, die sich mit gängigen Dichtungskunststoffen wie NBR (AcrylnitrilButadien-Kautschuk) etc. gut vertragen. NBR ist allerdings nicht ausreichend heliumdicht. HF Öle sind häufig mit gängigen Dichtungsmaterialien (http://de.wikipedia.org/wiki/Liste der Kunststoffe) unverträglich.Hydraulic oils according to DIN 51524 are suitable as working fluids. These H, HL, HLP and HVLP oils are oils which are well tolerated with common sealants such as NBR (acrylonitrile-butadiene rubber) etc. NBR, however, is not sufficiently helium-tight. HF oils are often incompatible with common sealing materials ( http://de.wikipedia.org/wiki/List of plastics ).

Alternativ kann auch Wasser als Arbeitsflüssigkeit verwendet werden. Wasser als Arbeitsmittel ist auch vorteilhaft, da bei Defekten ein in einen nachgeschalteten Kryo-Kühler eingedrungenes Wasser leichter wieder entfernt werden kann als in einen nachgeschalteten Kühler eingedrungenes Hydrauliköl. Auch bietet sich Wasser als Arbeitsmittel bei explosionsgeschützten Anwendungen an, da Wasser nicht brennbar und nicht explosiv ist. Außerdem ist Wasser ungiftig und damit umweltfreundlich.Alternatively, water can also be used as the working fluid. Water as a working fluid is also advantageous because in the event of defects, water that has penetrated into a downstream cryocooler can be removed more easily than hydraulic oil that has entered a downstream cooler. Also, water is suitable as a working medium in explosion-protected applications, since water is non-flammable and non-explosive. In addition, water is non-toxic and therefore environmentally friendly.

Bezugszeichenliste:LIST OF REFERENCE NUMBERS

p0 p 0
Ausgangsdruckoutput pressure
pmid1 p mid1
mittleren Druck 1mean pressure 1
pmid2 p mid2
mittleren Druck 2mean pressure 2
pend p end
Enddruckfinal pressure
2-12-1
erste Verdichterstufefirst compressor stage
2-22-2
zweite Verdichterstufesecond compressor stage
4-14-1
erster Verdichterraumfirst compressor room
4-24-2
zweiter Verdichterraumsecond compressor room
6-16-1
erster Metallfaltenbalgfirst metal bellows
6-26-2
zweiter Metallfaltenbalgsecond metal bellows
8-18-1
erstes Gasvolumenfirst gas volume
8-28-2
zweites Gasvolumensecond gas volume
1010
Arbeitsgasworking gas
12-112-1
erstes Flüssigkeitsvolumenfirst fluid volume
12-212-2
zweites Flüssigkeitsvolumensecond liquid volume
1414
Arbeitsflüssigkeitworking fluid
16-116-1
erster Arbeitsflüssigkeitsanschlussfirst working fluid connection
16-216-2
zweiter Arbeitsflüssigkeitsanschlusssecond working fluid connection
18-118-1
erster Hochdruck-Arbeitsgasanschlussfirst high-pressure working gas connection
18-218-2
zweiter Hochdruck-Arbeitsgasanschlusssecond high pressure working gas connection
20-120-1
erster Niederdruck-Arbeitsgasanschlussfirst low-pressure working gas connection
20-220-2
zweiter Niederdruck-Arbeitsgasanschlusssecond low-pressure working gas connection
2222
Rückschlagventilecheck valves
2424
HochdruckgasleitungHigh-pressure gas line
2525
HochdruckgasspeicherHigh-pressure gas storage
2626
NiederdruckgasleitungLow-pressure gas line
2727
NiederdruckgasspeicherLow pressure gas
2828
elektromotorisches Drehventilelectromotive rotary valve
3030
Kühleinrichtungcooling device
32-132-1
erster Wärmetauscherfirst heat exchanger
32-232-2
zweiter Wärmetauschersecond heat exchanger
3434
gemeinsame elektromotorische Pumpeinrichtungcommon electromotive pumping device
40-140-1
erste Gasleitungfirst gas line
40-240-2
zweite Gasleitungsecond gas line
40-340-3
dritte Gasleitungthird gas line
40-440-4
vierte Gasleitungfourth gas line
4242
Pufferspeicherbuffer memory
44-144-1
erstes Sperrventilfirst shut-off valve
5050
Joule-Thomson-KältemaschineJoule-Thomson cooling machine

Claims (9)

  1. Compressor device, comprising:
    a first compressor stage (2-1), including:
    a first compressor chamber (4-1) having a defined volume in which a first metal bellows (6-1) sub-divides the first compressor chamber (4-1) into a first gas volume (8-1) with a working gas (10) and a first liquid volume (12-1) with a working liquid (14),
    a first high-pressure and a first low-pressure working gas connection (18-1, 20-1) that lead to the first gas volume (8-1), and
    a first working liquid connection (16-1) leading to the first liquid volume (12-1); and
    a pump device (34) periodically pumping the working liquid (14) via the first working liquid connection (16-1) into the liquid volume (12-1), thereby compressing the working gas (10) in the gas volume (8-1) periodically,
    characterized in
    that a second compressor stage (2-2) is provided including a second compressor chamber (4-2) that is sub-divided by a second metal bellows (8-2) into a second gas volume (8-2) with working gas (10) and a second liquid volume (12-2) with working liquid (14),
    that the second compressor stage (2-2) includes a second high-pressure working gas connection and a second low-pressure working gas connection (18-2, 20-2) leading into the second gas volume (8-2),
    that the second compressor stage (2-2) includes a second working liquid connection (16-2) leading into the second liquid volume (12-2),
    that the pump device (34) is a common pump device,
    that the common pump device (34) is connected with the second compressor stage (2-2) via the second working liquid connection (16-2),
    that the second low-pressure working gas connection (20-2) of the second compressor stage (2-2) is connected with a buffer storage (42) via a first gas line (40-1) and a first lock valve (44-1), and
    that the first high-pressure working gas connection (18-1) of the first compressor stage (2-1) is connected with the buffer storage (42) via a second gas line (40-2).
  2. Compressor device, comprising:
    a first compressor stage (2-1), including:
    a first compressor chamber (4-1) having a defined volume in which a first metal bellows (6-1) sub-divides the first compressor chamber (4-1) into a first gas volume (8-1) with a working gas (10) and a first liquid volume (12-1) with a working liquid (14),
    a first high-pressure and a first low-pressure working gas connection (18-1, 20-1) that lead to the first gas volume (8-1), and
    a first working liquid connection (16-1) leading to the first liquid volume (12-1); and
    a pump device (34) periodically pumping the working liquid (14) via the first working liquid connection (16-1) into the liquid volume (12-1), thereby compressing the working gas (10) in the gas volume (8-1) periodically,
    characterized in
    that a second compressor stage (2-2) is provided including a second compressor chamber (4-2) that is sub-divided by a second metal bellows (8-2) into a second gas volume (8-2) with working gas (10) and a second liquid volume (12-2) with working liquid (14),
    that the second compressor stage (2-2) includes a second high-pressure working gas connection and a second low-pressure working gas connection (18-2, 20-2) leading into the second gas volume (8-2),
    that the second compressor stage (2-2) includes a second working liquid connection (16-2) leading into the second liquid volume (12-2),
    that the pump device (34) is a common pump device,
    that the common pump device (34) is connected with the second compressor stage (2-2) via the second working liquid connection (16-2), and
    that the second low-pressure working gas connection (20-2) of the second compressor stage (2-2) is connected to the first high-pressure working gas connection (18-1) of the first compressor stage (2-1) via a gas line (40-1; 40-2).
  3. Compressor device according to claim 1 or 2, characterized in that the high-pressure working gas connections (18-1, 18-2) and the low-pressure working gas connections (20-1, 20-2) of the two compressor stages (2-1, 2-2) each are provided with check valves (22),
    that the check valves (22) on the low-pressure working gas connections (20-1, 20-2) each are permeable in a direction of the compressor stages (2-1, 2-2), and that the check valves (22) on the high-pressure working gas connections (18-1, 18-2), as opposed to the check valves on the low-pressure working gas connections (20-1, 20-2) are permeable in an opposite direction.
  4. Compressor device according to one of the preceding claims 1 to 3, characterized in that a heat exchanger (32-1, 32-2) is connected downstream of each of the high-pressure working gas connections (18-1, 18-2) of the two compressor stages (2-1, 2-2) in order to cool the compressed working gas (10).
  5. Compressor device according to one of the claims 1 to 4, characterized in that the first low-pressure working gas line (20-1) is connected with a low-pressure gas storage (27) via a third gas line (40-3), and
    that the second high-pressure working gas connection (18-2) of the second compressor stage (2-2) is connected with a high-pressure gas storage (25) via a fourth gas line (40-4).
  6. Cooling device including a compressor device according to claim 5 and a Joule-Thomson cooler (50) that is connected with the low-pressure gas storage (27) and the high-pressure gas storage (25).
  7. Method for operating a compressor device according to one of claims 1, 3, 4, or 5 and a cooling device according to claim 6, with the method steps of:
    - repeatedly compressing working gas (10) in the first compressor stage (2-1) from an outlet pressure (po) to a first middle pressure (pmid1), the second compressor stage (2-2) serving as a compensation container for working liquid;
    - temporarily storing the working gas (10) that was pre-compressed to a first middle pressure (pmid1) in a buffer storage (42);
    - repeating the previous method steps until, when the buffer storage (42) is connected with the second gas volume (8-2) in the second compressor stage (2-2), a second middle pressure (pmid2) is achieved with pmid1 > pmid2;
    - transferring the working gas (10) that was pre-compressed to a first middle pressure (pmid1) from the buffer storage (42) into the gas volume (8-2) of the second compressor stage (2-1); and
    - compressing the working gas (10) that was pre-compressed to the second middle pressure (pmid2) in the second compressor stage (2-2) to an end pressure (pend).
  8. The method for operating a compressor device according to one of claims 2 to 5 and a cooling device according to claim 6, with the method steps of:
    - compressing working gas (10) in a first compressor stage (2-1) from an outlet pressure (po) to a middle pressure (pmid) and transferring the working gas (10) pre-compressed to the middle pressure (pmid) into the second gas volume (8-2) of the second compressor stage (2-2); and
    - compressing the working gas (10) pre-compressed to the middle pressure (pmid) in the second compressor stage (2-2) to an end pressure (pend).
  9. The method according to claim 7 or 8, characterized in that the compressed working gas (10) from the two compressor stages (2-1, 2-2) is cooled after each compressor stroke.
EP15774869.0A 2014-09-08 2015-09-08 Compressor device, cooling device equipped therewith, and method for operating the compressor device and the cooling device Active EP3191712B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18195959.4A EP3434897B1 (en) 2014-09-08 2015-09-08 Compressor device, a cooling device equipped with such a compressor device and a method for operating the compressor device and the cooling device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014217897.5A DE102014217897A1 (en) 2014-09-08 2014-09-08 A compressor device, a cooling device equipped therewith, and a method of operating the compressor device and the cooling device
PCT/EP2015/070507 WO2016038041A1 (en) 2014-09-08 2015-09-08 Compressor device, cooling device equipped therewith, and method for operating the compressor device and the cooling device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP18195959.4A Division EP3434897B1 (en) 2014-09-08 2015-09-08 Compressor device, a cooling device equipped with such a compressor device and a method for operating the compressor device and the cooling device
EP18195959.4A Division-Into EP3434897B1 (en) 2014-09-08 2015-09-08 Compressor device, a cooling device equipped with such a compressor device and a method for operating the compressor device and the cooling device

Publications (2)

Publication Number Publication Date
EP3191712A1 EP3191712A1 (en) 2017-07-19
EP3191712B1 true EP3191712B1 (en) 2019-03-13

Family

ID=54251480

Family Applications (2)

Application Number Title Priority Date Filing Date
EP15774869.0A Active EP3191712B1 (en) 2014-09-08 2015-09-08 Compressor device, cooling device equipped therewith, and method for operating the compressor device and the cooling device
EP18195959.4A Active EP3434897B1 (en) 2014-09-08 2015-09-08 Compressor device, a cooling device equipped with such a compressor device and a method for operating the compressor device and the cooling device

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP18195959.4A Active EP3434897B1 (en) 2014-09-08 2015-09-08 Compressor device, a cooling device equipped with such a compressor device and a method for operating the compressor device and the cooling device

Country Status (6)

Country Link
US (1) US11028841B2 (en)
EP (2) EP3191712B1 (en)
JP (1) JP6594959B2 (en)
CN (1) CN107094367B (en)
DE (1) DE102014217897A1 (en)
WO (1) WO2016038041A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11262105B2 (en) * 2018-03-07 2022-03-01 Sumitomo Heavy Industries, Ltd. Cryocooler and cryocooler pipe system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220010934A1 (en) * 2020-07-10 2022-01-13 University Of Maryland, College Park System and method for efficient isothermal compression
DE102021002178A1 (en) * 2021-04-24 2022-10-27 Hydac Technology Gmbh conveyor
DE102022115715A1 (en) 2022-06-23 2023-12-28 Pressure Wave Systems Gmbh Compressor device and cooling device with compressor device

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE91837C (en) *
US1580479A (en) * 1924-12-27 1926-04-13 Frankenfield Budd Diaphragm pump
US2613607A (en) * 1949-10-27 1952-10-14 Milton Roy Co Bellows pump
US2772543A (en) * 1953-03-24 1956-12-04 Berry Frank Multiple hydraulic compressor in a refrigeration system
DE1077367B (en) * 1959-02-12 1960-03-10 Basf Ag Method and device for circulating hot gases
US3205679A (en) * 1961-06-27 1965-09-14 Air Prod & Chem Low temperature refrigeration system having filter and absorber means
CH457147A (en) * 1967-01-20 1968-05-31 Hannes Keller Unterwassertechn Diaphragm compressor or pump
US4553397A (en) * 1981-05-11 1985-11-19 Soma Kurtis Method and apparatus for a thermodynamic cycle by use of compression
US4551979A (en) * 1981-05-11 1985-11-12 Soma Kurtis Method and apparatus for a thermodynamic cycle by use of distillation
US4617801A (en) * 1985-12-02 1986-10-21 Clark Robert W Jr Thermally powered engine
JPH0776641B2 (en) * 1986-05-16 1995-08-16 ダイキン工業株式会社 Cryogenic refrigerator
US4673415A (en) * 1986-05-22 1987-06-16 Vbm Corporation Oxygen production system with two stage oxygen pressurization
DE3801160A1 (en) * 1988-01-16 1989-09-21 Filox Gmbh Membrane pump driven by oil engine - has control valves to facilitate handling of slurries
JPH062971A (en) * 1992-06-22 1994-01-11 Aisin Seiki Co Ltd Stirling engine integral type compressor
US5381675A (en) * 1993-09-07 1995-01-17 Siegel; Israel Force-sparing balanced bellows refrigeration device
US5375430A (en) * 1993-10-05 1994-12-27 Siegel; Israel Gravity powered shoe air conditioner
US6192695B1 (en) * 1997-11-14 2001-02-27 Tgk Co., Ltd. Refrigerating cycle
JP2001330329A (en) * 2000-05-23 2001-11-30 Cryodevice Inc Linear compressor
US6378312B1 (en) * 2000-05-25 2002-04-30 Cryomech Inc. Pulse-tube cryorefrigeration apparatus using an integrated buffer volume
DE10245694A1 (en) 2002-09-30 2004-04-15 Luther, Gerhard, Dr.rer.nat. Combined compression and liquefaction device for refrigeration medium in refrigeration or heat pump process
US7249465B2 (en) * 2004-03-29 2007-07-31 Praxair Technology, Inc. Method for operating a cryocooler using temperature trending monitoring
DE102004020168A1 (en) * 2004-04-24 2005-11-17 Bruker Biospin Gmbh Magnetic resonance unit has coil refrigerator in cryostat sharing compressor with detection coil cooling refrigerator
DE102005034907A1 (en) * 2005-07-26 2007-02-01 Linde Ag Compressor, in particular reciprocating compressor
FR2903456B1 (en) * 2006-07-07 2008-10-17 Siemens Automotive Hydraulics TRANSFER PUMP WITH MULTIPLE PISTONS
CN2856477Y (en) * 2006-07-13 2007-01-10 孔照根 Improved structure of plunger type inflator
JP2008286109A (en) * 2007-05-17 2008-11-27 Toyota Industries Corp Refrigerant intake structure in fixed capacity type piston type compressor
US8049351B2 (en) * 2007-06-15 2011-11-01 E-Net, Llc Turbine energy generating system
DE202007018538U1 (en) * 2007-12-01 2008-10-23 Knf Neuberger Gmbh Multi-stage membrane suction pump
US9518577B2 (en) * 2008-06-27 2016-12-13 Lynntech, Inc. Apparatus for pumping a fluid
US11078897B2 (en) * 2008-06-27 2021-08-03 Lynntech, Inc. Apparatus for pumping fluid
DE102008060598A1 (en) * 2008-12-05 2010-06-10 Thermea. Energiesysteme Gmbh Apparatus and method for compressing or compressing a gas
JP5356983B2 (en) 2009-11-18 2013-12-04 大陽日酸株式会社 Cryogenic refrigeration apparatus and operation method thereof
EP2531729B1 (en) * 2010-02-02 2020-03-04 Dajustco Ip Holdings Inc. Diaphragm pump with hydraulic fluid control system
US9316419B2 (en) * 2011-03-31 2016-04-19 Carrier Corporation Expander system
GB201209243D0 (en) * 2012-05-25 2012-07-04 Oxford Instr Nanotechnology Tools Ltd Apparatus for reducing vibrations in a pulse tube refrigerator
WO2014005229A1 (en) * 2012-07-04 2014-01-09 Kairama Inc. Temperature management in gas compression and expansion
DE102012213293B4 (en) 2012-07-27 2018-03-29 Pressure Wave Systems Gmbh Compressor device and a cooling device equipped therewith and a refrigerating machine equipped therewith
US9512835B2 (en) * 2012-11-01 2016-12-06 Alloy Bellows and Precision Welding, Inc. High pressure bellows assembly
US20160069359A1 (en) * 2013-04-12 2016-03-10 Edward John Hummelt Pressure vessel having plurality of tubes for heat exchange
DE102013213575A1 (en) * 2013-07-11 2015-01-15 Mahle International Gmbh Heat recovery system for an internal combustion engine
WO2015042220A1 (en) * 2013-09-19 2015-03-26 Halliburton Energy Services, Inc. Collecting and removing condensate from a gas extraction system
KR101885017B1 (en) * 2014-07-10 2018-08-02 이글 고오교 가부시키가이샤 Liquid supply system
JP6353732B2 (en) * 2014-08-04 2018-07-04 日本ピラー工業株式会社 Bellows pump device
WO2016021350A1 (en) * 2014-08-08 2016-02-11 日本ピラー工業株式会社 Bellows pump device
JP6362535B2 (en) * 2014-12-25 2018-07-25 日本ピラー工業株式会社 Bellows pump device
CN106322807B (en) * 2015-07-03 2021-05-28 开利公司 Ejector heat pump
US10739052B2 (en) * 2015-11-20 2020-08-11 Carrier Corporation Heat pump with ejector
US10551093B2 (en) * 2016-03-16 2020-02-04 Sumitomo Heavy Industries, Ltd. Cryocooler and rotary valve mechanism

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11262105B2 (en) * 2018-03-07 2022-03-01 Sumitomo Heavy Industries, Ltd. Cryocooler and cryocooler pipe system

Also Published As

Publication number Publication date
EP3434897B1 (en) 2019-12-11
US20170175729A1 (en) 2017-06-22
JP6594959B2 (en) 2019-10-23
EP3191712A1 (en) 2017-07-19
DE102014217897A1 (en) 2016-03-10
WO2016038041A1 (en) 2016-03-17
EP3434897A1 (en) 2019-01-30
CN107094367B (en) 2019-10-25
JP2017528644A (en) 2017-09-28
CN107094367A (en) 2017-08-25
US11028841B2 (en) 2021-06-08

Similar Documents

Publication Publication Date Title
EP3191712B1 (en) Compressor device, cooling device equipped therewith, and method for operating the compressor device and the cooling device
DE69910821T2 (en) COMPRESSOR DEVICE
DE102005052873A1 (en) Piston compressor and chiller with the same
DE4320529C2 (en) compressor
DE102011086476A1 (en) High temperature heat pump and method of using a working medium in a high temperature heat pump
DE102017116805A1 (en) TIEFTEMPERATUR EXPANDER WITH COLLAR FOR REDUCING NOISE AND VIBRATION PROPERTIES
EP1812759B1 (en) Combined piston-expander compressor
EP2877748B1 (en) Compressor device, and cooling device equipped therewith and refrigeration machine equipped therewith
JP2017528644A5 (en)
EP2710263B1 (en) Compressor device
DE202012100995U1 (en) compressor device
DE102011080377B4 (en) Cooling device with compressor device and Gifford-McMahon cooler or pulse tube cooler
DE102013114210B3 (en) Apparatus for compressing a gaseous fluid and method for operating the apparatus
DE102011088207A1 (en) Thermal device for generating mechanical and/or electrical energy, has piston that is arranged within working cylinder of working element, and buffer storage unit which is arranged between working element and generator unit
DE102012004801A1 (en) Arrangement for heat pump for heating heat transfer fluid, has condenser and sub-cooler to heat a heat transfer fluid flowing against working fluid flow direction, after fluid flows through flow path formed by de-heater and oil cooler
DE102022115715A1 (en) Compressor device and cooling device with compressor device
DE102021102648A1 (en) Piston compressor, in particular for a heat pump
DE673232C (en) Power control device
WO2016045841A1 (en) Pumping device, especially axial piston pump, for a waste heat recovery apparatus in a motor vehicle
WO2020141016A1 (en) Connecting device and refrigerant compressor
DE19635424A1 (en) High pressure displacement pump
DE2000375A1 (en) Gas pump or compressor
WO2018166763A1 (en) Heat engine
DE102017011394A1 (en) Gas process with reduced condensation
DE1080729B (en) Vacuum and cold chamber

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170313

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180918

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTC Intention to grant announced (deleted)
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

INTG Intention to grant announced

Effective date: 20190204

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1108055

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015008357

Country of ref document: DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: PRESSURE WAVE SYSTEMS GMBH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190613

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502015008357

Country of ref document: DE

Representative=s name: WINTER, BRANDL, FUERNISS, HUEBNER, ROESS, KAIS, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502015008357

Country of ref document: DE

Owner name: PRESSURE WAVE SYSTEMS GMBH, DE

Free format text: FORMER OWNER: PRESSURE WAVE SYSTEMS GMBH, 80337 MUENCHEN, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502015008357

Country of ref document: DE

Representative=s name: WINTER, BRANDL - PARTNERSCHAFT MBB, PATENTANWA, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190614

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190613

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190713

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015008357

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190713

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

26N No opposition filed

Effective date: 20191216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190908

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190908

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150908

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1108055

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230920

Year of fee payment: 9

Ref country code: GB

Payment date: 20230921

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230918

Year of fee payment: 9

Ref country code: DE

Payment date: 20230817

Year of fee payment: 9