EP3191712A1 - Compressor device, cooling device equipped therewith, and method for operating the compressor device and the cooling device - Google Patents

Compressor device, cooling device equipped therewith, and method for operating the compressor device and the cooling device

Info

Publication number
EP3191712A1
EP3191712A1 EP15774869.0A EP15774869A EP3191712A1 EP 3191712 A1 EP3191712 A1 EP 3191712A1 EP 15774869 A EP15774869 A EP 15774869A EP 3191712 A1 EP3191712 A1 EP 3191712A1
Authority
EP
European Patent Office
Prior art keywords
compressor
pressure
gas
working
working gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15774869.0A
Other languages
German (de)
French (fr)
Other versions
EP3191712B1 (en
Inventor
Jens HÖHNE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pressure Wave Systems GmbH
Original Assignee
Pressure Wave Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pressure Wave Systems GmbH filed Critical Pressure Wave Systems GmbH
Priority to EP18195959.4A priority Critical patent/EP3434897B1/en
Publication of EP3191712A1 publication Critical patent/EP3191712A1/en
Application granted granted Critical
Publication of EP3191712B1 publication Critical patent/EP3191712B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/02Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having bellows
    • F04B45/022Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having bellows with two or more bellows in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/12Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/18Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use for specific elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/02Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having bellows
    • F04B45/024Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having bellows with two or more bellows in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/02Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having bellows
    • F04B45/033Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having bellows having fluid drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/02Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect

Definitions

  • a compressor device a cooling device equipped therewith, and a method of operating the compressor device and the cooling device
  • the invention relates to a compressor device, a cooling device equipped therewith and a method for operating the compressor device.
  • pulse tube coolers or Gifford-McMahon coolers are used for cooling magnetic resonance tomographs, cryopumps, etc.
  • Gas and especially helium compressors are used in combination with rotary or rotary valves.
  • the rate at which compressed helium is introduced and re-circulated to the cooler is in the range of 1 Hz.
  • a problem with conventional screw or piston processors is that oil from the compressor may enter and contaminate the working gas and thus the cooling device ,
  • acoustic compressors or high-frequency compressors in which one or more pistons are caused by a magnetic field in linear resonant vibrations. These resonant frequencies are in the range of a few 10 Hz and are therefore not suitable for use with pulse tube coolers and Gifford McMahon coolers to produce very low temperatures in the range of less than 10 K suitable.
  • a diaphragm compressor or pump which has a working space that is divided by an elastic, gas and liquid-tight membrane into a gas volume and a liquid volume.
  • a liquid pump liquid is periodically pressed into the liquid volume of the working space, whereby the elastic membrane expands in the direction of gas volume and this compresses - compressor function - or pushing out of the gas volume - pump function.
  • a disadvantage is that the gas-tight, liquid-tight and back-resistant sealing of the elastic membrane in the working space is comparatively wise consuming. Especially in the field of sealing, the membrane is heavily loaded, so that either very expensive materials must be used or a shorter life has to be accepted.
  • the compressor device comprises a compressor rra order in which a balloon is arranged.
  • the balloon is periodically pressurized with liquid so that the gas surrounding the balloon is periodically compressed and relaxed again.
  • the disadvantage here is that the balloon envelope can scrape or rub in certain operating conditions on the hard and possibly edged inner surface of the compressor chamber. As a result, due to the pressure conditions Lochying. Cracking in the balloon envelope may occur.
  • the permeability - permeability - of the balloon envelope for helium as a working gas is too large, so you quickly lose substantial amounts of helium. Thus, the service life of such systems with balloon is unsatisfactory.
  • a membrane pump for liquids is known from DE-A-91837, which can also serve as a "gas compression pump.”
  • a liquid must be introduced between the membrane and pump valves, ie a liquid is provided in the gas space A physical separation between gas to be compressed and hydraulic fluid therefore does not take place.
  • the common pumping device is used twice. In each flow direction of the working fluid is a compression of the working gas; in the one flow direction in the first compressor stage and in the opposite direction of flow in the second compressor stage. This increases the efficiency of the compressor device.
  • the compressor device according to the present invention may be formed either as a non-conveying - claims 4 to 6 - or as a conveying compressor device - claims 9 to 1 1 -.
  • a predetermined amount of working gas is alternately compressed and relaxed in the two stages. It is fed from the outside no working gas claims 4 to 6.
  • the high and low pressure gas line may preferably be designed so that they act as a gas storage due to their volume - claim 5.
  • a low-pressure gas storage and a high-pressure gas storage may be provided explicitly in the low-pressure or high-pressure gas line.
  • the promotional embodiment - claims 9 and 1 1 - is first compressed working gas in the first compressor stage or pre-compressed and buffered in a buffer memory.
  • the second compressor stage is operated virtually idle and serves as a working fluid expansion tank.
  • a working volume of gas at an intermediate pressure p m id reached, corresponding to the second volume of gas in the second compressor stage, in the next compressor stroke in the second compressor stage the pre-compressed working gas from the buffer memory is compressed to the final pressure p s d.
  • the p to the final pressure e nd compressed working gas is then discharged to the outside or stored in a high pressure gas storage tank.
  • a working fluid preferably hydraulic oil according to DIN 51524 is used, which is additionally dehydrated or anhydrous.
  • the hydraulic oil is in a closed system of pumping device, working fluid equalizing device and fluid volume in the compressor chamber, so that during operation no water from the environment can be absorbed by the hydraulic oil.
  • water can also be used as the working fluid.
  • Water as a working fluid is also advantageous because in the event of defects, water that has penetrated into a downstream cryocooler can be removed more easily than hydraulic oil that has entered a downstream cooler.
  • water is suitable as a working medium in explosion-protected applications, since water is non-flammable and non-explosive. In addition, water is non-toxic and therefore environmentally friendly.
  • FIG. 1 is a schematic representation of a first embodiment of the invention with two compressor stages as a non-promotional compressor device
  • FIG. 3 is a schematic representation of a second embodiment of the invention with two compressor stages as a conveying compressor device
  • Fig. 5 shows an application of the second embodiment of the invention as a drive of a Joule-Thomson cooler.
  • Fig. 1 shows a first embodiment of the compressor device according to the invention with a first and a second compressor stage 2-, 2-2, in the form of a non-promotional compressor device.
  • Each of the two .Verêtr wornen 2-1, 2-2 has a gas-tight closed compressor chamber 4-1, 4-2.
  • a metal bellows 6-1, 6-2 is arranged in each of the two compressor rooms 4-1, 4-2.
  • the metal bellows 6-1, 6-2 subdivide the compressor chambers 4-1, 4-2 into a first and a second gas volume 8-1, 8-2 for a working gas 10 and into a first and second fluid volume 12-1, 12, respectively -2 for a working liquid 14.
  • the gas volumes 8-1, 8-2 are inside the metal bellows 6-1, 6-2, and the liquid volumes are outside the bellows 6-1, 6-2. From the liquid volumes 12-1, 12-2 performs a respective Arthur- keitsan gleich 16-1, 16-2 out.
  • the gas volumes 8-1, 8-2 are each provided with a high pressure working gas connection 18-1, 18-2 and a low pressure Working gas connection 20-1, 20-2 connected.
  • the low-pressure working gas ports 20-1, 20-2 are provided with check valves 22 which are permeable toward the compressor stages 2-1, 2-2.
  • the high pressure working gas ports 18-1, 18-2 are also provided with check valves 22 having opposite directions of passage as compared to the check valves 22 on the low pressure working gate ports 20-1, 20-2.
  • the high pressure working gas ports 18-1, 18-2 are connected via the check valves 22 to a common high pressure gas line 24, and the low pressure working gas ports 20, 20-2 are connected to a low pressure gas line 26 via the check valves 22.
  • the check valves 22 in the high-pressure working gas ports 18-1, 18-2 are in the direction of common high-pressure gas line 24 and the check valves 22 on the low-pressure working gas ports 20-1, 20-2 are in the direction of compressor stages 2-1, 2-2 permeable.
  • the common high pressure gas line 24 and the common low pressure gas line 26 terminate in a motorized rotary valve 28 which alternately the high pressure gas line 24 and the low pressure gas line 26 with a cooling device 30, for.
  • the high and low pressure gas line 24, 26 act due to their volume as a gas storage or it is explicitly a low-pressure gas storage 27 and a high-pressure gas storage 25 in the low-pressure or high-pressure gas line 26, 24 are provided.
  • the check valves 22 at the two high pressure working gas ports 18-1, 18-2 are each followed by heat exchangers 32-1, 32-2 for cooling the compressed working gas.
  • the two compressor stages 2-1, 2-1 are constructed analogously, ie, the gas volumes 8-1, 8-2 and the liquid volumes 12-1, 12-2 are equal.
  • the two working fluid ports 16-1, 16-2 are connected to a common electromotive pumping device 34, which alternately pumps working fluid 14 into the first and second fluid volumes 12-1, 12-2 of the first and second compressor stages 2-1, 2-2. Ie. either working fluid 14 is pumped from the second fluid volume 12-2 into the first fluid volume 12-1 or vice versa.
  • FIGS. 2a to 2e illustrate the various operating phases of the compressor device according to FIG. 1.
  • the common me pumping device 34 working fluid 14 from the second fluid volume 12- 2 of the second compressor stage 2-2 in the first fluid volume 12-1 in the first compressor stage 2-1 pumped.
  • the first metal bellows 6-1 is compressed and the working gas 10 therein is pressed into the high-pressure gas reservoir 25 via the first high-pressure working gas port 18-1, the first heat exchanger 32-1 and the common high-pressure gas line 24.
  • the second metal bellows 6-2 expands by working gas 10, which flows back from the low-pressure working gas reservoir 27 via the low-pressure gas line 26 and the second low-pressure working gas port 20-2.
  • the rotary valve 28 connects the cooling device 30 via the low pressure gas line 26 with the low pressure gas storage 27th
  • the compression in the first compressor stage 2-1 is complete and the rotary valve 28 connects the high-pressure gas reservoir 25 with the cooling device 30, so that compressed and cooled in the first heat exchanger 32-1 working gas 10 in the cooling device 30 arrives.
  • the working fluid flow is reversed and the pumping device 34 now pumps working fluid 14 from the first fluid volume 12-1 of the first compressor stage 2-1 in the second fluid volume 12-2 in the second compressor stage 2-2.
  • the second metal bellows 6-2 is compressed and the working gas 10 therein is compressed and pressed into the high pressure gas reservoir 25 via the second high pressure working gas port 18-1, the second heat exchanger 32-2 and the common high pressure gas line 24.
  • the first metal bellows 6-1 expands through working gas 10 flowing back from the low-pressure gas reservoir 27 via the low-pressure gas line 26 and the first low-pressure working gas port 20-1.
  • the compression in the second compressor stage 2-2 is complete and the rotary valve 28 connects again via the common high-pressure gas line 24, the high-pressure gas storage 25 with the cooling device 30 so that compressed and in the second heat exchanger 32-2 cooled working gas 10 passes into the cooling device 30.
  • the phase shown in Fig. 2e is again the first phase and the compression takes place in the first compressor stage 2-1.
  • Fig. 2a and 2e differ only in that in Fig. 2e, the first metal bellows 6-1 still relaxed and the second metal bellows 6-2 is still compressed.
  • the compression in the first compressor stage 2-1 is completed and the first metal bellows 6-1 is compressed, while the second metal bellows 6-2 is relaxed.
  • the rotational frequency of the rotary valve 28 is decoupled from the frequency of the compression in the two compressor stages.
  • the rotational frequency of the rotary valve 28 is decoupled from the frequency of the compression in the two compressor stages.
  • Fig. 3 shows a second embodiment of the invention with two compressor stages 2-1, 2-2 in the form of a working gas 10 promotional compressor device.
  • the structure of the two compressor stages 2-1, 2-2 and the connection of the two compressor stages 2-1, 2-2 with the common pumping device (34) corresponds to the structure in FIGS. 1 and 2.
  • the two heat exchangers 32-. 1, 32-2 of the arrangement according to the first embodiment corresponds to the embodiment of Fig.
  • the working gas 10 is first in the first compressor stage 2-1 from an output pressure po to a first mean pressure pmidi and then subsequently in the second compressor stage 2-2 from a second average pressure p m id2 to the final pressure compacted pend.
  • a buffer store 42 is connected via a first gas line 40-1 and a first shut-off valve 44-1 to the second low-pressure working gas port 20-2 of the second compressor stage 2-2.
  • the first high pressure Hägansan gleich 20-1 is connected to the buffer memory 42.
  • a low-pressure gas storage 27 is connected via a third gas line 40-3 to a first low-pressure working gas connection 20-1 with a check valve 22 in the first compressor stage 2-1.
  • the second high-pressure Working gas port 18-2 of the second compressor stage 2-2 is connected via a check valve 22, a second heat exchanger 32-2 and a fourth gas line 40-4 to a high-pressure gas reservoir 25.
  • the first compressor stage 2-1 is supplied with working gas 10 to be compressed from the low-pressure gas reservoir 27.
  • working fluid 14 from the first fluid volume 12-1 of the first compressor stage 2-1 is pumped by the common pumping device 34 into the second fluid volume 12-2 in the second compressor stage 2-1.
  • the first metal bellows 6-1 expands and uncompressed working gas 10 flows via the third gas line 40-3 and the first low-pressure working gas connection 20-1 with check valve 22 into the first gas volume 8-1.
  • the first check valve 44-1 in the first gas line is closed.
  • the second compressor stage 2-2 serves only as a working fluid expansion tank. In the second gas volume prevails 8-2 in the relaxed state of the second middle pressure pmid2 and in the compressed state to about the final pressure p e nd.
  • the flow direction of the working fluid 14 is reversed and working gas 10 in the first compressor stage 2-1 is compressed and via the first high-pressure working gas connection 20-2 with check valve 22, the first heat exchanger 32-1 and the second gas line 40-2 is pressed into the buffer memory 42.
  • the check valve 22 at the first high-pressure working gas port 18-2 prevents the backflow of the working gas 10 compressed to the mean pressure Pmid.
  • the first shut-off valve 44-1 is further closed and the second compressor stage 2-2 acts merely as a working fluid equalization reservoir.
  • the operating phases according to FIGS. 4 a and 4 b are carried out repeatedly until the amount of working gas 10 compressed in the first average pressure p m idi in the buffer memory 42 is sufficient, when connected to the second gas volume. Lumen 8-2 via the first gas line 40-1 and the open check valve 44-1 to generate the second average pressure p m id2 in the second gas volume 8-2.
  • the working fluid 14 is pumped by the common pumping device 34 in the second compressor stage 2-2.
  • the working gas 10 pre-compressed to the second average pressure p m id2 in the second gas volume 8-2 is further compressed to the final pressure p e nd. And pressed into the high-pressure gas reservoir 25 via the second heat exchanger 32-2 and the fourth gas line 40-4.
  • the first high-pressure working gas connection 18-1 is connected via a gas line 40-1, 40-2 to the low-pressure working gas connection 20-2 of the second compressor stage 2-2.
  • the buffer memory 42 and the first shut-off valve 44-1 are unnecessary.
  • the working gas 10 in the first compressor stage 2-1 is pre-compressed to a mean pressure p m id and in the countermovement of the common electromotive pump inlet 34, the working gas 10 in the second compressor stage 2-2 is then compressed to the final pressure pend.
  • the compressed to the final pressure pend working gas is then discharged to the outside or stored in a high-pressure gas storage 25.
  • Fig. 5 shows an application of the second embodiment as a drive of a Joule Thomson refrigerator 50 with closed working gas circuit.
  • Hydraulic oils according to DIN 51524 are suitable as working fluids. These H, HL, HLP and HVLP oils are oils which are well tolerated with common sealants such as NBR (acrylonitrile butadiene rubber) etc. NBR, however, is not sufficiently helium-tight. HF oils are common with commonly used sealing materials
  • water can also be used as the working fluid.
  • Water as a working fluid is also advantageous because in the case of defects, water that has penetrated into a downstream cryocooler can be removed more easily than hydraulic oil that has penetrated into a downstream cooler.
  • water is suitable as a working medium in explosion-protected applications, since water is non-flammable and non-explosive. In addition, water is non-toxic and therefore environmentally friendly.

Abstract

The invention relates to a compressor device, to a cooling device equipped therewith, and to a method for operating the compressor device. Pulse tube coolers or Gifford-McMahon coolers are used to cool nuclear spin tomographs, cryopumps, etc. In this connection, gas compressor and in particular helium compressors are used in combination with rotational or rotary valves. The rate at which compressed helium is introduced into the cooling device and led out again lies in the range of 1 Hz. A problem of traditional screw or piston processors is that oil from the compressor can enter the working gas and thus the cooling apparatus and contaminate the cooling apparatus. As a result of providing a second compressor stage, the common pumping apparatus is used doubly and a two-stage compressor device is specified. The working gas is compressed in each flow direction of the working-medium liquid; in the one flow direction in the first compressor stage and in the opposite flow direction in the second compressor stage. Thus, the efficiency of the compressor device is increased.

Description

Beschreibung  description
Kompressorvorrichtung, eine damit ausgerüstete Kühlvorrichtung und ein Verfahren zum Betreiben der Kompressorvorrichtung und der Kühlvorrichtung A compressor device, a cooling device equipped therewith, and a method of operating the compressor device and the cooling device
Die Erfindung betrifft eine Kompressorvorrichtung, eine damit ausgerüstete Kühlvorrichtung und ein Verfahren zum Betreiben der Kompressorvorrichtung. The invention relates to a compressor device, a cooling device equipped therewith and a method for operating the compressor device.
Zur Kühlung von Kernspintomographen, Kryo-Pumpen etc. werden Pulsrohrkühler oder Gifford-McMahon-Kühler eingesetzt. Hierbei kommen Gas- und insbesondere Heliumkompressoren in Kombination mit Rotations- bzw. Drehventilen zum Einsatz. Die Rate mit der verdichtetes Helium in die Kühlvorrichtung eingeführt und wieder ausgeführt wird liegt im Bereich von 1 Hz. Ein Problem von herkömmlichen Schrauben- oder Kolbenprozessoren besteht darin, dass Öl aus dem Kompressor in das Arbeitsgas und damit in die Kühleinrichtung gelangen und diese verunreinigen kann. For cooling magnetic resonance tomographs, cryopumps, etc., pulse tube coolers or Gifford-McMahon coolers are used. Gas and especially helium compressors are used in combination with rotary or rotary valves. The rate at which compressed helium is introduced and re-circulated to the cooler is in the range of 1 Hz. A problem with conventional screw or piston processors is that oil from the compressor may enter and contaminate the working gas and thus the cooling device ,
Es sind auch akustische Kompressoren oder Hochfrequenzkompressoren bekannt, bei denen ein oder mehrere Kolben durch ein Magnetfeld in lineare Resonanzschwingungen versetzt werden. Diese Resonanzfrequenzen liegen im Bereich von einigen 10 Hz und sind daher nicht für die Verwendung mit Pulsrohrkühlern und Gifford- McMahon-Kühlem zur Erzeugung sehr tiefer Temperaturen im Bereich kleiner 10 K geeignet. There are also known acoustic compressors or high-frequency compressors in which one or more pistons are caused by a magnetic field in linear resonant vibrations. These resonant frequencies are in the range of a few 10 Hz and are therefore not suitable for use with pulse tube coolers and Gifford McMahon coolers to produce very low temperatures in the range of less than 10 K suitable.
Aus der CH 457147 B ist ein Membrankompressor oder -pumpe bekannt, die einen Arbeitsraum aufweist, dass durch eine elastische, gas- und flüssigkeitsdichte Membran in ein Gasvolumen und ein Flüssigkeitsvolumen unterteilt ist. Mittels einer Flüssigkeitspumpe wird Flüssigkeit periodisch in das Flüssigkeitsvolumen des Arbeitsraums gedrückt, wodurch die elastische Membran sich in Richtung Gasvolumen ausdehnt und dieses komprimiert - Kompressorfunktion - oder aus dem Gasvolumen herausschiebt - Pumpenfunktion. Nachteilig ist herbei, dass die gas-, flüssigkeitsdichte und d rückresistente Abdichtung der elastischen Membran in dem Arbeitsraum Vergleichs- weise aufwendig ist. Insbesondere im Bereich der Abdichtung wird die Membran stark belastet, so dass entweder sehr teuere Materialien verwendete werden müssen oder eine geringere Lebensdauer in Kauf genommen werden muss. From CH 457147 B a diaphragm compressor or pump is known, which has a working space that is divided by an elastic, gas and liquid-tight membrane into a gas volume and a liquid volume. By means of a liquid pump liquid is periodically pressed into the liquid volume of the working space, whereby the elastic membrane expands in the direction of gas volume and this compresses - compressor function - or pushing out of the gas volume - pump function. A disadvantage is that the gas-tight, liquid-tight and back-resistant sealing of the elastic membrane in the working space is comparatively wise consuming. Especially in the field of sealing, the membrane is heavily loaded, so that either very expensive materials must be used or a shorter life has to be accepted.
Aus der DE10344698B4 sind eine Wärmepumpe und eine Kältemaschine mit einer Kompressoreinrichtung bekannt. Die Kompressoreinrichtung umfasst einen Verdichte rra um in dem ein Ballon angeordnet ist. Der Ballon wird periodisch mit Flüssigkeit beaufschlagt, so dass das den Ballon umgebende Gas periodisch verdichtet und wieder entspannt wird. Nachteilig hierbei ist, dass der Ballonhülle bei bestimmten Betriebszu- ständen an der harten und eventuell kantigen Innenoberfläche des Verdichterraums in schaben oder reiben kann. Hierdurch können aufgrund der Druckverhältnisse Lochbzw. Rissbildung in der Ballonhülle auftreten. Zudem ist die Durchlässigkeit - Permeabilität - der Ballonhülle für Helium als Arbeitsgas zu groß, so dass man schnell substantielle Mengen von Helium verliert. Damit ist die Standzeit derartiger Systeme mit Ballon unbefriedigend. From DE10344698B4 a heat pump and a refrigerator with a compressor device are known. The compressor device comprises a compressor rra order in which a balloon is arranged. The balloon is periodically pressurized with liquid so that the gas surrounding the balloon is periodically compressed and relaxed again. The disadvantage here is that the balloon envelope can scrape or rub in certain operating conditions on the hard and possibly edged inner surface of the compressor chamber. As a result, due to the pressure conditions Lochbzw. Cracking in the balloon envelope may occur. In addition, the permeability - permeability - of the balloon envelope for helium as a working gas is too large, so you quickly lose substantial amounts of helium. Thus, the service life of such systems with balloon is unsatisfactory.
Aus der DE-A-91837 ist eine Membranpumpe für Flüssigkeiten bekannt, die auch als „Gascompressionspumpe" dienen kann. Hierzu wird angegeben, dass zwischen Membran und Pumpventilen eine Flüssigkeit eingebracht werden muss, d. h. im Gasraum ist eine Flüssigkeit vorgesehen. Es handelt sich somit um eine Kompressionsvorrichtung mit einem Flüssigkeitsstempel. Eine physische Trennung zwischen zu komprimierendem Gas und Hydraulikflüssigkeit findet daher nicht statt. A membrane pump for liquids is known from DE-A-91837, which can also serve as a "gas compression pump." For this purpose it is stated that a liquid must be introduced between the membrane and pump valves, ie a liquid is provided in the gas space A physical separation between gas to be compressed and hydraulic fluid therefore does not take place.
Aus der WO2014/016415A2 ist eine Kompressorvorrichtung mit einem Metallfaltenbalg als Verdichterelement bekannt, der mit Ausnahme von Wasserstoff für alle möglichen Arbeitsgase undurchlässig ist. Das Arbeitsgas kann aufgrund des Metallfaltenbalgs auch ölfrei gehalten werden. Allerdings ist die Effizienz aufgrund der Wechselwirkung mit dem Arbeitsflüssigkeitsausgleichbehälter unbefriedigend. From WO2014 / 016415A2 a compressor device with a metal bellows as a compressor element is known, which is impermeable to all possible working gases with the exception of hydrogen. The working gas can also be kept oil-free due to the metal bellows. However, the efficiency due to the interaction with the working fluid balance tank is unsatisfactory.
Ausgehend von der WO2014/016415A2 ist es daher Aufgabe der Erfindung eine Kompressorvorrichtung mit einem Metallfaltenbalg als Verdichterelement anzugeben, die effizienter ist. Weiter ist es Aufgabe der Erfindung eine Kühlvorrichtung sowie ein Verfahren zum Betreiben der Kompressorvorrichtung anzugeben. Die Lösung dieser Aufgaben erfolgt durch die Merkmale des Anspruchs 1 , 7, 8, 12, 13 bzw. 14. Starting from WO2014 / 016415A2, it is therefore an object of the invention to provide a compressor device with a metal bellows as the compressor element, which is more efficient. It is another object of the invention to provide a cooling device and a method for operating the compressor device. The solution of these objects is achieved by the features of claim 1, 7, 8, 12, 13 and 14, respectively.
Dadurch, dass der aus der WO2014/016415A2 bekannte Arbeitsflüssigkeitsaus- gleichbehälter zu einer zweiten Verdichterstufe erweitert wird, wird die gemeinsame Pumpeinrichtung doppelt genutzt. In jeder Strömungsrichtung der Arbeitsmittelflüssigkeit erfolgt eine Verdichtung des Arbeitsgases; in der einen Strömungsrichtung in der ersten Verdichterstufe und in der entgegen gesetzten Strömungsrichtung in der zweiten Verdichterstufe. Damit erhöht sich die Effizienz der Kompressorvorrichtung. Because the working fluid compensation container known from WO2014 / 016415A2 is expanded to a second compressor stage, the common pumping device is used twice. In each flow direction of the working fluid is a compression of the working gas; in the one flow direction in the first compressor stage and in the opposite direction of flow in the second compressor stage. This increases the efficiency of the compressor device.
Durch Rückschlagventile an den Hochdruck- und Niederdruck- Arbeitsgasanschlüssen wird der Gasstrom bei Verdichtung und Entspannung auf einfache Weise gesteuert - Anspruch 2. By check valves at the high-pressure and low-pressure working gas connections, the gas flow is controlled in compression and expansion in a simple manner - claim 2.
Durch den Hochdruck-Arbeitsgasanschlüssen in den beiden Verdichterstufen nach geschalteten Wärmetauschern wird das komprimierte Arbeitsgas nach jedem Verdichtungshub gekühlt - Anspruch 3 und 15. By the high-pressure working gas connections in the two compressor stages after switched heat exchangers, the compressed working gas is cooled after each compression stroke - claim 3 and 15.
Die Kompressorvorrichtung gemäß der vorliegenden Erfindung kann entweder als nicht-fördernde - Ansprüche 4 bis 6 - oder als fördernde Kompressorvorrichtung - Ansprüche 9 bis 1 1 - ausgebildet sein. The compressor device according to the present invention may be formed either as a non-conveying - claims 4 to 6 - or as a conveying compressor device - claims 9 to 1 1 -.
Bei der nicht-fördernden Ausgestaltung wird eine vorbestimmte Arbeitsgasmenge abwechselnd in den beiden Förderstufen verdichtet und entspannt. Es wird von außen kein Arbeitsgas zugeführt Ansprüche 4 bis 6. In the non-promotional embodiment, a predetermined amount of working gas is alternately compressed and relaxed in the two stages. It is fed from the outside no working gas claims 4 to 6.
Die Hoch- und Niederdruckgasleitung können vorzugsweise so ausgestaltet werden, dass sie aufgrund Ihres Volumens als Gasspeicher wirken - Anspruch 5. The high and low pressure gas line may preferably be designed so that they act as a gas storage due to their volume - claim 5.
Alternativ können explizit ein Niederdruckgasspeicher und ein Hochdruckgasspeicher in der Niederdruck- bzw. Hochdruckgasleitung vorgesehen - Anspruch 6. Bei der fördernden Ausgestaltung - Ansprüche 9 und 1 1 - wird zunächst Arbeitsgas in der ersten Verdichterstufe verdichtet bzw. vorverdichtet und in einem Pufferspeicher zwischengespeichert. Die zweite Verdichterstufe wird quasi im Leerlauf betrieben und dient als Arbeitsflüssigkeitsausgleichsbehälter. Wenn in dem Pufferspeicher eine Arbeitsgasmenge bei einem mittleren Druck pmid erreicht ist, die dem zweiten Gasvolumen in der zweiten Verdichterstufe entspricht, wird in nächsten Verdichterhub in der zweiten Verdichterstufe das vorverdichtete Arbeitsgas aus dem Pufferspeicher auf den Enddruck pend verdichtet. Das auf den Enddruck pend verdichtete Arbeitsgas wird dann nach außen abgegeben oder in einem Hochdruckgasspeicher gespeichert. Alternatively, a low-pressure gas storage and a high-pressure gas storage may be provided explicitly in the low-pressure or high-pressure gas line. Claim 6. In the promotional embodiment - claims 9 and 1 1 - is first compressed working gas in the first compressor stage or pre-compressed and buffered in a buffer memory. The second compressor stage is operated virtually idle and serves as a working fluid expansion tank. When it is in the buffer memory, a working volume of gas at an intermediate pressure p m id reached, corresponding to the second volume of gas in the second compressor stage, in the next compressor stroke in the second compressor stage, the pre-compressed working gas from the buffer memory is compressed to the final pressure p s d. The p to the final pressure e nd compressed working gas is then discharged to the outside or stored in a high pressure gas storage tank.
Bei der fördernden Ausgestaltung - Ansprüche 1 0 und 1 1 - wird zunächst Arbeitsgas in der ersten Verdichterstufe verdichtet bzw. vorverdichtet und gleichzeitig in das zweite Gasvolumen der zweiten Verdichterstufe überführt. In der zweiten Verdichterstufe wird dann das auf den mittleren Druck pmid vorverdichtete Arbeitsgas auf den Enddruck pend verdichtet. Das auf den Enddruck pend verdichtete Arbeitsgas wird dann nach außen abgegeben oder in einem Hochdruckgasspeicher gespeichert. In the promotional embodiment - claims 1 0 and 1 1 - working gas in the first compressor stage is first compressed or precompressed and simultaneously transferred to the second gas volume of the second compressor stage. In the second compressor stage then the compressed to the average pressure p m id working gas is compressed to the final pressure pend. The p to the final pressure e nd compressed working gas is then discharged to the outside or stored in a high pressure gas storage tank.
Als Arbeitsflüssigkeit wird bevorzugt Hydrauliköl nach DIN 51524 eingesetzt, das zusätzlich entwässert bzw. wasserfrei ist. Das Hydrauliköl befindet sich in einem geschlossenen System aus Pumpeinrichtung, Arbeitsflüssigkeitsausgleichseinrichtung und Flüssigkeitsvolumen im Verdichterraum, so dass während des Betriebs kein Wasser aus der Umgebung durch das Hydrauliköl aufgenommen werden kann. Alternativ kann auch Wasser als Arbeitsflüssigkeit verwendet werden. Wasser als Arbeitsmittel ist auch vorteilhaft, da bei Defekten ein in einen nachgeschalteten Kryo-Kühler eingedrungenes Wasser leichter wieder entfernt werden kann als in einen nachgeschalteten Kühler eingedrungenes Hydrauliköl. Auch bietet sich Wasser als Arbeitsmittel bei explosionsgeschützten Anwendungen an, da Wasser nicht brennbar und nicht explosiv ist. Außerdem ist Wasser ungiftig und damit umweltfreundlich. As a working fluid preferably hydraulic oil according to DIN 51524 is used, which is additionally dehydrated or anhydrous. The hydraulic oil is in a closed system of pumping device, working fluid equalizing device and fluid volume in the compressor chamber, so that during operation no water from the environment can be absorbed by the hydraulic oil. Alternatively, water can also be used as the working fluid. Water as a working fluid is also advantageous because in the event of defects, water that has penetrated into a downstream cryocooler can be removed more easily than hydraulic oil that has entered a downstream cooler. Also, water is suitable as a working medium in explosion-protected applications, since water is non-flammable and non-explosive. In addition, water is non-toxic and therefore environmentally friendly.
Für Kryo-Anwendungen wird je nach Temperaturbereich vorzugsweise Helium, Neon oder Stickstoff als Arbeitsgas verwendet. Die übrigen Unteransprüche beziehen sich auf weitere vorteilhafte Ausgestaltungen der Erfindung. Weitere Einzelheiten, Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung verschiedener Ausführungsformen. For cryogenic applications, depending on the temperature range, helium, neon or nitrogen is preferably used as working gas. The remaining subclaims relate to further advantageous embodiments of the invention. Further details, features and advantages of the invention will become apparent from the following description of various embodiments.
Eis icji · Ice icji ·
Fig. 1 eine schematische Darstellung einer ersten Ausführungsform der Erfindung mit zwei Verdichterstufen als nicht-fördernde Kompressorvorrichtung, 1 is a schematic representation of a first embodiment of the invention with two compressor stages as a non-promotional compressor device,
Fig. 2a bis 2e schematische Darstellungen der zum Betrieb der ersten Ausfüh- rungsform der Erfindung, 2a to 2e are schematic representations of the operation of the first embodiment of the invention,
Fig. 3 eine schematische Darstellung einer zweiten Ausführungsform der Erfindung mit zwei Verdichterstufen als fördernde Kompressorvorrichtung, 3 is a schematic representation of a second embodiment of the invention with two compressor stages as a conveying compressor device,
Fig. 4a bis 4d schematische Darstellungen der zum Betrieb der zweiten Ausführungsform der Erfindung, und 4a to 4d are schematic representations of the operation of the second embodiment of the invention, and
Fig. 5 eine Anwendung der zweiten Ausführungsform der Erfindung als Antrieb eines Joule-Thomson-Kühlers. Fig. 5 shows an application of the second embodiment of the invention as a drive of a Joule-Thomson cooler.
Fig. 1 zeigt eine erste Ausführungsform der erfindungsgemäßen Kompressorvorrichtung mit einer ersten und einer zweiten Verdichterstufe 2- , 2-2, in Form einer nicht- fördernden Kompressorvorrichtung. Jede der zwei .Verdichtereinrichtungen 2-1 , 2-2 weist einen gasdicht geschlossenen Verdichterraum 4-1 , 4-2 auf. In jedem der beiden Verdichterräume 4-1 , 4-2 ist ein Metallfaltenbalg 6-1 , 6-2 angeordnet. Die Metallfaltenbälge 6-1 , 6-2 unterteilen die Verdichterräume 4-1 , 4-2 in ein erstes bzw. zweites Gasvolumen 8-1 , 8-2 für ein Arbeitsgas 10 und in ein erstes bzw. zweites Flüssigkeitsvolumen 12-1 , 12-2 für eine Arbeitsflüssigkeit 14. Die Gasvolumen 8-1 , 8-2 sind im Inneren der Metallfaltenbälge 6-1 , 6-2 und die Flüssigkeitsvolumina sind außerhalb der Faltenbälge 6-1 , 6-2. Aus den Flüssigkeitsvolumina 12-1 , 12-2 führt ein jeweils Arbeitsflüssig- keitsanschluss 16-1 , 16-2 heraus. Die Gasvolumina 8-1 , 8-2 sind jeweils mit einem Hochdruck-Arbeitsgasanschluss 18-1 , 18-2 und einem Niederdruck- Arbeitsgasanschluss 20-1 , 20-2 verbunden. Die Niederdruck-Arbeitsgasanschlüsse 20- 1 , 20-2 sind mit Rückschlagventilen 22 versehen, die in Richtung zu den Verdichterstufen 2-1 , 2-2 durchlässig sind. Die Hochdruck-Arbeitsgasanschlüsse 18-1 , 18-2 sind ebenfalls mit Rückschlagventilen 22 versehen, die eine im Vergleich zu den Rückschlagventilen 22 an den Niederdruck-Arbeitsgansanschlüssen 20-1 , 20-2 entgegengesetzte Durchlassrichtungen aufweisen. Die Hochdruck-Arbeitsgasanschlüsse 18-1 , 18-2 sind über die Rückschlagventile 22 mit einer gemeinsamen Hochdruckgasleitung 24 und die Niederdruck-Arbeitsgasanschlüsse 20- , 20-2 sind über die Rückschlagventile 22 mit einer Niederdruckgasleitung 26 verbunden. Die Rückschlagventile 22 in den Hochdruck-Arbeitgasanschlüssen 18-1 , 18-2 sind in Richtung gemeinsamer Hochdruckgasleitung 24 und die Rückschlagventile 22 an den Niederdruck- Arbeitsgasanschlüssen 20-1 , 20-2 sind in Richtung Verdichterstufen 2-1 , 2-2 durchlässig. Die gemeinsame Hochdruckgasleitung 24 und die gemeinsame Niederdruckgasleitung 26 enden in einem motorischen Drehventil 28, das abwechselnd die Hochdruckgasleitung 24 und die Niederdruckgasleitung 26 mit einer Kühlvorrichtung 30, z. B. in Form eines Gifford-McMahon-Kühler oder eines Pulsrohrkühlers, verbindet. Die Hoch- und Niederdruckgasleitung 24, 26 wirken aufgrund Ihres Volumens als Gasspeicher bzw. es sind explizit ein Niederdruckgasspeicher 27 und ein Hochdruckgasspeicher 25 in der Niederdruck- bzw. Hochdruckgasleitung 26, 24 vorgesehen. Den Rückschlagventilen 22 an den beiden Hochdruck-Arbeitsgasanschlüssen 18-1 , 18-2 sind jeweils Wärmetauscher 32-1 , 32-2 zum Kühlen des komprimierten Arbeitsgases nachgeschaltet. Die beiden Verdichterstufen 2-1 , 2-1 sind analog aufgebaut, d. h. auch die Gasvolumen 8-1 , 8-2 und die Flüssigkeitsvolumen 12-1 , 12-2 sind gleich. Fig. 1 shows a first embodiment of the compressor device according to the invention with a first and a second compressor stage 2-, 2-2, in the form of a non-promotional compressor device. Each of the two .Verdichtereinrichtungen 2-1, 2-2 has a gas-tight closed compressor chamber 4-1, 4-2. In each of the two compressor rooms 4-1, 4-2, a metal bellows 6-1, 6-2 is arranged. The metal bellows 6-1, 6-2 subdivide the compressor chambers 4-1, 4-2 into a first and a second gas volume 8-1, 8-2 for a working gas 10 and into a first and second fluid volume 12-1, 12, respectively -2 for a working liquid 14. The gas volumes 8-1, 8-2 are inside the metal bellows 6-1, 6-2, and the liquid volumes are outside the bellows 6-1, 6-2. From the liquid volumes 12-1, 12-2 performs a respective Arbeitsflüssig- keitsanschluss 16-1, 16-2 out. The gas volumes 8-1, 8-2 are each provided with a high pressure working gas connection 18-1, 18-2 and a low pressure Working gas connection 20-1, 20-2 connected. The low-pressure working gas ports 20-1, 20-2 are provided with check valves 22 which are permeable toward the compressor stages 2-1, 2-2. The high pressure working gas ports 18-1, 18-2 are also provided with check valves 22 having opposite directions of passage as compared to the check valves 22 on the low pressure working gate ports 20-1, 20-2. The high pressure working gas ports 18-1, 18-2 are connected via the check valves 22 to a common high pressure gas line 24, and the low pressure working gas ports 20, 20-2 are connected to a low pressure gas line 26 via the check valves 22. The check valves 22 in the high-pressure working gas ports 18-1, 18-2 are in the direction of common high-pressure gas line 24 and the check valves 22 on the low-pressure working gas ports 20-1, 20-2 are in the direction of compressor stages 2-1, 2-2 permeable. The common high pressure gas line 24 and the common low pressure gas line 26 terminate in a motorized rotary valve 28 which alternately the high pressure gas line 24 and the low pressure gas line 26 with a cooling device 30, for. In the form of a Gifford-McMahon cooler or a pulse tube refrigerator. The high and low pressure gas line 24, 26 act due to their volume as a gas storage or it is explicitly a low-pressure gas storage 27 and a high-pressure gas storage 25 in the low-pressure or high-pressure gas line 26, 24 are provided. The check valves 22 at the two high pressure working gas ports 18-1, 18-2 are each followed by heat exchangers 32-1, 32-2 for cooling the compressed working gas. The two compressor stages 2-1, 2-1 are constructed analogously, ie, the gas volumes 8-1, 8-2 and the liquid volumes 12-1, 12-2 are equal.
Die beiden Arbeitsflüssigkeitsanschlüsse 16-1 , 16-2 sind mit einer gemeinsamen elektromotorischen Pumpeinrichtung 34 verbunden, die abwechselnd Arbeitsflüssigkeit 14 in das erste und zweite Flüssigkeitsvolumen 12-1 , 12-2 der ersten und zweiten Verdichterstufe 2-1 , 2-2 pumpt. D. h. es wird entweder Arbeitsflüssigkeit 14 aus dem zweiten Flüssigkeitsvolumen 12-2 in das erste Flüssigkeitsvolumen 12-1 gepumpt oder umgekehrt. The two working fluid ports 16-1, 16-2 are connected to a common electromotive pumping device 34, which alternately pumps working fluid 14 into the first and second fluid volumes 12-1, 12-2 of the first and second compressor stages 2-1, 2-2. Ie. either working fluid 14 is pumped from the second fluid volume 12-2 into the first fluid volume 12-1 or vice versa.
Die Figuren 2a bis 2e illustrieren die verschiedenen Betriebsphasen der Kompressorvorrichtung nach Fig. 1 . In der in Fig. 2a gezeigten Phase wird durch die gemeinsa- me Pumpeinrichtung 34 Arbeitsflüssigkeit 14 aus dem zweiten Flüssigkeitsvolumen 12- 2 der zweiten Verdichterstufe 2-2 in das erste Flüssigkeitsvolumen 12-1 in der ersten Verdichterstufe 2-1 gepumpt. Der erste Metallfaltenbalg 6-1 wird zusammengepresst und das darin befindliche Arbeitsgas 10 wird über den ersten Hochdruck- Arbeitsgasanschluss 18-1 , den ersten Wärmetauscher 32-1 und die gemeinsame Hochdruckgasleitung 24 in den Hochdruckgasspeicher 25 gepresst. Der zweite Metallfalten balg 6-2 dehnt sich durch Arbeitsgas 10 aus, das über die Niederdruckgasleitung 26 und den zweiten Niederdruck-Arbeitsgasanschluss 20-2 aus dem Niederdruck- Arbeitsgasspeicher 27 zurückströmt. Das Drehventil 28 verbindet die Kühleinrichtung 30 über die Niederdruckgasleitung 26 mit dem Niederdruckgasspeicher 27. FIGS. 2a to 2e illustrate the various operating phases of the compressor device according to FIG. 1. In the phase shown in FIG. 2a, the common me pumping device 34 working fluid 14 from the second fluid volume 12- 2 of the second compressor stage 2-2 in the first fluid volume 12-1 in the first compressor stage 2-1 pumped. The first metal bellows 6-1 is compressed and the working gas 10 therein is pressed into the high-pressure gas reservoir 25 via the first high-pressure working gas port 18-1, the first heat exchanger 32-1 and the common high-pressure gas line 24. The second metal bellows 6-2 expands by working gas 10, which flows back from the low-pressure working gas reservoir 27 via the low-pressure gas line 26 and the second low-pressure working gas port 20-2. The rotary valve 28 connects the cooling device 30 via the low pressure gas line 26 with the low pressure gas storage 27th
In der in Fig. 2b gezeigten zweiten Phase ist die Verdichtung in der ersten Verdichterstufe 2-1 vollständig und das Drehventil 28 verbindet den Hochdruckgasspeicher 25 mit der Kühleinrichtung 30, so dass verdichtetes und in dem ersten Wärmetauscher 32-1 gekühltes Arbeitsgas 10 in die Kühleinrichtung 30 gelangt. In the second phase shown in FIG. 2b, the compression in the first compressor stage 2-1 is complete and the rotary valve 28 connects the high-pressure gas reservoir 25 with the cooling device 30, so that compressed and cooled in the first heat exchanger 32-1 working gas 10 in the cooling device 30 arrives.
In der in Fig. 2c gezeigten dritten Phase kehrt sich der Arbeitsflüssigkeitsstrom um und die Pumpeinrichtung 34 pumpt nun Arbeitsflüssigkeit 14 aus dem ersten Flüssigkeitsvolumen 12-1 der ersten Verdichterstufe 2-1 in das zweite Flüssigkeitsvolumen 12- 2 in der zweiten Verdichterstufe 2-2. Dadurch wird der zweite Metallfaltenbalg 6-2 zusammengepresst und das darin befindliche Arbeitsgas 10 wird komprimiert und über den zweiten Hochdruck-Arbeitsgasanschluss 18-1 , den zweiten Wärmetauscher 32-2 und die gemeinsame Hochdruckgasleitung 24 in den Hochdruckgasspeicher 25 gepresst. Der erste Metallfaltenbalg 6-1 dehnt sich durch aus dem Niederdruckgasspeicher 27 über die Niederdruckgasleitung 26 und den ersten Niederdruck- Arbeitsgasanschluss 20-1 zurückströmendes Arbeitsgas 10 aus. In the third phase shown in Fig. 2c, the working fluid flow is reversed and the pumping device 34 now pumps working fluid 14 from the first fluid volume 12-1 of the first compressor stage 2-1 in the second fluid volume 12-2 in the second compressor stage 2-2. Thereby, the second metal bellows 6-2 is compressed and the working gas 10 therein is compressed and pressed into the high pressure gas reservoir 25 via the second high pressure working gas port 18-1, the second heat exchanger 32-2 and the common high pressure gas line 24. The first metal bellows 6-1 expands through working gas 10 flowing back from the low-pressure gas reservoir 27 via the low-pressure gas line 26 and the first low-pressure working gas port 20-1.
In der in Fig. 2d gezeigten vierten Phase ist die Verdichtung in der zweiten Verdichterstufe 2-2 vollständig und das Drehventil 28 verbindet wieder über die gemeinsame Hochdruckgasleitung 24 den Hochdruckgasspeicher 25 mit der Kühleinrichtung 30, so dass verdichtetes und in dem zweiten Wärmetauscher 32-2 gekühltes Arbeitsgas 10 in die Kühleinrichtung 30 gelangt. Die in Fig. 2e gezeigte Phase ist wieder die erste Phase und die Verdichtung erfolgt in der ersten Verdichterstufe 2-1 . Fig. 2a und 2e unterscheiden sich lediglich dadurch, dass in Fig. 2e der erste Metallfaltenbalg 6-1 noch entspannt und der zweite Metallfaltenbalg 6-2 noch komprimiert ist. In Fig. 2a ist die Verdichtung in der ersten Verdichterstufe 2-1 abgeschlossen und der erste Metallfaltenbalg 6-1 ist komprimiert, während der zweite Metallfaltenbalg 6-2 entspannt ist. In the fourth phase shown in Fig. 2d, the compression in the second compressor stage 2-2 is complete and the rotary valve 28 connects again via the common high-pressure gas line 24, the high-pressure gas storage 25 with the cooling device 30 so that compressed and in the second heat exchanger 32-2 cooled working gas 10 passes into the cooling device 30. The phase shown in Fig. 2e is again the first phase and the compression takes place in the first compressor stage 2-1. Fig. 2a and 2e differ only in that in Fig. 2e, the first metal bellows 6-1 still relaxed and the second metal bellows 6-2 is still compressed. In Fig. 2a, the compression in the first compressor stage 2-1 is completed and the first metal bellows 6-1 is compressed, while the second metal bellows 6-2 is relaxed.
Durch das Vorsehen des Hochdruckspeichers 25 und des NiederdruckspeichersBy providing the high pressure accumulator 25 and the low pressure accumulator
27 ist die Drehfrequenz des Drehventils 28 von der Frequenz der Verdichtung in den beiden Verdichterstufen entkoppelt. Alternativ kann die Drehfrequenz des Drehventils27, the rotational frequency of the rotary valve 28 is decoupled from the frequency of the compression in the two compressor stages. Alternatively, the rotational frequency of the rotary valve
28 mit der Frequenz der Verdichterhübe synchronisiert sein. In diesem Fall könnte auf den Hochdruck- und Niederdruckgasspeicher 25, 27 verzichtet werden. 28 be synchronized with the frequency of the compressor strokes. In this case, the high-pressure and low-pressure gas storage 25, 27 could be dispensed with.
Fig. 3 zeigt eine zweite Ausführungsform der Erfindung mit zwei Verdichterstufen 2-1 , 2-2 in Form einer Arbeitsgas 10 fördernden Kompressorvorrichtung. Für in den beiden Ausführungsformen entsprechende Komponenten werden die gleichen Bezugszeichen verwendet. Der Aufbau der beiden Verdichterstufen 2-1 , 2-2 und die Verbindung der beiden Verdichterstufen 2-1 , 2-2 mit der gemeinsamen Pumpeinrichtung (34) entspricht dem Aufbau in Fig. 1 und 2. Ebenso entspricht die der beiden Wärmetauscher 32-1 , 32-2 der Anordnung gemäß der ersten Ausführungsform. Bei der Ausführungsform nach Fig. 3 wird das Arbeitsgas 10 zunächst in der ersten Verdichterstufe 2-1 von einem Ausgangsdruck po auf einen ersten mittleren Druck pmidi und dann anschließend in der zweiten Verdichterstufe 2-2 von einem zweiten mittleren Druck pmid2 auf den Enddruck pend verdichtet. Es gilt: pmidi > pmid2. Fig. 3 shows a second embodiment of the invention with two compressor stages 2-1, 2-2 in the form of a working gas 10 promotional compressor device. For components corresponding in the two embodiments, the same reference numerals are used. The structure of the two compressor stages 2-1, 2-2 and the connection of the two compressor stages 2-1, 2-2 with the common pumping device (34) corresponds to the structure in FIGS. 1 and 2. Likewise corresponds to the two heat exchangers 32-. 1, 32-2 of the arrangement according to the first embodiment. In the embodiment of Fig. 3, the working gas 10 is first in the first compressor stage 2-1 from an output pressure po to a first mean pressure pmidi and then subsequently in the second compressor stage 2-2 from a second average pressure p m id2 to the final pressure compacted pend. The following applies: p m idi> p m id2.
Nachfolgend werden insbesondere die Unterschiede in den beiden Ausführungsformen beschrieben. Ein Pufferspeicher 42 ist über eine erste Gasleitung 40-1 und ein erstes Sperrventil 44-1 mit dem zweiten Niederdruck-Arbeitsgasanschluss 20-2 der zweiten Verdichterstufe 2-2 verbunden. Über einen ersten Wärmetauscher 32-1 und eine zweite Gasleitung 40-2 ist der erste Hochdruck-Arbeitsgansanschluss 20-1 mit dem Pufferspeicher 42 verbunden. Ein Niederdruckgasspeicher 27 ist über eine dritte Gasleitung 40-3 mit einem ersten Niederdruck-Arbeitsgasanschluss 20-1 mit Rückschlagventil 22 in der ersten Verdichterstufe 2-1 verbunden. Der zweite Hochdruck- Arbeitsgasanschluss 18-2 der zweiten Verdichterstufe 2-2 ist über ein Rückschlagventil 22, einen zweiten Wärmetauscher 32- 2 und eine vierte Gasleitung 40-4 mit einem Hochdruckgasspeicher 25 verbunden. Über den ersten Niederdruck- Arbeitsgasanschluss 20-1 wird der ersten Verdichterstufe 2-1 zu verdichtendes Arbeitsgas 10 aus dem Niederdruckgasspeicher 27 zugeführt. In particular, the differences in the two embodiments will be described below. A buffer store 42 is connected via a first gas line 40-1 and a first shut-off valve 44-1 to the second low-pressure working gas port 20-2 of the second compressor stage 2-2. Via a first heat exchanger 32-1 and a second gas line 40-2, the first high pressure Arbeitsgansanschluss 20-1 is connected to the buffer memory 42. A low-pressure gas storage 27 is connected via a third gas line 40-3 to a first low-pressure working gas connection 20-1 with a check valve 22 in the first compressor stage 2-1. The second high-pressure Working gas port 18-2 of the second compressor stage 2-2 is connected via a check valve 22, a second heat exchanger 32-2 and a fourth gas line 40-4 to a high-pressure gas reservoir 25. Via the first low-pressure working gas connection 20-1, the first compressor stage 2-1 is supplied with working gas 10 to be compressed from the low-pressure gas reservoir 27.
Nachfolgend wird anhand der Figuren 4a bis 4d der Betrieb der Kompressorvorrichtung nach Fig. 3 beschrieben. The operation of the compressor device according to FIG. 3 will be described below with reference to FIGS. 4a to 4d.
In einer in Fig. 4a gezeigten ersten Phase wird durch die gemeinsame Pumpeinrichtung 34 Arbeitsflüssigkeit 14 aus dem ersten Flüssigkeitsvolumen 12-1 der ersten Verdichterstufe 2-1 in das zweite Flüssigkeitsvolumen 12-2 in der zweiten Verdichterstufe 2-1 gepumpt. Der erste Metallfaltenbalg 6-1 dehnt sich aus und unverdichtetes Arbeitsgas 10 strömt über die dritte Gasleitung 40-3 und den ersten Niederdruck- Arbeitsgasanschluss 20-1 mit Rückschlagventil 22 in das erste Gasvolumen 8-1 . Das erste Sperrventil 44-1 in der ersten Gasleitung ist geschlossen. Die zweite Verdichterstufe 2-2 dient lediglich als Arbeitsflüssigkeitsausgleichsbehälter. In dem zweiten Gasvolumen 8-2 herrscht im entspannten Zustand der zweite mittlere Druck pmid2 und im verdichteten Zustand in etwa der Enddruck pend . In a first phase shown in FIG. 4a, working fluid 14 from the first fluid volume 12-1 of the first compressor stage 2-1 is pumped by the common pumping device 34 into the second fluid volume 12-2 in the second compressor stage 2-1. The first metal bellows 6-1 expands and uncompressed working gas 10 flows via the third gas line 40-3 and the first low-pressure working gas connection 20-1 with check valve 22 into the first gas volume 8-1. The first check valve 44-1 in the first gas line is closed. The second compressor stage 2-2 serves only as a working fluid expansion tank. In the second gas volume prevails 8-2 in the relaxed state of the second middle pressure pmid2 and in the compressed state to about the final pressure p e nd.
In der zweiten in Fig. 4b gezeigten Betriebsphase dreht sieht die Strömungsrichtung der Arbeitsflüssigkeit 14 um und Arbeitsgas 10 in der ersten Verdichterstufe 2-1 wird komprimiert und über den ersten Hochdruck-Arbeitsgasanschluss 20-2 mit Rückschlagventil 22, den ersten Wärmetauscher 32-1 und die zweite Gasleitung 40-2 in den Pufferspeicher 42 gepresst. Das Rückschlagventil 22 an dem ersten Hochdruck- Arbeitsgasanschluss 18-2 verhindert das Zurückströmen des auf den mittleren Druck Pmid komprimierten Arbeitsgases 10. Das erste Sperrventil 44-1 ist weiter geschlossen und die zweite Verdichterstufe 2-2 wirkt lediglich als Arbeitsflüssigkeitsausgleichbehäl- ter. In the second operating phase shown in FIG. 4b, the flow direction of the working fluid 14 is reversed and working gas 10 in the first compressor stage 2-1 is compressed and via the first high-pressure working gas connection 20-2 with check valve 22, the first heat exchanger 32-1 and the second gas line 40-2 is pressed into the buffer memory 42. The check valve 22 at the first high-pressure working gas port 18-2 prevents the backflow of the working gas 10 compressed to the mean pressure Pmid. The first shut-off valve 44-1 is further closed and the second compressor stage 2-2 acts merely as a working fluid equalization reservoir.
Die Betriebsphasen nach Fig. 4a und 4b werden wiederholt durchgeführt und zwar solange bis die Menge des auf den ersten mittleren Druck pmidi komprimierten Arbeitsgases 10 in dem Pufferspeicher 42 ausreicht, bei Verbindung mit dem zweiten Gasvo- lumen 8-2 über die erste Gasleitung 40-1 und das offene Sperrventil 44-1 den zweiten mittleren Druck pmid2 in dem zweiten Gasvolumen 8-2 zu erzeugen. The operating phases according to FIGS. 4 a and 4 b are carried out repeatedly until the amount of working gas 10 compressed in the first average pressure p m idi in the buffer memory 42 is sufficient, when connected to the second gas volume. Lumen 8-2 via the first gas line 40-1 and the open check valve 44-1 to generate the second average pressure p m id2 in the second gas volume 8-2.
Ist diese Gasmenge in dem Pufferspeicher 42 erreicht wird beim nächsten Verdichtungshub in der ersten Verdichterstufe 2-1 das erste Sperrventil 40-1 geöffnet, so dass das auf den ersten mittleren Druck pmidi vorverdichtete Arbeitsgas 10 aus dem Pufferspeicher 42 über das offene erste Sperrventil 44-1 und die erste Gasleitung 40-1 in das zweite Gasvolumen 8-2 der zweiten Verdichterstufe 2-2 strömen kann, wobei sich der zweite mittlere Druck pmid2 einstellt - siehe Fig. 4c. If this amount of gas reaches in the buffer memory 42 opens the first check valve 40-1 of the next compression stroke in the first compressor stage 2-1 so that the pre-compressed at the first intermediate pressure p m idi working gas 10 from the buffer memory 42 via the open first check valve 44-1 and the first gas line 40-1 can flow into the second gas volume 8-2 of the second compressor stage 2-2, wherein the second average pressure p m id2 sets - see Fig. 4c.
In der nächsten in Fig. 4d dargestellten Betriebsphase wird die Arbeitsflüssigkeit 14 durch die gemeinsame Pumpeinrichtung 34 in die zweite Verdichterstufe 2-2 gepumpt. Das in dem zweiten Gasvolumen 8-2 befindliche auf den zweiten mittleren Druck pmid2 vorverdichtete Arbeitsgas 10 wird auf den Enddruck pend. weiterverdichtet und über den zweiten Wärmetauscher 32-2 und die vierte Gasleitung 40-4 in den Hochdruckgasspeicher 25 gepresst. In the next operating phase shown in Fig. 4d, the working fluid 14 is pumped by the common pumping device 34 in the second compressor stage 2-2. The working gas 10 pre-compressed to the second average pressure p m id2 in the second gas volume 8-2 is further compressed to the final pressure p e nd. And pressed into the high-pressure gas reservoir 25 via the second heat exchanger 32-2 and the fourth gas line 40-4.
Damit ist ein Verdichtungszyklus von dem Ausgangsdruck po auf den Enddruck Pend abgeschlossen und der Zyklus beginnt von vorne. Thus, a compression cycle from the output pressure po to the final pressure Pend is completed and the cycle begins again.
Bei einer alternativen Ausführungsform zu der Ausgestaltung nach Fig. 3 ist der erste Hochdruck-Arbeitsgasanschluss 18-1 über eine Gasleitung 40-1 , 40-2 mit dem Niederdruck-Arbeitsgasanschluss 20-2 der zweiten Verdichterstufe 2-2 verbunden. Der Pufferspeicher 42 und das erste Sperrventil 44-1 erübrigen sich. Hierbei wird das Arbeitsgas 10 in der ersten Verdichterstufe 2-1 auf einen mittleren Druck pmid vorverdichtet und in der Gegenbewegung der gemeinsamen elektromotorischen Pumpeinreich- tung 34 wird das Arbeitsgas 10 in der zweiten Verdichterstufe 2-2 dann auf den Enddruck pend verdichtet. Das auf den Enddruck pend verdichtete Arbeitsgas wird dann nach außen abgegeben oder in einem Hochdruckgasspeicher 25 gespeichert. In an alternative embodiment to the embodiment according to FIG. 3, the first high-pressure working gas connection 18-1 is connected via a gas line 40-1, 40-2 to the low-pressure working gas connection 20-2 of the second compressor stage 2-2. The buffer memory 42 and the first shut-off valve 44-1 are unnecessary. In this case, the working gas 10 in the first compressor stage 2-1 is pre-compressed to a mean pressure p m id and in the countermovement of the common electromotive pump inlet 34, the working gas 10 in the second compressor stage 2-2 is then compressed to the final pressure pend. The compressed to the final pressure pend working gas is then discharged to the outside or stored in a high-pressure gas storage 25.
Fig. 5 zeigt eine Anwendung der zweiten Ausführungsform als Antrieb einer Joule- Thomson-Kältemaschine 50 mit geschlossenem Arbeitsgaskreislauf. Als Arbeitsflüssigkeit eignen sich Hydrauliköle nach DIN 51524. Diese H, HL, HLP und HVLP Öle sind Öle, die sich mit gängigen Dichtungskunststoffen wie NBR (Acrylnitril- Butadien-Kautschuk) etc. gut vertragen. NBR ist allerdings nicht ausreichend heliumdicht. HF Öle sind häufig mit gängigen Dichtungsmaterialien Fig. 5 shows an application of the second embodiment as a drive of a Joule Thomson refrigerator 50 with closed working gas circuit. Hydraulic oils according to DIN 51524 are suitable as working fluids. These H, HL, HLP and HVLP oils are oils which are well tolerated with common sealants such as NBR (acrylonitrile butadiene rubber) etc. NBR, however, is not sufficiently helium-tight. HF oils are common with commonly used sealing materials
(http://de.wikipedia.org/wiki/Liste der Kunststoffe) unverträglich. (http://de.wikipedia.org/wiki/List of plastics) incompatible.
Alternativ kann auch Wasser als Arbeitsflüssigkeit verwendet werden. Wasser als Arbeitsmittel ist auch vorteilhaft, da bei Defekten ein in einen nachgeschalteten Kryo- Kühler eingedrungenes Wasser leichter wieder entfernt werden kann als in einen nachgeschalteten Kühler eingedrungenes Hydrauliköl. Auch bietet sich Wasser als Arbeitsmittel bei explosionsgeschützten Anwendungen an, da Wasser nicht brennbar und nicht explosiv ist. Außerdem ist Wasser ungiftig und damit umweltfreundlich. Alternatively, water can also be used as the working fluid. Water as a working fluid is also advantageous because in the case of defects, water that has penetrated into a downstream cryocooler can be removed more easily than hydraulic oil that has penetrated into a downstream cooler. Also, water is suitable as a working medium in explosion-protected applications, since water is non-flammable and non-explosive. In addition, water is non-toxic and therefore environmentally friendly.
Bezugszeichenliste: po Ausgangsdruck List of Reference Numerals: po outlet pressure
Pmidl mittleren Druck 1  Pmidl mean pressure 1
pmid2 mittleren Druck 2 pmid2 mean pressure 2
Pend Enddruck  Pend final pressure
2-1 erste Verdichterstufe 2-1 first compressor stage
2-2 zweite Verdichterstufe  2-2 second compressor stage
4-1 erster Verdichterraum  4-1 first compressor room
4-2 zweiter Verdichterraum  4-2 second compressor room
6-1 erster Metallfaltenbalg  6-1 first metal bellows
6-2 zweiter Metallfaltenbalg  6-2 second metal bellows
8-1 erstes Gasvolumen  8-1 first gas volume
8-2 zweites Gasvolumen  8-2 second gas volume
10 Arbeitsgas  10 working gas
12-1 erstes Flüssigkeitsvolumen -2 zweites Flüssigkeitsvolumen 12-1 first fluid volume -2 second fluid volume
Arbeitsflüssigkeit working fluid
-1 erster Arbeitsflüssigkeitsanschluss-1 first working fluid connection
-2 zweiter Arbeitsflüssigkeitsanschluss-2 second working fluid connection
-1 erster Hochdruck-Arbeitsgasanschluss-1 first high-pressure working gas connection
-2 zweiter Hochdruck-Arbeitsgasanschluss-2 second high pressure working gas connection
-1 erster Niederdruck-Arbeitsgasanschluss-1 first low-pressure working gas connection
-2 zweiter Niederdruck-Arbeitsgasanschluss -2 second low-pressure working gas connection
Rückschlagventile  check valves
Hochdruckgasleitung  High-pressure gas line
Hochdruckgasspeicher  High-pressure gas storage
Niederdruckgasleitung  Low-pressure gas line
Niederdruckgasspeicher  Low pressure gas storage
elektromotorisches Drehventil  electromotive rotary valve
Kühleinrichtung cooling device
-1 erster Wärmetauscher-1 first heat exchanger
-2 zweiter Wärmetauscher -2 second heat exchanger
gemeinsame elektromotorische Pumpeinrichtung -1 erste Gasleitung common electromotive pumping device -1 first gas line
-2 zweite Gasleitung-2 second gas line
-3 dritte Gasleitung-3 third gas line
-4 vierte Gasleitung -4 fourth gas line
Pufferspeicher buffer memory
-1 erstes Sperrventil -1 first check valve
Joule-Thomson-Kältemaschine Joule-Thomson cooling machine

Claims

Ansprüche  claims
1 . Kompressorvorrichtung, mit 1 . Compressor device, with
einer ersten Verdichterstufe (2-1 ), die aufweist:  a first compressor stage (2-1), comprising:
einen ersten Verdichterraum (4-1 ) mit einem definierten Volumen, in der ein erster Metallfaltenbalg (6-1 ) den ersten Verdichterraum (4-1 ) in ein erstes Gasvolumen (8-1 ) mit einem Arbeitsgas (10) und ein erstes Flüssigkeitsvolumen (12-1 ) mit einer Arbeitsflüssigkeit (14) unterteilt,  a first compressor chamber (4-1) with a defined volume, in which a first metal bellows (6-1) the first compressor chamber (4-1) in a first gas volume (8-1) with a working gas (10) and a first liquid volume (12-1) divided with a working fluid (14),
einen ersten Hochdruck- und einen ersten Niederdruck-Arbeitsgasanschluss (18- 1 , 20-1 ), die in das erste Gasvolumen (8-1 ) münden, und  a first high pressure and a first low pressure working gas port (18-1, 20-1) opening into the first gas volume (8-1), and
einen ersten Arbeitsflüssigkeitsanschluss (16-1 ), der in das erste  a first working fluid port (16-1) inserted in the first
Flüssigkeitsvolumen (12-1 ) mündet; und  Liquid volume (12-1) opens; and
einer Pumpeinrichtung (34), die die Arbeitsflüssigkeit (14) über den ersten  a pumping device (34), the working fluid (14) via the first
Arbeitsflüssigkeitsanschluss (16-1 ) periodisch in die Flüssigkeitsvolumen (12-1 , 12-2) pumpt und dadurch das Arbeitsgas (10) in den Gasvolumen (8-1 , 8-2) periodisch komprimiert, dadurch gekennzeichnet,  Working fluid port (16-1) periodically in the liquid volume (12-1, 12-2) pumps and thereby the working gas (10) in the gas volume (8-1, 8-2) periodically compressed, characterized
dass eine zweite Verdichterstufe (2-2) vorgesehen ist, die einen zweiten  a second compressor stage (2-2) is provided which has a second compressor stage (2-2)
Verdichterraum (4-2)umfasst, den ein zweiter Metallfaltenbalg (8-2) in ein zweites Gasvolumen (8-2) mit Arbeitsgas (10) und ein zweites Flüssigkeitsvolumen (12-2) mit Arbeitsflüssigkeit (14) unterteilt,  Compressor space (4-2), a second metal bellows (8-2) divided into a second gas volume (8-2) with working gas (10) and a second fluid volume (12-2) with working fluid (14),
dass die zweite Verdichterstufe (2-2) einen zweiten Hochdruck- und einen zweiten Niederdruck-Arbeitsgasanschluss (18-2, 20-2) umfasst, die in das zweite  in that the second compressor stage (2-2) comprises a second high-pressure and a second low-pressure working gas connection (18-2, 20-2) arranged in the second
Gasvolumen (8-2) münden,  Gas volume (8-2) open,
dass die zweite Verdichterstufe (2-2) eine zweiten Arbeitsflüssigkeitsanschluss (16-2) umfasst, der in das zweite Flüssigkeitsvolumen (12-2) mündet, und dass die Pumpeinrichtung (34) eine gemeinsame Pumpeinrichtung ist, und dass die gemeinsame Pumpeinrichtung (34) über den zweiten  in that the second compressor stage (2-2) comprises a second working fluid port (16-2) which opens into the second fluid volume (12-2), and in that the pumping device (34) is a common pumping device, and in that the common pumping device (34 ) over the second
Arbeitsflüssigkeitsanschluss (16-2) mit der zweiten Verdichterstufe (2-2) verbunden ist.  Working fluid connection (16-2) with the second compressor stage (2-2) is connected.
2. Kompressorvorrichtung nach Anspruch 1 , dadurch gekennzeichnet, 2. Compressor device according to claim 1, characterized
dass die Hochdruck-Arbeitsgasanschlüsse (18-1 , 18-2) und die Niederdruck- Arbeitsgasanschlüsse (20-1 , 20-2) der beiden Verdichterstufen (2-1 , 2-2) jeweils mit Rückschlagventilen (22) versenen sina, in that the high-pressure working gas connections (18-1, 18-2) and the low-pressure working gas connections (20-1, 20-2) of the two compressor stages (2-1, 2-2) respectively with non-return valves (22) sina sina,
dass die Rückschlagventilen (22) an den Niederdruck-Arbeitsgasanschlüssen (20- 1 , 20-2) jeweils in Richtung zu den Verdichterstufen (2-1 , 2-2) durchlässig sind, und that the check valves (22) at the low-pressure working gas ports (20-1, 20-2) each in the direction of the compressor stages (2-1, 2-2) are permeable, and
dass die Rückschlagventilen (22) an den Hochdruck-Arbeitsgasanschlüssen (18-1 , 18-2) in Vergleich zu den Rückschlagventilen an den Niederdruck- Arbeitsgasanschlüssen (20-1 , 20-2) in entgegen gesetzter Richtung durchlässig sind. in that the check valves (22) on the high-pressure working gas connections (18-1, 18-2) are permeable in the opposite direction in comparison to the check valves on the low-pressure working gas connections (20-1, 20-2).
Kompressorvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass den Hochdruck-Arbeitsgasanschlüsse (18-1 , 18-2) der beiden Verdichterstufen (2-1 , 2-2) jeweils ein Wärmetauscher (32-1 , 32-2) nachgeschaltet ist, um das komprimierte Arbeitsgas (10) zu kühlen. Compressor device according to one of the preceding claims, characterized in that the high-pressure working gas connections (18-1, 18-2) of the two compressor stages (2-1, 2-2) in each case a heat exchanger (32-1, 32-2) is connected downstream to cool the compressed working gas (10).
Kompressorvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Hochd ruck-Arbeitsgasanschlüsse (18-1 , 18-2) der beiden Verdichterstufen (2-1 , 2-2) mit einer gemeinsamen Hochdruckgasleitung (24) verbunden sind, und Compressor device according to one of the preceding claims, characterized in that Hochd jerk working gas connections (18-1, 18-2) of the two compressor stages (2-1, 2-2) with a common high-pressure gas line (24) are connected, and
dass die Niederdruck-Arbeitsgasanschlüsse (20-1 , 20-2) der beiden that the low-pressure working gas connections (20-1, 20-2) of the two
Verdichterstufen (2-1 , 2-2) mit einer gemeinsamen Niederdruckgasleitung (26) verbunden sind. Compressor stages (2-1, 2-2) are connected to a common low pressure gas line (26).
Kompressorvorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die gemeinsame Hochdruckgasleitung (24) in einen Hochdruckgasspeicher (25) und die Niederdruckgasleitung (26) in einen Niederdruckgasspeicher (27) mündet. Compressor device according to claim 4, characterized in that the common high-pressure gas line (24) opens into a high-pressure gas reservoir (25) and the low-pressure gas line (26) into a low-pressure gas reservoir (27).
Kompressorvorrichtung nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die gemeinsame Hoch- und Niederdruckgasleitung (24, 26) in einer Compressor device according to claim 4 or 5, characterized in that the common high and low pressure gas line (24, 26) in one
Ventileinrichtung (28) enden, um entweder die Hochdruckgasleitung (24) oder die Niederdruckgasleitung (26) mit einer externen Einrichtung (30) zu verbinden oder dass der Hochdruckgasspeicher (25) und der Niederdruckgasspeicher (27) mit der Ventileinrichtung (28) verbunden sind, um entweder den Hochdruckgasspeicher (25) oder den Niederdruckgasspeicher (27) mit der externen Einrichtung (30) zu verbinden. Kühlvorrichtung mit einer Kompressorvorrichtung nach einem der vorhergehenden Ansprüche und einem Gifford-McMahon-Kühler oder einem Pulsrohrkühler, wobei die Kompressoreinrichtung mit dem Gifford-McMahon-Kühler oder dem Valve means (28) terminate to connect either the high pressure gas line (24) or the low pressure gas line (26) to an external device (30) or the high pressure gas reservoir (25) and the low pressure gas reservoir (27) are connected to the valve means (28), to connect either the high pressure gas reservoir (25) or the low pressure gas reservoir (27) to the external device (30). Cooling device with a compressor device according to one of the preceding claims and a Gifford-McMahon cooler or a pulse tube cooler, wherein the compressor device with the Gifford-McMahon cooler or the
Pulsrohrkühler gekoppelt ist. Pulse tube cooler is coupled.
Verfahren zum Betreiben einer Kompressorvorrichtung nach einem der Ansprüche 1 bis 6 und einer Kühlvorrichtung nach Anspruch 7, gekennzeichnet durch abwechselndes Verdichten und Entspannen des Arbeitsgases (10) in den beiden Verdichterstufen (2-1 , 2-2) durch Hin- und Herpumpen der Arbeitsflüssigkeit (14) zwischen den beiden Flüssigkeitsvolumen (12-1 , 12-2) in den beiden A method of operating a compressor device according to any one of claims 1 to 6 and a cooling device according to claim 7, characterized by alternately compressing and relaxing the working gas (10) in the two compressor stages (2-1, 2-2) by pumping the working fluid back and forth (14) between the two fluid volumes (12-1, 12-2) in the two
Verdichterstufen (2-1 , 2-2) mittels der gemeinsamen Pumpeinrichtung (34). Compressor stages (2-1, 2-2) by means of the common pumping device (34).
Kompressorvorrichtung nach einem der Ansprüche 1 bis 3, dadurch Compressor device according to one of claims 1 to 3, characterized
gekennzeichnet, in
dass der zweite Niederdruck-Arbeitsgasanschluss (20-2) der zweiten that the second low pressure working gas port (20-2) of the second
Verdichterstufe (2-2) über eine erste Gasleitung (40-1 ) und ein erstes Sperrventil (44-1 ) mit einem Pufferspeicher (42) verbunden ist, und Compressor stage (2-2) via a first gas line (40-1) and a first check valve (44-1) with a buffer memory (42) is connected, and
dass der erste Hochdruck-Arbeitsgasanschluss (18-1 ) der ersten Verdichterstufe (2-1 ) über eine zweite Gasleitung (40-2) mit dem Pufferspeicher (42) verbunden ist. in that the first high-pressure working gas connection (18-1) of the first compressor stage (2-1) is connected to the buffer memory (42) via a second gas line (40-2).
Kompressorvorrichtung nach einem der Ansprüche 1 bis 3, dadurch Compressor device according to one of claims 1 to 3, characterized
gekennzeichnet, in
dass der zweite Niederdruck-Arbeitsgasanschluss (20-2) der zweiten that the second low pressure working gas port (20-2) of the second
Verdichterstufe (2-2) über eine Gasleitung (40-1 ; 40-2) mit dem ersten Hochdruck- Arbeitsgasanschluss (18-1 ) der ersten Verdichterstufe (2-1 ) verbunden ist. Compressor stage (2-2) via a gas line (40-1, 40-2) with the first high-pressure working gas connection (18-1) of the first compressor stage (2-1) is connected.
Kompressorvorrichtung nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass die erste Niederdruck-Arbeitsgasleitung (20-1 ) über eine dritte Gasleitung (40-3) mit einem Niederdruckgasspeicher (27) verbunden ist, und Compressor device according to claim 9 or 10, characterized in that the first low-pressure working gas line (20-1) via a third gas line (40-3) is connected to a low-pressure gas storage (27), and
dass der zweite Hochdruck-Arbeitsgasanschluss (18-2) der zweiten that the second high pressure working gas port (18-2) of the second
Verdichterstufe (2-2) über eine vierte Gasleitung (40-4) mit einem Compressor stage (2-2) via a fourth gas line (40-4) with a
Hochdruckgasspeicher (25) verbunden ist. Kühlvorrichtung mit einer Kompressorvorrichtung nach einem der vorhergehenden Ansprüche 1 1 und einem Joule-Thomson-Kühler (50), der mit dem High-pressure gas storage (25) is connected. Cooling device with a compressor device according to one of the preceding claims 1 1 and a Joule-Thomson cooler (50) associated with the
Niederdruckgasspeicher (27) und dem Hochdruckgasspeicher (25) verbunden ist. Low-pressure gas storage (27) and the high-pressure gas storage (25) is connected.
Verfahren zum Betreiben einer Kompressorvorrichtung nach einem der AnsprücheA method of operating a compressor device according to any one of the claims
9 oder 1 1 und einer Kühlvorrichtung nach Anspruch 12, mit den 9 or 1 1 and a cooling device according to claim 12, with the
Verfahrensschritten: Steps:
- mehrfaches Verdichten von Arbeitsgas (10) in der ersten Verdichterstufe (2-1 ) von einem Ausgangsdruck (po) auf einen ersten mittleren Druck (pmidi ), wobei die zweite Verdichterstufe (2-2) als Arbeitsflüssigkeitsausgleichsbehälter dient; - multiple compression of working gas (10) in the first compressor stage (2-1) from an initial pressure (po) to a first mean pressure (p m idi), wherein the second compressor stage (2-2) serves as a working fluid expansion tank;
- Zwischenspeichern des auf den ersten mittleren Druck (pmidi ) vorverdichteten Arbeitsgases (10) in einem Pufferspeicher (42);  - temporarily storing the working gas (10) precompressed to the first mean pressure (pmidi) in a buffer memory (42);
- Wiederholen der vorhergehenden Verfahrenschritte solange bis sich bei  - Repeat the previous process steps until at
Verbindung des Pufferspeichers (42) mit dem zweiten Gasvolumen (8-2) in der zweiten Verdichterstufe (2-2) in dem zweiten Gasvolumen (8-2) ein zweiter mittlerer Druck (pmid2), mit pmidi > pmid2, einstellt; Connection of the buffer memory (42) with the second gas volume (8-2) in the second compressor stage (2-2) in the second gas volume (8-2) a second average pressure (p m id2), with pmidi> p m id2, set;
- Überführen des auf den ersten mittleren Druck (pmidi ) vorverdichteten  - Conversion of the pre-compressed to the first mean pressure (pmidi)
Arbeitsgases (10) aus dem Pufferspeicher (42) in das Gasvolumen (8-2) der zweiten Verdichterstufe (2-1 ); und Working gas (10) from the buffer memory (42) in the gas volume (8-2) of the second compressor stage (2-1); and
- Verdichten des auf den zweiten mittleren Druck (pmid2) vorverdichteten - Compressing the precompressed to the second mean pressure (p m id2)
Arbeitsgases (10) in der zweiten Verdichterstufe (2-2) auf den Enddruck (pend). Working gas (10) in the second compressor stage (2-2) to the final pressure (p en d).
Verfahren zum Betreiben einer Kompressorvorrichtung nach einem der AnsprücheA method of operating a compressor device according to any one of the claims
10 oder 1 1 und einer Kühlvorrichtung nach Anspruch 12, mit den 10 or 1 1 and a cooling device according to claim 12, with the
Verfahrensschritten: Steps:
- Verdichten von Arbeitsgas (10) in der ersten Verdichterstufe (2-1 ) von einem Ausgangsdruck (po) auf einen mittleren Druck (pmid) und Überführen des auf den mittleren Druck (pmid) vorverdichteten Arbeitsgases (10) in das zweite Gasvolumen (8-2) der zweiten Verdichterstufe (2-2); und - Compressing working gas (10) in the first compressor stage (2-1) from an initial pressure (po) to a mean pressure (p m id) and transferring the compressed to the mean pressure (p m id) working gas (10) in the second gas volumes (8-2) of the second compressor stage (2-2); and
- Verdichten des auf den mittleren Druck (pmid) vorverdichteten Arbeitsgases (10) in der zweiten Verdichterstufe (2-2) auf den Enddruck (pend). - Compressing the compressed to the average pressure (p m id) working gas (10) in the second compressor stage (2-2) to the final pressure (pend).
5. Verfahren nach Anspruch 13 oder i 4, aaaurch gekennzeichnet, dass das verdichtete Arbeitsgas (10) aus beiden Verdichterstufen (2-1 , 2-2) nach jedem Verdichterhub gekühlt wird. 5. The method of claim 13 or i 4, aaaurch characterized in that the compressed working gas (10) from both compressor stages (2-1, 2-2) is cooled after each compressor stroke.
EP15774869.0A 2014-09-08 2015-09-08 Compressor device, cooling device equipped therewith, and method for operating the compressor device and the cooling device Active EP3191712B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18195959.4A EP3434897B1 (en) 2014-09-08 2015-09-08 Compressor device, a cooling device equipped with such a compressor device and a method for operating the compressor device and the cooling device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014217897.5A DE102014217897A1 (en) 2014-09-08 2014-09-08 A compressor device, a cooling device equipped therewith, and a method of operating the compressor device and the cooling device
PCT/EP2015/070507 WO2016038041A1 (en) 2014-09-08 2015-09-08 Compressor device, cooling device equipped therewith, and method for operating the compressor device and the cooling device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP18195959.4A Division EP3434897B1 (en) 2014-09-08 2015-09-08 Compressor device, a cooling device equipped with such a compressor device and a method for operating the compressor device and the cooling device
EP18195959.4A Division-Into EP3434897B1 (en) 2014-09-08 2015-09-08 Compressor device, a cooling device equipped with such a compressor device and a method for operating the compressor device and the cooling device

Publications (2)

Publication Number Publication Date
EP3191712A1 true EP3191712A1 (en) 2017-07-19
EP3191712B1 EP3191712B1 (en) 2019-03-13

Family

ID=54251480

Family Applications (2)

Application Number Title Priority Date Filing Date
EP15774869.0A Active EP3191712B1 (en) 2014-09-08 2015-09-08 Compressor device, cooling device equipped therewith, and method for operating the compressor device and the cooling device
EP18195959.4A Active EP3434897B1 (en) 2014-09-08 2015-09-08 Compressor device, a cooling device equipped with such a compressor device and a method for operating the compressor device and the cooling device

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP18195959.4A Active EP3434897B1 (en) 2014-09-08 2015-09-08 Compressor device, a cooling device equipped with such a compressor device and a method for operating the compressor device and the cooling device

Country Status (6)

Country Link
US (1) US11028841B2 (en)
EP (2) EP3191712B1 (en)
JP (1) JP6594959B2 (en)
CN (1) CN107094367B (en)
DE (1) DE102014217897A1 (en)
WO (1) WO2016038041A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6975077B2 (en) 2018-03-07 2021-12-01 住友重機械工業株式会社 Power supply system for cryogenic freezers and cryogenic freezers
US20220010934A1 (en) * 2020-07-10 2022-01-13 University Of Maryland, College Park System and method for efficient isothermal compression
DE102021002178A1 (en) * 2021-04-24 2022-10-27 Hydac Technology Gmbh conveyor
DE102022115715A1 (en) 2022-06-23 2023-12-28 Pressure Wave Systems Gmbh Compressor device and cooling device with compressor device

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE91837C (en) *
US1580479A (en) * 1924-12-27 1926-04-13 Frankenfield Budd Diaphragm pump
US2613607A (en) * 1949-10-27 1952-10-14 Milton Roy Co Bellows pump
US2772543A (en) * 1953-03-24 1956-12-04 Berry Frank Multiple hydraulic compressor in a refrigeration system
DE1077367B (en) * 1959-02-12 1960-03-10 Basf Ag Method and device for circulating hot gases
US3205679A (en) * 1961-06-27 1965-09-14 Air Prod & Chem Low temperature refrigeration system having filter and absorber means
CH457147A (en) * 1967-01-20 1968-05-31 Hannes Keller Unterwassertechn Diaphragm compressor or pump
US4553397A (en) * 1981-05-11 1985-11-19 Soma Kurtis Method and apparatus for a thermodynamic cycle by use of compression
US4551979A (en) * 1981-05-11 1985-11-12 Soma Kurtis Method and apparatus for a thermodynamic cycle by use of distillation
US4617801A (en) * 1985-12-02 1986-10-21 Clark Robert W Jr Thermally powered engine
JPH0776641B2 (en) * 1986-05-16 1995-08-16 ダイキン工業株式会社 Cryogenic refrigerator
US4673415A (en) * 1986-05-22 1987-06-16 Vbm Corporation Oxygen production system with two stage oxygen pressurization
DE3801160A1 (en) * 1988-01-16 1989-09-21 Filox Gmbh Membrane pump driven by oil engine - has control valves to facilitate handling of slurries
JPH062971A (en) * 1992-06-22 1994-01-11 Aisin Seiki Co Ltd Stirling engine integral type compressor
US5381675A (en) * 1993-09-07 1995-01-17 Siegel; Israel Force-sparing balanced bellows refrigeration device
US5375430A (en) * 1993-10-05 1994-12-27 Siegel; Israel Gravity powered shoe air conditioner
US6192695B1 (en) * 1997-11-14 2001-02-27 Tgk Co., Ltd. Refrigerating cycle
JP2001330329A (en) * 2000-05-23 2001-11-30 Cryodevice Inc Linear compressor
US6378312B1 (en) * 2000-05-25 2002-04-30 Cryomech Inc. Pulse-tube cryorefrigeration apparatus using an integrated buffer volume
DE10245694A1 (en) 2002-09-30 2004-04-15 Luther, Gerhard, Dr.rer.nat. Combined compression and liquefaction device for refrigeration medium in refrigeration or heat pump process
US7249465B2 (en) * 2004-03-29 2007-07-31 Praxair Technology, Inc. Method for operating a cryocooler using temperature trending monitoring
DE102004020168A1 (en) * 2004-04-24 2005-11-17 Bruker Biospin Gmbh Magnetic resonance unit has coil refrigerator in cryostat sharing compressor with detection coil cooling refrigerator
DE102005034907A1 (en) * 2005-07-26 2007-02-01 Linde Ag Compressor, in particular reciprocating compressor
FR2903456B1 (en) * 2006-07-07 2008-10-17 Siemens Automotive Hydraulics TRANSFER PUMP WITH MULTIPLE PISTONS
CN2856477Y (en) * 2006-07-13 2007-01-10 孔照根 Improved structure of plunger type inflator
JP2008286109A (en) * 2007-05-17 2008-11-27 Toyota Industries Corp Refrigerant intake structure in fixed capacity type piston type compressor
US8049351B2 (en) * 2007-06-15 2011-11-01 E-Net, Llc Turbine energy generating system
DE202007018538U1 (en) * 2007-12-01 2008-10-23 Knf Neuberger Gmbh Multi-stage membrane suction pump
US9518577B2 (en) * 2008-06-27 2016-12-13 Lynntech, Inc. Apparatus for pumping a fluid
US11078897B2 (en) * 2008-06-27 2021-08-03 Lynntech, Inc. Apparatus for pumping fluid
DE102008060598A1 (en) * 2008-12-05 2010-06-10 Thermea. Energiesysteme Gmbh Apparatus and method for compressing or compressing a gas
JP5356983B2 (en) 2009-11-18 2013-12-04 大陽日酸株式会社 Cryogenic refrigeration apparatus and operation method thereof
US9850889B2 (en) * 2010-02-02 2017-12-26 Dajustco Ip Holdings Inc. Hydraulic fluid control system for a diaphragm pump
WO2012134608A2 (en) * 2011-03-31 2012-10-04 Carrier Corporation Expander system
GB201209243D0 (en) * 2012-05-25 2012-07-04 Oxford Instr Nanotechnology Tools Ltd Apparatus for reducing vibrations in a pulse tube refrigerator
US9234480B2 (en) * 2012-07-04 2016-01-12 Kairama Inc. Isothermal machines, systems and methods
DE102012213293B4 (en) * 2012-07-27 2018-03-29 Pressure Wave Systems Gmbh Compressor device and a cooling device equipped therewith and a refrigerating machine equipped therewith
US9512835B2 (en) * 2012-11-01 2016-12-06 Alloy Bellows and Precision Welding, Inc. High pressure bellows assembly
US20160069359A1 (en) * 2013-04-12 2016-03-10 Edward John Hummelt Pressure vessel having plurality of tubes for heat exchange
DE102013213575A1 (en) * 2013-07-11 2015-01-15 Mahle International Gmbh Heat recovery system for an internal combustion engine
AU2014323584B2 (en) * 2013-09-19 2016-09-08 Halliburton Energy Services, Inc. Collecting and removing condensate from a gas extraction system
KR101885017B1 (en) * 2014-07-10 2018-08-02 이글 고오교 가부시키가이샤 Liquid supply system
JP6353732B2 (en) * 2014-08-04 2018-07-04 日本ピラー工業株式会社 Bellows pump device
EP3179105B1 (en) * 2014-08-08 2019-05-29 Nippon Pillar Packing Co., Ltd. Bellows pump device
JP6362535B2 (en) * 2014-12-25 2018-07-25 日本ピラー工業株式会社 Bellows pump device
CN106322807B (en) * 2015-07-03 2021-05-28 开利公司 Ejector heat pump
WO2017087794A1 (en) * 2015-11-20 2017-05-26 Carrier Corporation Heat pump with ejector
US10551093B2 (en) * 2016-03-16 2020-02-04 Sumitomo Heavy Industries, Ltd. Cryocooler and rotary valve mechanism

Also Published As

Publication number Publication date
US11028841B2 (en) 2021-06-08
US20170175729A1 (en) 2017-06-22
JP6594959B2 (en) 2019-10-23
EP3434897B1 (en) 2019-12-11
EP3191712B1 (en) 2019-03-13
CN107094367B (en) 2019-10-25
EP3434897A1 (en) 2019-01-30
CN107094367A (en) 2017-08-25
DE102014217897A1 (en) 2016-03-10
JP2017528644A (en) 2017-09-28
WO2016038041A1 (en) 2016-03-17

Similar Documents

Publication Publication Date Title
EP3191712B1 (en) Compressor device, cooling device equipped therewith, and method for operating the compressor device and the cooling device
DE102005052873A1 (en) Piston compressor and chiller with the same
DE112005003132T5 (en) Kroygener cooler with reduced input power
DE102011086476A1 (en) High temperature heat pump and method of using a working medium in a high temperature heat pump
DE102017116805A1 (en) TIEFTEMPERATUR EXPANDER WITH COLLAR FOR REDUCING NOISE AND VIBRATION PROPERTIES
EP1812759B1 (en) Combined piston-expander compressor
EP2877748B1 (en) Compressor device, and cooling device equipped therewith and refrigeration machine equipped therewith
DE102013112670A1 (en) Cooling circuit
JP2017528644A5 (en)
EP2710263B1 (en) Compressor device
DE112012006734T5 (en) Brayton cycle engine
DE102013114210B3 (en) Apparatus for compressing a gaseous fluid and method for operating the apparatus
DE102011080377B4 (en) Cooling device with compressor device and Gifford-McMahon cooler or pulse tube cooler
DE202012100995U1 (en) compressor device
WO2015110285A1 (en) Coolant circuit for a domestic refrigerator, domestic refrigerator with a coolant circuit, and method for operating a coolant circuit of a domestic refrigerator
DE323950C (en) High pressure cold air machine
DE102012004801A1 (en) Arrangement for heat pump for heating heat transfer fluid, has condenser and sub-cooler to heat a heat transfer fluid flowing against working fluid flow direction, after fluid flows through flow path formed by de-heater and oil cooler
DE102014017894A1 (en) Hot gas engine according to the Stirling principle
DE366456C (en) Process for generating cold
EP3071903B1 (en) Cold head for cryogenic refrigerating machine
DE102022115715A1 (en) Compressor device and cooling device with compressor device
DE102021102648A1 (en) Piston compressor, in particular for a heat pump
WO2005075904A1 (en) (deep-freeze) refrigerating unit having a natural circulation
DE102008009663A1 (en) Deteriorated wide potential energy using device for refrigerator, has reciprocating pumps whose different cylinder capacities and solvent/refrigerant flow of refrigerator are combined with unique common plunger

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170313

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180918

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTC Intention to grant announced (deleted)
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

INTG Intention to grant announced

Effective date: 20190204

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1108055

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015008357

Country of ref document: DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: PRESSURE WAVE SYSTEMS GMBH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190613

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502015008357

Country of ref document: DE

Representative=s name: WINTER, BRANDL, FUERNISS, HUEBNER, ROESS, KAIS, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502015008357

Country of ref document: DE

Owner name: PRESSURE WAVE SYSTEMS GMBH, DE

Free format text: FORMER OWNER: PRESSURE WAVE SYSTEMS GMBH, 80337 MUENCHEN, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502015008357

Country of ref document: DE

Representative=s name: WINTER, BRANDL - PARTNERSCHAFT MBB, PATENTANWA, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190614

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190613

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190713

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015008357

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190713

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

26N No opposition filed

Effective date: 20191216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190908

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190908

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150908

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1108055

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230920

Year of fee payment: 9

Ref country code: GB

Payment date: 20230921

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230918

Year of fee payment: 9

Ref country code: DE

Payment date: 20230817

Year of fee payment: 9