EP3189234B1 - Verdrängerpumpe mit fluidreservoir - Google Patents

Verdrängerpumpe mit fluidreservoir Download PDF

Info

Publication number
EP3189234B1
EP3189234B1 EP15762528.6A EP15762528A EP3189234B1 EP 3189234 B1 EP3189234 B1 EP 3189234B1 EP 15762528 A EP15762528 A EP 15762528A EP 3189234 B1 EP3189234 B1 EP 3189234B1
Authority
EP
European Patent Office
Prior art keywords
pressure
valve
suction
delivery
reservoir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP15762528.6A
Other languages
English (en)
French (fr)
Other versions
EP3189234A1 (de
Inventor
Maximilian BECHTLER
Holger Ludwig
Michael RUMMER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prominent GmbH
Original Assignee
Prominent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prominent GmbH filed Critical Prominent GmbH
Publication of EP3189234A1 publication Critical patent/EP3189234A1/de
Application granted granted Critical
Publication of EP3189234B1 publication Critical patent/EP3189234B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/06Venting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B13/00Pumps specially modified to deliver fixed or variable measured quantities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/02Pumping installations or systems having reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/11Kind or type liquid, i.e. incompressible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps

Definitions

  • the present invention relates to a positive displacement pump with a delivery chamber, which is connected to a pressure and a suction port.
  • the displacement pump furthermore has a displacement element which determines the volume of the delivery space and which can be moved back and forth between a first position in which the delivery space has a smaller volume and a second position in which the delivery space has a larger volume.
  • the pressure connection is usually connected to the delivery chamber via a pressure valve designed as a check valve and the suction connection is connected to the delivery chamber via a suction valve which is likewise designed as a check valve.
  • the displacer element which may for example be a membrane, oscillates between the first and the second position.
  • the so-called suction stroke the volume of the delivery chamber is increased, as a result of which the pressure in the delivery chamber drops.
  • the suction valve opens and via the suction connection the medium to be delivered is sucked into the delivery chamber.
  • the displacement element moves back from the second position in the direction of the first position (this is the so-called pressure stroke)
  • the volume in the delivery chamber decreases and the pressure in the delivery chamber increases.
  • the suction valve is closed to prevent backflow of the medium to be pumped into the suction line. As soon as the pressure in the delivery chamber exceeds the pressure in a pressure line connected to the pressure connection, the pressure valve is opened so that the delivery medium located in the delivery chamber can be pressed into the delivery line.
  • the pumped medium is not pumped, i. the desired dosage can not be done.
  • an additional connection between delivery chamber on the one hand and pressure port on the other hand is provided, which is opened intermittently to allow fluid re-entry from the pressure line into the pumping chamber, which simultaneously gas can escape from the pumping chamber, so that the ratio between compressible gases and incompressible fluids again improved and ideally the pressure applied to the pressure port counterpressure in the delivery chamber can be achieved again.
  • this embodiment has the disadvantage that the delivery characteristic depends on the pressure in the pressure line connected to the pressure port.
  • the amount of delivery fluid which flows back through the leaking pressure valve in the delivery chamber, increases significantly, so that the dosing is reduced.
  • Another solution is in the EP 2728189 shown wherein a fillable with conveying fluid reservoir is connected via a degassing valve with the pumping chamber.
  • this object is achieved, inter alia, in that a reservoir which can be filled with conveying fluid is connected to the delivery chamber via a degassing valve.
  • the degassing valve is designed such that it can be opened at least then during the suction stroke or automatically opens when too much gas in the pumping chamber, whereby conveying fluid is transferred from the reservoir into the pumping chamber and in the sequence during the next pressure stroke of the pressure in the delivery room continues to increase.
  • the displacement pump is preferably designed such that conveying fluid from the suction port via the suction valve without flowing through the reservoir transported in the delivery chamber can be. Then it is possible during the suction stroke and then to conduct delivery liquid into the delivery chamber, if the pressure drop is insufficient to open the suction valve.
  • the degassing valve in the direction from the reservoir to the delivery chamber has a flow coefficient which is smaller than the flow coefficient of the suction valve.
  • the flow rate coefficient of the degassing valve may be less than 1% or, preferably, even less than 0.2% of the flow coefficient of the suction valve.
  • the flow coefficient is a measure of the achievable throughput of the fluid through the valve in question and is in principle also a measure of the effective cross section.
  • the absolute value of the flow coefficient does not matter, but only the ratio of the flow coefficient of the degassing valve to the flow coefficient of the suction or pressure valve.
  • the effective cross section of the degassing valve is less than 1% and preferably even less than 0.2% of the effective cross section of the suction valve.
  • the flow coefficient of the conveying fluid flow rate of the valve (ml / min) at a pressure difference of 1 bar and a delivery fluid temperature of 25 ° C can be defined.
  • the flow rate is determined in each case with the valve open.
  • the degassing valve By the corresponding reduction of the flow coefficient of the degassing valve, this can also be opened when there is no gas in the pumping chamber, so that a detection of the amount of gas is not absolutely necessary.
  • a quantity of conveying fluid flows from the reservoir into the delivery space, which leads to a degassing of the delivery space.
  • delivery fluid is also removed from the reservoir, so that it must be replenished.
  • this reduces the delivery rate, as less delivery fluid is drawn through the suction port and pumped through the pressure port into the delivery line. Due to the large reduction in the flow coefficient, the printing performance is only minimally reduced.
  • the degassing valve may always be open or consist of a correspondingly sized throttle.
  • the degassing valve is designed as a throttle check valve, which provides a permanent, throttled connection and, if the pressure in the pumping chamber is greater than the pressure in the reservoir, an unthrottled connection.
  • the reservoir can also be filled again with delivery fluid when the delivery chamber is vented, since then a portion of the delivery fluid is pumped into the reservoir.
  • the throttle check valve in the unthrottled state a flow coefficient which is smaller than the flow coefficient of the pressure valve, wherein preferably the flow coefficient of the unthrottled degassing valve is less than 15%, more preferably less than 5% of the flow coefficient of the pressure valve.
  • This measure ensures that only a small part of the delivery fluid is pumped into the reservoir in the reservoir and the greater proportion of the delivery fluid is transported into the pressure line.
  • the degassing valve is a check valve which opens when the pressure in the pumping chamber is less than the pressure in the reservoir.
  • the embodiment with check valve is advantageous if the pressure in the reservoir is greater than the pressure in the suction line, then During the suction stroke fluid can be removed from the reservoir, even if the pressure in the delivery chamber does not fall below the pressure in the suction line.
  • the reservoir is connected to the pressure port.
  • the degassing valve is particularly preferably connected in series with the pressure valve, wherein the degassing valve is arranged closer to the delivery chamber.
  • delivery fluid which is pumped from the delivery chamber into the pressure line, must first flow through the degassing valve and then through the pressure valve.
  • the reservoir is then formed by the connecting line between the degassing valve on the one hand and the pressure valve on the other.
  • the reservoir is automatically replenished, which must be done manually from the separate reservoir from and to.
  • the flow coefficient of the degassing valve from the delivery chamber into the reservoir should be approximately equal to the flow coefficient of the pressure valve.
  • the reservoir is connected to an accumulator.
  • An accumulator or hydraulic accumulator stores the fluid, i. the delivery fluid, under pressure.
  • such an accumulator can be formed by a pressure vessel, the interior of which is divided by a movable partition member into two spaces, wherein in one space, a gas, which serves as a pressure accumulator, and in the other space, the conveying fluid is stored.
  • the positive displacement pump can be used in a metering system with a pressure line in which conveying fluid at a pressure p 2 is contained, and with a suction line in which conveying fluid is contained at a pressure p 1 ⁇ p 2 , the pressure line being connected to the pressure port and the suction line is connected to the suction port.
  • the delivery fluid is pressurized in the reservoir with a pressure p 3 , where p 1 ⁇ p 3 ⁇ p 2 .
  • This embodiment has the advantage that when there is too much gas in the pumping chamber and therefore no pumped fluid pumped via the pressure valve in the pressure line and at the end of the suction stroke no further pumping fluid through the suction line, the suction valve is sucked into the pumping chamber, instead during the suction stroke is introduced via the degassing valve conveying fluid from the reservoir into the pumping chamber, with the result that the pressure in the pumping chamber increases during the next pressure stroke.
  • FIG. 1 is schematically shown a dosing with a positive displacement pump.
  • the dosing system serves to pump a conveying fluid from a suction line 1, in which conveying fluid with the fluid pressure p 1 is contained, in a pressure line 6 in which conveying fluid is under a fluid pressure p 2 , where p 2 > p 1 .
  • the positive displacement pump has a delivery chamber 3, in which a displacement element 11 designed as a membrane can be moved back and forth between two positions, wherein in the first position, which is shown in dashed lines in the figure and designated by the reference numeral 4 ', the delivery chamber has smaller volume, and in the second position, which is shown in solid lines and provided with the reference numeral 4, the delivery chamber has a larger volume.
  • the membrane If the membrane is moved from the position 4 'to the position 4, the volume of the delivery space 3 thus increases and the pressure in the delivery space drops. As soon as the pressure in the delivery chamber is smaller than the pressure p 1 in the suction line 1, the suction valve 2 arranged between the suction line 1 and the delivery chamber 3 opens, which is designed as a check valve.
  • the pressure in the delivery chamber 3 continues to increase until the pressure p 2 in the pressure line 6 is reached or exceeded.
  • the pressure valve 5 opens and delivery fluid is transported from the delivery chamber 3 into the pressure line 6.
  • the reservoir 10 is formed by the connecting line between the degassing valve 7 and the pressure valve 5.
  • the degassing valve 7 is designed as a throttle check valve, i. it consists of a throttled connection 9 and a check valve eighth
  • the degassing valve 7 does not affect the functioning of the positive displacement pump.
  • the advantages of the inventive arrangement of the reservoir and the degassing valve become clear only when, what can happen during operation or after a long standstill, the delivery chamber 3 contains too large a proportion of gaseous components. Because of the comparatively high compressibility of the gaseous constituents, this may in some circumstances mean that the movement of the membrane from position 4 into position 4 'is no longer sufficient to increase the pressure in the delivery chamber 3 to such an extent that the pressure p 2 is reached and the check valve 5 can be opened. In this state, although the membrane between the positions 4 and 4 'reciprocated, but there is neither an opening of the suction valve 2 nor an opening of the pressure valve. 5
  • the pressure in the delivery chamber 3 will drop so much during the suction stroke that further delivery fluid from the suction line 1 via the suction valve 2 is sucked. This also leads to an increase in the pressure in the delivery chamber 3 at the end of the pressure stroke, since there is now more delivery fluid in the delivery chamber 3.
  • the pressure in the delivery chamber 3 will rise until the gas can be compressed to such an extent that it is possible to open the pressure valve 5 and press the gas into the pressure line.
  • the degassing valve 7 may in principle be constructed in the same way as in the WO 2013/135681 A1 is described, that is, it may have a valve body and a valve seat, between which also in the closed position, a return flow channel, which is formed for example by a groove arises.
  • the degassing valve is a leaking check valve.
  • the structure described has the advantage that even when working against high pressures in the suction line 6, the dosing does not decrease, since the pressure line 6 is not permanently in contact with the degassing valve 7. This is also advantageous for safety reasons, since in the case of a diaphragm fracture there is no permanent connection between metering line 6 on the one hand and delivery chamber 3 on the other hand.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Details Of Reciprocating Pumps (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Verdrängerpumpe mit einem Förderraum, welche mit einem Druck- und einem Sauganschluss verbunden ist. Die Verdrängerpumpe weist des Weiteren ein das Volumen des Förderraums bestimmendes Verdrängerelement auf, das zwischen einer ersten Position, in der der Förderraum ein kleineres Volumen aufweist, und einer zweiten Position, in der der Förderraum ein größeres Volumen aufweist, hin- und herbewegt werden kann. Üblicherweise ist der Druckanschluss über ein als Rückschlagventil ausgebildetes Druckventil mit dem Förderraum verbunden und der Sauganschluss über ein ebenfalls als Rückschlagventil ausgebildetes Saugventil mit dem Förderraum verbunden.
  • Um ein Medium zu fördern, wird das Verdrängerelement, das beispielsweise eine Membran sein kann, oszillierend zwischen der ersten und der zweiten Position hin- und herbewegt. Bei der Bewegung des Verdrängerelementes von der ersten in die zweite Position, dem sogenannten Saughub, wird das Volumen des Förderraums vergrößert, wodurch der Druck im Förderraum abfällt. Sobald der Druck im Förderraum unter dem Druck in einer mit dem Sauganschluss verbundenen Saugleitung fällt, öffnet sich das Saugventil und über den Sauganschluss wird zu förderndes Medium in den Förderraum eingesaugt. Sobald das Verdrängerelement sich von der zweiten Position wieder in Richtung der ersten Position bewegt (dies ist der sogenannte Druckhub), verringert sich das Volumen im Förderraum und der Druck im Förderraum steigt an. Das Saugventil wird verschlossen, um ein Zurückströmen des zu fördernden Mediums in die Saugleitung zu verhindern. Sobald der Druck im Förderraum den Druck in einer mit dem Druckanschluss verbundenen Druckleitung überschreitet, wird das Druckventil geöffnet, sodass das sich im Förderraum befindliche Fördermedium in die Druckleitung gedrückt werden kann.
  • Eine solche als Membranpumpe ausgebildete Verdrängerpumpe ist in der EP 1 546 557 B1 gezeigt und beschrieben.
  • Beim Dosieren von Flüssigkeiten, insbesondere von ausgasenden Fördermedien, wie zum Beispiel Natriumhypochlorit (NaOCI), können sich Gasblasen in der mit dem Sauganschluss verbundenen Saugleitung bilden und in den Dosierkopf gesaugt werden. Auch ist es möglich, dass sich in der Förderkammer Gasblasen bilden. Dies ist häufig nach längeren Dosierpausen der Fall. Da der Sauganschluss mit einer Saugleitung verbunden ist, die im einfachsten Fall als Schlauch ausgebildet ist und in einem Vorratsbehälter endet, kann es bei einem Austausch des Vorratsbehälters, insbesondere bei laufender Pumpe, vorkommen, dass die Saugleitung kurzzeitig nicht mehr mit dem Fördermedium verbunden ist und Gas ansaugt.
  • Befindet sich zu viel Gas im Dosierkopf einer oszillierenden Förderpumpe kann es zu Störungen des Dosiervorgangs kommen, sofern die Eigenkompressionsfähigkeit des Dosierkopfes aufgrund des eingeschlossenen Gasvolumens nicht ausreicht, um das Druckventil gegen die Rückschlagfeder, das Eigengewicht des Schließkörpers sowie den Systemdruck zu öffnen. Mit anderen Worten kann es passieren, dass, wenn der Gasanteil im Förderraum zu hoch wird, trotz der Bewegung des Verdrängerelementes von der zweiten in die erste Position sich der Druck im Förderraum nicht ausreichend erhöht, um das mit dem Druckanschluss verbundene Druckventil zu öffnen. Ursache dafür ist die im Vergleich zu Flüssigkeiten hohe Kompressionsfähigkeit von Gas.
  • Gelingt es daher dem Verdrängerelement nicht mehr, einen genügend hohen Druck zur Öffnung des Druckventils aufzubringen, wird das Fördermedium nicht gepumpt, d.h. die gewünschte Dosierung kann nicht erfolgen.
  • Um diesen Fehlerzustand verlassen zu können, ist es notwendig, die Kompressionsfähigkeit auf den am Druckanschluss anliegenden Gegendruck wiederherzustellen. Dies kann dadurch erfolgen, dass wieder etwas Flüssigkeit in den Förderraum gebracht wird, um das Verhältnis von kompressiblen zu inkompressiblen Medien so zu verbessern, dass der bei der durch die Bewegung des Förderelementes aufgebaute Druck den an dem Druckanschluss anliegenden Gegendruck wieder erreichen kann.
  • Bei der in der EP 1 546 557 B1 gezeigten Förderpumpe ist daher eine zusätzliche Verbindung zwischen Förderraum einerseits und Druckanschluss andererseits vorgesehen, die intermittierend geöffnet wird, um Flüssigkeit den Wiedereintritt von der Druckleitung in den Förderraum zu ermöglichen, wodurch gleichzeitig Gas aus dem Förderraum entweichen kann, sodass sich das Verhältnis zwischen kompressiblen Gasen und inkompressiblen Flüssigkeiten wieder verbessert und im Idealfall der am Druckanschluss anliegende Gegendruck in der Förderkammerwieder erreicht werden kann.
  • Diese Lösung ist jedoch relativ aufwendig, da neben einer zusätzlichen Bypassleitung, ein diese verschließendes Ventil sowie eine Ansteuervorrichtung zum Ansteuern des Ventils vorgesehen sein muss.
  • Daher ist in der WO 2013/135681 bereits vorgeschlagen worden, das Druckventil undicht auszuführen, sodass auch bei geschlossenem Druckventil ein Rückflusskanal Förderraum und Druckanschluss verbindet, durch den Medium in den Förderraum gelangen kann und/oder Gas aus dem Förderraum entweichen kann.
  • Diese Ausführungsform hat jedoch den Nachteil, dass die Förderkennlinie von dem Druck in der mit dem Druckanschluss verbundenen Druckleitung abhängt. Insbesondere dann, wenn gegen einen sehr hohen Druck gepumpt werden soll, nimmt die Menge an Förderfluid, die durch das undichte Druckventil in den Förderraum zurückströmt, deutlich zu, sodass die Dosierleistung reduziert wird. Eine weitere Lösung ist in der EP 2728189 gezeigt wobei ein mit Förderfluid befüllbares Reservoir über ein Entgasungsventil mit dem Förderraum verbunden ist.
  • Vor dem Hintergrund des beschriebenen Standes der Technik ist es daher Aufgabe der vorliegenden Erfindung eine Verdrängerpumpe bereitzustellen, die selbst entlüftend ist, einfach aufgebaut ist und zudem auch bei hohen Gegendrücken in der Druckleitung eine druckstabile Dosierleistung hat.
  • Wie in Anspruch 1 definiert wird diese Aufgabe unter anderem dadurch gelöst, dass ein mit Förderfluid befüllbares Reservoir über ein Entgasungsventil mit dem Förderraum verbunden ist.
  • Unter einem Reservoir wird dabei ein beliebiger Hohlraum verstanden, der mit Förderfluid befüllbar ist und der gegebenenfalls über Ventile sowohl vom Förderraum als auch vom Druck- und Sauganschluß getrennt ist.
  • Das Entgasungsventil ist dabei derart ausgebildet, dass es zumindest immer dann während des Saughubes geöffnet werden kann oder automatisch öffnet, wenn zu viel Gas im Förderraum ist, wodurch Förderfluid aus dem Reservoir in den Förderraum übertragen wird und in der Folge während des nächsten Druckhubes der Druck im Förderraum weiter ansteigt.
  • Sollte der Druckanstieg im Förderraum auch dann noch nicht ausreichen, um das Druckventil zu öffnen, kann während des nächsten Saughubes erneut Förderfluid vom Reservoir in den Förderraum zugeführt werden, sodass der Druck im Förderraum während des Druckhubes weiter ansteigt. Dies kann so lange fortgesetzt werden, bis sich im Förderraum wieder genug Druck aufbaut, um das Druckventil zu öffnen, sodass Förderfluid gegebenenfalls zusammen mit gasförmigen Bestandteilen in die Druckleitung gepumpt wird.
  • Daher ist die Verdrängerpumpe vorzugsweise derart ausgebildet, dass Förderfluid vom Sauganschluss über das Saugventil ohne das Reservoir zu durchströmen in den Förderraum transportiert werden kann. Dann ist es möglich während des Saughubes auch dann Förderflüssigkeit in die Förderkammer zu leiten, wenn der Druckabfall nicht ausreicht, das Saugventil zu öffnen.
  • In einer nicht beanspruchten Variante hat das Entgasungsventil in Richtung von dem Reservoir zum Förderraum einen Durchflusskoeffizient, welcher kleiner als der Durchflusskoeffizient des Saugventiles ist. Beispielsweise kann der Durchflusskoeffizient des Entgasungsventils kleiner als 1 % oder vorzugsweise sogar kleiner als 0,2% des Durchflusskoeffizienten des Saugventils betragen. Der Durchflusskoeffizient ist ein Maß für den erzielbaren Durchsatz des Förderfluids durch das betreffende Ventil und ist im Prinzip auch ein Maß für den effektiven Querschnitt. Im Rahmen der vorliegenden Erfindung kommt es auf den absoluten Wert des Durchflusskoeffizienten nicht an, sondern lediglich auf das Verhältnis des Durchflusskoeffizienten des Entgasungsventils zu den Durchflusskoeffizienten des Saug- oder Druckventils. Alternativ dazu ist daher der effektive Querschnitt des Entgasungsventils kleiner als 1 % und vorzugsweise sogar kleiner als 0,2% des effektiven Querschnitts des Saugventils.
  • Beispielsweise kann als Definition des Durchflusskoeffizienten der Förderfluiddurchflusses des Ventils (ml/min) bei einer Druckdifferenz von 1 bar und einer Förderfluidtemperatur von 25°C definiert werden. Der Durchfluss wird dabei jeweils bei geöffnetem Ventil bestimmt.
  • Durch die entsprechende Reduzierung des Durchflusskoeffizienten des Entgasungsventils kann dieses auch dann geöffnet werden, wenn kein Gas im Förderraum ist, sodass eine Erfassung der Gasmenge nicht unbedingt notwendig ist. Immer dann, wenn das Entgasungsventil geöffnet ist, strömt eine Förderfluidmenge aus dem Reservoir in den Förderraum, was zu einer Entgasung des Förderraums führt. Allerdings wird dadurch auch Förderfluid aus dem Reservoir entnommen, sodass dieses wiederaufgefüllt werden muss. Zudem reduziert dies die Förderleistung, da weniger Förderfluid über den Sauganschluss gesaugt und über den Druckanschluss in die Druckleitung gepumpt wird. Durch die starke Reduzierung des Durchflusskoeffizienten ist die Druckleistung jedoch nur minimal reduziert. Insbesondere dann, wenn der Durchflusskoeffizient kleiner als 0,2% des Durchflusskoeffizienten des Saugventils ist, kann das Entgasungsventil auch immer geöffnet sein bzw. aus einer entsprechend dimensionierten Drossel bestehen.
  • In einer nicht beanspruchten Variante ist das Entgasungsventil als Drosselrückschlagventil ausgebildet, welches eine permanente, gedrosselte Verbindung und, wenn der Druck im Förderraum größer als der Druck im Reservoir ist, eine ungedrosselte Verbindung bereitstellt. Durch diese Maßnahme kann das Reservoir auch wieder mit Förderfluid befüllt werden, wenn die Förderkammer entlüftet ist, da dann ein Teil des Förderfluids in das Reservoir gepumpt wird.
  • In einer bevorzugten Ausführungsform hat das Drosselrückschlagventil im ungedrosselten Zustand einen Durchflusskoeffizienten, welcher kleiner als der Durchflusskoeffizient des Druckventils ist, wobei vorzugsweise der Durchflusskoeffizient des ungedrosselten Entgasungsventils kleiner als 15%, besonders bevorzugt kleiner als 5% des Durchflusskoeffizienten des Druckventils ist.
  • Durch diese Maßnahme ist sichergestellt, dass nur ein kleiner Teil des Förderfluids im Förderraum in das Reservoir gepumpt wird und der größere Anteil des Förderfluids in die Druckleitung transportiert wird.
  • Erfindungsgemäss ist vorgesehen, dass das Entgasungsventil ein Rückschlagventil ist, das sich öffnet, wenn der Druck im Förderraum kleiner als der Druck im Reservoir ist. Insbesondere dann, wenn die Verdrängerpumpe in einer Dosieranlage eingesetzt wird, die an der Saugleitung nur einen geringen Druck, beispielsweise Umgebungsdruck, bereitstellt, ist die Ausführungsform mit Rückschlagventil von Vorteil, wenn der Druck im Reservoir größer ist als der Druck in der Saugleitung, da dann während des Saughubes Fluid aus dem Reservoir entnommen werden kann, selbst wenn der Druck in der Förderkammer nicht unter den Druck in der Saugleitung fällt.
  • In einer weiteren nicht beanspruchten Variante ist das Reservoir mit dem Druckanschluss verbunden. Dabei ist besonders bevorzugt das Entgasungsventil mit dem Druckventil in Reihe geschaltet, wobei das Entgasungsventil näher am Förderraum angeordnet ist.
  • Mit anderen Worten muss Förderfluid, das von dem Förderraum in die Druckleitung gepumpt wird, zunächst das Entgasungsventil und danach das Druckventil durchströmen. Das Reservoir wird dann durch die Verbindungsleitung zwischen Entgasungsventil einerseits und Druckventil andererseits gebildet. Gerade diese Ausführungsform hat den Vorteil, dass das Reservoir automatisch wiederaufgefüllt wird, was beim separaten Reservoir ab und an manuell erfolgen muss. Bei dieser Ausführungsform sollte der Durchflusskoeffizient des Entgasungsventils von der Förderkammer in das Reservoir in etwa mit dem Durchflußkoeffizienten des Druckventils übereinstimmen.
  • In einer weiteren bevorzugten Ausführungsform ist das Reservoir mit einem Akkumulator verbunden. Ein Akkumulator oder auch Hydraulikspeicher speichert die Flüssigkeit, d.h. das Förderfluid, unter Druck.
  • Beispielsweise kann ein solcher Akkumulator durch einen Druckbehälter gebildet werden, dessen Innenraum durch ein bewegliches Trennglied in zwei Räume unterteilt wird, wobei in dem einen Raum ein Gas, welches als Druckspeicher dient, und in dem anderen Raum das Förderfluid aufbewahrt wird.
  • Erfindungsgemäß kann die Verdrängerpumpe in einer Dosieranlage mit einer Druckleitung, in der Förderfluid mit einem Druck p2 enthalten ist, und mit einer Saugleitung, in der Förderfluid mit einem Druck p1 < p2 enthalten ist, eingesetzt werden, wobei die Druckleitung mit dem Druckanschluss und die Saugleitung mit dem Sauganschluss verbunden ist.
  • Besonders bevorzugt wird das Förderfluid im Reservoir mit einem Druck p3 beaufschlagt, wobei p1 < p3 < p2 ist.
  • Diese Ausführungsform hat den Vorteil, dass dann, wenn sich zu viel Gas im Förderraum befindet und daher kein Fördermedium über das Druckventil in die Druckleitung gepumpt und auch am Ende des Saughubes kein weiteres Förderfluid über die Saugleitung das Saugventil in den Förderraum gesaugt wird, stattdessen während des Saughubes über das Entgasungsventil Förderfluid aus dem Reservoir in den Förderraum eingebracht wird mit der Folge, dass der Druck im Förderraum beim nächsten Druckhub ansteigt.
  • Weitere Vorteile, Merkmale und Anwendungsmöglichkeiten der vorliegenden Erfindung werden deutlich anhand der folgenden Beschreibung einer bevorzugten Ausführungsform.
  • Es zeigt:
    • Figur 1 eine schematische Darstellung einer Variante.
  • In Figur 1 ist schematisch eine Dosieranlage mit einer Verdrängerpumpe gezeigt. Die Dosieranlage dient dazu, ein Förderfluid aus einer Saugleitung 1, in der Förderfluid mit dem Fluiddruck p1 enthalten ist, in einer Druckleitung 6 zu pumpen, in der Förderfluid unter einem Fluiddruck p2 ist, wobei p2 > p1 ist.
  • Die Verdrängerpumpe weist einen Förderraum 3 auf, in dem ein als Membrane ausgebildetes Verdrängungselement 11 zwischen zwei Positionen hin- und herbewegt werden kann, wobei in der ersten Position, die in der Figur gestrichelt dargestellt und mit der Bezugszahl 4' bezeichnet ist, der Förderraum ein kleineres Volumen aufweist, und in der zweiten Position, die durchgezogen dargestellt und mit der Bezugszahl 4 versehen ist, der Förderraum ein größeres Volumen aufweist.
  • Wird die Membran von der Position 4' in die Position 4 bewegt, vergrößert sich somit das Volumen des Förderraums 3 und der Druck im Förderraum fällt ab. Sobald der Druck im Förderraum kleiner als der Druck p1 in der Saugleitung 1 ist, öffnet das zwischen der Saugleitung 1 und dem Förderraum 3 angeordnete Saugventil 2, welches als Rückschlagventil ausgebildet ist.
  • Dadurch wird Förderfluid von der Saugleitung 1 in den Förderraum 3 transportiert.
  • Sobald die Bewegung der Membran umgekehrt wird, d.h. sobald die Membran sich von der Position 4 in Richtung der Position 4' bewegt, nimmt das Volumen des Förderraums 3 ab und das Saugventil 2 wird verschlossen.
  • Der Druck im Förderraum 3 steigt weiter an, bis der Druck p2 in der Druckleitung 6 erreicht bzw. überschritten wird. In diesem Fall öffnet das Druckventil 5 und Förderfluid wird aus der Förderkammer 3 in die Druckleitung 6 transportiert.
  • Dabei ist nun zwischen der Förderkammer 3 und dem Druckventil 5, welches ebenfalls als Rückschlagventil ausgebildet ist, ein Reservoir 10 und ein Entgasungsventil 7 vorgesehen. Das Reservoir 10 wird durch die Verbindungsleitung zwischen dem Entgasungsventil 7 und dem Druckventil 5 gebildet. Das Entgasungsventil 7 ist als Drosselrückschlagventil ausgebildet, d.h. es besteht aus einer gedrosselten Verbindung 9 und einem Rückschlagventil 8.
  • Im Normalbetrieb, d.h. wenn kein oder wenig Gas im Förderraum 3 ist, beeinflusst das Entgasungsventil 7 die Funktionsweise der Verdrängerpumpe nicht. Die Vorteile der erfindungsgemäßen Anordnung des Reservoirs und des Entgasungsventils werden erst deutlich, wenn, was im Betrieb oder nach längerem Stillstand passieren kann, der Förderraum 3 einen zu großen Anteil an gasförmigen Bestandteilen enthält. Aufgrund der vergleichsweise hohen Komprimierbarkeit der gasförmigen Bestandteile führt dies nämlich unter Umständen dazu, dass die Bewegung der Membran von der Position 4 in die Position 4' nicht mehr ausreicht, um den Druck im Förderraum 3 soweit zu erhöhen, dass der Druck p2 erreicht wird und das Rückschlagventil 5 geöffnet werden kann. In diesem Zustand wird zwar die Membran zwischen den Positionen 4 und 4' hin- und herbewegt, es erfolgt jedoch weder eine Öffnung des Saugventils 2 noch eine Öffnung des Druckventils 5.
  • In dieser Situation wird jedoch erfindungsgemäß eine geringe Menge des im Reservoir 10 befindlichen Förderfluids über die Drossel 9 zurück in die Förderkammer 3 geführt. Dadurch wird sukzessive der Druck in der Förderkammer 3 am Ende des Druckhubes, d.h. wenn die Membran in der Position 4' ist, ansteigen, bis das Rückschlagventil 8 öffnet und komprimiertes Gas in das Reservoir 10 überführt wird. Bei der Rückbewegung der Membran in die Position 4 schließt das Rückschlagventil 8 und das komprimierte Gas im Reservoir 10 kann nur in geringem Maße über die Drossel 9 expandieren.
  • Da das Reservoir 10 nun das Gas in komprimiertem Zustand enthält, wird während des Saughubes der Druck im Förderraum 3 so stark abfallen, dass weiteres Förderfluid aus der Saugleitung 1 über das Saugventil 2 angesaugt wird. Auch dies führt zu einer Erhöhung des Druckes im Förderraum 3 am Ende des Druckhubes, da sich jetzt mehr Förderfluid in der Förderkammer 3 befindet.
  • Wird Druck- und Saughub wiederholt durchgeführt, so wird der Druck in der Förderkammer 3 so lange steigen, bis das Gas so weit komprimiert werden kann, dass es gelingt, das Druckventil 5 zu öffnen und das Gas in die Druckleitung zu drücken.
  • Das Entgasungsventil 7 kann prinzipiell genauso aufgebaut sein, wie dies in der WO 2013/135681 A1 beschrieben ist, d.h. es kann einen Ventilkörper und einen Ventilsitz aufweisen, zwischen dem auch in der geschlossenen Position ein Rückflusskanal, der beispielsweise durch eine Rille gebildet wird, entsteht. Im Grund genommen stellt das Entgasungsventil ein undichtes Rückschlagventil dar. Der beschriebene Aufbau hat den Vorteil, dass auch beim Arbeiten gegen hohe Drücke in der Saugleitung 6 die Dosierleistung nicht abnimmt, da die Druckleitung 6 nicht permanent mit dem Entgasungsventil 7 in Kontakt steht. Dies ist auch aus sicherheitstechnischen Überlegungen von Vorteil, da im Falle eines Membranbruches keine permanente Verbindung zwischen Dosierleitung 6 einerseits und Förderkammer 3 andererseits besteht.

Claims (7)

  1. Verdrängerpumpe mit einem Förderraum (3), welcher mit einem Druck- (6) und einem Sauganschluss (1) verbunden ist, einem das Volumen des Förderraum bestimmendes Verdrängerelement (11), das zwischen einer ersten Position (4'), in der der Förderraum ein kleineres Volumen aufweist, und einer zweiten Position (4), in der der Förderraum ein größeres Volumen aufweist, hin- und herbewegt werden kann, wobei der Druckanschluss über ein als Rückschlagventil ausgebildetes Druckventil (5) mit dem Förderraum verbunden ist und der Sauganschluss über ein als Rückschlagventil ausgebildetes Saugventil (2) mit dem Förderraum verbunden ist, dadurch gekennzeichnet, dass ein mit Förderfluid befüllbares Reservoir über ein Entgasungsventil mit dem Förderraum verbunden ist, wobei das Entgasungsventil ein Rückschlagventil ist, das sich öffnet, wenn der Druck im Förderraum kleiner als der Druck im Reservoir ist.
  2. Verdrängerpumpe nach Anspruch 1, dadurch gekennzeichnet, dass die Verdrängerpumpe derart ausgebildet ist, dass Förderfluid vom Sauganschluss über das Saugventil ohne das Reservoir zu durchströmen in den Förderraum transportiert werden kann.
  3. Verdrängerpumpe nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass das Entgasungsventil in Richtung von dem Reservoir zum Förderraum einen Durchflusskoeffizient aufweist, welcher kleiner als der Durchflusskoeffizient des Saugventils ist, wobei vorzugsweise der Durchflusskoeffizient des Entgasungsventil kleiner als 1 %, besonders bevorzugt kleiner als 0,2% des Durchflusskoeffizienten des Saugventils ist.
  4. Verdrängerpumpe nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Reservoir mit dem Druckanschluss verbunden ist.
  5. Verdrängerpumpe nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Reservoir mit einem Akkumulator verbunden ist.
  6. Dosieranlage mit einer Druckleitung, in der Förderfluid mit einem Druck p2 enthalten ist, mit einer Saugleitung, in der Förderfluid mit einem Druck p1 < p2 enthalten ist, und einer Verdrängerpumpe nach einem der Ansprüche 1 bis 5, wobei die Druckleitung mit dem Druckanschluss und die Saugleitung mit dem Sauganschluss verbunden ist.
  7. Dosieranlage nach Anspruch 6, dadurch gekennzeichnet, dass das Reservoir Förderfluid mit einem Druck p3 enthält, wobei p1 < p3 < p2 ist.
EP15762528.6A 2014-09-05 2015-09-01 Verdrängerpumpe mit fluidreservoir Not-in-force EP3189234B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014112833.8A DE102014112833A1 (de) 2014-09-05 2014-09-05 Verdrängerpumpe mit Fluidreservoir
PCT/EP2015/069933 WO2016034576A1 (de) 2014-09-05 2015-09-01 Verdrängerpumpe mit fluidreservoir

Publications (2)

Publication Number Publication Date
EP3189234A1 EP3189234A1 (de) 2017-07-12
EP3189234B1 true EP3189234B1 (de) 2018-11-07

Family

ID=54072813

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15762528.6A Not-in-force EP3189234B1 (de) 2014-09-05 2015-09-01 Verdrängerpumpe mit fluidreservoir

Country Status (9)

Country Link
US (1) US20170198689A1 (de)
EP (1) EP3189234B1 (de)
JP (1) JP2017525884A (de)
KR (1) KR20170052559A (de)
CN (1) CN106795873B (de)
BR (1) BR112017002095A2 (de)
DE (1) DE102014112833A1 (de)
SG (1) SG11201700200RA (de)
WO (1) WO2016034576A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7232989B2 (ja) * 2019-09-11 2023-03-06 パナソニックIpマネジメント株式会社 洗濯機

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1950741A1 (de) * 1968-10-08 1970-05-06 Nikkiso Co Ltd Pumpenanordnung
DE3631982C1 (de) * 1986-09-19 1988-02-04 Hans Ing Kern Dosierpumpe
DE3827489C1 (de) * 1988-08-12 1989-10-12 Gruenbeck Wasseraufbereitung Gmbh, 8884 Hoechstaedt, De
DE4241030C1 (de) * 1992-12-05 1994-06-01 Lang Apparatebau Gmbh Dosierpumpe mit Entlüftungsventil
DE19712096C1 (de) * 1997-03-22 1998-04-02 Lang Apparatebau Gmbh Dosierpumpe zum dosierten Fördern von Flüssigkeiten
US6848408B1 (en) * 2002-07-23 2005-02-01 Edward Charles Mendler Intake port
US7175397B2 (en) * 2002-09-27 2007-02-13 Pulsafeeder, Inc. Effervescent gas bleeder apparatus
JP4678135B2 (ja) * 2003-06-17 2011-04-27 セイコーエプソン株式会社 ポンプ
GB201013623D0 (en) * 2010-08-13 2010-09-29 Linde Ag Device for monitoring gas concentration and method using the device
JP4977791B1 (ja) * 2011-07-01 2012-07-18 株式会社タクミナ ポンプ及びポンプの運転方法
US10280916B2 (en) * 2011-07-28 2019-05-07 Ecolab Usa Inc. Diaphragm pump for dosing a fluid and an according method
DE102012102088A1 (de) 2012-03-13 2013-09-19 Prominent Dosiertechnik Gmbh Verdrängerpumpe mit Zwangsentlüftung
CN202520500U (zh) * 2012-04-28 2012-11-07 浙江大学 一种超声波电机驱动的精密计量泵

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
KR20170052559A (ko) 2017-05-12
JP2017525884A (ja) 2017-09-07
WO2016034576A1 (de) 2016-03-10
DE102014112833A1 (de) 2016-03-10
CN106795873B (zh) 2019-05-14
SG11201700200RA (en) 2017-02-27
US20170198689A1 (en) 2017-07-13
EP3189234A1 (de) 2017-07-12
CN106795873A (zh) 2017-05-31
BR112017002095A2 (pt) 2017-11-21

Similar Documents

Publication Publication Date Title
DE102007056684B4 (de) Druckspeicher
EP2024647A1 (de) Hydrostatischer antrieb mit volumenstromausgleich
DE3446914A1 (de) Membranpumpe mit hydaulisch angetriebener rollmembran
DE102010039829A1 (de) Membranpumpe mit trägheitsgesteuertem Leckergänzungsventil
EP2825774B1 (de) Verdrängerpumpe mit zwangsentlüftung
DE102014010108B4 (de) Hydraulisch angetriebene Membranpumpe
DE102014108849B9 (de) Drucküberwachungsvorrichtung
WO2018091306A1 (de) Betriebsverfahren einer kolbenpumpe sowie kolbenpumpe
DE2338267A1 (de) Zweistufiger pneumatisch-hydraulischer booster
DE102007025742A1 (de) Hydrostatischer Antrieb mit Volumenstromausgleich
EP3189234B1 (de) Verdrängerpumpe mit fluidreservoir
EP2609331A2 (de) Membranpumpe sowie verfahren zum einstellen einer solchen
DE3341020A1 (de) Einrichtung zur regelung von druck und foerdermengen einer membranpumpe
DE1577181C3 (de) Steuerungssystem für die Einhaltung der Winke)- oder ParsUeiiage des Stößels oder Preßbalkens einer hydraulischen Presse oder Schere
EP2997261B1 (de) Membranpumpe mit lagensteuerung
DE102016119930A1 (de) Verdrängerpumpe mit einstellbarer Anschlagsfläche
EP3497328B1 (de) Vorrichtung zum erzeugen eines pulsierenden hydraulikfluiddruckes
EP2877745B1 (de) Dosieranlage sowie dosierpumpe hierfür
DE202021106223U1 (de) Membrankolbenpumpe
DE260499C (de)
DE19726220C2 (de) Förderpumpe
DE2531373A1 (de) Drucksystem fuer stroemende medien
DE8417876U1 (de) Schlauch-Kolbenpumpe
EP3167191A1 (de) Membranpumpe mit reduzierter leckageergänzung im überlastfall
DE102005023350A1 (de) Doppelhub-Kolbenpumpe

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180626

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTC Intention to grant announced (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20180912

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1062367

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015006795

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181107

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190307

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190207

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190207

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190307

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015006795

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190901

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190901

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150901

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1062367

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200901

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210915

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502015006795

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230401