EP3171104B1 - Vorrichtung und verfahren zum bodengefrieren - Google Patents

Vorrichtung und verfahren zum bodengefrieren Download PDF

Info

Publication number
EP3171104B1
EP3171104B1 EP15003267.0A EP15003267A EP3171104B1 EP 3171104 B1 EP3171104 B1 EP 3171104B1 EP 15003267 A EP15003267 A EP 15003267A EP 3171104 B1 EP3171104 B1 EP 3171104B1
Authority
EP
European Patent Office
Prior art keywords
hollow body
heat transfer
freezing
pipe
contact medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15003267.0A
Other languages
English (en)
French (fr)
Other versions
EP3171104A1 (de
Inventor
Ralf Schmand
Abraham Sliwo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to EP15003267.0A priority Critical patent/EP3171104B1/de
Priority to PL15003267T priority patent/PL3171104T3/pl
Priority to US15/350,177 priority patent/US10196792B2/en
Publication of EP3171104A1 publication Critical patent/EP3171104A1/de
Application granted granted Critical
Publication of EP3171104B1 publication Critical patent/EP3171104B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/11Improving or preserving soil or rock, e.g. preserving permafrost soil by thermal, electrical or electro-chemical means
    • E02D3/115Improving or preserving soil or rock, e.g. preserving permafrost soil by thermal, electrical or electro-chemical means by freezing
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/11Improving or preserving soil or rock, e.g. preserving permafrost soil by thermal, electrical or electro-chemical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/02Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating liquids, e.g. brine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D7/00Devices using evaporation effects without recovery of the vapour

Definitions

  • the invention relates to a device for freezing the ground with a freezing pipe which is closed on one end face and an inner pipe projecting into the freezing pipe for supplying a refrigerant.
  • the invention further relates to a method for freezing the ground with a freezing pipe and an inner pipe protruding into the freezing pipe, a refrigerant being conducted into the freezing pipe via the inner pipe.
  • the freezing pipes After icing up, the freezing pipes usually remain in the ground. In some cases, however, this is a hindrance to the further construction progress, since, for example, full-face machines are not able to pass through the steel or copper pipes used as freezing pipes. In these cases it is therefore necessary to pull the freezing pipes out of the ground after icing.
  • DE3036842 discloses a device for soil freezing with a freezing tube into which a cooled fluid is introduced and, after indirect heat exchange with the soil surrounding the freezing tube, is withdrawn.
  • a closed cladding tube is provided in which the freezing tube is filled, a liquid that freezes in heat exchange with the cooled fluid being introduced into a space between the cladding tube and the freezing tube.
  • DE102004058457A1 discloses a method of pulling a freezer pipe from the ground. First, an opening is drilled in the floor. A fluid is then introduced into the freezer tube and pressurized so that the fluid exits the freezer tube through the opening.
  • the object of the present invention is therefore to provide a device for freezing the ground and a corresponding method which allow easier removal of the freezing pipes from the ground.
  • the removal of the freezer pipe from the ground is facilitated in that a hollow body is provided around the freezer pipe.
  • the freezing tube thus does not come into direct contact with the ground and therefore does not freeze directly to the ground.
  • hollow body is intended to include, in particular, elongated hollow bodies, such as a tube or a hose.
  • the hollow body can be made of a flexible or inflexible one Material be made.
  • the hollow body has a circular cross section. However, it can also have a rectangular, oval or other cross section.
  • the hollow body remains in the ground after the freezer tube has been removed. It is therefore advantageous to manufacture the hollow body in such a way that it does not damage it when it comes into contact with soil cultivation machines. This can be done, for example, in that the hollow body is made correspondingly thin and the wall thickness of the hollow body is a maximum of 6 mm, preferably 1 to 2 mm.
  • the hollow body can be made of a polymer or plastic material which does not offer a soil cultivating machine such a resistance that the machine is damaged.
  • the hollow body is preferably made at least partially or completely from a polymer material.
  • Polytetrafluoroethylene (PTFE) has proven itself here.
  • Polytetrafluoroethylene (PTFE) has the advantage that it has a very low coefficient of friction, so that pulling out the freezing tube is made easier by the low friction between the freezing tube and the cladding tube.
  • polymer materials or plastic materials for example perfluoroalkoxy copolymer, polyethylene, polyamide, polyoxymethylene, ethylene / vinyl acetate, polyetherimide or melamine / phenolic resin or other phenolic resins as well as epoxy resins.
  • composite materials which contain polymer materials can also be used.
  • the hollow body can also be made from two or more materials arranged one above the other and / or next to one another. For example, it is possible to connect a hollow body made of a first plastic or made of metal to a second plastic.
  • the use of the hollow body according to the invention means that the freezing tube no longer comes into direct contact with the surrounding soil with its cylinder or jacket surface and can therefore be removed from the soil more easily.
  • the pulling out or pulling out of the freezing tube is further facilitated by the fact that the hollow body is closed according to the invention on one of its end faces, namely on the end face which is introduced into the ground. On This also prevents the end face of the freezer tube from freezing to the ground.
  • a contact medium is located between the freezing tube and the hollow body.
  • the contact medium can serve to increase the heat conduction from the freezing tube via the hollow body to the surrounding soil.
  • the contact medium can optionally also compensate for different coefficients of thermal expansion and thus a different length contraction of the freezing tube and hollow body when the freezing tube cools.
  • the freezing tube and / or hollow body can also have manufacturing-related tolerances, so that the heat conduction contact between the freezing tube and the hollow body is not optimal at all points. This can also be improved by the contact medium.
  • the contact medium is advantageously chosen so that one or more of the advantages mentioned above are achieved.
  • the contact medium a substance which has a freezing point of less than 0 ° C. or at most 0 ° C. is used as the contact medium.
  • the contact medium is liquid or gaseous.
  • the contact medium is of course also cooled. Depending on how much it is cooled down and what freezing point the contact medium has, the contact medium can also change into the solid phase. This in turn can mean that the freezing tube freezes onto the hollow body.
  • the contact medium Before the planned removal of the freezing tube from the hollow body, the contact medium is heated according to the invention, in particular to the extent that it changes into the liquid or gaseous state.
  • the freezing tube is then surrounded by a liquid or gaseous substance and can be pulled out of the hollow body relatively easily.
  • a contact medium which has a freezing point below 0 ° C.
  • the contact medium therefore goes in earlier the liquid state than the water frozen to ice in the surrounding soil.
  • the soil can be left frozen while the contact medium is already liquid.
  • any type of liquid or gas can be used as the contact medium.
  • Substances with a low freezing point and harmless water hazard class are preferred.
  • Examples of such contact media are aqueous alcohol solutions with ethanol and propanol or aqueous salt solutions such as sodium chloride, calcium chloride or magnesium chloride.
  • the contact medium is heated: according to the invention, with an electrical heater.
  • an electrical heater for example an electrical heating wire, a heating coil, a heating tape or a heating jacket, is provided in such a way that the contact medium is heated when a current flows through the heater.
  • a heating wire can be wrapped around the freezer tube before the freezing tube is introduced into the hollow body.
  • the heating wire is placed around the freezer tube in a spiral, for example. It has also proven advantageous to lay the heating wire or, in general, the heating element axially along the freezing tube.
  • a plurality of heating elements connected in series or in parallel can also be provided here.
  • the electric heater can also be inserted into the space between the freezing tube and the hollow body or introduced in some other way after the freezing tube has been introduced into the hollow body, but before the contact medium is supplied.
  • the electrical heater may also be attached only after the contact medium has been introduced.
  • the heating is provided before the freezer pipe cools down and the ground freezes.
  • the freezer tube itself can also be used as a resistance heater. In this case, a power source is connected directly to the freezer tube so that a current flows through the freezer tube and heats up.
  • a heat transfer line can be provided according to the invention for supplying a heat transfer medium.
  • a heat transfer line for example a hose or a pipe, is provided in such a way that it passes through the space between the freezing pipe at least in sections and hollow body runs.
  • the heat transfer line can be introduced from above into the space or through a bore or similar opening in the jacket or the end face of the hollow body. In the latter case, part of the heat transfer line would run outside the hollow body through the ground. If space permits, it is also possible to provide the heat transfer line entirely or partially inside the freezer tube.
  • a gas or a liquid with a temperature above the freezing point of the contact medium is supplied as a heat transfer medium via the heat transfer line.
  • the temperature of the heat transfer medium is preferably between -30 ° C. and +450 ° C., especially when a gaseous heat transfer medium is used. If the heat transfer medium is a liquid, its temperature is preferably between 0 ° C and 150 ° C, particularly preferably 50 ° C to 150 ° C.
  • the heat transfer medium comes into thermal contact with the contact medium and warms the contact medium at least to such an extent that it changes into the liquid state of aggregation.
  • the means for heating the contact medium for example an electrical heater or a heat transfer line, are preferably at least partially wrapped around the freezing tube.
  • the means for heating the contact medium are preferably arranged helically around the freezing tube or in one or more axial paths along the freezing tube. The freezing tube is then pushed into the hollow body together with the means for heating the contact medium.
  • the heat transfer line has a predetermined breaking point and / or outlet openings for the heat transfer medium. Part of the heat transfer medium can then exit via the outlet openings and come into direct contact with the contact medium. The heat transfer to the contact medium can thus be further intensified.
  • the heat transfer line can have a predetermined breaking point which breaks at a certain pressure (eg 4 bar). By breaking the predetermined breaking point, the warm or hot heat transfer medium can escape and circulate around the freezing tube and / or the hollow body, whereby the melting of the contact medium is accelerated.
  • additional hoses or pipes can be attached at half the length, for example Allow cooled heat transfer medium and thus increase the circulation over the entire length of the freezer tube. When the contact medium is liquid again, the freezing tube can be pulled out.
  • the cooling medium for example liquid nitrogen
  • the cooling medium for example liquid nitrogen
  • the cooling medium is fed into the freezing tube via the inner tube.
  • the liquid nitrogen heats up and evaporates.
  • the resulting nitrogen gas can be drawn off upwards through the annular gap between the inner tube and the freezing tube.
  • an additional exhaust gas pipe can also be provided in the freezing pipe, via which the gaseous nitrogen can escape or is drawn off.
  • the exhaust pipe has the advantage that defined flow conditions can be established in the freezer pipe and that the gaseous nitrogen does not flow through the freezer pipe over its entire length, but is drawn off at a defined, predetermined height, namely the height of the inlet opening of the exhaust pipe. For example, the topmost part of the ground can be cooled less or, depending on the design, even not frozen at all.
  • refrigerants other than nitrogen are naturally also apply to refrigerants other than nitrogen.
  • the invention allows the removal, that is, pulling out, of the freezer tube in a simple manner. This means that the ground can first be frozen with the help of the freezing pipes. The freezing tubes are then removed and only the cladding tubes remain in the ground.
  • the length of the freezing tube is, for example, 1 to 50 m, often 10 m to 30 m.
  • the freezer tube 1 is closed at its lower end face 2.
  • the upper end face 3 is also closed, but has two passages 4, 5 for an inner pipe 6 and an exhaust pipe 7.
  • the inner tube 6 is open at the lower end 8.
  • a nitrogen tank is connected to the inner tube 6 via a supply line not shown in the drawing.
  • a borehole is drilled into the ground 9 to be frozen, into which a hollow body 10 is introduced.
  • the hollow body 10 consists of polytetrafluoroethylene and has a wall thickness of 0.5 to 6 mm.
  • the hollow body 10 is designed as a cladding tube and is closed at its lower, front end 12.
  • a heat transfer line 11 is then inserted into the hollow body 10.
  • the heat transfer line 11 can be designed either as a hose or as a flexible or inflexible pipe.
  • the heat transfer line 11 is arranged in such a way that it is as close as possible to the hollow body 10, so that sufficient space remains for the freezing pipe.
  • the heat transfer line 11 runs both along the jacket of the hollow body 10 and along its bottom or end face 12.
  • a feed for a warm or hot fluid, in particular air or an aqueous salt solution, is connected to the heat transfer line.
  • the freezing tube is then pushed into the hollow body 10, so that the heat transfer line 11 comes to rest in the space 13 between the freezing tube 1 and the hollow body 10.
  • the intermediate space 13 is then filled with a liquid contact medium 14, for example with an aqueous salt solution or water.
  • liquid nitrogen is supplied via the inner pipe 6 and passed into the interior of the freezing pipe 1.
  • the liquid nitrogen cools the ground 9 via the surrounding contact medium 14.
  • the nitrogen evaporates in the process.
  • the evaporated, cold gaseous nitrogen which is also known as exhaust gas, removes further heat from the soil.
  • a solenoid valve (not shown) is controlled via the temperature of the exhaust gas. This ensures a steady flow of nitrogen with optimal efficiency.
  • a frozen area forms around the freezer tube 1. After some time, a frozen area forms around the freezer tube 1. After icing has taken place, in some cases it is advantageous to remove the freezing pipes 1 from the ground, since these could hinder the further construction progress. For example, full headers may not be able to drive through the steel or copper pipes used as freezing pipes 1.
  • the freezing pipes 1 are pulled out of the ground 9 or out of the hollow body 10.
  • a gaseous heat transfer medium is first passed through the heat transfer line 11.
  • a heat transfer medium with a temperature between -50 ° C and 0 ° C for example, can first be used.
  • vaporized gaseous nitrogen can be taken directly from a nitrogen tank.
  • a heat transfer medium with a higher temperature of, for example, 50 ° C to 200 ° C, e.g. heated air or heated nitrogen gas is used to cause the contact medium to melt and heat more quickly.
  • the heat transfer medium flows through the heat transfer line 11 and thereby heats the surrounding contact medium 14. If the contact medium 14 was in the solid state of aggregation, it is liquefied again. Otherwise, at least the viscosity of the contact medium 14 is reduced by the heating, so that the contact medium 14 becomes more flowable and the freezing tube 1 can be moved more easily in the contact medium 14.
  • the freezing tube 1 is pulled out of the hollow body 10 with a pulling device not shown in the drawing.
  • FIG 2 an alternative embodiment of the invention is shown.
  • This version differs from the one after Figure 1 in that the heat transfer line 11 is wound around the freezing pipe 1.
  • the heat transfer line 11 is laid helically around the freezer pipe 1.
  • this has the advantage that the freezing pipe 1 can be easily pushed into the hollow body 10 together with the heat transfer line 11.
  • the winding of the heat transfer line 11 around the freezing pipe 1 achieves uniform heating of the contact medium 14.
  • FIG 3 shows an embodiment of the invention in which the heat transfer line 11 runs partially through the ground 9.
  • a borehole 15 is first drilled, which has a larger diameter than the hollow body 10.
  • the heat transfer line 11 is passed through the wall of the hollow body 10, runs along the lower end face 12 of the hollow body and is led out again on the opposite side of the hollow body 10.
  • the hollow body 10 is introduced into the borehole 15 together with the heat transfer line 11. As described above, the freezing tube 1 and the contact medium 14 are then placed in the hollow body 1.
  • the heat transfer line 11 is led upward outside the hollow body 10 and the remaining borehole 15 is again filled with soil or aqueous or pasty building materials, for example cement suspension, bentonite or dam.
  • the heat transfer line 11 can also be provided with a predetermined breaking point 16 in the section in which it runs inside the hollow body 10.
  • the predetermined breaking point 16 is designed so that when a certain pressure is exceeded, for example 3 bar, it bursts and opens an opening.
  • the heat carrier then flows through this opening into the interior of the hollow body 10 and thereby accelerates the melting and heating of the contact medium 14.
  • the execution according to Figure 4 is essentially a combination of the Figures 2 and 3 .
  • a plurality of holes or perforations 17 are provided in the section of the heat transfer line 11 in which it runs within the hollow body 10.
  • the holes or perforations 17 have, for example, a diameter between 0.05 mm and 0.4 mm, for example 0.15 mm or 0.2 mm, so that part of the heat carrier can flow through these holes 17 into the interior of the hollow body 10.
  • an electrical heater 18 is provided for heating the contact medium 14.
  • a heating wire 18 is laid helically around the freezer tube 1 and pushed into the hollow body 10 with the freezer tube 1.
  • the space 13 between the freezing tube 1 and the hollow body 10 is filled with the contact medium 14.
  • the freezing tube 1 is then, as described above, cooled with liquid nitrogen and the surrounding soil is frozen.
  • the heating wire 18 is connected to a power source 19 and a heating current is passed through the heating wire 18.
  • the electric heater shown can be used not only as an alternative to a heat transfer line, but also as a supplement. In the latter case, the heating of the contact medium 14 is significantly accelerated by the heat transfer from the heat carrier and by the electrical heater.
  • the contact medium 14 is heated by feeding a heat carrier into the freezing tube 1.
  • a heat carrier in particular a warm gas, for example gaseous nitrogen at a temperature of 50 to 450 ° C.
  • the contact medium 14 is in direct contact with the outside of the freezing tube 1 and is heated by the heat carrier.
  • the heat transfer medium can for example be supplied via the inner pipe 6 and withdrawn again via the exhaust pipe 7, so that a circulation of the heat transfer medium is generated.
  • the circulation of the heat carrier can be further improved if the upper end face 3 of the freezer tube 1 is opened.

Description

  • Die Erfindung betrifft eine Vorrichtung zum Gefrieren von Erdboden mit einem Gefrierrohr, welches an einer Stirnseite geschlossen ist, und einem in das Gefrierrohr ragenden Innenrohr zur Zuführung eines Kältemittels. Ferner bezieht sich die Erfindung auf ein Verfahren zum Gefrieren von Erdboden mit einem Gefrierrohr und einem in das Gefrierrohr ragenden Innenrohr, wobei ein Kältemittel über das Innenrohr in das Gefrierrohr geleitet wird.
  • Im Tief- und Grundbau müssen häufig Maßnahmen zum Abdichten oder Abstützen des Erdbodens getroffen werden. Bei temporären Aufgaben bietet sich der Einsatz eines künstlichen Bodengefrierens mit flüssigem Stickstoff als Kälteträger an.
  • Beim Bodengefrieren erfolgt der Kälteeintrag über ein Gefrierrohr mit Doppelrohrsystem. Flüssiger Stickstoff gelangt durch ein Innenrohr nach unten in das Gefrierrohr, verdampft und gibt beim Aufsteigen im Ringraum seine Kälteenergie an das umliegende Erdreich. ab. Durch den Wärmeentzug wird das Wasser im umliegenden Erdreich abgekühlt und gefroren.
  • Nach erfolgter Vereisung verbleiben die Gefrierrohre in der Regel im Erdreich. In manchen Fällen ist dies jedoch für den weiteren Baufortschritt hinderlich, da beispielsweise Vollschnittmaschinen nicht in der Lage sind die als Gefrierrohre eingesetzten Stahl- oder Kupferrohre zu durchfahren. In diesen Fällen ist es daher nötig, die Gefrierrohre nach der Vereisung aus dem Erdreich zu ziehen.
  • Das Ziehen der Gefrierrohre stellt sich jedoch aus mehreren Gründen problematisch dar. Nach Beendigung der Vereisung ist der umgebende Erdboden noch wochenlang gefroren. Die Zugkraft, die auf die Gefrierrohre gegeben werden kann, ist materialbedingt begrenzt und außerdem wird beim Ziehen des Gefrierrohres an dessen Unterseite ein Unterdruck erzeugt, das eine dem Zug entgegengerichtete Kraft auf das Gefrierrohr ausübt.
  • DE3036842 offenbart eine Vorrichtung zum Bodengefrieren mit ein Gefrierrohr, in das ein gekühltes Fluid eingeleitet and nach indirektem Wärmetausch mit dem das Gefrierrohr umgebenden Boden abgezogen wird. Ein geschlossenes Hüllrohr ist vorgesehen, in dem das Gefrierrohr wird eingefüllt, wobei eine im Wärmetausch mit dem gekühlten Fluid gefrierende Flüssigkeit in einem Raum zwischen Hüll- und Gefreirrohr eingeleitet wird.
  • DE102004058457A1 offenbart ein Verfahren zum Ziehen eines Gefrierrohres aus dem Erdboden. Zunächst wird in den Boden eine Öffnung gebohrt. Dann wird ein Fluid in das Gefrierrohr eingeleitet und unter Druck gesetzt, so dass das Fluid durch die Öffnung aus dem Gefrierrohr austritt.
  • Aufgabe vorliegender Erfindung ist es daher, eine Vorrichtung zum Bodengefrieren und ein entsprechendes Verfahren aufzuzeigen, welche ein einfacheres Entfernen der Gefrierrohre aus dem Erdboden erlauben.
  • Diese Aufgabe wird durch eine Vorrichtung gemäß Anspruch 1 und einem Verfahren gemäß Anspruch 7 gelöst.
  • Erfindungsgemäß wird das Entfernen des Gefrierrohres aus dem Erdreich dadurch erleichtert, dass ein Hohlkörper um das Gefrierrohr vorgesehen wird. Das Gefrierrohr kommt somit nicht in direkten Kontakt mit dem Erdboden und friert somit nicht direkt am Erdboden fest.
  • Der Begriff Hohlkörper soll insbesondere längliche Hohlkörper, wie ein Rohr oder einen Schlauch, umfassen. Der Hohlkörper kann aus einem flexiblen oder unflexiblen Material gefertigt sein. In der Regel besitzt der Hohlkörper einen kreisrunden Querschnitt. Er kann aber auch einen rechteckigen, ovalen oder anderen Querschnitt aufweisen.
  • Der Hohlkörper verbleibt nach dem Entfernen des Gefrierrohres im Erdboden. Es ist daher vorteilhaft, den Hohlkörper so zu fertigen, dass dieser bei Kontakt mit Bodenbearbeitungsmaschinen diese nicht beschädigt. Dies kann beispielsweise dadurch geschehen, dass der Hohlkörper entsprechend dünn ausgeführt wird und die Wandstärke des Hohlkörpers maximal 6mm, vorzugsweise 1 bis 2 mm beträgt.
  • Alternativ oder auch ergänzend kann der Hohlkörper aus einem Polymer- oder Kunststoffmaterial gefertigt werden, welches einer Bodenbearbeitungsmaschine keinen solchen Widerstand entgegensetzt, dass die Maschine beschädigt wird.
  • Der Hohlkörper ist vorzugsweise zumindest teilweise oder auch vollständig aus einem Polymerwerkstoff gefertigt. Hierbei hat sich Polytetrafluorethylen (PTFE) bewährt. Polytetrafluorethylen (PTFE) hat den Vorteil, dass es einen sehr niedrigen Reibungskoeffizienten besitzt, so dass das Herausziehen des Gefrierrohres durch die geringe Reibung zwischen Gefrierrohr und Hüllrohr erleichtert wird.
  • Es ist aber auch möglich andere Polymerwerkstoffe oder Kunststoffmaterialien, beispielsweise Perfluoralkoxy-Copolymer, Polyethylen, Polyamid, Polyoxymethylen, Ethylen/Vinylacetat, Polyetherimid oder Melamin/Phenolharz oder andere Phenolharze wie auch Epoxydharze, zu verwenden. Insbesondere können auch Verbundwerkstoffe, welche Polymermaterialien enthalten, eingesetzt werden. Der Hohlkörper kann auch aus zwei oder mehr über- und/oder nebeneinander angeordneten Werkstoffen gefertigt sein. Beispielsweise ist es möglich, einen Hohlkörper aus einem ersten Kunststoff oder aus Metall mit einem zweiten Kunststoff zu verbinden.
  • Durch den erfindungsgemäßen Einsatz des Hohlkörpers kommt das Gefrierrohr mit seiner Zylinder- oder Mantelfläche nicht mehr mit dem umgebenden Erdboden in direkten Kontakt und kann daher leichter aus dem Erdboden entfernt werden. Das Herausziehen oder Ziehen des Gefrierrohres wird weiterhin dadurch erleichtert, dass der Hohlkörper erfindungsgemäß an einer seiner Stirnseiten, und zwar an der Stirnseite, die in den Erdboden eingebracht wird, geschlossen ist. Auf diese Weise wird auch ein Anfrieren der Stirnfläche des Gefrierrohres am Erdboden verhindert.
  • Erfindungsgemäß befindet sich zwischen dem Gefrierrohr und dem Hohlkörper ein Kontaktmedium. Das Kontaktmedium kann dazu dienen, die Wärmeleitung vom Gefrierrohr über den Hohlkörper auf den umgebenden Erdboden zu erhöhen. Das Kontaktmedium kann gegebenenfalls auch unterschiedliche thermische Ausdehnungskoeffizienten und damit eine unterschiedliche Längenkontraktion von Gefrierrohr und Hohlkörper beim Abkühlen des Gefrierrohres kompensieren. Schließlich können Gefrierrohr und/oder Hohlkörper auch herstellungsbedingte Toleranzen aufweisen, so dass der Wärmeleitungskontakt zwischen Gefrierrohr und Hohlkörper nicht an allen Stellen optimal ist. Auch dies kann durch das Kontaktmedium verbessert werden. Das Kontaktmedium wird von Vorteil so gewählt, dass ein oder mehrere der oben genannten Vorteile erzielt werden.
  • Als Kontaktmedium wird erfindungsgemäß ein Stoff verwendet, welcher einen Gefrierpunkt von weniger als 0°C oder höchstens 0° C besitzt. Bei Temperaturen von mehr als 0°C ist das Kontaktmedium flüssig oder gasförmig.
  • Beim Abkühlen der Gefrierrohre, was vorzugsweise mittels flüssigem Stickstoff oder einer wässrigen Salzlösung (Sole) erfolgt, wird selbstverständlich auch das Kontaktmedium abgekühlt. Je nachdem, wie stark abgekühlt wird und welchen Gefrierpunkt das Kontaktmedium besitzt, kann das Kontaktmedium auch in die feste Phase übergehen. Dies kann wiederum bedeuten, dass das Gefrierrohr an dem Hohlkörper festgefriert.
  • Es hat sich daher als günstig erwiesen, Mittel zur Erwärmung des Kontaktmediums vorzusehen. Vor der geplanten Entfernung des Gefrierrohres aus dem Hohlkörper wird erfindungsgemäß das Kontaktmedium erwärmt und zwar insbesondere soweit, dass es in den flüssigen oder gasförmigen Zustand übergeht. Das Gefrierrohr wird dann von einem flüssigen oder gasförmigen Stoff umgeben und kann relativ einfach aus dem Hohlkörper gezogen werden.
  • Wie oben bereits ausgeführt, wird erfindungsgemäß ein Kontaktmedium gewählt, welches einen Gefrierpunkt unterhalb von 0°C besitzt. Das Kontaktmedium geht daher früher in den flüssigen Zustand über als das im umgebenden Erdboden zu Eis gefrorene Wasser. Der Erdboden kann im gefrorenen Zustand belassen werden, während das Kontaktmedium bereits flüssig ist.
  • Als Kontaktmedium kann jegliche Art von Flüssigkeit oder Gas verwendet werden. Bevorzugt werden Stoffe mit einem niedrigen Gefrierpunkt und unbedenklicher Wassergefährdungsklasse. Beispiele für solche Kontaktmedien sind wässrige Alkohollösungen mit Ethanol und Propanol oder wässerige Salzlösungen wie Natriumchlorid, Calciumchlorid oder Magnesiumchlorid.
  • Die Erwärmung des Kontaktmediums erfolgt: erfindungsgemäß nit einer elektrischen Heizung. Hierzu wird eine elektrische Heizung, beispielsweise ein elektrischer Heizdraht, eine Heizwendel, ein Heizband oder eine Heizmanschette, so vorgesehen, dass bei Stromfluss durch die Heizung das Kontaktmedium erwärmt wird. Zum Beispiel kann ein Heizdraht vor dem Einbringen des Gefrierrohres in den Hohlkörper um das Gefrierrohr gewickelt werden. Der Heizdraht wird beispielsweise spiralförmig um das Gefrierrohr gelegt. Es hat sich auch als günstig erwiesen, den Heizdraht oder allgemein das Heizelement axial entlang des Gefrierrohres zu verlegen. Hierbei können auch mehrere seriell oder parallel geschaltete Heizelemente vorgesehen sein.
  • Die elektrische Heizung kann auch nach dem Einbringen des Gefrierrohres in den Hohlkörper, aber vor dem Zuführen des Kontaktmediums, in den Zwischenraum zwischen Gefrierrohr und Hohlkörper eingelegt oder anderweitig eingebracht werden. Schließlich kann es je nach Wahl des Kontaktmediums auch möglich sein, die elektrische Heizung erst nach dem Einbringen des Kontaktmediums anzubringen. In der Regel wird die Heizung aber vor dem Abkühlen des Gefrierrohres und dem Gefrieren des Erdbodens vorgesehen. Anstelle eines Heizdrahts kann auch das Gefrierrohr selbst als Widerstandsheizung verwendet werden. In diesem Fall wird eine Stromquelle direkt an das Gefrierrohr angeschlossen, so dass das Gefrierrohr von einem Strom durchflossen wird und sich erwärmt.
  • Anstelle oder zusätzlich zu einer elektrischen Heizung kann erfindungsgemäß eine Wärmeträgerleitung zur Zuführung eines Wärmeträgers vorgesehen sein. Hierzu wird eine Wärmeträgerleitung, beispielsweise ein Schlauch oder ein Rohr, so vorgesehen, dass sie zumindest abschnittsweise durch den Zwischenraum zwischen Gefrierrohr und Hohlkörper verläuft. Die Wärmeträgerleitung kann von oben in den Zwischenraum oder auch durch eine Bohrung oder ähnliche Öffnung im Mantel oder der Stirnfläche des Hohlkörpers eingeführt werden. Im letzteren Fall würde ein Teil der Wärmeträgerleitung außerhalb des Hohlkörpers durch den Erdboden verlaufen. Wenn es die Platzverhältnisse erlauben, ist es auch möglich, die Wärmeträgerleitung ganz oder teilweise im Inneren des Gefrierrohres vorzusehen.
  • Zum Erwärmen des Kontaktmediums wird über die Wärmeträgerleitung als Wärmeträger ein Gas oder eine Flüssigkeit mit einer Temperatur oberhalb des Gefrierpunktes des Kontaktmediums zugeführt. Vorzugsweise beträgt die Temperatur des Wärmeträgers zwischen -30 °C und +450 °C, insbesondere wenn ein gasförmiger Wärmeträger eingesetzt wird. Ist der Wärmeträger eine Flüssigkeit, so beträgt dessen Temperatur vorzugsweise zwischen 0 °C und 150 °C, besonders bevorzugt 50°C bis 150 °C. Der Wärmeträger kommt mit dem Kontaktmedium in thermischen Kontakt und wärmt das Kontaktmedium zumindest soweit an, dass es in den flüssigen Aggregatszustand übergeht.
  • Die Mittel zur Erwärmung des Kontaktmediums, zum Beispiel eine elektrische Heizung oder eine Wärmeträgerleitung, werden vorzugsweise zumindest zum Teil um das Gefrierrohr gewickelt. Die Mittel zur Erwärmung des Kontaktmediums werden hierbei bevorzugt schraubenförmig um das Gefrierrohr oder auch in einer oder mehreren axialen Bahnen entlang des Gefrierrohres angeordnet. Das Gefrierrohr wird anschließend gemeinsam mit den Mitteln zur Erwärmung des Kontaktmediums in den Hohlkörper eingeschoben.
  • In einer anderen Ausführungsform besitzt die Wärmeträgerleitung eine Sollbruchstelle und/oder Austrittsöffnungen für den Wärmeträger. Über die Austrittsöffnungen kann dann ein Teil des Wärmeträgers austreten und in direkten Kontakt mit dem Kontaktmedium gelangen. Die Wärmeübertragung auf das Kontaktmedium kann so weiter intensiviert werden. Alternativ oder ergänzend kann die Wärmeträgerleitung eine Sollbruchstelle aufweisen, die bei einem bestimmten Druck bricht (z.B. 4 bar). Durch das Brechen der Sollbruchstelle kann der warme oder heiße Wärmeträger austreten und um das Gefrierrohr und /oder den Hohlkörper zirkulieren, wodurch das Schmelzen des Kontaktmediums beschleunigt wird. Zusätzlich können weitere Schläuche oder Rohre auf z.B. halber Länge angebracht werden, die die Abfuhr von bereits abgekühltem Wärmeträger ermöglichen und damit die Zirkulation über die gesamte Länge des Gefrierrohres vergrößern. Wenn das Kontaktmedium wieder flüssig ist, kann das Gefrierrohr herausgezogen werden.
  • Die Zufuhr des Kältemediums, beispielsweise von flüssigem Stickstoff, in das Gefrierrohr erfolgt über das Innenrohr. Beim Abkühlen des Gefrierrohres und des Erdbodens erwärmt sich der flüssige Stickstoff und verdampft. Das entstehende Stickstoffgas kann über den Ringspalt zwischen dem Innenrohr und dem Gefrierrohr nach oben abgezogen werden. Es kann aber auch ein zusätzliches Abgasrohr in dem Gefrierrohr vorgesehen sein, über welches der gasförmige Stickstoff entweichen kann oder abgezogen wird. Das Abgasrohr hat den Vorteil, dass im Gefrierrohr definierte Strömungsverhältnisse hergestellt werden können und dass der gasförmige Stickstoff das Gefrierrohr nicht über dessen gesamte Länge durchströmt, sondern auf einer definierten vorgegebenen Höhe, nämlich der Höhe der Eintrittsöffnung des Abgasrohres, abgezogen wird. So kann beispielsweise der oberste Teil des Erdbodens weniger stark gekühlt oder je nach Ausführung sogar überhaupt nicht gefroren werden. Die obigen Ausführungen gelten selbstverständlich auch für andere Kältemittel als Stickstoff.
  • Die Erfindung erlaubt auf einfache Weise die Entfernung, das heißt das Herausziehen, des Gefrierrohres. Damit kann der Erdboden zunächst mit Hilfe der Gefrierrohre gefroren werden. Anschließend werden die Gefrierrohre entfernt und nur die Hüllrohre verbleiben im Erdboden.
  • Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand von in den Zeichnungen schematisch dargestellten Ausführungsbeispielen näher erläutert. Hierbei zeigen:
  • Figur 1
    eine erste Ausführungsform einer erfindungsgemäßen Vorrichtung zum Bodengefrieren,
    Figur 2
    eine zweite Ausführungsform,
    Figur 3
    eine dritte Ausführungsform,
    Figur 4
    eine vierte Ausführungsform,
    Figur 5
    eine fünfte Ausführungsform und
    Figur 6
    ein Beispiel einer Vorrichtung das nicht unter dem Gegenstand der vorliegenden beanspruchten Erfindung fällt.
  • In allen Figuren sind gleiche Elemente mit den gleichen Bezugsziffern versehen.
  • In Figur 1 ist eine erste Ausführungsform der Erfindung schematisch dargestellt. Ein Gefrierrohr 1 aus einem gut wärmeleitenden Material, insbesondere aus Kupfer, besitzt einen Durchmesser von beispielsweise 50 bis 100 mm. Die Länge des Gefrierrohres beträgt beispielsweise 1 bis 50 m, häufig10m bis 30 m.
  • Das Gefrierrohr 1 ist an seiner unteren Stirnseite 2 geschlossen. Die obere Stirnfläche 3 ist ebenfalls verschlossen, weist aber zwei Durchgänge 4, 5 für ein Innenrohr 6 und ein Abgasrohr 7 auf. Das Innenrohr 6 ist am unteren Ende 8 offen. Über eine in der Zeichnung nicht dargestellte Versorgungsleitung ist ein Stickstofftank an das Innenrohr 6 angeschlossen.
  • In den zu vereisenden Erdboden 9 wird ein Bohrloch gebohrt, in welches ein Hohlkörper 10 eingebracht wird. Der Hohlkörper 10 besteht aus Polytetrafluorethylen und weist eine Wandstärke von 0,5 bis 6 mm auf. Der Hohlkörper 10 ist als ein Hüllrohr ausgeführt und an seinem unteren, stirnseitigen Ende 12 geschlossen.
  • In den Hohlkörper 10 wird dann eine Wärmeträgerleitung 11 eingelegt. Die Wärmeträgerleitung 11 kann entweder als Schlauch oder als flexibles oder unflexibles Rohr ausgeführt sein. Die Wärmeträgerleitung 11 wird so angeordnet, dass sie sich möglichst nahe am Hohlkörper 10 befindet, so dass ausreichend Platz für das Gefrierrohr verbleibt. Die Wärmeträgerleitung 11 verläuft sowohl entlang des Mantels des Hohlkörpers 10 als auch entlang dessen Boden bzw. Stirnfläche 12. An die Wärmeträgerleitung wird eine Zuführung für ein warmes oder heißes Fluid, insbesondere Luft oder eine wässrige Salzlösung, angeschlossen.
  • Anschließend wird das Gefrierrohr in den Hohlkörper 10 eingeschoben, so dass die Wärmeträgerleitung 11 in dem Zwischenraum 13 zwischen dem Gefrierrohr 1 und dem Hohlkörper 10 zu liegen kommt.
  • Der Zwischenraum 13 wird abschließend mit einem flüssigen Kontaktmedium 14, beispielsweise mit einer wässerigen Salzlösung oder Wasser, gefüllt.
  • Zur Vereisung des Erdbodens 9 wird flüssiger Stickstoff über das Innenrohr 6 zugeführt und in das Innere des Gefrierrohres 1 geleitet. Der flüssige Stickstoff kühlt über das umgebende Kontaktmedium 14 den Erdboden 9 ab. Hierbei verdampft der Stickstoff. Der verdampfte, kalte gasförmige Stickstoff, der auch als Abgas bezeichnet wird, entzieht dem Boden weitere Wärme. Über die Temperatur des Abgases wird ein nicht dargestelltes Magnetventil gesteuert. Auf diese Weise wird ein stetiger Fluss an Stickstoff mit optimaler Effizienz sichergestellt.
  • Nach einiger Zeit bildet sich ein gefrorener Bereich um das Gefrierrohr 1 aus. Nach erfolgter Vereisung ist es in manchen Fällen günstig, die Gefrierrohre 1 aus dem Erdboden zu entfernen, da diese den weiteren Baufortschritt behindern könnten. Beispielsweise können Vollschnittmaschinen nicht in der Lage sein, die als Gefrierrohre 1 eingesetzten Stahl- oder Kupferrohre zu durchfahren.
  • Erfindungsgemäß werden in einem solchen Fall die Gefrierrohre 1 aus dem Erdboden 9 beziehungsweise aus dem Hohlkörper 10 herausgezogen. Hierzu wird zunächst ein gasförmiger Wärmeträger durch die Wärmeträgerleitung 11 geleitet. Wenn das Gefrierrohr zuvor mit flüssigem Stickstoff abgekühlt wurde, kann zunächst auch ein Wärmeträger mit einer Temperatur zwischen beispielsweise -50°C und 0°C verwendet werden. So kann man in dieser Phase zum Beispiel verdampften gasförmigen Stickstoff direkt aus einem Stickstofftank nehmen. In der Regel wird aber ein Wärmeträger mit einer höheren Temperatur von zum Beispiel 50°C bis 200 °C, z.B. erhitzte Luft oder erwärmtes Stickstoffgas, eingesetzt, um eine schnelleres Aufschmelzen und Erwärmen des Kontaktmediums zu bewirken.
  • Der Wärmeträger strömt durch die Wärmeträgerleitung 11 und erwärmt dabei das umgebende Kontaktmedium 14. Sofern das Kontaktmedium 14 im festen Aggregatszustand war, wird es wieder verflüssigt. Ansonsten wird zumindest die Viskosität des Kontaktmediums 14 durch die Erwärmung verringert, so dass das Kontaktmedium 14 fließfähiger wird und sich das Gefrierrohr 1 leichter in dem Kontaktmedium 14 bewegen lässt.
  • Wenn das Kontaktmedium 14 flüssig ist oder eine bestimmte Fließfähigkeit erreicht hat, wird das Gefrierrohr 1 mit einer in der Zeichnung nicht dargestellten Zugvorrichtung aus dem Hohlkörper 10 gezogen.
  • In Figur 2 ist eine alternative Ausführung der Erfindung gezeigt. Diese Ausführung unterscheidet sich von der nach Figur 1 darin, dass die Wärmeträgerleitung 11 um das Gefrierrohr 1 gewickelt ist. Die Wärmeträgerleitung 11 ist schraubenförmig um das Gefrierrohr 1 gelegt. Dies hat zum einen den Vorteil, dass das Gefrierrohr 1 gemeinsam mit der Wärmeträgerleitung 11 leicht in der Hohlkörper 10 eingeschoben werden kann. Zum anderen wird durch die Wicklung der Wärmeträgerleitung 11 um das Gefrierrohr 1 eine gleichmäßige Erwärmung des Kontaktmediums 14 erreicht.
  • Figur 3 zeigt eine Ausführungsform der Erfindung, bei der die Wärmeträgerleitung 11 zum Teil durch den Erdboden 9 verläuft. Hierbei wird zunächst ein Bohrloch 15 gebohrt, welches einen größeren Durchmesser als der Hohlkörper 10 besitzt. Die Wärmeträgerleitung 11 wird durch die Wandung des Hohlkörpers 10 geführt, verläuft entlang der unteren Stirnfläche 12 des Hohlkörpers und wird auf der gegenüberliegenden Seite des Hohlkörpers 10 wieder herausgeführt.
  • Der Hohlkörper 10 wird gemeinsam mit der Wärmeträgerleitung 11 in das Bohrloch 15 eingebracht. Wie oben beschrieben werden dann das Gefrierrohr 1 und das Kontaktmedium 14 in dem Hohlkörper 1 platziert. Die Wärmeträgerleitung 11 wird außerhalb des Hohlkörpers 10 nach oben geführt und das verbleibende Bohrloch 15 wird wieder mit Erdreich oder wässrigen oder pastösen Baustoffen, beispielsweise Zementsuspension, Bentonit oder Dämmer, verfüllt. Die Wärmeträgerleitung 11 kann weiterhin in dem Abschnitt, in dem sie innerhalb des Hohlkörpers 10 verläuft, mit einer Sollbruchstelle 16 versehen sein. Die Sollbruchstelle 16 ist so ausgeführt, dass sie bei Überschreiten eines bestimmten Drucks, beispielsweise 3 bar, birst und eine Öffnung freigibt. Durch diese Öffnung strömt dann der Wärmeträger in das Innere des Hohlkörpers 10 und beschleunigt dadurch das Aufschmelzen und Erwärmen des Kontaktmediums 14.
  • Die Ausführung gemäß Figur 4 ist im Wesentlichen eine Kombination der Figuren 2 und 3. Jedoch sind anstelle der Sollbruchstelle 16 mehrere Löcher oder Perforationen 17 in dem Abschnitt der Wärmeträgerleitung 11, in dem sie innerhalb des Hohlkörpers 10 verläuft, vorgesehen. Die Löcher oder Perforationen 17 haben beispielsweise einen Durchmesser zwischen 0,05 mm und 0,4 mm, beispielsweise 0,15 mm oder 0,2 mm, so dass ein Teil des Wärmeträgers durch diese Löcher 17 in das Innere des Hohlkörpers 10 strömen kann.
  • Bei der Variante nach Figur 5 ist anstelle einer Wärmeträgerleitung eine elektrische Heizung 18 zur Erwärmung des Kontaktmediums 14 vorgesehen. Ein Heizdraht 18 wird schraubenförmig um das Gefrierrohr 1 gelegt und mit dem Gefrierrohr 1 in der Hohlkörper 10 geschoben. Der Zwischenraum 13 zwischen dem Gefrierrohr 1 und dem Hohlkörper 10 wird mit dem Kontaktmedium 14 gefüllt. Das Gefrierrohr 1 wird dann, wie oben beschrieben, mit flüssigem Stickstoff abgekühlt und das umgebende Erdreich gefroren. Zum Auftauen und Erwärmen des Kontaktmediums 14 wird der Heizdraht 18 an eine Stromquelle 19 angeschlossen und ein Heizstrom wird durch den Heizdraht 18 geleitet.
  • Die in Figur 5 gezeigte elektrische Heizung kann nicht nur als Alternative zu einer Wärmeträgerleitung eingesetzt werden, sondern auch ergänzend. Im letzteren Fall wird die Erwärmung des Kontaktmediums 14 durch den Wärmeübertrag von dem Wärmeträger und durch die elektrische Heizung deutlich beschleunigt.
  • Schließlich ist in Figur 6 ein Beispiel das nicht unter der vorliegenden beanspruchten Erfindung fällt zu sehen. In diesem Fall erfolgt die Erwärmung des Kontaktmediums 14 durch Zuführung eines Wärmeträgers in das Gefrierrohr 1. Hierzu wird ein Wärmeträger, insbesondere ein warmes Gas, beispielsweise gasförmiger Stickstoff mit einer Temperatur von 50 bis 450° C in das Gefrierrohr 1 geleitet. Das Kontaktmedium 14 steht mit der Außenseite des Gefrierrohres 1 in direktem Kontakt und wird durch den Wärmeträger erwärmt. Der Wärmeträger kann beispielsweise über das Innenrohr 6 zugeführt und über das Abgasrohr 7 wieder abgezogen werden, so dass eine Zirkulation des Wärmeträgers erzeugt wird. Die Zirkulation des Wärmeträgers kann weiter verbessert werden, wenn die obere Stirnfläche 3 des Gefrierrohres 1 geöffnet wird.
  • Die Erwärmung des Kontaktmediums 14 über das Gefrierrohr 1, wie sie anhand von Figur 6 erläutert wurde, kann selbstverständlich auch ergänzend zu den in den Figuren 1 bis 5 beschriebenen Verfahren eingesetzt werden. Das Kontaktmedium 14 kann durch eine oder mehrere der folgenden Methoden erwärmt werden:
    • Erwärmung durch einen in das Gefrierrohr eingebrachten Wärmeträger
    • Erwärmung durch einen Wärmeträger, welcher durch eine mit dem Kontaktmedium in Wärmeaustauschkontakt stehende Wärmeträgerleitung strömt,
    • Erwärmung durch einen Wärmeträger, welcher direkt in das Kontaktmedium geleitet wird und/oder
    • Erwärmung mittels einer elektrischen Heizung.

Claims (8)

  1. Vorrichtung zum Gefrieren von Erdboden mit einem Gefrierrohr (1), welches an einer Stirnseite (2) geschlossen ist, und einem in das Gefrierrohr (1) ragenden Innenrohr (6) zur Zuführung eines Kältemittels, wobei ein Hohlkörper (10) vorgesehen ist, dessen Innendurchmesser größer als der Außendurchmesser des Gefrierrohres (1) ist, wobei sich zwischen dem Gefrierrohr (1) und dem Hohlkörper (10) ein Kontaktmedium (14) befindet, welches einen Gefrierpunkt von höchstens 0° C besitzt, wobei Mittel (11, 18) zur Erwärmung des Kontaktmediums (14) vorgesehen sind, dadurch gekennzeichnet, dass die Mittel (11, 18) zur Erwärmung des Kontaktmediums (14) eine elektrische Heizung (18) und/oder eine Wärmeträgerleitung (11), die zumindest abschnittsweise durch den Zwischenraum zwischen Gefrierrohr (1) und Hohlkörper (10) verläuft, zur Zuführung eines Wärmeträgers umfassen.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Hohlkörper (10) einen Polymerwerkstoff, insbesondere Polytetrafluorethylen, umfasst.
  3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Hohlkörper (10) an einer seiner Stirnseiten (12) geschlossen ist.
  4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest ein Teil der Mittel (11, 18) zur Erwärmung des Kontaktmediums (14) um das Gefrierrohr (1) gewickelt sind.
  5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Mittel zur Erwärmung des Kontaktmediums (14) eine Wärmeträgerleitung (11) zur Zuführung eines Wärmeträgers umfassen und dass die Wärmeträgerleitung (11) eine Sollbruchstelle (16) und/oder Austrittsöffnungen (17) für den Wärmeträger aufweist.
  6. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein in das Gefrierrohr (1) ragendes Abgasrohr (7) vorgesehen ist.
  7. Verfahren zum Gefrieren von Erdboden (9) mit einem Gefrierrohr (1) und einem in das Gefrierrohr (1) ragenden Innenrohr (6), wobei ein Kältemittel über das Innenrohr (6) in das Gefrierrohr (1) geleitet wird, wobei ein Hohlkörper (10), dessen Innendurchmesser größer als der Außendurchmesser des Gefrierrohres (1) ist, in den Erdboden (9) eingebracht wird und das Gefrierrohr (1) in den Hohlkörper (10) eingebracht wird, wobei ein Kontaktmedium (14), welches einen Gefrierpunkt von höchstens 0° C besitzt, in den Zwischenraum (13) zwischen dem Hohlkörper (10) und dem Gefrierrohr (1) eingebracht wird, wobei das Gefrierrohr (1) nach dem Gefrieren des Erdbodens (9) aus dem Hohlkörper (10) entfernt wird, dadurch gekennzeichnet, dass das Kontaktmedium (14) vor dem Entfernen des Gefrierrohres (1) durch eine elektrische Heizung (18) und/oder eine Wärmeträgerleitung (11), die zumindest abschnittsweise durch den Zwischenraum zwischen Gefrierrohr (1) und Hohlkörper (10) verläuft, erwärmt wird.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass flüssiger Stickstoff oder eine wässrige Salzlösung als Kältemittel in das Gefrierrohr (1) geleitet wird.
EP15003267.0A 2015-11-17 2015-11-17 Vorrichtung und verfahren zum bodengefrieren Active EP3171104B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15003267.0A EP3171104B1 (de) 2015-11-17 2015-11-17 Vorrichtung und verfahren zum bodengefrieren
PL15003267T PL3171104T3 (pl) 2015-11-17 2015-11-17 Urządzenie i sposób zamrażania gruntu
US15/350,177 US10196792B2 (en) 2015-11-17 2016-11-14 Ground freezing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15003267.0A EP3171104B1 (de) 2015-11-17 2015-11-17 Vorrichtung und verfahren zum bodengefrieren

Publications (2)

Publication Number Publication Date
EP3171104A1 EP3171104A1 (de) 2017-05-24
EP3171104B1 true EP3171104B1 (de) 2021-01-27

Family

ID=54601588

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15003267.0A Active EP3171104B1 (de) 2015-11-17 2015-11-17 Vorrichtung und verfahren zum bodengefrieren

Country Status (3)

Country Link
US (1) US10196792B2 (de)
EP (1) EP3171104B1 (de)
PL (1) PL3171104T3 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6448085B2 (ja) * 2014-12-19 2019-01-09 ケミカルグラウト株式会社 地盤凍結工法及び地盤凍結システム
JP6687976B2 (ja) * 2016-03-16 2020-04-28 ケミカルグラウト株式会社 凍結工法
JP6260977B1 (ja) * 2016-10-26 2018-01-17 株式会社エコ・プランナー 地中熱交換装置及び地中熱交換装置用の貯液槽の構築方法
JP7197258B2 (ja) * 2017-08-07 2022-12-27 清水建設株式会社 凍結工法
EP3441529B1 (de) * 2017-08-10 2020-09-30 Linde GmbH Vorrichtung und verfahren zum gefrieren von erdreich
JP6931618B2 (ja) * 2018-01-29 2021-09-08 鹿島建設株式会社 流動抑制方法
CN108221950B (zh) * 2018-02-02 2020-01-14 中国矿业大学 一种供液管开槽的液氮冻结器
CN110512589B (zh) * 2019-09-02 2021-06-29 南京林业大学 一种真空降排水联合氧化镁碳化的浅层超软地基固化方法
JP7349297B2 (ja) * 2019-09-05 2023-09-22 前田建設工業株式会社 止水装置、及び止水方法
IT201900020338A1 (it) * 2019-11-11 2021-05-11 Gennaro Normino Sistemi innovativi per l’utilizzo sostenibile di energia geotermica a bassa entalpia mediante il recupero di sonde di congelamento
RU202182U1 (ru) * 2020-11-18 2021-02-05 Вадим Васильевич Пассек Коаксиальная вставка для термоопоры
CN112609670A (zh) * 2020-12-08 2021-04-06 中交天津港湾工程研究院有限公司 一种塑料排水板及其端部接头构成的地基加热循环系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4256188A (en) * 1978-07-17 1981-03-17 Resource Development Consultants Ltd. Method and apparatus for drilling a hole in a body of ice and for the destruction of a body of ice
DE3036842A1 (de) * 1980-09-30 1982-05-19 Linde Ag, 6200 Wiesbaden Verfahren zum bodengefrieren
US5050386A (en) * 1989-08-16 1991-09-24 Rkk, Limited Method and apparatus for containment of hazardous material migration in the earth
US5507149A (en) * 1994-12-15 1996-04-16 Dash; J. Gregory Nonporous liquid impermeable cryogenic barrier
US5816314A (en) * 1995-09-19 1998-10-06 Wiggs; B. Ryland Geothermal heat exchange unit
US5623986A (en) * 1995-09-19 1997-04-29 Wiggs; B. Ryland Advanced in-ground/in-water heat exchange unit
KR100925130B1 (ko) * 2001-10-24 2009-11-05 쉘 인터내셔날 리써취 마트샤피지 비.브이. 수은 오염된 토양의 복원
DE102004058457A1 (de) * 2004-12-03 2006-06-22 Linde Ag Verfahren zum Ziehen von Gefrierrohren
DE102006007980B3 (de) * 2006-02-21 2007-08-02 Messer Group Gmbh Vorrichtung und Verfahren zum Bodengefrieren
CN201031387Y (zh) * 2007-04-18 2008-03-05 上海地铁运营有限公司 液氮冻结器
US9611608B2 (en) * 2012-03-28 2017-04-04 Daniel Mageau Zone freeze pipe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US10196792B2 (en) 2019-02-05
PL3171104T3 (pl) 2021-06-14
US20170138010A1 (en) 2017-05-18
EP3171104A1 (de) 2017-05-24

Similar Documents

Publication Publication Date Title
EP3171104B1 (de) Vorrichtung und verfahren zum bodengefrieren
EP3240945B1 (de) Druckluftspeicherkraftwerk sowie verfahren zum betreiben eines druckluftspeicherkraftwerks
EP3063335B1 (de) Verfahren zur erzeugung eines zusammenhängenden eiskörpers bei einer bodenvereisung
DE1629196A1 (de) Verfahren zur Herstellung einer Rohreinheit aus einem Kunststoffrohr und einem Metallrohr
CH683122A5 (de) Ersatzrohr, Verfahren und Vorrichtung zur Einführung eines Ersatzrohres in eine bestehende Rohrleitung.
EP3056847B1 (de) Vorrichtung und Verfahren zur Temperierung eines Körpers
EP1923569A1 (de) Erdwärmesonde
DE102013114578A1 (de) Glühofen und Verfahren zum Glühen eines Strangs aus Stahl
WO2021198477A1 (de) Vorrichtung zum aushärten einer rohrleitungsauskleidung
EP2920537B1 (de) Verfahren zum herstellen eines für ein vorbestimmtes medium druckdichten hohlkörpers
DE102021005341B4 (de) Vorrichtung zum Kühlen von Flüssigkeiten
EP2507471A2 (de) Vorrichtung und verfahren zur gewinnung, insbesondere in-situ-gewinnung, einer kohlenstoffhaltigen substanz aus einer unterirdischen lagerstätte
DE10354355A1 (de) Vorrichtung zum Temperieren von Räumen
EP3144615A1 (de) Verfahren und vorrichtung zum herstellen von trockeneis
DE3535622A1 (de) Verfahren und vorrichtung zum zeitweiligen verschliessen von grossrohrleitungen
DE2614221C2 (de) Vorrichtung zur Bodenvereisung für unterirdische Bauwerke, Baugruben od. dgl.
DE102017215897A1 (de) Wärmetauscher, Speicher und Verfahren zu dessen Betrieb
DE102012111136A1 (de) Verfahren zum Herstellen eines für ein vorbestimmtes Medium druckdichten Hohlkörpers
DE1778319A1 (de) Automatische Vorrichtung zur Herstellung ausgedehnter Schlaeuche
DE19720428A1 (de) Nebelkartusche
EP3945268A1 (de) Wärmepumpsystem
DE102008027182B3 (de) Vorrichtung zum peripheren Einfrieren des Inhalts von flüssigkeitsführenden Rohrleitungen
DE2425851A1 (de) Verfahren zur herstellung von polymerueberzuegen auf metallrohren
DE19723570A1 (de) Verfahren sowie Anordnung zum Kühlen und/oder Heizen, insbesondere von Maschinen- oder Reaktorgehäusen
DE3026644C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171123

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1237856

Country of ref document: HK

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190919

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200903

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1358713

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015014192

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210427

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210427

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210527

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210527

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015014192

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20211028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211117

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211117

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211117

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20221118

Year of fee payment: 8

Ref country code: IT

Payment date: 20221130

Year of fee payment: 8

Ref country code: FR

Payment date: 20221118

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231120

Year of fee payment: 9

Ref country code: CH

Payment date: 20231201

Year of fee payment: 9

Ref country code: AT

Payment date: 20231117

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231102

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127