EP3164225B1 - System and method for applying a viscous medium to a surface - Google Patents

System and method for applying a viscous medium to a surface Download PDF

Info

Publication number
EP3164225B1
EP3164225B1 EP15733705.6A EP15733705A EP3164225B1 EP 3164225 B1 EP3164225 B1 EP 3164225B1 EP 15733705 A EP15733705 A EP 15733705A EP 3164225 B1 EP3164225 B1 EP 3164225B1
Authority
EP
European Patent Office
Prior art keywords
module
viscous medium
reservoir
nozzle channel
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15733705.6A
Other languages
German (de)
French (fr)
Other versions
EP3164225A1 (en
Inventor
Heinrich KORDY
Lars POSPIECH
Manfred Peschka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority to EP20160246.3A priority Critical patent/EP3680024B1/en
Publication of EP3164225A1 publication Critical patent/EP3164225A1/en
Application granted granted Critical
Publication of EP3164225B1 publication Critical patent/EP3164225B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0254Coating heads with slot-shaped outlet
    • B05C5/0258Coating heads with slot-shaped outlet flow controlled, e.g. by a valve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C1/00Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating
    • B05C1/04Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating for applying liquid or other fluent material to work of indefinite length
    • B05C1/14Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating for applying liquid or other fluent material to work of indefinite length using a travelling band
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/02Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface ; Controlling means therefor; Control of the thickness of a coating by spreading or distributing liquids or other fluent materials already applied to the coated surface
    • B05C11/04Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface ; Controlling means therefor; Control of the thickness of a coating by spreading or distributing liquids or other fluent materials already applied to the coated surface with blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/027Coating heads with several outlets, e.g. aligned transversally to the moving direction of a web to be coated
    • B05C5/0275Coating heads with several outlets, e.g. aligned transversally to the moving direction of a web to be coated flow controlled, e.g. by a valve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/12Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • B05D7/26Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials synthetic lacquers or varnishes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0888Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using transparant moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • B29C59/046Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts for layered or coated substantially flat surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • B29C2059/023Microembossing

Definitions

  • the invention relates to a module, a system and a method for applying a viscous medium to a surface, and a method for producing the module.
  • a module for applying a viscous medium to a surface of a workpiece is described, for example, in the publication WO 2009/144295 A1 described.
  • the module described there is designed as a slot die which has a reservoir with a slot and a closing mechanism.
  • the slot can be opened and closed by means of the closing mechanism in order to precisely switch a mass flow of the viscous medium through the slot on and off.
  • due to the locking mechanism such slot dies are relatively expensive and require extensive cleaning after use.
  • the module also proposed here for applying a viscous medium to a surface is used in carrying out the method according to the invention and is also contained in the system according to the invention.
  • the surface mentioned here and below can be, for example, a surface of any substrate to which the viscous medium can be applied, such as the surface of a workpiece, a component or a die.
  • the viscous medium mentioned here and below can be, for example, an adhesive, a paint or a lacquer, such as a curable lacquer for producing a microstructure. Further examples and information regarding the viscous medium and the surface follow below.
  • the module has a reservoir that can be fed (filled) with the viscous medium, for example via media connections of the module designed for this purpose.
  • the reservoir can be a cavity in the module, for example.
  • the reservoir is preferably cylindrical so that the most uniform possible overpressure (measured relative to the ambient pressure, typically therefore relative to the atmospheric pressure) can be produced in the reservoir when the viscous medium is applied. A uniform overpressure favors an even media discharge from the reservoir.
  • the module can have two or more equally spaced media connections for feeding the reservoir, which, for example, at opposite ends of the Reservoirs are arranged.
  • the overpressure in the reservoir required for the application of the medium is, as will be explained in more detail below, typically produced and controlled or regulated exclusively by conveying the medium to be applied into the reservoir.
  • the media discharge through the nozzle channels is typically caused exclusively by the excess pressure.
  • centrifugal forces caused by rotating the module around its longitudinal axis are irrelevant.
  • there is no rotation of the module about its longitudinal axis during the media discharge from the reservoir so that centrifugal forces therefore neither effect nor significantly influence the media discharge.
  • the module is fixed in a rotationally fixed manner with respect to its longitudinal axis during media discharge.
  • the outer surface (ie the outer surface) of the module includes an outlet area for the viscous medium, which typically extends along an entire longitudinal extent of the reservoir, for example along a longitudinal axis of the reservoir.
  • the module has at least one nozzle channel, that is to say either exactly one nozzle channel or several nozzle channels. In the following, for the sake of brevity and clarity, sometimes “instead of” the at least one nozzle channel “simply” the nozzle channel "is said, but what is said still refers to” the at least one nozzle channel ", that is to all nozzle channels in the case of several nozzle channels.
  • the at least one nozzle channel fluidly connects the reservoir to the outlet area, so that the viscous medium can flow out of the reservoir to the outlet area through the at least one nozzle channel.
  • the viscous medium can be delivered to the respective surface (for example the substrate, the component or the die, see below).
  • the outlet area in the direction of the longitudinal axis or the longitudinal extent of the reservoir is not curved, but is designed to be straight or flat, so that the viscous medium can be applied particularly uniformly to a flat surface.
  • the present invention is based on the finding that it is possible with the aid of the at least one nozzle channel to switch a mass flow of the viscous medium out of the reservoir in a simple and, in most cases, sufficiently precise manner.
  • the at least one nozzle channel has a flow resistance for the viscous medium, which opposes the mass flow of the viscous medium through the at least one nozzle channel and, depending on the size of the excess pressure of the viscous medium within the reservoir, can slow it down or bring it to a complete standstill.
  • the flow resistance is due in particular to the friction of the viscous medium on the channel inner walls of the at least one nozzle channel and also to the internal friction of the medium within the at least one nozzle channel during the outflow of the viscous medium. These friction effects thus cause a relatively high pressure drop within the at least one nozzle channel.
  • the viscous medium in the interior of the reservoir must be subjected to an excess pressure which is sufficiently high to overcome the forward resistance of the at least one nozzle channel. If, for example, the delivery of the viscous medium into the reservoir is ended, the overpressure in the reservoir drops relatively quickly to such an extent that the overpressure is no longer sufficient to maintain the mass flow. Therefore, by sufficiently reducing the overpressure within the reservoirs, for example by stopping the conveyance of the viscous medium into the reservoir, the mass flow of the viscous medium through the at least one nozzle channel (and thus also the application of the viscous medium to the surface) can be very abrupt and be finished precisely.
  • Unwanted afterflow after the pressure drop is strongly suppressed and largely prevented by the high flow resistance of the at least one nozzle channel.
  • an undesired reflow can be caused, for example, by a residual pressure which is still present in the reservoir and / or by gravity (if the slot of the reservoir is oriented downward, for example).
  • the mass flow can also be started very abruptly and precisely. If the pressure is too low initially no mass flow generated.
  • the viscous medium is not discharged from the reservoir through the at least one nozzle channel until, for example, a corresponding conveyance of the viscous medium into the reservoir has produced the (relatively high) excess pressure required for the mass flow.
  • the module does not have its own closing mechanism and no moving parts for closing or blocking the at least one nozzle channel, such as an (automatic or manually operated) closing mechanism, and can therefore be manufactured particularly easily and inexpensively.
  • the module can be disposed of after use and replaced by a corresponding or identical module. This eliminates the need for time-consuming cleaning of the module, which is often harmful to the environment and which, for example when using organic solvents to remove paint residues, can also necessitate costly protective measures against possible health risks for the personnel.
  • the module can be made of a plastic, for example a plastic that is suitable for producing the module in an injection molding process. The module can thus be designed, for example, as an injection molded part.
  • the module can consist of several module segments that are assembled axially to form the module. These module segments can comprise, for example, two identical end segments or end caps, which laterally close off the reservoir and which, if appropriate, can each have one of the media connections mentioned.
  • the module segments can comprise one or more intermediate segments, which can be arranged between the end segments or end caps, laterally delimit the reservoir and have the at least one nozzle channel.
  • the intermediate segments can for example be tubular and each form an axial section of the module (with respect to the longitudinal axis of the module).
  • the module segments can be connected to one another, for example, by means of appropriately designed connecting elements of the module, for example by means of clamping or tensioning elements acting in the axial direction.
  • the achievable pressure drop in the at least one nozzle channel depends particularly strongly on the smallest diameter of the at least one nozzle channel.
  • each of the nozzle channels has its own smallest diameter.
  • the smallest diameter of each nozzle channel is meant.
  • the smallest diameter of the at least one nozzle channel is typically 0.8 mm or less, for example the smallest diameter can also be less than 0.6 mm to 0.1 mm.
  • the at least one nozzle channel has a largest diameter, the largest diameter of the at least one nozzle channel being less than 3 mm, preferably less than 2 mm. In the special case of only a single nozzle channel, this preferably extends along the entire longitudinal extent of the reservoir, ie it is designed as a narrow, long slot. The largest diameter of the nozzle channel then corresponds approximately to the total length of the reservoir.
  • a cross-sectional area of the nozzle channel can be used to define the smallest diameter of a nozzle channel.
  • the cross-sectional area used is preferably oriented perpendicular to the course of the nozzle channel from the reservoir to the outlet area, that is to say perpendicular to a longitudinal extent or a longitudinal axis of the nozzle channel.
  • the smallest diameter can be defined as the diameter of the largest possible circle which lies entirely within the cross-sectional area of the nozzle channel under consideration (ie as the diameter of the largest possible inscribed circle of the cross-sectional area).
  • a largest diameter of a nozzle channel can generally be defined as the diameter of the smallest possible circle that completely contains the cross-sectional area (ie as the diameter of the smallest possible circumscribed circle of the cross-sectional area).
  • the smallest diameter is equal to the largest diameter and corresponds to the usual diameter of the cross-sectional area.
  • the smallest diameter is smaller than the largest diameter of the respective nozzle channel.
  • Each of the at least one nozzle channel extends from an inlet opening of the respective nozzle channel with which the nozzle channel opens in the reservoir to an outlet opening of the respective nozzle channel with which the nozzle channel opens in the outlet area on the outer surface of the module.
  • the at least one nozzle channel has a channel length measured from the reservoir to the outlet area, which can be defined as the distance between the respective inlet opening and outlet opening.
  • the channel length is typically 0.8 mm or more, for example 1.6 mm or more.
  • the at least one nozzle channel has a cross-sectional area that changes along the channel course from the reservoir to the outlet area and narrows or widens, for example, along this course.
  • the at least one nozzle channel can be designed step-like or conical. With cross-sectional areas that are variable in this way, the smallest (or largest) diameter of a nozzle channel is typically defined by the smallest value of the smallest diameter (or by the largest value of the largest diameter) along the entire course of the respective nozzle channel.
  • the module it is also necessary for the module to be dimensionally stable enough to withstand the overpressure with which the viscous medium is applied in the reservoir.
  • an excess pressure of more than 1.5 bar is used, typically the excess pressure is in a range between 1.5 bar and 30 bar.
  • the reservoir typically has a length (measured along the above-mentioned longitudinal dimension or longitudinal axis) of more than 10 cm or more than 50 cm. Typically, however, the length is not greater than 100 cm or not more than 150 cm.
  • the nozzle channels are preferably arranged along the entire longitudinal extent of the reservoir (so that the outlet region extends along the entire length of the reservoir).
  • the distances between adjacent nozzle openings are typically in a range between 0.2 mm and 3 mm.
  • the number of nozzle openings per unit length is z. B. at least 100 / m.
  • the nozzle channels in the outlet area can be arranged, for example, in rows, that is to say in at least one row, the at least one row of the nozzle channels running along the longitudinal extent (or the longitudinal axis) of the reservoir.
  • the nozzle channels can be arranged in two or more rows, these rows preferably running parallel to one another and parallel to the longitudinal extent or longitudinal axis of the reservoir.
  • the nozzle channels in adjacent rows it is in particular possible for the nozzle channels in adjacent rows to be arranged offset to one another in the direction of the longitudinal extent of the reservoir. In this way (imaginary) connecting lines of adjacent nozzle channels form a zigzag pattern.
  • the module has a squeegee edge which runs along the outlet area.
  • the squeegee edge is therefore typically arranged on the outer surface of the module and is therefore on the outside of the module.
  • the squeegee edge can be formed by a partial area of the outer surface of the module. This partial area can be shaped, for example, step-like or edge-shaped. The partial area can adjoin the outlet area.
  • a distance between the nozzle channels and the doctor edge can be between 0 mm and 2 mm.
  • the squeegee edge can have a sharp-edged or rounded shape. If the nozzle channels are arranged in rows, the doctor edge typically runs along or parallel to at least one row of the nozzle channels.
  • the squeegee edge By means of the squeegee edge, it is possible to distribute the viscous medium applied to the surface over the surface, for example by suitably relative to the module and the surface during application are moved towards each other. For example, a particularly uniform layer thickness of the viscous medium can be achieved on the surface by means of the knife edge. It is also possible to introduce the viscous medium particularly well into depressions in the surface, if present, for example in the case that the surface is structured, such as in the case of matrices whose surface has a negative shape of a surface structure to be produced, and so on, with the doctor edge is described in more detail below.
  • the application of the viscous medium to the surface is started and maintained or stopped, practically simultaneously.
  • the at least one nozzle channel is therefore not opened or closed in order to begin or end the application of the viscous medium. Rather, the at least one nozzle channel is kept in an open state during the entire process.
  • the method is therefore carried out without the mass flow of the viscous medium through the at least one nozzle channel by means of movable closing elements on the to influence at least one nozzle channel. After the method has been carried out, the cleaning of such locking elements is therefore also eliminated.
  • An adhesive, a paint or a lacquer, in particular a curable lacquer for producing a microstructured surface, for example a dual-cure lacquer, can be used as the viscous medium.
  • the viscous medium used typically has a (dynamic) viscosity of 0.5 Pa ⁇ s or more.
  • the viscous medium therefore has a relatively low flowability and can be present, for example, as a paste. As a rule, however, the viscosity is not more than 150 Pa ⁇ s.
  • the proposed method is suitable for producing a microstructured surface, for example on that in the document WO 2013/083682 A1 or DE 103 46 124 B4 and in the associated late registration WO 2005/030472 A1 described way.
  • a microstructured surface is understood to mean a surface which has a microstructure, that is to say a surface topography, which essentially has structures in the range from 100 ⁇ m to 0.5 ⁇ m, preferably 50 ⁇ m to 0.5 ⁇ m , Distance and depth.
  • the microstructure can be a so-called riblet structure, for example, which can comprise, for example, rib-shaped or web-shaped elevations.
  • Riblet structures can bring about a reduction in frictional resistance on turbulent surfaces, and thus become, for example on surfaces of aircraft, rail vehicles, ships, in particular the surfaces of their fuselages, and / or wind energy plants, in particular the surfaces of their rotor blades.
  • the microstructure is produced by molding (e.g. embossing) using a die, as described below.
  • the error in the impression (deviation from the target shape) is typically less than 5 ⁇ m, preferably less than 1 ⁇ m.
  • a microstructure is produced on a surface of a component by molding a die which has a negative (ie a negative shape) of the microstructure to be produced.
  • the die is preferably flexible in shape in order to be able to adapt to curvatures of the respective component surface.
  • the viscous medium can be applied to the negative of the die using the module and then to the component surface using the die. Alternatively, it is also possible to apply the viscous medium directly to the component surface and then to bring the applied viscous medium into contact with the die.
  • a layer of the viscous medium is generated on the component surface and the die with the negative is pressed onto the component surface, for example by means of the above-mentioned pressure roller, so that the microstructure to be produced is transferred to the layer by molding using the negative of the die.
  • the layer of the viscous medium is located between the component surface and the negative of the die.
  • the roller can be rolled over the surface in such a way that the die moves between the roller and the surface in a rolling movement, so that the negative of the die faces the surface.
  • the die can be designed as a band or strip, in particular as an endless band.
  • the layer formed from the viscous material is fully or at least partially cured even while it is between the die and the component surface, that is to say in situ , in order to stabilize the layer and the microstructure produced on it.
  • the above-mentioned device for accelerating the hardening can be used, which can have, for example, a (UV) radiation source or a heat source.
  • the die can be removed from the component surface without the microstructure runs in the layer of the (originally viscous) medium or the layer detaches from the component surface. This removal can take place, for example, by moving (unrolling) the pressure roller and / or a further roller on the component surface.
  • the component surface can be provided with the microstructure continuously or discontinuously along a practically arbitrarily long path, with the material discharge from the reservoir being simply and precisely reduced by reducing the overpressure in order to end the path or to generate an interruption in the microstructure in the course of the path can be terminated or interrupted in the reservoir as described above.
  • the excess pressure required for discharge can be generated again in order to continue the material discharge.
  • the module can be replaced by a further, still unused module of the type proposed here.
  • the system according to the invention is suitable for applying a viscous medium to a surface and in particular for carrying out the method proposed here. All the features described in connection with the method can therefore also be correspondingly transferred to the proposed system.
  • the system comprises the module described here as well as a conveyor device which can be fluidly connected to the module and which is set up to convey the viscous medium into the reservoir of the module and to apply the excess pressure already described there.
  • the overpressure of the viscous medium in the reservoir which can be generated by means of the conveying device, is so great that the viscous medium to which the overpressure is applied flows out of the reservoir through the at least one nozzle channel.
  • the system therefore generally does not have a (automatic or manually operated) closing mechanism which is arranged on the at least one nozzle channel and which would be set up to open and close the at least one nozzle channel.
  • the system can also have all the features described in connection with the proposed method.
  • the system can also be used as a tool in DE 103 46 124 B4 and WO 2005/030472 A1 proposed Be designed and have each of the features described there.
  • the method and system proposed here can be designed in such a way that it enables the microstructuring of double-curved component surfaces, preferably on large structures such as aircraft, rail vehicles, ships, in particular their hulls, and / or wind turbines, in particular their rotor blades.
  • the system can be moved relative to the surface to which the viscous medium is to be applied.
  • this movement is a relative displacement between the module and the surface, typically there is no rotation of the module about its longitudinal axis (at least no rotation that influences the media discharge from the reservoir).
  • This can be done, for example, manually or via the system's own drive, wherein the system can include driven wheels, for example.
  • the system can be designed as a mobile coating system which is set up, for example, for applying adhesives for carpets on construction sites or for applying paints and varnishes. It is also possible for the system to be moved along the respective surface by means of a robot arm, in particular in the case of the production of microstructures on component surfaces already described, in particular in the case of the Riblet application.
  • the system can also be stationary, so that the surface to which the viscous medium is to be applied is moved relative to the system, for example relative to the outlet area of the module and / or to the die described above.
  • the system can also be a stationary coating system for batch production, such as a desk coater.
  • the system typically has a holder for the module, by means of which the module is fixed in a rotationally fixed manner with respect to its longitudinal axis during the media application.
  • a plastic which is suitable for processing in an injection molding process is injected into a mold in a flowable state.
  • the molding tool is designed as a negative form of the module and can comprise, for example, a die, also referred to as a die part, and a core.
  • the die which can be constructed in one or more parts, has an interior which is a negative shape of the outer surface of the module.
  • the core too can be constructed in one or more parts is a negative form of the reservoir of the module.
  • the core or the die also have at least one pin or web, which are designed as negative forms of the at least one nozzle channel of the module.
  • the die can be designed such that it also has an area with a negative shape of the doctor edge, if such is provided. Then the knife edge can also be produced by the injection molding process at the same time.
  • the negative shape of the squeegee edge can, for example, be configured as a channel-shaped or slot-shaped depression on an inner surface of the die. The squeegee edge is then a partial area of the injection molded part, and therefore consists of the same plastic as the rest of the injection molded part.
  • FIG 1 a perspective view of a module 1 of the type proposed here for applying a viscous medium to a surface is shown.
  • the surface can be, for example, a surface of a component or a die, as in Figure 7 is shown.
  • the viscous medium can be, for example, a curable lacquer, such as a dual-cure lacquer for producing a riblet structure on a component surface, as will be described in more detail below.
  • a reservoir 2 of the module 1 for the viscous medium is drawn in with a broken line.
  • the module 1 has two media connections 3 for feeding the reservoir 2 with the viscous medium, which are arranged at opposite ends of the reservoir 2, see also Figure 5 .
  • the reservoir 2 is configured in this example as a cylindrical cavity in the module 1.
  • the outer surface 4 of the module 1 comprises a flat outlet area 5 for the viscous medium, which extends along a longitudinal axis L of the reservoir 2, see Figure 1 , extends.
  • the module 1 also has a plurality of nozzle channels 6, which each fluidly connect the reservoir 2 to the outlet area 5, see also Figure 5 .
  • a doctor edge 7 of the module 1 is arranged adjacent to the outlet area 5.
  • the module 1 has no closing mechanism and no moving parts for closing or blocking the nozzle channels 6.
  • the module 1 is a simple and inexpensive to produce injection molded part that is intended as a disposable component.
  • the module consists of several module segments that have been assembled axially.
  • Two end caps 8 close off the reservoir 2 at the end and carry the lateral media connections 3.
  • the module 2 could also have a plurality of intermediate segments 9 of the same type and axially connected to one another in order to achieve a correspondingly greater overall length of the module.
  • the module segments 8, 9 are connected to one another by connecting elements (not shown here), for example by clamping or tensioning elements acting in the axial direction.
  • the forward resistance of the nozzle channels 6 for the viscous medium depends particularly strongly on the smallest diameter d min of the nozzle channels 6 and also on their length I.
  • the nozzle channels 6 have an equally large, circular cross-sectional area over their entire length I. that the smallest diameter d min corresponds to the usual diameter of the nozzle channel 6, see Figure 3 .
  • the smallest diameters d min are, for example, 0.8 mm and the lengths I of the nozzle channels are, for example, 1 mm.
  • Each of the nozzle channels 6 extends from an inlet opening 10 of the respective nozzle channel 6, with which the nozzle channel 6 opens into the reservoir 2, to an outlet opening 11 of the respective nozzle channel 6, with which the nozzle channel 6 opens into the outlet area 5 on the outer surface 4 of the module 1 .
  • the nozzle channels 6 each have a channel length I measured from the reservoir 2 to the outlet area 5. In this example, the channel lengths I are 1 mm each.
  • the nozzle channels 6 can also have, for example, an elongated, in this case an oval, cross-sectional area instead of a circular cross-section.
  • the smallest diameter d min is, for example, 0.5 mm and the largest diameter d max is 2 mm, which are defined as the diameter of the largest possible inscribed circle K 1 or as the diameter of the smallest possible inscribed circle K 2 .
  • the nozzle channels 6 it is also possible for the nozzle channels 6 to have cross-sectional areas that change along their channel course from the reservoir 2 to the outlet area 5 and that narrow or widen, for example, along this course.
  • the in narrows Figure 4B shown nozzle channel 6 conical to the outlet opening 11 and there has a smallest diameter d min of 0.5 mm.
  • the in Figure 4C The nozzle channel 6 shown narrows in a step-like manner towards the outlet opening 11 and there has a smallest diameter d min of 0.6 mm.
  • FIG 5 is that in Figure 1
  • the module 1 shown is shown again in a side view, in which the nozzle channels 6 in the outlet area 5 and the doctor edge 7 can also be seen. It can also be seen that the nozzle channels 6 are arranged in a row which runs parallel to the doctor edge 7 and to the longitudinal axis L of the reservoir 2. The distance between two adjacent nozzle channels 6 (measured along the longitudinal axis L) is 0.2 mm in this example. This is also enlarged in Figure 6A shown.
  • Figure 6B An alternative arrangement of the nozzle channels 6 is shown, in which the nozzle channels 6 are arranged in two rows running parallel to the longitudinal axis L and axially offset from one another (connecting lines between the nozzle channels 6 would form a zigzag pattern).
  • the reservoir 2 has a length (measured along the longitudinal axis L) of 50 cm.
  • the nozzle channels 6 are arranged along the entire longitudinal extent of the reservoir 2, so that the module 1 in the case of a single-row arrangement according to Figure 6A has a total of 625 nozzle channels 6 and according to in the case of the two-row arrangement Figure 6B a total of 1250 nozzle channels 6.
  • the module 1 is designed to be sufficiently stable to withstand the excess pressure with which the viscous medium is applied in the reservoir 2 in order to let it out of the reservoir 2 through the nozzle channels 6.
  • an excess pressure of more than 2 bar is used, typically the excess pressure is in a range between 2 bar and 30 bar.
  • the viscous medium used typically has a (dynamic) Viscosity of 0.5 Pa ⁇ s or more and can for example be present as a paste. As a rule, however, the viscosity is not more than 150 Pa ⁇ s.
  • FIG. 7 shows a highly schematic and a side view of a specific example of a system 12 of the type proposed here for producing a microstructure on a surface 16 of a component 17, for example on an aerofoil or a fuselage of an aircraft.
  • the system 12 comprises a module 1 of the type proposed here, such as that in FIG Figure 1 Module 1 is shown, as well as a controllable conveying device 13 which is set up to convey the viscous medium via two media lines 14 (only one is in Figure 7 shown), which are connected to the media connections 3 of the module 1, to be conveyed into the reservoir 2 of the module 1 and to be acted upon there with a sufficiently high overpressure in order to discharge it from the reservoir 2 of the module 1 through the nozzle channels 6.
  • the system 12 does not include any movable closing elements which are arranged on the nozzle channels 6 and which would be set up to open and close the nozzle channels.
  • the system 12 also comprises a flexible die 18 designed as an endless belt with a negative of the microstructure to be produced.
  • the matrix 18 and the module 1 are arranged such that the viscous medium, in Figure 7 shown and provided with the reference numeral 19, applied to the negative of the die 18 by means of the module 1 and made uniform there by means of the doctor edge 7 and introduced into depressions of the negative.
  • the system 12 further comprises two pressure rollers 21 that can be rolled over the surface 16 of the component 17 for pressing the die 18 onto the component surface 16, the pressure rollers 21 and the die 18 being arranged such that when the pressure rollers 21 roll over the component surface 16, the die 18 moves in a rolling movement between the pressure rollers 21 and the surface 16, so that the negative of the die 18 faces the surface 16 is.
  • the system 12 further comprises a deflecting roller 22 which is arranged to deflect and tension the die 18.
  • a deflecting roller 22 which is arranged to deflect and tension the die 18.
  • the system 12 is connected to a correspondingly configured robot arm 23.
  • the system 12 can thus be used to produce the microstructure on the surface 16 of the component 17 by molding the negative of the die 18.
  • the viscous medium 19 is applied to the negative of the die 18 by means of the module 1 and then applied to the component surface 16 by means of the die 18 by the rolling movement described above.
  • a layer 20 of the viscous medium 19 is generated on the component surface 16. Because the die with the negative is pressed onto the component surface 16 and unrolled, the microstructure to be produced is transferred to the layer 20 by molding the negative by means of the negative of the die 18, while the layer 20 is transferred between the component surface 16 and the negative the die 18 is located.
  • the viscous medium 19 in the layer 20, while it is still between the die 18 and the component surface 16, is used by means of a device 24 for accelerating the curing, which can have, for example, a UV radiation source and a heat source, which acts on the layer 20 through the permeable matrix 18.
  • the viscous medium 19 can be, for example, dual-cure lacquer. Further details can be found on the DE 103 46 124 B4 and the WO 2005/030472 A1 be removed.
  • the microstructure is, for example, a riblet structure with rib-like elevations, the heights and spacings of which are, for example, between 50 ⁇ m and 0.5 ⁇ m.
  • FIG. 8 A cross section of a mold 25 is shown, which is designed to form the in FIG Figure 1 Module 1 shown by means of an injection molding process to manufacture.
  • the molding tool 25 is designed as a negative form of the module 1 and comprises a two-part die 26 and a two-part core 27.
  • the die 26 has an inner space 28 which is a negative form of the outer surface 4 of the module 1.
  • the core 27 is a negative form of the reservoir 2 of the module 1.
  • a first part 29 of the core 27 has a large number of pins 30, which are negative forms of the nozzle channels 6 of the module 1.
  • a plastic that is suitable for injection molding in a flowable state is fed into the interior 28 of the die 26 through an inlet channel 31 of the assembled molding tool 25.
  • a second part 32 of the core 27 can first be moved out of the reservoir 2 of the hardened module 1.
  • the first part 29 of the core 27 can then also be moved out of the reservoir 2 of the hardened module 1 by utilizing the free space thus created.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Coating Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

Die Erfindung betrifft ein Modul, ein System und ein Verfahren zum Auftragen eines viskosen Mediums auf eine Oberfläche sowie ein Verfahren zum Herstellen des Moduls.The invention relates to a module, a system and a method for applying a viscous medium to a surface, and a method for producing the module.

Ein Modul zum Auftragen eines viskosen Mediums auf eine Oberfläche eines Werkstücks wird beispielsweise in der Veröffentlichung WO 2009/144295 A1 beschrieben. Das dort beschriebene Modul ist als eine Breitschlitzdüse ausgestaltet, die ein Reservoir mit einem Schlitz und einem Schließmechanismus aufweist. Mittels des Schließmechanismus lässt sich der Schlitz öffnen und verschließen, um so einen Massenstrom des viskosen Mediums durch den Schlitz präzise ein- und auszuschalten. Aufgrund des Schließmechanismus sind derartige Breitschlitzdüsen jedoch relativ teuer und erfordern nach dem Gebrauch eine aufwendige Reinigung.A module for applying a viscous medium to a surface of a workpiece is described, for example, in the publication WO 2009/144295 A1 described. The module described there is designed as a slot die which has a reservoir with a slot and a closing mechanism. The slot can be opened and closed by means of the closing mechanism in order to precisely switch a mass flow of the viscous medium through the slot on and off. However, due to the locking mechanism, such slot dies are relatively expensive and require extensive cleaning after use.

Es ist somit die Aufgabe der vorliegenden Erfindung, ein Modul zum Auftragen eines viskosen Mediums auf eine Oberfläche vorzuschlagen, das sich möglichst einfach herstellen und handhaben lässt. Ferner soll auch ein möglichst einfaches und kostengünstiges Herstellungsverfahren für ein solches Modul sowie ein Verfahren zum Auftragen eines viskosen Mediums unter Verwendung eines solchen Moduls wie auch ein System mit einem solchen Modul vorgeschlagen werden.It is therefore the object of the present invention to propose a module for applying a viscous medium to a surface which can be manufactured and handled as simply as possible. Furthermore, a manufacturing process for such a module, which is as simple and inexpensive as possible, and a method for applying a viscous medium using such a module, as well as a system with such a module, are also proposed.

Diese Aufgabe wird gelöst durch ein Verfahren gemäß dem Hauptanspruch sowie durch ein System gemäß dem Nebenanspruch. Bevorzugte Ausführungsformen und Weiterentwicklungen ergeben sich mit den übrigen Ansprüchen.This object is achieved by a method according to the main claim and by a system according to the secondary claim. Preferred embodiments and further developments result from the remaining claims.

Das hier ebenfalls vorgeschlagene Modul zum Auftragen eines viskosen Mediums auf eine Oberfläche wird bei der Durchführung des erfindungsgemäßen Verfahrens verwendet und ist auch in dem erfindungsgemäßen System enthalten. Bei der hier und im Folgenden genannten Oberfläche kann es sich beispielsweise um eine Oberfläche eines beliebigen Substrats handeln, auf die das viskose Medium aufgetragen werden kann, wie beispielsweise um die Oberfläche eines Werkstücks, eines Bauteils oder einer Matrize. Bei dem hier und im Folgenden genannten viskosen Medium kann es sich beispielsweise um einen Klebstoff, eine Farbe oder einen Lack, wie etwa einen aushärtbaren Lack zur Herstellung einer Mikrostruktur, handeln. Weitere Beispiele und Angaben bezüglich des viskosen Mediums und der Oberfläche folgen weiter unten.The module also proposed here for applying a viscous medium to a surface is used in carrying out the method according to the invention and is also contained in the system according to the invention. The surface mentioned here and below can be, for example, a surface of any substrate to which the viscous medium can be applied, such as the surface of a workpiece, a component or a die. The viscous medium mentioned here and below can be, for example, an adhesive, a paint or a lacquer, such as a curable lacquer for producing a microstructure. Further examples and information regarding the viscous medium and the surface follow below.

Das Modul weist ein Reservoir auf, das mit dem viskosen Medium gespeist (befüllt) werden kann, beispielsweise über hierfür ausgestaltete Medienanschlüsse des Moduls. Das Reservoir kann beispielsweise ein Hohlraum in dem Modul sein. Damit beim Auftragen des viskosen Mediums ein möglichst gleichmäßiger Überdruck (gemessen gegenüber dem Umgebungsdruck, typischerweise also gegenüber dem Atmosphärendruck) im Reservoir hergestellt werden kann, ist das Reservoir vorzugsweise zylinderförmig ausgestaltet. Ein gleichmäßiger Überdruck begünstigt einen gleichmäßigen Medienaustrag aus dem Reservoir. Aus dem gleichen Grund kann das Modul zwei oder mehr voneinander gleichmäßig beabstandete Medienanschlüsse zum Speisen des Reservoirs aufweisen, welche beispielsweise an entgegengesetzten Enden des Reservoirs angeordnet sind. Der für das Auftragen des Mediums erforderliche Überdruck im Reservoir wird, wie weiter unten näher erläutert wird, typischerweise ausschließlich durch das Fördern des aufzutragenden Mediums in das Reservoir hergestellt und gesteuert bzw. geregelt. Außerdem wird der Medienaustrag durch die Düsenkanäle typischerweise ausschließlich durch den Überdruck hervorgerufen. Fliehkräfte durch ein Rotieren des Moduls um dessen Längsachse spielen dahingegen keine Rolle. Typischerweise erfolgt keine Rotation des Moduls um dessen Längsachse während des Medienaustrags aus dem Reservoir, so dass Fliehkräfte den Medienaustrag also weder bewirken noch wesentlich beeinflussen. Typischerweise ist das Modul während des Medienaustrags mittels einer Halterung bezüglich seiner Längsachse drehfest fixiert.The module has a reservoir that can be fed (filled) with the viscous medium, for example via media connections of the module designed for this purpose. The reservoir can be a cavity in the module, for example. The reservoir is preferably cylindrical so that the most uniform possible overpressure (measured relative to the ambient pressure, typically therefore relative to the atmospheric pressure) can be produced in the reservoir when the viscous medium is applied. A uniform overpressure favors an even media discharge from the reservoir. For the same reason, the module can have two or more equally spaced media connections for feeding the reservoir, which, for example, at opposite ends of the Reservoirs are arranged. The overpressure in the reservoir required for the application of the medium is, as will be explained in more detail below, typically produced and controlled or regulated exclusively by conveying the medium to be applied into the reservoir. In addition, the media discharge through the nozzle channels is typically caused exclusively by the excess pressure. In contrast, centrifugal forces caused by rotating the module around its longitudinal axis are irrelevant. Typically, there is no rotation of the module about its longitudinal axis during the media discharge from the reservoir, so that centrifugal forces therefore neither effect nor significantly influence the media discharge. Typically, the module is fixed in a rotationally fixed manner with respect to its longitudinal axis during media discharge.

Die Außenfläche (also die äußere Oberfläche) des Moduls umfasst einen Auslassbereich für das viskose Medium, der sich typischerweise entlang einer gesamten Längsausdehnung des Reservoirs, beispielsweise entlang einer Längsachse des Reservoirs, erstreckt. Das Modul weist mindestens einen Düsenkanal, also entweder genau einen Düsenkanal oder mehrere Düsenkanäle, auf. Im Folgenden wird der Kürze und Übersichtlichkeit halber manchmal anstelle von "der mindestens eine Düsenkanal" einfach "der Düsenkanal" gesagt, wobei sich das Gesagte aber weiterhin auf "den mindestens einen Düsenkanal" bezieht, also auf alle Düsenkanäle im Fall mehrerer Düsenkanäle. Wird eine bestimmte Eigenschaft (wie etwa kleinster Durchmesser, größter Durchmesser, Querschnittsfläche, Kanallänge, Kanalverlauf, Durchlasswiderstand etc.) des mindestens einen Düsenkanals beschreiben, so ist im Fall mehrerer Düsenkanäle die betreffende Eigenschaft eines jeden Düsenkanals gemeint.The outer surface (ie the outer surface) of the module includes an outlet area for the viscous medium, which typically extends along an entire longitudinal extent of the reservoir, for example along a longitudinal axis of the reservoir. The module has at least one nozzle channel, that is to say either exactly one nozzle channel or several nozzle channels. In the following, for the sake of brevity and clarity, sometimes "instead of" the at least one nozzle channel "simply" the nozzle channel "is said, but what is said still refers to" the at least one nozzle channel ", that is to all nozzle channels in the case of several nozzle channels. If a certain property (such as the smallest diameter, largest diameter, cross-sectional area, channel length, channel profile, flow resistance, etc.) of the at least one nozzle channel is described, then in the case of several nozzle channels, the relevant property of each nozzle channel is meant.

Der mindestsens eine Düsenkanal verbindet das Reservoir mit dem Auslassbereich fluidisch, so dass das viskose Medium durch den mindestens einen Düsenkanal hindurch aus dem Reservoir bis zum Auslassbereich ausströmen kann. Ausgehend von dem Auslassbereich kann das viskose Medium an die jeweilige Oberfläche (beispielsweise des Substrats, des Bauteils oder der Matrize, siehe unten) abgegeben werden. Typischerweise ist der Auslassbereich in Richtung der Längsachse bzw. der Längsausdehnung des Reservoirs nicht gekrümmt sondern gerade oder eben ausgestaltet, um so dass viskose Medium besonders gleichmäßig auf eine ebene Oberfläche auftragen zu können.The at least one nozzle channel fluidly connects the reservoir to the outlet area, so that the viscous medium can flow out of the reservoir to the outlet area through the at least one nozzle channel. Starting from the outlet area, the viscous medium can be delivered to the respective surface (for example the substrate, the component or the die, see below). Typically, the outlet area in the direction of the longitudinal axis or the longitudinal extent of the reservoir is not curved, but is designed to be straight or flat, so that the viscous medium can be applied particularly uniformly to a flat surface.

Der vorliegenden Erfindung liegt die Erkenntnis zugrunde, dass es mit Hilfe des mindestens einen Düsenkanals möglich ist, einen Massenstrom des viskosen Mediums aus dem Reservoir auf einfache und in den meisten Fällen ausreichend präzise Weise ein- und auszuschalten. Der mindestens eine Düsenkanal weist einen Durchlasswiderstand für das viskose Medium auf, der dem Massenstrom des viskosen Mediums durch den mindestens einen Düsenkanal entgegensteht und diesen, je nach Größe des Überdrucks des viskosen Mediums innerhalb des Reservoirs, abbremsen oder ganz zum erliegen bringen kann. Der Durchlasswiderstand ist insbesondere auf die Reibung des viskosen Mediums an den Kanalinnenwänden des mindestens einen Düsenkanals wie auch auf die innere Reibung des Mediums innerhalb des mindestens einen Düsenkanals während des Ausströmens des viskosen Mediums zurückzuführen. Diese Reibungseffekte bewirken somit einen relativ hohen Druckabfall innerhalb des mindestens einen Düsenkanals.The present invention is based on the finding that it is possible with the aid of the at least one nozzle channel to switch a mass flow of the viscous medium out of the reservoir in a simple and, in most cases, sufficiently precise manner. The at least one nozzle channel has a flow resistance for the viscous medium, which opposes the mass flow of the viscous medium through the at least one nozzle channel and, depending on the size of the excess pressure of the viscous medium within the reservoir, can slow it down or bring it to a complete standstill. The flow resistance is due in particular to the friction of the viscous medium on the channel inner walls of the at least one nozzle channel and also to the internal friction of the medium within the at least one nozzle channel during the outflow of the viscous medium. These friction effects thus cause a relatively high pressure drop within the at least one nozzle channel.

Um daher einen Massenstrom des viskosen Mediums durch den mindestens einen Düsenkanal zu erzeugen, muss das viskose Medium im Innern des Reservoirs mit einem Überdruck beaufschlagt werden, der ausreichend hoch ist, um den Durchlasswiderstand des mindestens einen Düsenkanals zu überwinden. Wird also beispielsweise die Förderung des viskosen Mediums in das Reservoir beendet, fällt der Überdruck im Reservoir relativ schnell soweit ab, dass der Überdruck nicht mehr zum Aufrechterhalten des Massenstroms ausreicht. Daher kann durch ein ausreichendes Absenken des Überdrucks innerhalb der Reservoirs, beispielsweise durch ein Beenden der Förderung des viskosen Mediums in das Reservoir, der Massenstrom des viskosen Mediums durch den mindestens einen Düsenkanal (und somit auch das Auftragen des viskosen Mediums auf die Oberfläche) sehr abrupt und präzise beendet werden. Ein unerwünschtes Nachfließen nach der Druckabsenkung wird durch den hohen Durchlasswiderstand des mindestens einen Düsenkanals stark unterdrückt und weitgehend unterbunden. Ein unerwünschtes Nachfließen kann im Fall konventioneller Breitschlitzdüsen beispielsweise durch einen im Reservoir weiterhin herrschenden Restdruck und/oder durch die Schwerkraft hervorgerufen werden (falls der Schlitz des Reservoirs beispielsweise nach unten orientiert ist).Therefore, in order to generate a mass flow of the viscous medium through the at least one nozzle channel, the viscous medium in the interior of the reservoir must be subjected to an excess pressure which is sufficiently high to overcome the forward resistance of the at least one nozzle channel. If, for example, the delivery of the viscous medium into the reservoir is ended, the overpressure in the reservoir drops relatively quickly to such an extent that the overpressure is no longer sufficient to maintain the mass flow. Therefore, by sufficiently reducing the overpressure within the reservoirs, for example by stopping the conveyance of the viscous medium into the reservoir, the mass flow of the viscous medium through the at least one nozzle channel (and thus also the application of the viscous medium to the surface) can be very abrupt and be finished precisely. Unwanted afterflow after the pressure drop is strongly suppressed and largely prevented by the high flow resistance of the at least one nozzle channel. In the case of conventional wide slot nozzles, an undesired reflow can be caused, for example, by a residual pressure which is still present in the reservoir and / or by gravity (if the slot of the reservoir is oriented downward, for example).

Mit Hilfe des mindestens einen Düsenkanals kann der Massenstrom auch sehr abrupt und präzise begonnen werden. Bei einem zu geringem Überdruck wird zunächst kein Massenstrom erzeugt. Erst wenn, beispielsweise durch eine entsprechende Förderung des viskosen Mediums in das Reservoir, der für den Massenstrom erforderliche (relativ hohe) Überdruck erzeugt worden ist, wird das viskose Medium durch den mindestens einen Düsenkanal aus dem Reservoir ausgetragen.With the help of at least one nozzle channel, the mass flow can also be started very abruptly and precisely. If the pressure is too low initially no mass flow generated. The viscous medium is not discharged from the reservoir through the at least one nozzle channel until, for example, a corresponding conveyance of the viscous medium into the reservoir has produced the (relatively high) excess pressure required for the mass flow.

Vorteilhafterweise weist das Modul keinen eigenen Schließmechanismus und keine beweglichen Teile zum Verschließen oder Versperren des mindestens einen Düsenkanals auf, wie etwa einen (automatischen oder manuell bedienbaren) Schließmechanismus, und kann somit besonders einfach und kostengünstig hergestellt werden. Als einfaches und kostengünstiges Einwegbauteil kann das Modul nach dem Gebrauch entsorgt und durch ein entsprechendes bzw. baugleiches Modul ersetzt werden. Dadurch entfällt eine aufwendige Reinigung des Moduls, welche oftmals umweltbelastend ist und die, etwa bei der Verwendung organischer Lösungsmitteln zur Entfernung von Lackresten, zudem auch aufwendige Schutzmaßnahmen gegen mögliche Gesundheitsrisiken für das Personal erforderlich machen kann. Das Modul kann aus einem Kunststoff gefertigt sein, beispielsweise einem Kunststoff, der sich für die Herstellung des Moduls in einem Spritzgussverfahren eignet. Das Modul kann also beispielsweise als ein Spritzgussteil ausgeführt sein. Geeignet sind hier als Kunststoff beispielsweise die Gruppe der Polyolefine wie Polyethylen und Polypropylen sowie auch Polyamid. Außerdem kann das Modul aus mehreren Modulsegmenten bestehen, die axial zu dem Modul zusammengesetzt werden. Diese Modulsegmente können beispielsweise zwei gleichartige Endsegmente oder Endkappen umfassen, welche das Reservoir seitlich abschließen und die gegebenenfalls jeweils einen der genannten Medienanschlüsse aufweisen können. Außerdem können die Modulsegmente ein oder mehrere Zwischensegmente umfassen, die zwischen den Endsegmenten oder Endkappen angeordnet sein können, das Reservoir seitlich umgrenzen und den mindestens einen Düsenkanal aufweisen. Die Zwischensegmente können beispielsweise rohrförmig ausgebildet sein und jeweils einen axialen Abschnitt des Moduls (bezüglich der Längsachse des Moduls) ausbilden. Die Modulsegmente können beispielsweise mittels entsprechend ausgestalteter Verbindungselemente des Moduls miteinander verbunden sein, beispielsweise mittels in axialer Richtung wirkender Klemm- oder Spannelemente.Advantageously, the module does not have its own closing mechanism and no moving parts for closing or blocking the at least one nozzle channel, such as an (automatic or manually operated) closing mechanism, and can therefore be manufactured particularly easily and inexpensively. As a simple and inexpensive disposable component, the module can be disposed of after use and replaced by a corresponding or identical module. This eliminates the need for time-consuming cleaning of the module, which is often harmful to the environment and which, for example when using organic solvents to remove paint residues, can also necessitate costly protective measures against possible health risks for the personnel. The module can be made of a plastic, for example a plastic that is suitable for producing the module in an injection molding process. The module can thus be designed, for example, as an injection molded part. The group of polyolefins such as polyethylene and polypropylene and also polyamide are suitable as plastics. In addition, the module can consist of several module segments that are assembled axially to form the module. These module segments can comprise, for example, two identical end segments or end caps, which laterally close off the reservoir and which, if appropriate, can each have one of the media connections mentioned. In addition, the module segments can comprise one or more intermediate segments, which can be arranged between the end segments or end caps, laterally delimit the reservoir and have the at least one nozzle channel. The intermediate segments can for example be tubular and each form an axial section of the module (with respect to the longitudinal axis of the module). The module segments can be connected to one another, for example, by means of appropriately designed connecting elements of the module, for example by means of clamping or tensioning elements acting in the axial direction.

Der erzielbare Druckabfall in dem mindestens einen Düsenkanal hängt besonders stark von einem kleinsten Durchmesser des mindestens einen Düsenkanals ab. Wie bereits oben erwähnt, weist im Fall mehrerer Düsenkanäle jeder der Düsenkanäle einen eigenen kleinsten Durchmesser auf. Wird von dem kleinsten Durchmesser des mindestens einen Düsenkanals gesprochen, ist der kleinste Durchmesser eines jeden Düsenkanals gemeint. Entsprechendes gilt insbesondere auch für den weiter unten genannten größten Durchmesser und die Kanallänge des mindestens einen Düsenkanals. Typischerweise beträgt der kleinste Durchmesser des mindestens einen Düsenkanals jeweils 0,8 mm oder weniger, beispielsweise können die kleinsten Durchmesser auch weniger als 0,6 mm bis 0,1 mm betragen. Außerdem kann vorgesehen sein, dass der mindestens eine Düsenkanal einen größten Durchmesser aufweist, wobei der größte Durchmesser des mindestens einen Düsenkanals kleiner als 3 mm, vorzugsweise kleiner als 2 mm ist. In dem Spezialfall nur eines einzigen Düsenkanals erstreckt sich dieses vorzugsweise entlang der gesamten Längsausdehnung des Reservoirs, ist also als enger, langer Schlitz ausgestaltet. Der größte Durchmesser des Düsenkanals entspricht dann etwa der Gesamtlänge des Reservoirs.The achievable pressure drop in the at least one nozzle channel depends particularly strongly on the smallest diameter of the at least one nozzle channel. As already mentioned above, in the case of a plurality of nozzle channels, each of the nozzle channels has its own smallest diameter. When speaking of the smallest diameter of the at least one nozzle channel, the smallest diameter of each nozzle channel is meant. The same applies in particular to the largest diameter mentioned below and the channel length of the at least one nozzle channel. The smallest diameter of the at least one nozzle channel is typically 0.8 mm or less, for example the smallest diameter can also be less than 0.6 mm to 0.1 mm. In addition, it can be provided that the at least one nozzle channel has a largest diameter, the largest diameter of the at least one nozzle channel being less than 3 mm, preferably less than 2 mm. In the special case of only a single nozzle channel, this preferably extends along the entire longitudinal extent of the reservoir, ie it is designed as a narrow, long slot. The largest diameter of the nozzle channel then corresponds approximately to the total length of the reservoir.

Dabei kann zur Definition des kleinsten Durchmessers eines Düsenkanals eine Querschnittsfläche des Düsenkanals herangezogen werden. Die herangezogene Querschnittsfläche ist vorzugsweise senkrecht zu dem Verlauf des Düsenkanals von dem Reservoir bis zum Auslassbereich, also senkrecht zu einer Längsausdehnung oder einer Längsachse des Düsenkanals, orientiert. Allgemein kann der kleinste Durchmesser als der Durchmesser des größtmöglichen Kreises definiert sein, der vollständig innerhalb der betrachteten Querschnittsfläche des Düsenkanals liegt (d.h. als der Durchmesser des größtmöglichen einbeschriebenen Kreises der Querschnittsfläche). Entsprechend kann ein größter Durchmesser eines Düsenkanals allgemein als der Durchmesser des kleinestmöglichen Kreises definiert sein, der die Querschnittsfläche vollständig enthält (d.h. als der Durchmesser des kleinstmöglichen umbeschriebenen Kreises der Querschnittsfläche). Im Spezialfall einer kreisrunden Querschnittsfläche ist der kleinste Durchmesser gleich dem größten Durchmesser und entspricht dem üblichen Durchmesser der Querschnittsfläche. Im Fall anders geformter, nicht-kreisrunder Querschnittsflächen ist der kleinste Durchmesser kleiner als der größte Durchmesser des jeweiligen Düsenkanals.A cross-sectional area of the nozzle channel can be used to define the smallest diameter of a nozzle channel. The cross-sectional area used is preferably oriented perpendicular to the course of the nozzle channel from the reservoir to the outlet area, that is to say perpendicular to a longitudinal extent or a longitudinal axis of the nozzle channel. In general, the smallest diameter can be defined as the diameter of the largest possible circle which lies entirely within the cross-sectional area of the nozzle channel under consideration (ie as the diameter of the largest possible inscribed circle of the cross-sectional area). Accordingly, a largest diameter of a nozzle channel can generally be defined as the diameter of the smallest possible circle that completely contains the cross-sectional area (ie as the diameter of the smallest possible circumscribed circle of the cross-sectional area). In the special case of a circular cross-sectional area, the smallest diameter is equal to the largest diameter and corresponds to the usual diameter of the cross-sectional area. In the case of differently shaped, non-circular Cross-sectional areas, the smallest diameter is smaller than the largest diameter of the respective nozzle channel.

Jeder des mindestens einen Düsenkanals verläuft von einer Einlassöffnung des jeweiligen Düsenkanals, mit der der Düsenkanal im Reservoir mündet, bis zu einer Auslassöffnung des jeweiligen Düsenkanals, mit der der Düsenkanal im Auslassbereich auf der Außenfläche des Moduls mündet. Der mindestens eine Düsenkanal weist eine von dem Reservoir bis zum Auslassbereich gemessene Kanallänge auf, welche als Abstand zwischen der jeweiligen Einlassöffnung und Auslassöffnung definiert werden kann. Typischerweise beträgt die Kanallänge 0,8 mm oder mehr, beispielsweise 1,6 mm oder mehr.Each of the at least one nozzle channel extends from an inlet opening of the respective nozzle channel with which the nozzle channel opens in the reservoir to an outlet opening of the respective nozzle channel with which the nozzle channel opens in the outlet area on the outer surface of the module. The at least one nozzle channel has a channel length measured from the reservoir to the outlet area, which can be defined as the distance between the respective inlet opening and outlet opening. The channel length is typically 0.8 mm or more, for example 1.6 mm or more.

Es ist außerdem möglich, dass der mindestens eine Düsenkanal eine Querschnittsfläche aufweist, die sich entlang des Kanalverlaufs von dem Reservoir zum Auslassbereich ändert und sich entlang dieses Verlaufs beispielweise verengt oder aufweitet. Beispielsweise kann der mindestens eine Düsenkanal stufenförmig oder konisch ausgestaltet sein. Bei derart veränderlichen Querschnittsflächen wird der kleinste (bzw. größte) Durchmesser eines Düsenkanals typischerweise durch den kleinsten Wert des kleinsten Durchmessers (bzw. durch den größten Wert des größten Durchmesser) entlang des gesamten Verlaufs des jeweiligen Düsenkanals definiert.It is also possible that the at least one nozzle channel has a cross-sectional area that changes along the channel course from the reservoir to the outlet area and narrows or widens, for example, along this course. For example, the at least one nozzle channel can be designed step-like or conical. With cross-sectional areas that are variable in this way, the smallest (or largest) diameter of a nozzle channel is typically defined by the smallest value of the smallest diameter (or by the largest value of the largest diameter) along the entire course of the respective nozzle channel.

Es ist ferner erforderlich, dass das Modul ausreichend dimensionsstabil ist, um dem Überdruck, mit dem das viskose Medium im Reservoir beaufschlagt wird, standhalten zu können. Typischerweise wird, je nach Viskosität des viskosen Mediums und der Größe des Druckabfalls in dem mindestens einen Düsenkanal, ein Überdruck von mehr als 1,5 Bar angewendet, typischerweise liegt der Überdruck in einem Bereich zwischen 1,5 Bar und 30 bar.It is also necessary for the module to be dimensionally stable enough to withstand the overpressure with which the viscous medium is applied in the reservoir. Typically, depending on the viscosity of the viscous medium and the size of the pressure drop in the at least one nozzle channel, an excess pressure of more than 1.5 bar is used, typically the excess pressure is in a range between 1.5 bar and 30 bar.

Das Reservoir hat typischerweise eine Länge (gemessen entlang der oben genannten Längsausdehnung oder Längsachse) von mehr als 10 cm oder von mehr als 50 cm. Typischerweise beträgt die Länge aber nicht größer als 100 cm oder nicht mehr als 150 cm. Vorzugsweise sind im Fall mehrerer Düsenkanäle die Düsenkanäle entlang der gesamten Längsausdehnung des Reservoirs angeordnet (so dass sich der Auslassbereich entlang der gesamten der Länge des Reservoirs erstreckt). Typischerweise liegen die (in Richtung der Längsachse des Reservoirs gemessenen) Abstände benachbarter Düsenöffnungen in einem Bereich zwischen 0,2 mm und 3 mm. Die Anzahl der Düsenöffnungen pro Längeneinheit beträgt z. B. mindestens 100/m. Je größer die Anzahl der Düsenkanäle ist, umso größer ist der gesamte Massenstrom durch den mindestens einen Düsenkanal bei gegebenem Überdruck. Werden die Düsenkanäle sehr eng und mit großer Kanallänge ausgestaltet, um einen möglichst hohen Druckabfall und ein möglichst gut kontrollierbares Ein- und Ausschalten des Massenstroms zu ermöglichen, kann durch eine vergrößerte Anzahl der Düsenkanäle ein ausreichender Gesamtdurchlass bei gegebenem Überdruck erzielt werden.The reservoir typically has a length (measured along the above-mentioned longitudinal dimension or longitudinal axis) of more than 10 cm or more than 50 cm. Typically, however, the length is not greater than 100 cm or not more than 150 cm. In the case of a plurality of nozzle channels, the nozzle channels are preferably arranged along the entire longitudinal extent of the reservoir (so that the outlet region extends along the entire length of the reservoir). The distances between adjacent nozzle openings (measured in the direction of the longitudinal axis of the reservoir) are typically in a range between 0.2 mm and 3 mm. The number of nozzle openings per unit length is z. B. at least 100 / m. The greater the number of nozzle channels, the greater the total mass flow through the at least one nozzle channel for a given excess pressure. If the nozzle ducts are designed to be very narrow and with a large duct length in order to enable the highest possible pressure drop and the most controllable switching on and off of the mass flow, an increased total passage at a given excess pressure can be achieved by increasing the number of nozzle ducts.

Um eine hohe Anzahl von Düsenkanälen zu ermöglichen, können die Düsenkanäle in dem Auslassbereich beispielsweise reihenartig, also in mindestens einer Reihe angeordnet sind, wobei die mindestens eine Reihe der Düsenkanäle entlang der Längsausdehnung (bzw. der Längsachse) des Reservoirs verläuft. Beispielsweise können die Düsenkanäle in zwei oder mehr Reihen angeordnet werden, wobei diese Reihen vorzugsweise parallel zueinander und parallel zur Längsausdehnung oder Längsachse des Reservoirs verlaufen. Um eine möglichst gleichmäßige und einfach herstellbare Anordnung der Düsenkanäle zu erhalten, ist es insbesondere möglich, dass die Düsenkanäle in benachbarten Reihen in Richtung der Längsausdehnung des Reservoirs versetzt zueinander angeordnet sind. Auf diese Weise bilden (gedachte) Verbindungslinien benachbarter Düsenkanäle ein Zickzack-Muster aus.In order to enable a large number of nozzle channels, the nozzle channels in the outlet area can be arranged, for example, in rows, that is to say in at least one row, the at least one row of the nozzle channels running along the longitudinal extent (or the longitudinal axis) of the reservoir. For example, the nozzle channels can be arranged in two or more rows, these rows preferably running parallel to one another and parallel to the longitudinal extent or longitudinal axis of the reservoir. In order to obtain an arrangement of the nozzle channels that is as uniform and easy to manufacture as possible, it is in particular possible for the nozzle channels in adjacent rows to be arranged offset to one another in the direction of the longitudinal extent of the reservoir. In this way (imaginary) connecting lines of adjacent nozzle channels form a zigzag pattern.

Das Modul weist eine Rakelkante auf, welche entlang des Auslassbereichs verläuft. Die Rakelkante ist also typischerweise auf der Außenfläche des Moduls angeordnet und befindet sich also auf der Außenseite des Moduls. Beispielsweise kann die Rakelkante durch einen Teilbereich der Außenfläche des Moduls gebildet sein. Dieser Teilbereich kann beispielsweise stufenförmig oder kantenförmige ausgeformt sein. Der Teilbereich kann an den Auslassbereich angrenzen. Beispielsweise kann ein Abstand zwischen den Düsenkanälen und der Rakelkante zwischen 0 mm und 2 mm liegen. Ferner kann die Rakelkante scharfkantig oder abgerundet ausgeformt sein. Falls die Düsenkanäle reihenartig angeordnet sind, verläuft die Rakelkante typischerweise entlang oder parallel zur mindestens einen Reihe der Düsenkanäle. Mittels der Rakelkante ist es möglich, das auf die Oberfläche aufgetragene viskose Medium auf der Oberfläche zu verteilen, beispielsweise indem während des Auftragens das Modul und die Oberfläche auf geeignete Weise relativ zueinander bewegt werden. Beispielsweise kann mittels der Rakelkante eine besonders gleichmäßige Schichtdicke des viskosen Mediums auf der Oberfläche erzielt werden. Es ist außerdem möglich, mit der Rakelkante das viskose Medium besonders gut in Vertiefungen der Oberfläche einzubringen, sofern vorhanden, beispielsweise im Fall, dass die Oberfläche strukturiert ist, wie im Fall von Matrizen, deren Oberfläche eine Negativform einer zur erzeugenden Oberflächenstruktur aufweisen, wie weiter unten näher beschrieben wird.The module has a squeegee edge which runs along the outlet area. The squeegee edge is therefore typically arranged on the outer surface of the module and is therefore on the outside of the module. For example, the squeegee edge can be formed by a partial area of the outer surface of the module. This partial area can be shaped, for example, step-like or edge-shaped. The partial area can adjoin the outlet area. For example, a distance between the nozzle channels and the doctor edge can be between 0 mm and 2 mm. Furthermore, the squeegee edge can have a sharp-edged or rounded shape. If the nozzle channels are arranged in rows, the doctor edge typically runs along or parallel to at least one row of the nozzle channels. By means of the squeegee edge, it is possible to distribute the viscous medium applied to the surface over the surface, for example by suitably relative to the module and the surface during application are moved towards each other. For example, a particularly uniform layer thickness of the viscous medium can be achieved on the surface by means of the knife edge. It is also possible to introduce the viscous medium particularly well into depressions in the surface, if present, for example in the case that the surface is structured, such as in the case of matrices whose surface has a negative shape of a surface structure to be produced, and so on, with the doctor edge is described in more detail below.

Bei dem erfindungsgemäßen Verfahren wird ein viskoses Mediums auf eine Oberfläche unter Verwendung des hier beschriebenen Moduls aufgetragen. Das Verfahren zeichnet sich dadurch aus,

  • dass das Austragen des viskosen Mediums durch den mindestens einen Düsenkanal aus dem Reservoir des Moduls begonnen und aufrechterhalten wird, indem der Überdruck des viskosen Mediums in dem Reservoir mindestens soweit vergrößert wird, bis der Durchlasswiderstand des mindestens einen Düsenkanals für das viskose Medium überwunden wird (und das viskose Medium durch den mindestens einen Düsenkanal hindurch aus dem Reservoir ausfließt), und
  • dass das Austragen des Mediums gestoppt oder unterbrochen wird ohne den mindestens einen Düsenkanal durch Schließelemente oder dergleichen zu versperren, indem der Überdruck des viskosen Mediums innerhalb des Reservoirs mindestens soweit abgesenkt wird, bis der Durchlasswiderstand des mindestens einen Düsenkanals für das viskose Medium nicht mehr überwunden wird (und das Hindurchfließen des viskosen Mediums durch den mindestens einen Düsenkanal durch den Druckverlust des viskosen Mediums in dem mindestens einen Düsenkanal gestoppt wird).
In the method according to the invention, a viscous medium is applied to a surface using the module described here. The process is characterized by
  • that the discharge of the viscous medium through the at least one nozzle channel from the reservoir of the module is started and maintained by increasing the positive pressure of the viscous medium in the reservoir at least until the flow resistance of the at least one nozzle channel for the viscous medium is overcome (and the viscous medium flows out of the reservoir through the at least one nozzle channel), and
  • that the discharge of the medium is stopped or interrupted without blocking the at least one nozzle channel by closing elements or the like, by reducing the excess pressure of the viscous medium within the reservoir at least until the flow resistance of the at least one nozzle channel for the viscous medium is no longer overcome (and the flow of the viscous medium through the at least one nozzle channel is stopped by the pressure loss of the viscous medium in the at least one nozzle channel).

Typischerweise wird mit dem Austragen des Mediums aus dem Reservoir auch, praktisch gleichzeitig, das Auftragen des viskosen Mediums auf die Oberfläche begonnen und aufrechterhalten bzw. gestoppt. Es wird bei dem Verfahren der mindestens eine Düsenkanal also nicht geöffnet oder verschlossen, um das Auftragen des viskosen Mediums zu beginnen bzw. zu beenden. Vielmehr wird der mindestens eine Düsenkanal während des gesamten Verfahrens in einem geöffneten Zustand gehalten. Das Verfahren wird also durchgeführt, ohne den Massenstroms des viskosen Mediums durch den mindestens einen Düsenkanal mittels beweglicher Schließelemente an dem mindestens einen Düsenkanal zu beeinflussen. Nach Durchführung des Verfahrens entfällt daher auch die Reinigung derartiger Schließelemente.Typically, with the discharge of the medium from the reservoir, the application of the viscous medium to the surface is started and maintained or stopped, practically simultaneously. In the method, the at least one nozzle channel is therefore not opened or closed in order to begin or end the application of the viscous medium. Rather, the at least one nozzle channel is kept in an open state during the entire process. The method is therefore carried out without the mass flow of the viscous medium through the at least one nozzle channel by means of movable closing elements on the to influence at least one nozzle channel. After the method has been carried out, the cleaning of such locking elements is therefore also eliminated.

Als viskoses Medium kann beispielsweise ein Klebstoff, eine Farbe oder ein Lack, insbesondere ein aushärtbarer Lack zur Herstellung einer mikrostrukturierten Oberfläche, beispielsweise ein Dual-Cure-Lack, verwendet werden. Das verwendete viskose Medium weist typischerweise eine (dynamische) Viskosität von 0,5 Pa·s oder mehr auf. Das viskose Medium weist also eine relativ geringe Fließfähigkeit auf und kann beispielsweise als eine Paste vorliegen. In der Regel beträgt die Viskosität aber nicht mehr als 150 Pa·s.An adhesive, a paint or a lacquer, in particular a curable lacquer for producing a microstructured surface, for example a dual-cure lacquer, can be used as the viscous medium. The viscous medium used typically has a (dynamic) viscosity of 0.5 Pa · s or more. The viscous medium therefore has a relatively low flowability and can be present, for example, as a paste. As a rule, however, the viscosity is not more than 150 Pa · s.

Das vorgeschlagene Verfahren eignet sich dazu, eine mikrostrukturierte Oberfläche herzustellen, beispielsweise auf die im Dokument WO 2013/083682 A1 oder DE 103 46 124 B4 und in der zugehörigen Nachanmeldung WO 2005/030472 A1 beschriebene Weise.The proposed method is suitable for producing a microstructured surface, for example on that in the document WO 2013/083682 A1 or DE 103 46 124 B4 and in the associated late registration WO 2005/030472 A1 described way.

Entsprechend der Terminologie der letztgenannten Veröffentlichungen ist unter einer mikrostrukturierten Oberfläche eine Oberfläche zu verstehen, die eine Mikrostruktur, das heißt eine Oberflächentopographie, aufweist, die im wesentlichen Strukturen im Bereich von 100 µm bis 0,5 µm, bevorzugt 50 µm bis 0,5 µm, Abstand zueinander und Tiefe umfasst. Bei der Mikrostruktur kann es sich beispielsweise um eine sogenannte Riblet-Struktur handeln, welche beispielsweise rippenförmige bzw. stegförmige Erhöhungen umfassen kann. Riblet-Strukturen können eine Verminderung des Reibungswiderstands auf turbulent überströmten Oberflächen bewirken, und werden somit beispielsweise auf Oberflächen von Flugzeugen, Schienenfahrzeugen, Schiffen, insbesondere die Oberflächen deren Rümpfe, und/oder Windenergieanlagen, insbesondere die Oberflächen deren Rotorblätter, hergestellt.According to the terminology of the latter publications, a microstructured surface is understood to mean a surface which has a microstructure, that is to say a surface topography, which essentially has structures in the range from 100 μm to 0.5 μm, preferably 50 μm to 0.5 μm , Distance and depth. The microstructure can be a so-called riblet structure, for example, which can comprise, for example, rib-shaped or web-shaped elevations. Riblet structures can bring about a reduction in frictional resistance on turbulent surfaces, and thus become, for example on surfaces of aircraft, rail vehicles, ships, in particular the surfaces of their fuselages, and / or wind energy plants, in particular the surfaces of their rotor blades.

Die Herstellung der Mikrostruktur erfolgt durch Abformen (z.B. Prägen) mittels einer Matrize, wie unten beschrieben wird. Dabei ist der Fehler der Abformung (Abweichung von der Sollform) typischerweise kleiner als 5 µm, bevorzugt kleiner 1 µm. Erfindungsgemäß wird auf einer Oberfläche eines Bauteils eine Mikrostruktur durch Abformen einer Matrize erzeugt, welche ein Negativ (also eine Negativform) der zu erzeugenden Mikrostruktur aufweist. Die Matrize ist vorzugsweise formflexibel, um sich an Krümmungen der jeweiligen Bauteiloberfläche anpassen zu können. Das viskose Medium kann mittels des Moduls auf das Negativ der Matrize und mittels der Matrize anschließend auf die Bauteiloberfläche aufgetragen werden. Es ist alternativ auch möglich, das viskose Medium direkt auf die Bauteiloberfläche aufzutragen und das aufgetragene viskose Medium anschließend mit der Matrize in Kontakt zu bringen. In beiden Fällen wird auf der Bauteiloberfläche eine Schicht des viskosen Mediums erzeugt und die Matrize mit dem Negativ auf die Bauteiloberfläche aufgedrückt, beispielsweise mittels der oben genannten Andruckwalze, so dass mittels des Negativs der Matrize die zu erzeugende Mikrostruktur auf die Schicht durch Abformen übertragen wird. Hierbei befindet sich also die Schicht des viskosen Mediums zwischen der Bauteiloberfläche und dem Negativ der Matrize. Beispielsweise kann die Walze über die Oberfläche so abgerollt werden, dass die Matrize in einer rollenden Bewegung zwischen Walze und Oberfläche gelangt, so dass das Negativ der Matrize der Oberfläche zugewandt ist. Die Matrize kann als Band oder Streifen ausgestaltet sein, insbesondere als ein Endlosband.The microstructure is produced by molding (e.g. embossing) using a die, as described below. The error in the impression (deviation from the target shape) is typically less than 5 μm, preferably less than 1 μm. According to the invention, a microstructure is produced on a surface of a component by molding a die which has a negative (ie a negative shape) of the microstructure to be produced. The die is preferably flexible in shape in order to be able to adapt to curvatures of the respective component surface. The viscous medium can be applied to the negative of the die using the module and then to the component surface using the die. Alternatively, it is also possible to apply the viscous medium directly to the component surface and then to bring the applied viscous medium into contact with the die. In both cases, a layer of the viscous medium is generated on the component surface and the die with the negative is pressed onto the component surface, for example by means of the above-mentioned pressure roller, so that the microstructure to be produced is transferred to the layer by molding using the negative of the die. Here, the layer of the viscous medium is located between the component surface and the negative of the die. For example, the roller can be rolled over the surface in such a way that the die moves between the roller and the surface in a rolling movement, so that the negative of the die faces the surface. The die can be designed as a band or strip, in particular as an endless band.

Typischerweise wird die aus dem viskosen Material gebildete Schicht, noch während sie sich zwischen der Matrize und der Bauteiloberfläche befindet, also in situ, vollständig oder zumindest teilweise ausgehärtet, um die Schicht und die auf ihr hergestellte Mikrostruktur zu stabilisieren. Um die Aushärtung zu beschleunigen, kann die oben bereits genannte Vorrichtung zum Beschleunigen des Aushärtens verwendet werden, welche zum Beispiel eine (UV-) Strahlungsquelle oder eine Wärmequelle aufweisen kann. Nach einer ausreichenden Aushärtung des viskosen Materials in der Schicht kann die Matrize von der Bauteiloberfläche abgenommen werden, ohne dass die Mikrostruktur in der Schicht des (ursprünglich viskosen) Mediums verläuft oder sich die Schicht von der Bauteiloberfläche ablöst. Dieses Abnehmen kann beispielsweise durch Verfahren (Abrollen) der Andruckwalze und/oder einer weiteren Walze auf der Bauteiloberfläche erfolgen.Typically, the layer formed from the viscous material is fully or at least partially cured even while it is between the die and the component surface, that is to say in situ , in order to stabilize the layer and the microstructure produced on it. In order to accelerate the hardening, the above-mentioned device for accelerating the hardening can be used, which can have, for example, a (UV) radiation source or a heat source. After the viscous material in the layer has hardened sufficiently, the die can be removed from the component surface without the microstructure runs in the layer of the (originally viscous) medium or the layer detaches from the component surface. This removal can take place, for example, by moving (unrolling) the pressure roller and / or a further roller on the component surface.

Auf diese Weise kann die Bauteiloberfläche entlang einer praktisch beliebig langen Strecke kontinuierlich oder diskontinuierlich mit der Mikrostruktur versehen werden, wobei zum Beenden der Strecke oder zum Erzeugen einer Unterbrechung der Mikrostruktur im Verlauf der Strecke der Materialaustrag aus dem Reservoir einfach und präzise durch ein Absenken des Überdrucks im Reservoir beendet oder unterbrochen werden kann, wie oben beschrieben worden ist. Zu Beginn einer neuen Strecke oder zum Fortsetzen der Mikrostruktur entlang einer bereits begonnenen Strecke kann der zum Austragen erforderliche Überdruck wieder erzeugt werden, um den Materialaustrag fortzusetzen. Nachdem die Bauteiloberfläche fertig beschichtet worden ist oder wenn eine längere Unterbrechung des Verfahrens erfolgen soll, kann das Modul durch ein weiteres, noch unbenutztes Modul hier vorgeschlagener Art ersetzt werden.In this way, the component surface can be provided with the microstructure continuously or discontinuously along a practically arbitrarily long path, with the material discharge from the reservoir being simply and precisely reduced by reducing the overpressure in order to end the path or to generate an interruption in the microstructure in the course of the path can be terminated or interrupted in the reservoir as described above. At the start of a new route or to continue the microstructure along a route that has already started, the excess pressure required for discharge can be generated again in order to continue the material discharge. After the component surface has been coated or if there is to be a long interruption in the process, the module can be replaced by a further, still unused module of the type proposed here.

Das erfindungsgemäße System eignet sich zum Auftragen eines viskosen Mediums auf eine Oberfläche und insbesondere zur Durchführung des hier vorgeschlagenen Verfahrens. Alle im Zusammenhang mit dem Verfahren beschriebenen Merkmale lassen sich daher entsprechend auch auf das vorgeschlagene System übertragen. Das System umfasst das hier beschriebene Modul sowie eine mit dem Modul fluidisch verbindbare Fördervorrichtung, die dazu eingerichtet ist, das viskose Medium in das Reservoir des Moduls zu fördern und dort mit dem bereits oben beschriebenen Überdruck zu beaufschlagen. Der mittels der Fördervorrichtung erzeugbare Überdruck des viskosen Mediums in dem Reservoir ist also so groß ist, dass das mit dem Überdruck beaufschlagte viskose Medium durch den mindestens einen Düsenkanal hindurch aus dem Reservoir ausströmt. Das System weist daher in der Regel keinen an dem mindestens einen Düsenkanal angeordneten (automatischen oder manuell bedienbaren) Schließmechanismus auf, welcher dazu eingerichtet wäre, den mindestens einen Düsenkanal zu öffnen und zu verschließen.The system according to the invention is suitable for applying a viscous medium to a surface and in particular for carrying out the method proposed here. All the features described in connection with the method can therefore also be correspondingly transferred to the proposed system. The system comprises the module described here as well as a conveyor device which can be fluidly connected to the module and which is set up to convey the viscous medium into the reservoir of the module and to apply the excess pressure already described there. The overpressure of the viscous medium in the reservoir, which can be generated by means of the conveying device, is so great that the viscous medium to which the overpressure is applied flows out of the reservoir through the at least one nozzle channel. The system therefore generally does not have a (automatic or manually operated) closing mechanism which is arranged on the at least one nozzle channel and which would be set up to open and close the at least one nozzle channel.

Die Fördervorrichtung kann steuerbar sein. Das System kann ferner eine Steuereinheit zum Steuern der Fördervorrichtung umfassen, wobei die Steuereinheit zum Übertragen von Steuersignalen mit der Fördervorrichtung verbunden und eingerichtet ist,

  • zum Starten eines Auftragevorgangs und zum Aufrechterhalten des Auftragevorgangs die Fördervorrichtung so anzusteuern, dass die Fördervorrichtung das viskose Medium innerhalb das Reservoirs mit dem genannten Überdruck zu beaufschlagen, und
  • zum Stoppen oder Unterbrechen des Auftragevorgangs die Fördervorrichtung so anzusteuern, dass die Fördervorrichtung den Überdruck des viskosen Mediums innerhalb des Reservoirs soweit absenkt, dass der genannte Durchlasswiderstand des mindestens einen Düsenkanals das Ausströmen des viskosen Mediums durch den mindestens einen Düsenkanal stoppt. Dieses Absenken des Überdrucks kann beispielsweise durch einen Stoppen der Förderung des viskosen Mediums in das Reservoir durch die Fördervorrichtung erzielt werden, beispielsweise durch ein Aus- oder Inaktivschalten der Fördervorrichtung, oder durch ein Schließen eines steuerbaren Auslassventils der Fördervorrichtung. Insbesondere wird aber kein an dem mindestens einen Düsenkanal angeordneter Schließmechanismus zum Verschließen des mindestens einen Düsenkanals betätigt oder entsprechend angesteuert.
The conveyor can be controllable. The system may further comprise a control unit for controlling the conveyor device, the control unit being connected and set up for transmitting control signals to the conveyor device,
  • in order to start an application process and to maintain the application process, to control the conveying device in such a way that the conveying device acts on the viscous medium within the reservoir with the above-mentioned overpressure, and
  • To stop or interrupt the application process, control the conveying device in such a way that the conveying device lowers the excess pressure of the viscous medium within the reservoir to such an extent that the flow resistance of the at least one nozzle channel stops the viscous medium from flowing out through the at least one nozzle channel. This lowering of the excess pressure can be achieved, for example, by stopping the delivery of the viscous medium into the reservoir by the delivery device, for example by switching the delivery device off or inactive, or by closing a controllable outlet valve of the delivery device. In particular, however, no closing mechanism arranged on the at least one nozzle channel for closing the at least one nozzle channel is actuated or controlled accordingly.

Das System ist zum Durchführen des hier vorgeschlagenen Verfahrens zum Herstellen einer Mikrostruktur auf einer Bauteiloberfläche ausgebildet. Das System umfasst daher außerdem:

  • eine Matrize mit einem Negativ der zu erzeugenden Mikrostruktur, wie oben beschrieben, wobei die Matrize und das Modul so angeordnet sind, dass das viskose Medium mittels des Moduls auf das Negativ der Matrize oder direkt auf die Bauteiloberfläche aufgetragen wird,
  • eine über die Bauteiloberfläche abrollbare Andruckwalze zum Andrücken der Matrize auf die Bauteiloberfläche, wobei Andruckwalze und Matrize so angeordnet sind, dass beim Abrollen der Walze über die Bauteiloberfläche die Matrize in einer rollenden Bewegung zwischen Walze und Oberfläche gelangt, so dass das Negativ der Matrize der Oberfläche zugewandt ist.
The system is designed to carry out the method proposed here for producing a microstructure on a component surface. The system therefore also includes:
  • a die with a negative of the microstructure to be produced, as described above, the die and the module being arranged in such a way that the viscous medium is applied by means of the module to the negative of the die or directly to the component surface,
  • a pressure roller that can be rolled over the component surface for pressing the die onto the component surface, the pressure roller and die being arranged in such a way that when the roller rolls over the component surface, the die passes between the roller and the surface in a rolling movement, so that the negative of the die of the surface is facing.

Das System kann außerdem alle im Zusammenhang mit dem vorgeschlagenen Verfahren beschriebene Merkmale aufweisen. Außerdem kann das System als ein Werkzeug der in DE 103 46 124 B4 und WO 2005/030472 A1 vorgeschlagenen Art ausgestaltet sein und jedes der dort beschriebenen Merkmale aufweisen. Entsprechend kann das hier vorgeschlagene Verfahren und System so ausgestaltet sein, dass damit die Mikrostrukturierung doppelt gekrümmter Bauteiloberflächen, bevorzugt an Großstrukturen wie Flugzeugen, Schienenfahrzeugen, Schiffen, insbesondere deren Rümpfen, und/oder Windenergieanlagen, insbesondere deren Rotorblättern, ermöglicht ist.The system can also have all the features described in connection with the proposed method. The system can also be used as a tool in DE 103 46 124 B4 and WO 2005/030472 A1 proposed Be designed and have each of the features described there. Accordingly, the method and system proposed here can be designed in such a way that it enables the microstructuring of double-curved component surfaces, preferably on large structures such as aircraft, rail vehicles, ships, in particular their hulls, and / or wind turbines, in particular their rotor blades.

Das System kann beispielsweise relativ zu der Oberfläche, auf die das viskose Medium aufgetragen werden soll, bewegt werden. Typischerweise ist diese Bewegung eine relative Verschiebung zwischen dem Modul und der Oberfläche, wobei typischerweise keine Rotation des Moduls um dessen Längsachse erfolgt (zumindest keine Rotation, die den Medienaustrag aus dem Reservoir beeinflusst). Dies kann beispielsweise manuell oder über einen eigenen Antrieb des Systems erfolgen, wobei das System beispielsweise angetriebene Räder umfassen kann. Das System kann als eine mobile Beschichtungsanlage ausgestaltet sein, die beispielsweise zur Applikation von Klebstoffen für Teppiche auf Baustellen oder zur Applikation von Farben und Lacken eingerichtet ist. Es ist auch möglich, dass das System mittels eines Roboterarms entlang der jeweiligen Oberfläche bewegt wird, insbesondere im Fall der bereits beschriebenen Herstellung von Mikrostrukturen auf Bauteiloberflächen, insbesondere bei der Riblet-Applikation. Das System kann aber auch stationär sein, so dass die Oberfläche, auf die das viskose Medium aufgetragen werden soll, relativ zu dem System, beispielsweise also relativ zu dem Auslassbereich des Moduls und/oder zu der oben beschriebenen Matrize, bewegt wird. Bei dem System kann es sich auch um eine stationäre Beschichtungsanlage für eine diskontinuierliche Fertigung, wie zum Beispiel um einen Deskcoater, handeln. Typischerweise weist das System eine Halterung für das Modul auf, mittels derer das Modul während des Medienauftrags bezüglich seiner Längsachse drehfest fixiert ist.For example, the system can be moved relative to the surface to which the viscous medium is to be applied. Typically, this movement is a relative displacement between the module and the surface, typically there is no rotation of the module about its longitudinal axis (at least no rotation that influences the media discharge from the reservoir). This can be done, for example, manually or via the system's own drive, wherein the system can include driven wheels, for example. The system can be designed as a mobile coating system which is set up, for example, for applying adhesives for carpets on construction sites or for applying paints and varnishes. It is also possible for the system to be moved along the respective surface by means of a robot arm, in particular in the case of the production of microstructures on component surfaces already described, in particular in the case of the Riblet application. However, the system can also be stationary, so that the surface to which the viscous medium is to be applied is moved relative to the system, for example relative to the outlet area of the module and / or to the die described above. The system can also be a stationary coating system for batch production, such as a desk coater. The system typically has a holder for the module, by means of which the module is fixed in a rotationally fixed manner with respect to its longitudinal axis during the media application.

Bei dem hier vorgeschlagenen Verfahren zum Herstellen eines Moduls hier vorgeschlagener Art wird ein Kunststoff, der sich zur Verarbeitung in einem Spritzgussverfahren eignet, in fließfähigem Zustand in ein Formwerkzeug eingespritzt. Das Formwerkzeugs ist als Negativform des Moduls ausgestaltet und kann beispielsweise eine Matrize, auch als Matrizenteil bezeichnet, und einen Kern umfassen. Die Matrize, die ein- oder mehrteilig aufgebaut sein kann, weist einen Innenraum auf, der eine Negativform der äußeren Oberfläche des Moduls ist. Der Kern, der ebenfalls ein- oder mehrteilig aufgebaut sein kann, ist eine Negativform des Reservoirs des Moduls. Der Kern oder die Matrize weisen außerdem mindestens einen Zapfen oder Steg auf, welcher als Negativformen des mindestens einen Düsenkanals des Moduls ausgestaltet sind. Beispielsweise kann die Matrize derart ausgestaltet sein, dass sie auch einen Bereich mit einer Negativform der Rakelkante aufweist, sofern eine solche vorgesehen ist. Dann kann durch das Spritzgussverfahren gleichzeitig auch die Rakelkante hergestellt werden. Die Negativform der Rakelkante kann beispielsweise eine kanalförmige oder schlitzförmige Vertiefung auf einer inneren Oberfläche der Matrize ausgestaltet sein. Die Rakelkante ist dann also ein Teilbereich des Spritzgussteils, besteht also selbst aus dem gleichen Kunststoff wie der Rest des Spritzgussteils.In the method proposed here for producing a module of the type proposed here, a plastic which is suitable for processing in an injection molding process is injected into a mold in a flowable state. The molding tool is designed as a negative form of the module and can comprise, for example, a die, also referred to as a die part, and a core. The die, which can be constructed in one or more parts, has an interior which is a negative shape of the outer surface of the module. The core, too can be constructed in one or more parts is a negative form of the reservoir of the module. The core or the die also have at least one pin or web, which are designed as negative forms of the at least one nozzle channel of the module. For example, the die can be designed such that it also has an area with a negative shape of the doctor edge, if such is provided. Then the knife edge can also be produced by the injection molding process at the same time. The negative shape of the squeegee edge can, for example, be configured as a channel-shaped or slot-shaped depression on an inner surface of the die. The squeegee edge is then a partial area of the injection molded part, and therefore consists of the same plastic as the rest of the injection molded part.

Im Folgenden wird die Erfindung anhand einiger spezieller Ausführungsbeispiele näher erläutert, von denen einige in den Figuren 1 bis 8 schematisch dargestellt sind. Es zeigt:

Figur 1:
ein Modul hier vorgeschlagener Art in einer perspektivischen Ansicht,
Figur 2:
eine Ansicht eines Querschnitts durch das in der Figur 1 gezeigte Modul entlang der in Figur 1 gezeigten Schnittlinie,
Figur 3:
einen stark vergrößerten Teilbereich von Figur 2,
Figur 4A:
eine Querschnittsfläche eines Düsenkanals mit länglicher Querschnittsfläche eines Moduls hier vorgeschlagener Art,
Figur 4B:
einen Längsschnitt durch einen sich konisch verengenden Düsenkanal eines Moduls hier vorgeschlagener Art,
Figur 4C:
einen Längsschnitt durch einen sich stufenförmig verengenden Düsenkanal eines Moduls hier vorgeschlagener Art,
Figur 5:
das in Figur 1 gezeigte Modul in einer Seitenansicht,
Figur 6A:
einen stark vergrößerten Teilbereich von Figur 5,
Figur 6B:
der in Figur 6A gezeigte Teilbereich für eine zweireihige Anordnung der Düsenkanäle,
Figur 7:
eine Seitenansicht eines Systems hier vorgeschlagener Art mit dem in Figuren 1 bis 3 gezeigten Modul und
Figur 8:
eine Ansicht eines Querschnitts durch ein Formwerkzeugs hier vorgeschlagener Art zum Herstellen des in Figuren 1 bis 3 gezeigten Moduls.
The invention is explained in more detail below on the basis of a few specific exemplary embodiments, some of which are shown in FIGS Figures 1 to 8 are shown schematically. It shows:
Figure 1:
a module proposed here in a perspective view,
Figure 2:
a view of a cross section through the in the Figure 1 module shown along the in Figure 1 shown cutting line,
Figure 3:
a greatly enlarged section of Figure 2 ,
Figure 4A:
2 shows a cross-sectional area of a nozzle channel with an elongated cross-sectional area of a module of the type proposed here,
Figure 4B:
2 shows a longitudinal section through a conically narrowing nozzle channel of a module of the type proposed here,
Figure 4C:
3 shows a longitudinal section through a step-wise narrowing nozzle channel of a module of the type proposed here,
Figure 5:
this in Figure 1 shown module in a side view,
Figure 6A:
a greatly enlarged section of Figure 5 ,
Figure 6B:
the in Figure 6A partial area shown for a two-row arrangement of the nozzle channels,
Figure 7:
a side view of a system proposed here with the in Figures 1 to 3 module shown and
Figure 8:
a view of a cross section through a mold proposed here for producing the in Figures 1 to 3 shown module.

In den Figuren bezeichnen wiederkehrende Bezugszeichen gleiche oder einander entsprechende Merkmale. Die Figuren stellen keine maßstabstreue Abbildungen dar, sondern dienen als vereinfachte, schematische Darstellungen lediglich Illustrationszwecken.In the figures, recurring reference symbols designate the same or corresponding features. The figures do not represent true-to-scale illustrations, but serve as simplified, schematic representations for illustration purposes only.

In Figur 1 ist eine perspektivische Ansicht eines Moduls 1 hier vorgeschlagener Art zum Auftragen eines viskosen Mediums auf eine Oberfläche gezeigt. Bei der Oberfläche kann es sich beispielsweise um eine Oberfläche eines Bauteils oder einer Matrize handeln, wie in Figur 7 gezeigt ist. Bei dem viskosen Medium kann es sich beispielsweise um einen aushärtbaren Lack handeln, wie etwa einen Dual-Cure-Lack zur Herstellung einer Riblet-Struktur auf einer Bauteiloberfläche, wie weiter unten näher beschrieben wird.In Figure 1 a perspective view of a module 1 of the type proposed here for applying a viscous medium to a surface is shown. The surface can be, for example, a surface of a component or a die, as in Figure 7 is shown. The viscous medium can be, for example, a curable lacquer, such as a dual-cure lacquer for producing a riblet structure on a component surface, as will be described in more detail below.

In Figur 1 ist mit einer gestrichelten Linie ein Reservoir 2 des Moduls 1 für das viskose Medium eingezeichnet. Das Modul 1 weist zwei Medienanschlüsse 3 zum Speisen des Reservoirs 2 mit dem viskosen Medium auf, welche an einander entgegengesetzten Enden des Reservoirs 2 angeordnet sind, siehe auch Figur 5.In Figure 1 a reservoir 2 of the module 1 for the viscous medium is drawn in with a broken line. The module 1 has two media connections 3 for feeding the reservoir 2 with the viscous medium, which are arranged at opposite ends of the reservoir 2, see also Figure 5 .

Wie in dem in Figuren 2 und 3 gezeigten Querschnitt des Moduls 1 (die zugehörige Schnittlinie A-A ist in Figur 1 eingezeichnet) zu erkennen ist, ist das Reservoir 2 in diesem Beispiel als ein zylinderförmiger Hohlraum in dem Modul 1 ausgestaltet. Die Außenfläche 4 des Moduls 1 umfasst einen ebenen Auslassbereich 5 für das viskose Medium, der sich entlang einer Längsachse L des Reservoirs 2, siehe Figur 1, erstreckt. Das Modul 1 weist ferner eine Vielzahl von Düsenkanälen 6 auf, welche jeweils das Reservoir 2 mit dem Auslassbereich 5 fluidisch verbinden, siehe auch Figur 5. An den Auslassbereich 5 angrenzend ist eine Rakelkante 7 des Moduls 1 angeordnet.Like in that Figures 2 and 3 Cross section of the module 1 shown (the associated section line AA is in Figure 1 is shown), the reservoir 2 is configured in this example as a cylindrical cavity in the module 1. The outer surface 4 of the module 1 comprises a flat outlet area 5 for the viscous medium, which extends along a longitudinal axis L of the reservoir 2, see Figure 1 , extends. The module 1 also has a plurality of nozzle channels 6, which each fluidly connect the reservoir 2 to the outlet area 5, see also Figure 5 . A doctor edge 7 of the module 1 is arranged adjacent to the outlet area 5.

Das Modul 1 weist keinen Schließmechanismus und keine beweglichen Teile zum Verschließen oder Versperren der Düsenkanäle 6 auf. Wie weiter unten anhand Figur 8 beschreiben wird, handelt es sich bei dem Modul 1 um ein einfach und kostengünstig herstellbares Spritzgussteil, das als Einwegbauteil bestimmt ist. Im vorliegenden Beispiel besteht das Modul aus mehreren Modulsegmenten, die axial zusammengesetzt worden sind. Zwei Endkappen 8 schließen das Reservoir 2 endseitig ab und tragen die seitlichen Medienanschlüsse 3. Zwischen den beiden Endkappen 8 ist ein Zwischensegment 9 angeordnet, welches das Reservoir 2 seitlich umgrenzt und die Düsenkanäle 6 aufweist. Das Modul 2 könnte anstelle nur eines Zwischensegmentes 9 auch mehrere gleichartige und axial miteinander verbundene Zwischensegmente 9 aufweisen, um eine entsprechend größere Gesamtlänge des Moduls zu erzielen. Die Modulsegmente 8, 9 sind durch Verbindungselemente miteinander verbunden (hier nicht dargestellt), beispielsweise durch in axialer Richtung wirkende Klemm- oder Spannelemente.The module 1 has no closing mechanism and no moving parts for closing or blocking the nozzle channels 6. As below based Figure 8 is described, the module 1 is a simple and inexpensive to produce injection molded part that is intended as a disposable component. In the present example, the module consists of several module segments that have been assembled axially. Two end caps 8 close off the reservoir 2 at the end and carry the lateral media connections 3. Between the two end caps 8 there is an intermediate segment 9, which laterally delimits the reservoir 2 and has the nozzle channels 6. Instead of only one intermediate segment 9, the module 2 could also have a plurality of intermediate segments 9 of the same type and axially connected to one another in order to achieve a correspondingly greater overall length of the module. The module segments 8, 9 are connected to one another by connecting elements (not shown here), for example by clamping or tensioning elements acting in the axial direction.

Der Durchlasswiderstand der Düsenkanälen 6 für das viskose Medium hängt besonders stark von einem kleinsten Durchmesser dmin der Düsenkanäle 6 ab und auch von deren Länge I. Im vorliegenden Beispiel weisen die Düsenkanäle 6 über ihre gesamte Länge I hinweg eine gleichgroße, kreisrunde Querschnittsfläche auf, so dass der kleinste Durchmesser dmin dem gewöhnlichen Durchmesser des Düsenkanals 6 entspricht, siehe Figur 3. Im vorliegenden Beispiel betragen die kleinsten Durchmesser dmin beispielsweise 0,8 mm und die Längen I der Düsenkanäle beispielsweise 1 mm. Jeder der Düsenkanäle 6 verläuft von einer Einlassöffnung 10 des jeweiligen Düsenkanals 6, mit der der Düsenkanal 6 im Reservoir 2 mündet, bis zu einer Auslassöffnung 11 des jeweiligen Düsenkanals 6, mit der der Düsenkanal 6 im Auslassbereich 5 auf der Außenfläche 4 des Moduls 1 mündet. Die Düsenkanäle 6 weisen jeweils eine von dem Reservoir 2 bis zum Auslassbereich 5 gemessene Kanallänge I auf. In diesem Beispiel betragen die Kanallängen I jeweils 1 mm.The forward resistance of the nozzle channels 6 for the viscous medium depends particularly strongly on the smallest diameter d min of the nozzle channels 6 and also on their length I. In the present example, the nozzle channels 6 have an equally large, circular cross-sectional area over their entire length I. that the smallest diameter d min corresponds to the usual diameter of the nozzle channel 6, see Figure 3 . In the present example, the smallest diameters d min are, for example, 0.8 mm and the lengths I of the nozzle channels are, for example, 1 mm. Each of the nozzle channels 6 extends from an inlet opening 10 of the respective nozzle channel 6, with which the nozzle channel 6 opens into the reservoir 2, to an outlet opening 11 of the respective nozzle channel 6, with which the nozzle channel 6 opens into the outlet area 5 on the outer surface 4 of the module 1 . The nozzle channels 6 each have a channel length I measured from the reservoir 2 to the outlet area 5. In this example, the channel lengths I are 1 mm each.

Wie in Figur 4A gezeigt ist, können die Düsenkanäle 6 anstelle eines kreisrunden Querschnitts auch beispielsweise eine langgestreckte, in diesem Fall eine ovale, Querschnittsfläche aufweisen. Hier beträgt der kleinste Durchmesser dmin beispielsweise 0,5 mm und der größte Durchmesser dmax 2 mm, welche als Durchmesser des größtmöglichen einbeschriebenen Kreises K1 bzw. als Durchmesser des kleinstmöglichen umbeschriebenen Kreises K2 definiert sind.As in Figure 4A is shown, the nozzle channels 6 can also have, for example, an elongated, in this case an oval, cross-sectional area instead of a circular cross-section. Here, the smallest diameter d min is, for example, 0.5 mm and the largest diameter d max is 2 mm, which are defined as the diameter of the largest possible inscribed circle K 1 or as the diameter of the smallest possible inscribed circle K 2 .

Wie in Figuren 4B und 4C gezeigt ist, ist es außerdem möglich, dass die Düsenkanäle 6 Querschnittsflächen aufweisen, die sich entlang ihres Kanalverlaufs von dem Reservoir 2 zum Auslassbereich 5 ändern und sich entlang dieses Verlaufs beispielweise verengen oder aufweiten. Beispielsweise verengt sich der in Figur 4B gezeigte Düsenkanal 6 zur Auslassöffnung 11 hin konisch und weist dort einen kleinsten Durchmesser dmin von 0,5 mm auf. Der in Figur 4C gezeigte Düsenkanal 6 verengt sich zur Auslassöffnung 11 hin stufenförmig und weist dort einen kleinsten Durchmesser dmin von 0,6 mm auf.As in Figures 4B and 4C is shown, it is also possible for the nozzle channels 6 to have cross-sectional areas that change along their channel course from the reservoir 2 to the outlet area 5 and that narrow or widen, for example, along this course. For example, the in narrows Figure 4B shown nozzle channel 6 conical to the outlet opening 11 and there has a smallest diameter d min of 0.5 mm. The in Figure 4C The nozzle channel 6 shown narrows in a step-like manner towards the outlet opening 11 and there has a smallest diameter d min of 0.6 mm.

In Figur 5 ist das in Figur 1 gezeigte Modul 1 noch einmal in einer Seitenansicht gezeigt, in der auch die Düsenkanäle 6 im Auslassbereich 5 und die Rakelkante 7 zu erkennen sind. Zu erkennen ist außerdem, dass die Düsenkanäle 6 in einer Reihe angeordnet sind, die parallel zur Rakelkante 7 und zur Längsachse L des Reservoirs 2 verläuft. Der Abstand zwischen zwei benachbarten Düsenkanälen 6 (gemessen entlang der Längsachse L) beträgt in diesem Beispiel 0,2 mm. Dies ist vergrößert auch in Figur 6A dargestellt. In Figur 6B ist eine alternative Anordnung der Düsenkanäle 6 gezeigt, in der die Düsenkanäle 6 in zwei parallel zur Längsachse L und zueinander axial versetzt verlaufenden Reihen angeordnet sind (Verbindungslinien zwischen den Düsenkanälen 6 würden ein Zickzack-Muster bilden). Auf diese Weise lässt sich beispielsweise bei gleichem axialen Abstand zwischen den Düsenkanälen 6 eine doppelt so große Anzahl von Düsenkanälen erzielen, so dass bei gleichem Überdruck ein doppelt so großer gesamter Massenstrom des viskosen Mediums aus dem Reservoir 2 erzeugt werden kann. Beispielsweise hat das Reservoir 2 eine Länge (gemessen entlang der Längsachse L) von 50 cm. Die Düsenkanäle 6 sind entlang der gesamten Längsausdehnung des Reservoirs 2 angeordnet, so dass das Modul 1 im Fall der einreihigen Anordnung gemäß Figur 6A insgesamt 625 Düsenkanäle 6 aufweist und im Fall der zweireihigen Anordnung gemäß Figur 6B insgesamt 1250 Düsenkanäle 6.In Figure 5 is that in Figure 1 The module 1 shown is shown again in a side view, in which the nozzle channels 6 in the outlet area 5 and the doctor edge 7 can also be seen. It can also be seen that the nozzle channels 6 are arranged in a row which runs parallel to the doctor edge 7 and to the longitudinal axis L of the reservoir 2. The distance between two adjacent nozzle channels 6 (measured along the longitudinal axis L) is 0.2 mm in this example. This is also enlarged in Figure 6A shown. In Figure 6B An alternative arrangement of the nozzle channels 6 is shown, in which the nozzle channels 6 are arranged in two rows running parallel to the longitudinal axis L and axially offset from one another (connecting lines between the nozzle channels 6 would form a zigzag pattern). In this way, for example, with the same axial distance between the nozzle channels 6, a twice as large number of nozzle channels can be achieved, so that with the same overpressure, a twice as large total mass flow of the viscous medium can be generated from the reservoir 2. For example, the reservoir 2 has a length (measured along the longitudinal axis L) of 50 cm. The nozzle channels 6 are arranged along the entire longitudinal extent of the reservoir 2, so that the module 1 in the case of a single-row arrangement according to Figure 6A has a total of 625 nozzle channels 6 and according to in the case of the two-row arrangement Figure 6B a total of 1250 nozzle channels 6.

Das Modul 1 ist ausreichend stabil ausgestaltet, um dem Überdruck, mit dem das viskose Medium im Reservoir 2 beaufschlagt wird, um es durch die Düsenkanäle 6 hindurch aus dem Reservoir 2 auszulassen, standzuhalten. Typischerweise wird, je nach Viskosität des viskosen Mediums und der Größe des Druckabfalls in den Düsenkanälen 6, ein Überdruck von mehr als 2 Bar angewendet, typischerweise liegt der Überdruck in einem Bereich zwischen 2 Bar und 30 bar. Das verwendete viskose Medium weist typischerweise eine (dynamische) Viskosität von 0,5 Pa·s oder mehr auf und kann beispielsweise als eine Paste vorliegen. In der Regel beträgt die Viskosität aber nicht mehr als 150 Pa·s.The module 1 is designed to be sufficiently stable to withstand the excess pressure with which the viscous medium is applied in the reservoir 2 in order to let it out of the reservoir 2 through the nozzle channels 6. Typically, depending on the viscosity of the viscous medium and the size of the pressure drop in the nozzle channels 6, an excess pressure of more than 2 bar is used, typically the excess pressure is in a range between 2 bar and 30 bar. The viscous medium used typically has a (dynamic) Viscosity of 0.5 Pa · s or more and can for example be present as a paste. As a rule, however, the viscosity is not more than 150 Pa · s.

Figur 7 zeigt stark schematisiert und in einer seitlichen Ansicht ein spezielles Beispiel eines System 12 hier vorgeschlagener Art zum Herstellen einer Mikrostruktur auf einer Oberfläche 16 eines Bauteils 17, beispielsweise auf einer Tragfläche oder einem Rumpf eines Flugzeugs. Das System 12 umfasst ein Modul 1 hier vorgeschlagener Art, wie zum Beispiel das in Figur 1 gezeigt Modul 1, sowie eine steuerbare Fördervorrichtung 13, die dazu eingerichtet ist, das viskose Medium über zwei Medienleitungen 14 (nur eine ist in Figur 7 gezeigt), die mit den Medienanschlüssen 3 des Moduls 1 verbunden sind, in das Reservoir 2 des Moduls 1 zu fördern und dort mit einem ausreichend hohen Überdruck zu beaufschlagen, um es durch die Düsenkanäle 6 aus dem Reservoir 2 des Moduls 1 auszutragen. Das System 12 umfasst keine an den Düsenkanälen 6 angeordneten bewegbaren Schließelemente, welche dazu eingerichtet wären, die Düsenkanäle zu öffnen und zu verschließen. Figure 7 shows a highly schematic and a side view of a specific example of a system 12 of the type proposed here for producing a microstructure on a surface 16 of a component 17, for example on an aerofoil or a fuselage of an aircraft. The system 12 comprises a module 1 of the type proposed here, such as that in FIG Figure 1 Module 1 is shown, as well as a controllable conveying device 13 which is set up to convey the viscous medium via two media lines 14 (only one is in Figure 7 shown), which are connected to the media connections 3 of the module 1, to be conveyed into the reservoir 2 of the module 1 and to be acted upon there with a sufficiently high overpressure in order to discharge it from the reservoir 2 of the module 1 through the nozzle channels 6. The system 12 does not include any movable closing elements which are arranged on the nozzle channels 6 and which would be set up to open and close the nozzle channels.

Eine Steuereinheit 15 des Systems 12 ist dazu eingerichtet

  • zum Starten eines Auftragevorgangs und zum Aufrechterhalten des Auftragevorgangs die Fördervorrichtung 13 so anzusteuern, dass die Fördervorrichtung 13 das viskose Medium innerhalb das Reservoirs 2 mit dem genannten Überdruck beaufschlagt, und
  • zum Stoppen oder Unterbrechen des Auftragevorgangs die Fördervorrichtung 13 so anzusteuern, dass die Fördervorrichtung 13 durch ein Stoppen der Förderung den Überdruck des viskosen Mediums innerhalb des Reservoirs 2 soweit absenkt, dass der Durchlasswiderstand der Düsenkanäle 6 das Ausströmen des viskosen Mediums durch die Düsenkanäle 6 stoppt.
A control unit 15 of the system 12 is set up for this
  • to start an application process and to maintain the application process, to control the conveying device 13 such that the conveying device 13 acts on the viscous medium within the reservoir 2 with the above-mentioned pressure, and
  • to stop or interrupt the application process, control the conveying device 13 such that the conveying device 13 lowers the overpressure of the viscous medium within the reservoir 2 by stopping the conveying so that the flow resistance of the nozzle channels 6 stops the outflow of the viscous medium through the nozzle channels 6.

Das System 12 umfasst außerdem eine flexible und als ein Endlosband ausgestaltete Matrize 18 mit einem Negativ der zu erzeugenden Mikrostruktur. Die Matrize 18 und das Modul 1 sind so angeordnet, dass das viskose Medium, in Figur 7 gezeigt und mit dem Bezugszeichen 19 versehen, mittels des Moduls 1 auf das Negativ der Matrize 18 aufgetragen und dort mittels der Rakelkante 7 vergleichmäßigt und in Vertiefungen des Negativs eingebracht wird. Das System 12 umfasst ferner zwei über die Oberfläche 16 des Bauteils 17 abrollbare Andruckwalzen 21 zum Andrücken der Matrize 18 auf die Bauteiloberfläche 16, wobei die Andruckwalzen 21 und die Matrize 18 so angeordnet sind, dass beim Abrollen der Andruckwalzen 21 über die Bauteiloberfläche 16 die Matrize 18 in einer rollenden Bewegung zwischen Andruckwalzen 21 und Oberfläche 16 gelangt, so dass das Negativ der Matrize 18 der Oberfläche 16 zugewandt ist. Ferner umfasst das System 12 eine Umlenkwalze 22, die angeordnet ist, die Matrize 18 umzulenken und zu spannen. Um das System 12 über die Oberfläche 16 des Bauteils 17 zu verfahren und die Andruckwalzen 21 an die Oberfläche 16 anzudrücken und über sie abzurollen (in Richtung der in Figur 7 eingezeichneten Pfeile), ist das System 12 mit einem entsprechend eingerichteten Roboterarm 23 verbunden.The system 12 also comprises a flexible die 18 designed as an endless belt with a negative of the microstructure to be produced. The matrix 18 and the module 1 are arranged such that the viscous medium, in Figure 7 shown and provided with the reference numeral 19, applied to the negative of the die 18 by means of the module 1 and made uniform there by means of the doctor edge 7 and introduced into depressions of the negative. The system 12 further comprises two pressure rollers 21 that can be rolled over the surface 16 of the component 17 for pressing the die 18 onto the component surface 16, the pressure rollers 21 and the die 18 being arranged such that when the pressure rollers 21 roll over the component surface 16, the die 18 moves in a rolling movement between the pressure rollers 21 and the surface 16, so that the negative of the die 18 faces the surface 16 is. The system 12 further comprises a deflecting roller 22 which is arranged to deflect and tension the die 18. In order to move the system 12 over the surface 16 of the component 17 and to press the pressure rollers 21 against the surface 16 and to roll them over them (in the direction of FIGS Figure 7 arrows), the system 12 is connected to a correspondingly configured robot arm 23.

Mittels des Systems 12 kann somit auf der Oberfläche 16 des Bauteils 17 die Mikrostruktur durch Abformen des Negativs der Matrize 18 erzeugt werden. Dabei wird das viskose Medium 19 mittels des Moduls 1 auf das Negativ der Matrize 18 aufgetragen und mittels der Matrize 18 durch die oben beschriebene rollende Bewegung anschließend auf die Bauteiloberfläche 16 aufgebracht. Dabei wird auf der Bauteiloberfläche 16 eine Schicht 20 des viskosen Mediums 19 erzeugt. Dadurch, dass die Matrize mit dem Negativ auf die Bauteiloberfläche 16 aufgedrückt und abgerollt wird, wird mittels des Negativs der Matrize 18 die zu erzeugende Mikrostruktur auf die Schicht 20 durch Abformen des Negativs übertragen, während sich die Schicht 20 zwischen der Bauteiloberfläche 16 und dem Negativ der Matrize 18 befindet. Außerdem wird das viskose Medium 19 in der Schicht 20, noch während diese sich zwischen der Matrize 18 und der Bauteiloberfläche 16 befindet, mittels einer Vorrichtung 24 zum Beschleunigen des Aushärtens verwendet werden, welche zum Beispiel eine UV-Strahlungsquelle und eine Wärmequelle aufweisen kann, welche durch die hierfür durchlässige Matrize 18 hindurch auf die Schicht 20 einwirkt. Bei dem viskosen Medium 19 kann es sich beispielsweise um Dual-Cure-Lack handeln. Weitere Details hierzu können der DE 103 46 124 B4 und der WO 2005/030472 A1 entnommen werden.The system 12 can thus be used to produce the microstructure on the surface 16 of the component 17 by molding the negative of the die 18. The viscous medium 19 is applied to the negative of the die 18 by means of the module 1 and then applied to the component surface 16 by means of the die 18 by the rolling movement described above. A layer 20 of the viscous medium 19 is generated on the component surface 16. Because the die with the negative is pressed onto the component surface 16 and unrolled, the microstructure to be produced is transferred to the layer 20 by molding the negative by means of the negative of the die 18, while the layer 20 is transferred between the component surface 16 and the negative the die 18 is located. In addition, the viscous medium 19 in the layer 20, while it is still between the die 18 and the component surface 16, is used by means of a device 24 for accelerating the curing, which can have, for example, a UV radiation source and a heat source, which acts on the layer 20 through the permeable matrix 18. The viscous medium 19 can be, for example, dual-cure lacquer. Further details can be found on the DE 103 46 124 B4 and the WO 2005/030472 A1 be removed.

Bei der Mikrostruktur handelt es sich beispielsweise um eine Riblet-Struktur mit rippenartigen Erhöhungen, deren Höhen und Abständen zueinander beispielsweise zwischen 50 µm bis 0,5 µm betragen.The microstructure is, for example, a riblet structure with rib-like elevations, the heights and spacings of which are, for example, between 50 μm and 0.5 μm.

In Figur 8 ist ein Querschnitt eines Formwerkzeugs 25 gezeigt, dass dazu ausgebildet ist, das in Figur 1 gezeigte Modul 1 mittels eines Spritzgussverfahrens herzustellen. Das Formwerkzeugs 25 ist als Negativform des Moduls 1 ausgestaltet und umfasst eine zweiteilige Matrize 26 und einen zweiteiligen Kern 27. Die Matrize 26 weist einen Innenraum 28 auf, der eine Negativform der Außenfläche 4 des Moduls 1 ist. Der Kern 27 ist eine Negativform des Reservoirs 2 des Moduls 1. Ein erster Teil 29 des Kerns 27 weist eine Vielzahl von Zapfen 30 auf, welche Negativformen der Düsenkanäle 6 des Moduls 1 sind. Bei der Herstellung des Moduls 1 wird ein für das Spritzgießen geeigneter Kunststoff in fließfähigem Zustand durch einen Einlasskanal 31 des zusammengesetzten Formwerkzeugs 25 in den Innenraum 28 der Matrize 26 eingespeist. Nach Aushärten des Kunststoffs in dem Formwerkzeug 25 kann zunächst ein zweiter Teil 32 des Kerns 27 aus dem Reservoir 2 des ausgehärteten Moduls 1 herausbewegt werden. Anschließend kann durch Ausnutzung des so entstandenen Freiraums auch der erste Teil 29 des Kerns 27 aus dem Reservoir 2 des ausgehärteten Moduls 1 heraus bewegt werden.In Figure 8 A cross section of a mold 25 is shown, which is designed to form the in FIG Figure 1 Module 1 shown by means of an injection molding process to manufacture. The molding tool 25 is designed as a negative form of the module 1 and comprises a two-part die 26 and a two-part core 27. The die 26 has an inner space 28 which is a negative form of the outer surface 4 of the module 1. The core 27 is a negative form of the reservoir 2 of the module 1. A first part 29 of the core 27 has a large number of pins 30, which are negative forms of the nozzle channels 6 of the module 1. In the manufacture of module 1, a plastic that is suitable for injection molding in a flowable state is fed into the interior 28 of the die 26 through an inlet channel 31 of the assembled molding tool 25. After the plastic has hardened in the molding tool 25, a second part 32 of the core 27 can first be moved out of the reservoir 2 of the hardened module 1. The first part 29 of the core 27 can then also be moved out of the reservoir 2 of the hardened module 1 by utilizing the free space thus created.

Bezugszeichenliste:Reference symbol list:

11
Modulmodule
22nd
Reservoirreservoir
33rd
MedienanschlussMedia connection
44th
AußenflächeOutside surface
55
AuslassbereichOutlet area
66
DüsenkanalNozzle channel
77
RakelkanteSqueegee edge
88th
EndkappeEnd cap
99
ZwischensegmentIntermediate segment
1010th
EinlassöffnungInlet opening
1111
AuslassöffnungOutlet opening
1212
Systemsystem
1313
FördervorrichtungConveyor
1414
MedienleitungMedia management
1515
SteuereinheitControl unit
1616
Oberflächesurface
1717th
BauteilComponent
1818th
Matrizedie
1919th
viskoses Mediumviscous medium
2020th
Schichtlayer
2121st
AndruckwalzePressure roller
2222
UmlenkwalzeDeflection roller
2323
RoboterarmRobotic arm
2424th
Vorrichtung zum Beschleunigen des Aushärtens des viskosen MediumsDevice for accelerating the hardening of the viscous medium
2525th
FormwerkzeugMolding tool
2626
Matrize (Matrizenteil) des FormwerkzeugsDie (die part) of the mold
2727th
Kern des FormwerkzeugsCore of the mold
2828
Innenrauminner space
2929
erster Teil des Kernsfirst part of the core
3030th
ZapfenCones
3131
EinlasskanalInlet duct
3232
zweiter Teil des Kernssecond part of the core
LL
Längsachse des ModulsLongitudinal axis of the module
dmin d min
kleinster Durchmessersmallest diameter
dmax d max
größter Durchmesserlargest diameter
II.
KanallängeChannel length
K1 K 1
einbeschriebener Kreisinscribed circle
K2 K 2
umbeschriebener Kreiscircumscribed circle

Claims (11)

  1. A method for depositing a viscous medium, in particular an adhesive or lacquer, onto a surface (16) using a module (1) for depositing the viscous medium (19), wherein the module (1) comprises a reservoir (2) which can be fed with the viscous medium (19), an outer surface (4) of the module (1) comprising an outlet region (5) for the viscous medium (19), wherein the module (1) comprises at least one nozzle channel (6) which fluidically connects the reservoir (2) to the outlet region (5), a smallest diameter (dmin) of the at least one nozzle channel (6) being smaller than 0.8 mm and wherein the module (1) comprises no moving parts for the closure of the at least one nozzle channel (6)and the module (1) comprising a doctor edge (7) which runs along the outlet region, for distributing the viscous medium (19) on the surface (16), wherein
    a discharge of the viscous medium (19) out of the reservoir (2) through the at least one nozzle channel (6) of the module (1) is begun and is maintained, by way of an overpressure of the viscous medium (19) in the reservoir (2) being increased at least until a passage resistance of the at least one nozzle channel (6) to the viscous medium (19) is overcome,
    the discharge of the viscous medium (19) is stopped or interrupted without closing the at least one nozzle channel (6), by way of the overpressure of the viscous medium (19) within the reservoir (2) being reduced at least until the passage resistance of the at least one nozzle channel (6) is no longer overcome,
    the viscous medium (19) is distributed on the surface or introduced into deepenings of the surface using the doctor edge (7) of the module (1), and
    a die (18) with a negative of a microstructure is provided, wherein the viscous medium (19) is deposited onto the negative or onto the component surface by way of the module (1), and the die (18) with the negative is pressed onto the component surface, so that a layer (20) of the viscous medium (19) which comprises the microstructure is created on the component surface.
  2. The method according to claim 1, characterized in that an adhesive, a lacquer, or a paint is used as a viscous medium (19) and/or the viscous medium (19) has a viscosity between 0.5 Pa·s and 150 Pa·s.
  3. A system (12) for depositing a viscous medium (19), onto a surface, in particular for carrying out a method according to any one of the claims 1 or 2, wherein the system (12) comprises a module (1) for depositing the viscous medium (19) and a delivery device (13) fluidically connectable to the module (1), wherein the module (1) comprises a reservoir (2) which can be fed with the viscous medium (19), an outer surface (4) of the module (1) comprising an outlet region (5) for the viscous medium (19), wherein the module (1) comprises at least one nozzle channel (6) which fluidically connects the reservoir (2) to the outlet region (5), a smallest diameter (dmin) of the at least one nozzle channel (6) being smaller than 0.8 mm and wherein the module (1) comprises no moving parts for the closure of the at least one nozzle channel (6) and the module (1) comprises a doctor edge (7) which runs along the outlet region, for distributing the viscous medium (19) on the surface (16), wherein the delivery device (13) is designed for delivering the viscous medium (19) into the reservoir (2) of the module (1) and for subjecting the viscous medium (19) in the reservoir (2) to an overpressure, the overpressure of the viscous medium (19) in the reservoir (2) which can be produced by way of the delivery device (13) being sufficiently large such that the viscous medium (19) subjected to the overpressure flows out of the reservoir (2) through the at least one nozzle channel (6), wherein the system (12) for manufacturing a microstructure on a component surface moreover comprises:
    a die (18) with a negative of the microstructure to be produced, wherein the die (18) and the module (1) are arranged such that the viscous medium (19) can be deposited by way of the module (1) onto the negative of the die (18) or directly onto the component surface,
    a pressing roller which can roll over the component surface, for pressing the die (18) onto the component surface, the pressing roller and the die (18) being arranged such that on rolling the roller over the component surface, the die (18) is brought into a rolling movement between the pressing roller and the component surface, so that the negative of the die (18) faces the component surface.
  4. The system (12) according to claim 3, characterized in that the delivery device (13) is controllable and the system (12) comprises a control unit (15) for the control of the delivery device (13), wherein the control unit (15) is connected to the delivery device (13) for the transmission of control signals, and is configured
    to control the delivery device (13) to apply to the viscous medium (19) within a reservoir (2) an overpressure which is adequately large such that the viscous medium (19) subjected to the overpressure flows out of the reservoir (2) through the at least one nozzle channel (6), for starting a depositing procedure and for maintaining the depositing procedure, and
    to control the delivery device (13) such that the delivery device (13) reduces the overpressure of the viscous medium (19) within the reservoir (2) to such an extent that a passage resistance of the at least one nozzle channel (6) stops the outflow of the viscous medium (19), for stopping the depositing procedure.
  5. The system (12) according to any one of the claims 3 or 4, characterized in that the at least one nozzle channel (6) includes several nozzle channels (6) which are arranged in at least one row, wherein the at least one row of nozzle channels (6) runs along a longitudinal extension of the reservoir (2).
  6. A system (12) according to any one of the claims 3 to 5, characterized in that the at least one nozzle channel (6) has a channel length (I) which is measured from the reservoir (2) up to the outlet region (5), wherein the channel length (I) is at least 0.8 mm and/or that a largest diameter (dmax) of the nozzle channel (6) is smaller than 3 mm and/or that the at least one nozzle channel (6) tapers towards the outlet region (5), wherein the at least one nozzle channel (6) is preferably designed in a step-like or conical manner.
  7. The system (12) according to any one of the claims 3 to 6, characterized in that the reservoir (2) is a cavity of the module (1) which is shaped in an essentially cylindrical manner and/or that the module (1) is designed to withstand a pressure subjection of the viscous medium (19) in the reservoir (2) of 1.5 bar or more.
  8. A system (12) according to any one of the claims 3 to 7, characterized in that the doctor edge (7) is arranged on the outer surface (4) of the module (1).
  9. The system (12) according to any one of the claims 3 to 8, inasmuch as this refers back to claim 5, characterized in that the nozzle channels (6) are arranged in at least two rows, wherein the at least two rows run next to one another along the longitudinal extension of the reservoir (2), wherein the nozzle channels (6) of the at least two rows are preferably arranged offset to one another in the direction of the longitudinal extension of the reservoir (2).
  10. The system (12) according to any one of the claims 3 to 9, characterized in that the module (1) is an injection-molded part manufactured of plastic.
  11. The system (12) according to claim 10, characterized in that the doctor edge (7) is a part-region of the injection-molded part which is formed from plastic.
EP15733705.6A 2014-07-03 2015-06-30 System and method for applying a viscous medium to a surface Active EP3164225B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20160246.3A EP3680024B1 (en) 2014-07-03 2015-06-30 Module for applying a viscous medium to a surface and method for producing the module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014212940.0A DE102014212940A1 (en) 2014-07-03 2014-07-03 Module, system and method for applying a viscous medium to a surface and method of manufacturing the module
PCT/EP2015/064844 WO2016001222A1 (en) 2014-07-03 2015-06-30 Module, system and method for applying a viscous medium to a surface and method for producing the module

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP20160246.3A Division EP3680024B1 (en) 2014-07-03 2015-06-30 Module for applying a viscous medium to a surface and method for producing the module
EP20160246.3A Division-Into EP3680024B1 (en) 2014-07-03 2015-06-30 Module for applying a viscous medium to a surface and method for producing the module

Publications (2)

Publication Number Publication Date
EP3164225A1 EP3164225A1 (en) 2017-05-10
EP3164225B1 true EP3164225B1 (en) 2020-06-17

Family

ID=53502656

Family Applications (2)

Application Number Title Priority Date Filing Date
EP20160246.3A Active EP3680024B1 (en) 2014-07-03 2015-06-30 Module for applying a viscous medium to a surface and method for producing the module
EP15733705.6A Active EP3164225B1 (en) 2014-07-03 2015-06-30 System and method for applying a viscous medium to a surface

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP20160246.3A Active EP3680024B1 (en) 2014-07-03 2015-06-30 Module for applying a viscous medium to a surface and method for producing the module

Country Status (5)

Country Link
US (1) US10537912B2 (en)
EP (2) EP3680024B1 (en)
DE (1) DE102014212940A1 (en)
ES (1) ES2811115T3 (en)
WO (1) WO2016001222A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023108694A1 (en) 2023-04-05 2024-04-18 Audi Aktiengesellschaft Application device and robot arrangement

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3222335A1 (en) * 1982-06-14 1983-12-15 Planatolwerk W. Hesselmann, Chemische und Maschinenfabrik für Klebetechnik, GmbH & Co KG, 8201 Rohrdorf CROSS-BANDING MACHINE FOR VERY FAST-SPEED RAILS
DE19532387A1 (en) * 1995-03-10 1996-10-02 Josef Dr Hefele Method and device for the grid-like coating of web-like flexible sheets with hot melt adhesives

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE816104C (en) * 1949-05-13 1951-10-08 Guenther Wagner Fa Method and device for the uniform application of liquids to objects of all kinds
US2726632A (en) * 1952-03-31 1955-12-13 Sherwin Williams Co Applicator for highly viscous liquids
GB1288041A (en) * 1968-11-01 1972-09-06 Robinson Waxed Paper Co Ltd
US4025671A (en) * 1973-01-12 1977-05-24 Philip Morris Incorporated Method for applying continuous longitudinal bands of liquid coating to a moving strip
DE2513434A1 (en) * 1974-03-29 1975-10-02 Zimmer Johannes Textile web screen printing press - with interposed perforated screen between screen printing means and the web
DE2548890A1 (en) * 1975-10-31 1977-05-12 Brueckner Apparatebau Gmbh DEVICE FOR APPLYING A THIN FILM OF LIQUID TO A TRUCK
DE4015580A1 (en) * 1989-06-21 1991-01-03 Bolender Kubitz Masch Bkm Moistening process for greasing rollers - involves applying slight excess pressure is applied to roller interior
JP2616107B2 (en) * 1990-03-07 1997-06-04 松下電器産業株式会社 Coating device
DE4124064C2 (en) 1991-07-19 1996-04-25 Zweckform Buero Prod Gmbh Method and device for applying adhesive dots and pressure-sensitive adhesive substrate
CA2081499A1 (en) * 1991-11-01 1993-05-02 Wesley Fort Method and apparatus for dispensing multiple beads of viscous liquid
US5700325A (en) * 1994-08-03 1997-12-23 Matsushita Electric Industrial Co., Ltd. Coating device and a method of coating
US5670577A (en) * 1995-09-29 1997-09-23 H. B. Fuller Licensing & Financing, Inc. Waterproof hot melt composition for stitched seams
JP4158962B2 (en) * 2001-06-01 2008-10-01 漢拏空調株式会社 Compressor piston coating method
FI111562B (en) * 2002-01-16 2003-08-15 Metso Paper Inc A method and apparatus for applying a treating agent to a moving surface
ITTV20030134A1 (en) 2003-09-29 2005-03-30 Dario Toncelli PROCEDURE FOR THE MANUFACTURE OF MANUFACTURED ARTICLES IN SLAB OR TWO-LAYER PANEL, AND MANUFACTURED IN PLATES OR PANELS WITH WHICH IT CAN BE OBTAINED.
DE10346124B4 (en) 2003-10-01 2005-12-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Tool and method for producing a microstructured surface and use of a tool and the object produced therewith
JP2006334512A (en) * 2005-06-02 2006-12-14 Honda Motor Co Ltd Coating method of coating film protective layer, and its coating nozzle
DE102006020780A1 (en) * 2006-05-03 2007-11-15 Fleissner Gmbh Device for applying at least one dye in a collecting container from textile material
DE102008026147A1 (en) 2008-05-30 2009-12-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. slot die
JP5702223B2 (en) * 2011-05-16 2015-04-15 武蔵エンジニアリング株式会社 Film coating nozzle, coating apparatus and coating method
DE102011120498B4 (en) 2011-12-07 2014-02-13 Airbus Operations Gmbh A tool for producing a microstructured outer surface layer on a substrate surface

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3222335A1 (en) * 1982-06-14 1983-12-15 Planatolwerk W. Hesselmann, Chemische und Maschinenfabrik für Klebetechnik, GmbH & Co KG, 8201 Rohrdorf CROSS-BANDING MACHINE FOR VERY FAST-SPEED RAILS
DE19532387A1 (en) * 1995-03-10 1996-10-02 Josef Dr Hefele Method and device for the grid-like coating of web-like flexible sheets with hot melt adhesives

Also Published As

Publication number Publication date
EP3164225A1 (en) 2017-05-10
EP3680024A1 (en) 2020-07-15
ES2811115T3 (en) 2021-03-10
WO2016001222A1 (en) 2016-01-07
US10537912B2 (en) 2020-01-21
DE102014212940A1 (en) 2016-01-07
EP3680024B1 (en) 2022-12-14
US20170274409A1 (en) 2017-09-28
WO2016001222A9 (en) 2016-06-02

Similar Documents

Publication Publication Date Title
DE102009040802B4 (en) Method and device for applying a sealant to a surface
DE69910430T2 (en) METHOD AND DEVICE FOR CONTINUOUSLY COATING AT LEAST ONE METALLIC TAPE WITH LIQUID FILM MADE OF CROSSLINKABLE POLYMER
DE102011120498B4 (en) A tool for producing a microstructured outer surface layer on a substrate surface
EP3696875A1 (en) Method for applying an insulating layer on a motor vehicle battery cell and coating station and coating installation for performing the method
EP3164225B1 (en) System and method for applying a viscous medium to a surface
EP2392408B1 (en) Device for applying glue and method for cleaning same
EP2213475B1 (en) Embossing device and method
EP2085207A2 (en) Device for manufacturing blown film
EP2505269A2 (en) Device for gluing a moved cover strip for rod-shaped products for the tobacco processing industry and assembly with such a device
EP3302928B1 (en) Device and method for cooling a blown film
EP0056067B1 (en) Apparatus for applying a thin layer of a coating substance to a travelling material web
DE102005035860A1 (en) Process for coating workpieces with non-slip coating
EP2527149B1 (en) Colour deck of a printing press with a cleaning device for an ink roller and cleaning process for a colour deck
AT504294B1 (en) METHOD AND REGULATION FOR CONTROLLING THE BEHAVIOR OF STREICHMASSE IN CONNECTION WITH THE FLORAL FOR A FIBERGY LINE
DE3039812A1 (en) METHOD AND DEVICE FOR PAINTING BACK CYLINDRICAL HOLLOW BODIES, SUCH AS CAN HULLS
WO2023110569A1 (en) Scraper and coating device
EP3127617A1 (en) Coating device for applying a liquid coating material to an elongated workpiece
DE102011107604A1 (en) Coating device used for coating plastic profile strip, has spray nozzle from which coating beam is passed by working arm of freely programmable robot along transport direction of plastic profile strip
DE10035597A1 (en) Hair film generating unit with ejection device
DE2737993A1 (en) DEVICE FOR DISPENSING ADHESIVE
EP1793036A1 (en) Process for manufacturing impermeable papermaking belts and coating apparatus therefor
DE102015218672B4 (en) Commissioned work and method for operating such
WO2005120998A1 (en) Device for positioning a film web
WO2004037444A1 (en) Method and device for applying flowable materials to substrates
WO2023117485A1 (en) Liquid device

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170202

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: POSPIECH, LARS

Inventor name: PESCHKA, MANFRED

Inventor name: KORDY, HEINRICH

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190830

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502015012817

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B05C0005020000

Ipc: B29C0035080000

RIC1 Information provided on ipc code assigned before grant

Ipc: B29C 59/02 20060101ALI20200130BHEP

Ipc: B05C 5/02 20060101ALI20200130BHEP

Ipc: B05C 1/14 20060101ALI20200130BHEP

Ipc: B29C 59/04 20060101ALI20200130BHEP

Ipc: B29C 35/08 20060101AFI20200130BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200324

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015012817

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1280768

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200917

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200918

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201019

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201017

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2811115

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210310

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015012817

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

26N No opposition filed

Effective date: 20210318

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1280768

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230620

Year of fee payment: 9

Ref country code: DE

Payment date: 20230620

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230719

Year of fee payment: 9