EP3153609B1 - Antriebsanordnung für eine textilmaschine - Google Patents

Antriebsanordnung für eine textilmaschine Download PDF

Info

Publication number
EP3153609B1
EP3153609B1 EP16190847.0A EP16190847A EP3153609B1 EP 3153609 B1 EP3153609 B1 EP 3153609B1 EP 16190847 A EP16190847 A EP 16190847A EP 3153609 B1 EP3153609 B1 EP 3153609B1
Authority
EP
European Patent Office
Prior art keywords
motor torque
textile
designed
torque signal
drive assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16190847.0A
Other languages
English (en)
French (fr)
Other versions
EP3153609A1 (de
Inventor
Richard Neumann
Ralf De La Haye
Jürgen STRÖWER
Uwe Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Textile GmbH and Co KG
Hanning Elektro Werke GmbH and Co KG
Original Assignee
Oerlikon Textile GmbH and Co KG
Hanning Elektro Werke GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oerlikon Textile GmbH and Co KG, Hanning Elektro Werke GmbH and Co KG filed Critical Oerlikon Textile GmbH and Co KG
Publication of EP3153609A1 publication Critical patent/EP3153609A1/de
Application granted granted Critical
Publication of EP3153609B1 publication Critical patent/EP3153609B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H1/00Spinning or twisting machines in which the product is wound-up continuously
    • D01H1/14Details
    • D01H1/20Driving or stopping arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/70Other constructional features of yarn-winding machines
    • B65H54/74Driving arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H63/00Warning or safety devices, e.g. automatic fault detectors, stop-motions ; Quality control of the package
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H13/00Other common constructional features, details or accessories
    • D01H13/14Warning or safety devices, e.g. automatic fault detectors, stop motions ; Monitoring the entanglement of slivers in drafting arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments

Definitions

  • the invention relates to a drive arrangement for a textile machine according to the preamble of claim 1.
  • Textile machines commonly used today provide a drive arrangement with a multiplicity of drives which are arranged in, for example, three drive trains and process a plurality of textiles simultaneously across drive trains. It is typical that eight or ten or twelve drives are provided for each drive train, a first textile being processed by the first drives of the various drive trains, a second textile by second drives of the drive trains and so on. A total of eight or ten or twelve textiles can be processed at the same time.
  • the drives that act jointly on a textile each form an active network across the drive train.
  • a drive train and cross-functional control is provided for the coordinated operation of the drives of the active network and to ensure a smooth interaction of these drives.
  • a drive train and cross-functional control is provided for the coordinated operation of the drives of the active network and to ensure a smooth interaction of these drives.
  • a mechanical or optical sensor monitors the condition of the textile and / or controls the processing or operating parameters of the textile machine.
  • a method for measuring a tensile force of a thread in texturing machines is known.
  • the thread tension is determined by measuring the difference between idling and under load.
  • the DE 10 2014 014 729 A1 describes a texturing machine in which a group of eight electric drives has a control module and, separately therefrom, a power supply module.
  • Spinning devices and methods for operating spinning machines are also from the EP 1 609 893 A2 , the EP 2 759 623 A1 and the DE 10 2010 009 164 A1 known.
  • the object of the present invention is to specify a drive arrangement for a textile machine that is optimized in terms of costs.
  • the invention has the features of claim 1.
  • the particular advantage of the invention is that a system state of the drive arrangement can be monitored without the provision of a thread sensor. In this respect, the costs for the thread sensor can be saved and the design of the drive arrangement can be simplified.
  • the operating signals are used for at least one of the drives and the actual state of the drive arrangement is preferably determined for all drives. Furthermore, a current system state (actual state) of the drive arrangement is recorded by comparing the motor torque signal with a reference signal state. For the comparison, an evaluation unit is provided which, on the one hand, is supplied with the engine torque signal and, on the other hand, interacts with or has a reference data memory. The at least one reference signal status of the drive arrangement is stored in the reference data memory.
  • the evaluation unit comprises, in particular, suitably designed computing means.
  • the detection means or the evaluation unit or the controller is designed to post-process the engine torque signal.
  • the amplitudes can be extracted from the motor torque signal or the signal can be transformed from the time domain into the frequency domain.
  • the control or the detection means or the evaluation unit provides corresponding computing means for this purpose.
  • To transform the signal from the time domain into the frequency domain in particular the Fourier transform, the wavelet transform or the Hilbert-Huang transform with the empirical mode decomposition are used as the main component.
  • the short-term Fourier transformation, the Gabor transformation, the fast Fourier transformation or the discrete Fourier transformation can be used in training as a discrete cosine transformation or as a discrete sine transformation.
  • the wavelet transformation in particular the discrete wavelet transformation, the fast wavelet transformation, the wavelet packet transformation or the stationary wavelet transformation are used.
  • discrete, static parameters of the signals can be used and a transformation of the signals in the frequency range can be dispensed with.
  • random variables such as the expected value, the absolute deviation, the variance, the skewness, the excess or the covariance are used as parameters.
  • the signals can also be correlated, in particular cross-correlated or auto-correlated.
  • a combination of the transformed signals and the static parameters can be represented.
  • the common intention is in particular to compare the actual measurement signal with the reference signal state in the context of pattern recognition. This takes place in particular on the basis of specific features which are generated from the signal and summarized in a feature tool, on the basis of a statement about the similarity of the signals in question.
  • a plurality of reference signal states is stored in the reference data memory.
  • a first reference signal state which characterizes a bearing defect of the assigned drive
  • a second reference signal state which characterizes a local thickening of the textile, for example due to a knot in the textile
  • a third reference signal state which characterizes a tear in the textile
  • Further reference signal states can be provided, for example, in order to infer a storage defect in the supply stock or the withdrawal stock of the textile, to detect an imbalance in the drive train, to identify a defective or improperly working fan of the drive or to identify defects in the electronics area to characterize.
  • Loose godets which are fixed as rotating bodies on the shafts of the drives, or winding defects can also be identified via corresponding reference signal states.
  • the operating signals determined by the detection means are compared directly or in processed form by the evaluation unit with the stored reference signal states.
  • a mechanical or optical thread sensor is not necessary in this case, for example, in order to identify a tear in the textile.
  • certain actions can be initiated or carried out for the active network. For example, in the event of a bearing defect, the entire functional network with all drives can be shut down until the necessary maintenance work has been completed. Likewise, it can be provided that all drives of the active composite are switched off in the event of a tear in the textile.
  • the controller can be designed to determine a first motor torque signal for a first drive and a second motor torque signal for an adjacent second drive of the same operative network.
  • the control designed to determine a difference between the engine torque signals.
  • a processing parameter for the textile in particular a thread tension, is then determined on the basis of the difference.
  • a thread tension it is possible to infer the correct course of the production process and, in any case, indirectly implement quality control for the textile.
  • the control of the drive arrangement is designed in several stages. It comprises a higher-level machine control unit and a plurality of control modules which operate the various drives of the active network.
  • the machine control unit and the control modules are connected to one another in terms of data technology via a data bus line.
  • the detection means for determining the engine torque signal and / or the evaluation unit and / or the reference data memory and / or the computing means are part of the control.
  • the drive arrangement according to the invention according to Fig. 1 comprises a supply store 1 for a textile 3 to be processed by the textile machine, which is exemplarily designed in the manner of a thread, as well as a removal reservoir 2, in which the textile 3 is received after processing. Between the supply store 1 and the removal store 2, three drives 4, 5, 6 are provided, which are joined together in an active composite and act jointly on the textile 3. To control the drives 4, 5, 6, a control (not shown) is provided. The control comprises, for example, a higher-level machine control unit and three control modules assigned to the drives 4, 5, 6, which are connected to the machine control unit for data purposes via a data bus line.
  • the withdrawal store 2 provides, for example, a spindle or spool for receiving the textile 3 and a further drive for rotating the spindle or spool receiving the textile 3.
  • the supply supply 1 also includes, for example, a spindle or bobbin for the textile 3.
  • it is of passive design, that is to say it dispenses with a drive.
  • the textile 3 is removed from the supply reservoir 1 by actuating the drives 4, 5, 6 that are combined in the functional composite.
  • first drive 4 of the knitted composite is first fed to a first drive 4 of the knitted composite, then to a second drive 5 of the knitted composite and finally to a third drive 6 of the knitted composite.
  • the drives 4, 5, 6 are arranged in rows, the third drive 6 being provided in front of the second drive 5 and the second drive 5 being provided in front of the first drive 4 when viewed in a thread transport direction 7.
  • the first drive 4 is part of a first drive train of the drive arrangement. Further drives of this first drive train are actuated together with the first drive 4 by the control module assigned to the first drive 4.
  • the second drive 5 and the third drive 6 are each part of a second and a third drive train.
  • the second drive train with the second drive 5 and further drives is operated by a second control module and the third drive train with the third drive 6 and further drives by a third control module.
  • the control modules of the drive trains are preferably data-connected to the higher-level machine control unit via a data bus line.
  • a motor torque signal for the first drive 4, the second drive 5 and the third drive 6 are determined via suitable detection means.
  • the motor current signal in particular, is recorded by sensors, whereas the other operating parameters are determined or calculated on the basis of a model (sensorless drive). It is then particularly the case that the engine torque signal is determined on the basis of a model from the operating parameters of the drive arrangement.
  • the motor torque signal and the motor current signal can be detected by sensors.
  • sensors for example a rotation angle sensor, a speed sensor or a torque sensor, can be provided for this purpose.
  • the sensors are preferably designed as part of the drives 4, 5, 6 or implemented functionally and / or spatially integrated in them. It can also be provided that, for the model-based determination of the motor torque, the motor current on the one hand and the angle of rotation and / or the speed on the other hand are detected by sensors. Accordingly, sensors for detecting the motor current and rotation angle sensors and / or speed sensors are provided.
  • the operating signals (engine torque signal) of the drives 4, 5, 6 determined by the detection means are fed to an evaluation unit of the drive arrangement.
  • the evaluation unit determines a system state of the drive arrangement in that the operating signals are compared with at least one reference signal state of the drive arrangement, which is stored in a reference data memory.
  • a plurality of reference signal states are stored in the reference data memory, which, for example, characterize a bearing defect for one of the drives 4, 5, 6 or a bearing defect for the supply stock 1 or the withdrawal stock 2.
  • further reference signal states can be provided in order to characterize the state of the drive arrangement.
  • reference signal states can be stored in the reference data memory, from which a defective fan, an imbalance in the drive train or defective electronics (controller, Frequency converter) of the drives can be closed.
  • the Assessment of the system status of the drive arrangement by means of machine learning.
  • corresponding operating signals for adjacent drives are determined and a thread tension is deduced from a difference in the operating signals of the adjacent drives 4, 5, 6.
  • further reference signal states are stored which characterize the state or the current processing of the textile 3.
  • reference signal states are stored in the reference data memory, which allow conclusions to be drawn about local thickening or damage to the textile 3.
  • a local thickening can be caused, for example, by a lump.
  • the Figs. 2 to 4 the time course of engine torque signals, which are determined by the detection means of the drive arrangement.
  • the engine torque M is plotted against time t in each case.
  • a first example of the engine torque signal after Fig. 2 shows a periodically recurring motor torque signal, which is indicative of a bearing defect A of the associated drive 4, 5, 6, for example.
  • a torque characteristic is disclosed in a further motor torque signal over time, which shows a knot B in the textile 3 when interacting with a drive 4, 5, 6.
  • the system state in relation to the processed textile 3 is identified by comparing the motor torque signal with the stored reference signal states. If, for example, the textile 3 has a knot unexpectedly, the production process can be stopped or interrupted at short notice. If, for example, a textile with a locally different thickness structure is processed, the periodic signal can be used to monitor a planned or smooth production process.
  • a combination of the system states according to the Figs. 2 and 3 is after in the engine torque signal Fig. 4 shown. This is where a defective engine mount A and a knot B in the textile meet.
  • the two events are recognized by a pattern comparison carried out in particular in the evaluation unit, and provision can in particular be made to stop the textile machine to correct the bearing defect or to carry out corrections on the textile 3.
  • post-processing of the signal, filtering or extraction of characteristic dynamic variables can take place.
  • the engine torque signal is transformed from the time domain into the frequency domain or postprocessed in some other way.
  • the evaluation unit, the detection means or the control have the necessary computing means for this.
  • a Fourier analysis, a wavelet transformation, a waterfall diagram or empirical mode decomposition can be used to process the motor torque signal.
  • the same components and component functions are identified by the same reference symbols.

Description

  • Die Erfindung betrifft eine Antriebsanordnung für eine Textilmaschine nach dem Oberbegriff des Patentanspruchs 1.
  • Heute üblicherweise verwendete Textilmaschinen sehen eine Antriebsanordnung mit einer Vielzahl von Antrieben vor, welche in beispielsweise drei Antriebssträngen angeordnet sind und antriebsstrangübergreifend eine Mehrzahl von Textilen gleichzeitig bearbeiten. Typisch ist, dass je Antriebsstrang acht oder zehn oder zwölf Antriebe vorgesehen werden, wobei ein erstes Textil von jeweils ersten Antrieben der verschiedenen Antriebsstränge bearbeitet wird, ein zweites Textil von jeweils zweiten Antrieben der Antriebsstränge und so weiter. Insgesamt können so acht oder zehn oder zwölf Textile gleichzeitig bearbeitet werden.
  • Jeweils bilden die auf ein Textil gemeinsam einwirkenden Antriebe antriebsstrangübergreifend einen Wirkverbund. Zum koordinierten Betreiben der Antriebe des Wirkverbunds und zur Sicherstellung eines reibungslosen Zusammenwirkens dieser Antriebe ist eine antriebsstrang- und wirkverbundübergreifend Steuerung vorgesehen. Zusätzlich werden über einen beispielsweise mechanischen oder optischen Sensor der Zustand des Textils überwacht und/oder die Verarbeitungs- beziehungsweise Betriebsparameter der Textilmaschine kontrolliert.
  • Aus der DE 198 40 408 A1 ist ein Verfahren zur Messung einer Zugkraft eines Fadens in Texturiermaschinen bekannt. Die Fadenzugkraft wird dabei durch eine Differenzmessung im Leerlauf und unter Last bestimmt.
  • Aus der WO 2015/059142 A1 ist ein Verfahren für die Inbetriebnahme von Galettenantrieben einer Texturiermaschine nach einem Maschinenstillstand bekannt, bei dem die Antriebe manuell durch einen Nutzer angedreht werden.
  • Aus der WO 2015/028309 A1 ist ein Verfahren bekannt, mit dem ein Fadenwickel in einer Texturiermaschine erkannt werden kann.
  • Die DE 10 2014 014 729 A1 beschreibt eine Texturiermaschine, bei der eine Gruppe von acht Elektroantrieben ein Steuermodul und getrennt hiervon ein Energieversorgungsmodul aufweist.
  • Spinnvorrichtungen und Verfahren zum Betrieb von Spinnmaschinen sind darüber hinaus aus der EP 1 609 893 A2 , der EP 2 759 623 A1 und der DE 10 2010 009 164 A1 bekannt.
  • Aufgabe der vorliegenden Erfindung ist es, eine hinsichtlich der Kosten optimierte Antriebsanordnung für eine Textilmaschine anzugeben.
  • Zur Lösung der Aufgabe weist die Erfindung die Merkmale des Patentanspruchs 1 auf.
  • Der besondere Vorteil der Erfindung besteht darin, dass ein Systemzustand der Antriebsanordnung ohne das Vorsehen eines Fadensensors überwacht werden kann. Es können insofern die Kosten für den Fadensensor eingespart werden und die Ausgestaltung der Antriebsanordnung vereinfacht werden.
  • Statt einen Fadenspannungssensor zu verwenden, wird aus dem Betriebssignalen (Motordrehmomentsignal) wenigstens für einen der Antriebe und bevorzugt für alle Antriebe der Ist-Zustand der Antriebsanordnung ermittelt. Im Weiteren wird durch einen Vergleich des Motordrehmomentsignals mit einem Referenzsignalzustand ein momentaner Systemzustand (Ist-Zustand) der Antriebsanordnung erfasst. Für den Vergleich ist eine Auswerteeinheit vorgesehen, der zum einen das Motordrehmomentsignal zugeführt wird und die zum anderen mit einem Referenzdatenspeicher zusammenwirkt beziehungsweise diesen aufweist. In dem Referenzdatenspeicher ist der mindestens eine Referenzsignalzustand der Antriebsanordnung hinterlegt. Die Auswerteeinheit umfasst insofern insbesondere geeignet ausgebildete Rechenmittel.
  • Insbesondere kann vorgesehen sein, dass die Erfassungsmittel beziehungsweise die Auswerteeinheit beziehungsweise die Steuerung ausgebildet ist zum Nachbearbeiten des Motordrehmomentsignals.
  • Es kann beispielsweise vorgesehen sein, dass auf dynamische, zeitveränderliche Komponenten der Signale abgestellt wird. Beispielsweise können aus dem Motordrehmomentsignal die Amplituden extrahiert werden oder es wird eine Transformation des Signals aus dem Zeitbereich in den Frequenzbereich durchgeführt. Die Steuerung beziehungsweise die Erfassungsmittel oder die Auswerteeinheit sieht hierzu entsprechende Rechenmittel vor. Zur Transformation des Signals aus dem Zeitbereich in den Frequenzbereich werden insbesondere die Fourier-Transformation, die Wavelet-Transformation beziehungsweise die Hilbert-Huang-Transformation mit der Empirical Mode Decomposition als Hauptbestandteil verwendet. Im Rahmen der Fourier-Transformation kann insbesondere die Kurzzeit-Fourier-Transformation, die Gabor-Transformation, die schnelle Fourier-Transformation beziehungsweise die diskrete Fourier-Transformation in der Ausbildung als diskrete Kosinus-Transformation oder als diskrete Sinus-Transformation zur Anwendung kommen. Bei der Wavelet-Transformation werden insbesondere die diskrete Wavelet-Transformation, die schnelle Wavelet-Transformation, die Wavelet-Paket-Transformation beziehungsweise die stationäre Wavelet-Transformation verwendet. Ebenso können diskrete, statische Kenngrößen der Signale verwendet und auf eine Transformation der Signale in dem Frequenzbereich verzichtet werden. Als Kenngrößen kommen insbesondere Zufallsvariable wie der Erwartungswert, die absolute Abweichung, die Varianz, die Schiefe, der Exzess beziehungsweise die Kovarianz zur Anwendung. Ebenso können die Signale korreliert, insbesondere Kreuz-Korreliert beziehungsweise Auto-Korreliert werden. Schließlich ist eine Kombination der transformierten Signale und der statischen Kenngrößen darstellbar. Die gemeinsame Intention ist insbesondere, im Rahmen der Mustererkennung das tatsächliche Messsignal mit dem Referenzsignalzustand zu vergleichen. Dies erfolgt insbesondere anhand spezifischer Merkmale, welche aus dem Signal erzeugt und in einem Merkmalswerkzeug zusammengefasst werden, auf Basis einer Aussage über die Ähnlichkeit der in Rede stehenden Signale.
  • Es ist weiter vorgesehen, dass in dem Referenzdatenspeicher eine Mehrzahl von Referenzsignalzuständen abgelegt ist. Es sind in dem Referenzdatenspeicher ein erster Referenzsignalzustand, welcher einen Lagerdefekt des zugeordneten Antriebs charakterisiert, ein zweiter Referenzsignalzustand, welcher eine beispielsweise auf einen Knoten im Textil zurückgehende lokale Verdickung des Textils charakterisiert, und ein dritter Referenzsignalzustand hinterlegt, welcher einen Riss in dem Textil charakterisiert. Weitere Referenzsignalzustände können beispielsweise vorgesehen sein, um auf einen Lagerdefekt in dem Bereitstellungsvorrat oder dem Entnahmevorrat des Textils zu schließen, um eine Unwucht an dem Antriebsstrang zu erkennen, um einen defekten beziehungsweise nicht ordnungsgemäß arbeiteten Lüfter des Antriebs zu identifizieren oder um Defekte am Bereich der Elektronik zu charakterisieren. Ebenso können lose Galetten, welche als Rotationskörper an den Wellen der Antriebe festgelegt sind, oder Wicklungsdefekte über entsprechende Referenzsignalzustände identifiziert werden. Jeweils werden hierzu die über die Erfassungsmittel bestimmten Betriebssignale unmittelbar oder in aufbereiteter Form von der Auswerteeinheit mit den abgespeicherten Referenzsignalzuständen verglichen. Ein mechanischer beziehungsweise optischer Fadensensor ist in diesem Fall beispielsweise nicht notwendig, um einen Riss in dem Textil zu identifizieren. Jeweils können für den Wirkverbund abhängig von dem ermittelten Systemzustand der Antriebsanordnung bestimmte Aktionen eingeleitet oder ausgeführt werden. Beispielsweise kann bei einem Lagerdefekt der gesamte Wirkverbund mit allen Antrieben stillgesetzt werden, bis die notwendigen Instandhaltungsarbeiten abgeschlossen sind. Ebenso kann vorgesehen sein, dass alle Antriebe des Wirkverbunds bei einem Riss des Textils abgeschaltet werden.
  • Nach einer Weiterbildung der Erfindung kann die Steuerung ausgebildet sein zum Ermitteln eines ersten Motordrehmomentsignals für einen ersten Antrieb und eines zweiten Motordrehmomentsignals für einen benachbarten zweiten Antrieb des gleichen Wirkverbunds. Weiter ist die Steuerung ausgebildet zum Ermitteln einer Differenz der Motordrehmomentsignale.
  • Anhand der Differenz wird dann ein Verarbeitungsparameter für das Textil, insbesondere eine Fadenspannung ermittelt. Vorteilhaft kann aufgrund der Fadenspannung auf den ordnungsgemäßen Verlauf des Produktionsprozesses geschlossen und eine Qualitätskontrolle für das Textil jedenfalls mittelbar realisiert werden.
  • Die Steuerung der Antriebsanordnung ist nach einer Weiterbildung der Erfindung mehrstufig ausgebildet. Sie umfasst eine übergeordnete Maschinensteuereinheit sowie eine Mehrzahl von Steuermodulen, welche die verschiedenen Antriebe des Wirkverbunds betreiben. Die Maschinensteuereinheit und die Steuermodule sind über eine Datenbusleitung datentechnisch miteinander verbunden. Beispielsweise sind die Erfassungsmittel zum Bestimmen des Motordrehmomentsignals und/oder die Auswerteeinheit und/oder der Referenzdatenspeicher und/oder die Rechenmittel Teil der Steuerung.
  • Aus den weiteren Unteransprüchen und der nachfolgenden Beschreibung sind weitere Vorteile, Merkmale und Einzelheiten der Erfindung zu entnehmen. Dort erwähnte Merkmale können jeweils einzeln für sich oder auch in beliebiger Kombination erfindungswesentlich sein. Die Zeichnungen dienen lediglich beispielhaft der Klarstellung der Erfindung und haben keinen einschränkenden Charakter.
  • Es zeigen:
  • Fig. 1
    eine Prinzipdarstellung einer erfindungsgemäßen Antriebsanordnung für eine Textilmaschine,
    Fig. 2
    einen ersten Zeitverlauf eines Motordrehmomentsignals,
    Fig. 3
    einen zweiten Zeitverlauf des Motordrehmomentsignals und
    Fig. 4
    einen dritten Zeitverlauf des Motordrehmomentsignals.
  • Die erfindungsgemäße Antriebsanordnung nach Fig. 1 umfasst einen Bereitstellungsvorrat 1 für ein von der Textilmaschine zu bearbeitetes Textil 3, welche exemplarisch nach Art eines Fadens ausgebildet ist, sowie einen Entnahmevorrat 2, in dem das Textil 3 nach der Bearbeitung aufgenommen wird. Zwischen dem Bereitstellungsvorrat 1 und dem Entnahmevorrat 2 sind drei Antriebe 4, 5, 6 vorgesehen, welche in einem Wirkverbund zusammengeschlossen sind und gemeinsam auf das Textil 3 einwirken. Zur Ansteuerung der Antriebe 4, 5, 6 ist eine nicht dargestellte Steuerung vorgesehen. Die Steuerung umfasst beispielsweise eine übergeordnete Maschinensteuereinheit und drei den Antrieben 4, 5, 6 zugeordnete Steuermodule, die über eine Datenbusleitung mit der Maschinensteuereinheit datentechnisch verbunden sind. Der Entnahmevorrat 2 sieht beispielsweise eine Spindel oder Spule zur Aufnahme des Textils 3 sowie einen weiteren Antrieb vor zum Rotieren der das Textil 3 aufnehmenden Spindel beziehungsweise Spule. Der Bereitstellungsvorrat 1 umfasst exemplarisch ebenfalls eine Spindel beziehungsweise Spule für das Textil 3. Er ist nach dem vorliegenden Ausführungsbeispiel der Erfindung jedoch passiv ausgebildet, das heißt er verzichtet auf einen Antrieb. Das Textil 3 wird durch eine Betätigung der in dem Wirkverbund zusammengeschlossenen Antriebe 4, 5, 6 aus dem Bereitstellungsvorrat 1 entnommen.
  • Bei der Bearbeitung des Textils 3 wird eben dieses zunächst einem ersten Antrieb 4 des Wirkverbunds, dann einem zweiten Antrieb 5 des Wirkverbunds und schließlich einem dritten Antrieb 6 des Wirkverbunds zugeführt. Die Antriebe 4, 5, 6 sind dabei reihenartig angeordnet, wobei in eine Fadentransportrichtung 7 betrachtet der dritte Antrieb 6 vor dem zweiten Antrieb 5 und der zweite Antrieb 5 vor dem ersten Antrieb 4 vorgesehen sind.
  • Der erste Antrieb 4 ist dabei Teil eines ersten Antriebsstrangs der Antriebsanordnung. Weitere Antriebe dieses ersten Antriebsstrangs werden gemeinsam mit dem ersten Antrieb 4 durch das dem ersten Antrieb 4 zugeordnete Steuermodul betätigt. In analoger Weise sind der zweite Antrieb 5 und der dritte Antrieb 6 jeweils Teil eines zweiten und eines dritten Antriebsstrangs. Der zweite Antriebsstrang mit dem zweiten Antrieb 5 sowie weiteren Antrieben wird von einem zweiten Steuermodul und der dritte Antriebsstrang mit dem dritten Antrieb 6 sowie weiteren Antrieben von einem dritten Steuermodul betrieben. Die Steuermodule der Antriebsstränge sind bevorzugt über eine Datenbusleitung mit der übergeordneten Maschinensteuereinheit datentechnisch gekoppelt.
  • Während des Betriebs werden ein Motordrehmomentsignal für den ersten Antrieb 4, dem zweiten Antrieb 5 und dem dritten Antrieb 6 über geeignete Erfassungsmittel bestimmt. Beispielsweise wird insbesondere das Motorstromsignal sensorisch erfasst, wohingegen die anderen Betriebsparameter modellbasiert bestimmt beziehungsweise berechnet werden (sensorloser Antrieb). Es ist dann insbesondere so, dass das Motordrehmomentsignal modellbasiert aus dem Betriebsparametern der Antriebsanordnung bestimmt wird.
  • Nach einer alternativen, nicht dargestellten Ausführungsform der Erfindung können das Motordrehmomentsignal und das Motorstromsignal sensorisch erfasst werden. Es können hierzu geeignete Sensoren, beispielsweise ein Drehwinkelsensor, ein Drehzahlsensor beziehungsweise ein Drehmomentsensor vorgesehen werden. Die Sensoren sind bevorzugt als Teil der Antriebe 4, 5, 6 ausgeführt beziehungsweise funktional und/oder räumlich in diesen integriert realisiert. Ebenso kann vorgesehen sein, dass zur modellgestützten Bestimmung des Motordrehmoments der Motorstrom einerseits und der Drehwinkel und/oder die Drehzahl andererseits sensorisch erfasst werden. Demzufolge sind Sensoren zur Erfassung des Motorstroms und Drehwinkelsensoren und/oder Drehzahlsensoren vorgesehen.
  • Die über die Erfassungsmittel bestimmten Betriebssignale (Motordrehmomentsignal) der Antriebe 4, 5, 6 werden einer Auswerteeinheit der Antriebsanordnung zugeführt. Beispielsweise bestimmt die Auswerteeinheit einen Systemzustand der Antriebsanordnung, indem die Betriebssignale mit wenigstens einem Referenzsignalzustand der Antriebsanordnung verglichen werden, welcher in einem Referenzdatenspeicher abgelegt ist. Es wird in dem Referenzdatenspeicher eine Mehrzahl von Referenzsignalzuständen hinterlegt, welche beispielsweise einen Lagerdefekt für einen der Antriebe 4, 5, 6 beziehungsweise einen Lagerdefekt für den Bereitstellungsvorrat 1 oder den Entnahmevorrat 2 charakterisieren. In analoger Weise können weitere Referenzsignalzuständen vorgesehen sein, um den Zustand der Antriebsanordnung zu charakterisieren. Insbesondere können Referenzsignalzustände in dem Referenzdatenspeicher hinterlegt sein, aus denen auf einen defekten Lüfter, eine Unwucht im Antriebsstrang oder eine defekte Elektronik (Kontroller, Frequenzumrichter) der Antriebe geschlossen werden kann. Beispielsweise erfolgt die Beurteilung des Systemzustands der Antriebsanordnung über Mittel des maschinellen Lernens.
  • Ebenfalls kann vorgesehen sein, dass korrespondierende Betriebssignale für benachbarte Antriebe bestimmt werden und aus einer Differenz der Betriebssignale der benachbarten Antriebe 4, 5, 6 auf eine Fadenspannung geschlossen wird. Es kann insofern vorgesehen sein, dass zusätzlich zu den Referenzsignalzuständen, welche auf die physikalischen Komponenten der Antriebsanordnung abstellen, weitere Referenzsignalzustände hinterlegt sind, welche den Zustand beziehungsweise die aktuelle Verarbeitung des Textils 3 charakterisieren. Insofern werden Referenzsignalzustände in dem Referenzdatenspeicher hinterlegt, welche auf eine lokale Verdickung oder Schädigung des Textils 3 schließen lassen. Eine lokale Verdickung kann beispielsweise durch einen Knoten hervorgerufen sein.
  • Exemplarisch zeigen die Fig. 2 bis 4 den zeitlichen Verlauf von Motordrehmomentsignalen, welche über die Erfassungsmittel der Antriebsanordnung bestimmt sind. Jeweils ist aufgetragen das Motordrehmoment M über der Zeit t.
  • Ein erstes Beispiel für das Motordrehmomentsignal nach Fig. 2 zeigt ein periodisch wiederkehrendes Motordrehmomentsignal, welches beispielsweise kennzeichnend ist für einen Lagerdefekt A des zugeordneten Antriebs 4, 5, 6. Das Motordrehmomentsignal wird nunmehr aufbereitet und durch Vergleich der Werte mit dem in den Referenzdatenspeicher abgelegten Referenzsignalzuständen auf dem Systemzustand der Antriebsanordnung geschlossen.
  • Nach Fig. 3 wird in einem weiteren Motordrehmomentsignal im zeitlichen Verlauf eine Drehmomentcharakteristik offenbart, welche einen Knoten B im Textil 3 beim Zusammenwirken mit einem Antrieb 4, 5, 6 zeigt. Auch hier ist durch den Vergleich des Motordrehmomentsignals mit den gespeicherten Referenzsignalzuständen der Systemzustand in Bezug auf das verarbeitete Textil 3 identifiziert. Weißt das Textil 3 beispielsweise außerplanmäßig einen Knoten auf, kann der Produktionsprozess kurzfristig gestoppt beziehungsweise unterbrochen werden. Wird beispielsweise ein Textil mit lokal unterschiedlicher Dickenstruktur verarbeitet, kann durch das periodische Signal ein planmäßiger beziehungsweise reibungsloser Produktionsverlauf überwacht werden.
  • Eine Kombination der Systemzustände nach den Fig. 2 und 3 ist in dem Motordrehmomentsignal nach Fig. 4 dargestellt. Hier treffen ein defektes Motorlager A und ein Knoten B im Textil zusammen. Die beiden Ereignisse werden durch einen insbesondere in der Auswerteeinheit durchgeführten Mustervergleich erkannt und es kann insbesondere vorgesehen werden, die Textilmaschine zur Behebung des Lagerdefekts oder zur Durchführung von Korrektoren am Textil 3 zu stoppen.
  • Lediglich exemplarisch zeigen die Fig. 2 bis 4 die Motordrehmomentsignale in zeitlichen Verlauf. Zu Auswertezwecken kann insbesondere eine Nachbearbeitung des Signals, eine Filterung beziehungsweise eine Extraktion charakteristisch dynamischer Größen erfolgen. Es kann insbesondere vorgesehen sein, dass Motordrehmomentsignal aus dem Zeitbereich in den Frequenzbereich zu transformieren oder anderweitig nachzubearbeiten. Die Auswerteeinheit, die Erfassungsmittel oder die Steuerung weisen hierzu die notwendigen Rechenmittel auf. Zur Verarbeitung des Motordrehmomentsignals können insbesondere eine Fourieranalyse, eine Wavelettransformation, ein Wasserfalldiagramm oder die Empirical Mode Decomposition zur Anwendung kommen. Gleiche Bauteile und Bauteilfunktionen sind durch gleiche Bezugszeichen gekennzeichnet.

Claims (7)

  1. Antriebsanordnung für eine Textilmaschine umfassend einen Bereitstellungsvorrat (1) für ein Textil (3), einen Entnahmevorrat (2) für das Textil (3), eine Mehrzahl von in einem Wirkverbund zusammengefassten Antrieben (4, 5, 6), welche zwischen dem Bereitstellungsvorrat (1) und dem Entnahmevorrat (2) angeordnet sind, und mit einer Steuerung, welche ausgebildet ist zum Ansteuern der Antriebe (4, 5, 6), wobei die Steuerung mit den Antrieben (4, 5, 6) derart zusammenwirkt, dass die Antriebe des Wirkverbunds gemeinsam auf das Textil (3) einwirken, wobei Erfassungsmittel vorgesehen sind zum Bestimmen eines Motordrehmomentsignals für wenigstens einen der Antriebe (4, 5, 6), wobei das Motordrehmomentsignal einer Auswerteeinheit zuführbar ist und wobei die Auswerteeinheit derart ausgebildet ist, dass auf Basis des Motordrehmomentsignals ein Systemzustand der Antriebsanordnung durch Vergleich des Motordrehmomentsignals mit mindestens einem in einem Referenzdatenspeicher abgelegten Referenzsignalzustand der Antriebsanordnung identifiziert wird und/oder dass der Systemzustand der Antriebsanordnung mit Mitteln des maschinellen Lernens aus dem Motordrehmomentsignal bestimmt wird, dadurch gekennzeichnet, dass in dem Referenzdatenspeicher eine Mehrzahl von Referenzsignalzuständen abgelegt ist wenigstens umfassend einen ersten Referenzsignalzustand, welcher einen Lagerdefekt für einen der Antriebe (4, 5, 6) und/oder für den Bereitstellungvorrat (1) und/oder für den Entnahmevorrat (2) charakterisiert, einen zweiten Referenzsignalzustand, welcher eine lokale Verdickung des Textils (3) charakterisiert, und einen dritten Referenzsignalzustand, welcher einen Riss des Textils (3) charakterisiert, wobei die Steuerung und/oder die Erfassungsmittel und/oder die Auswerteeinheit ausgebildet sind zum Erkennen von Merkmalen aus dem Motordrehmomentsignal einerseits und dem Referenzsignalzustand andererseits und zum Vergleichen dieser Merkmale in Bezug auf ihre Ähnlichkeit.
  2. Antriebsanordnung nach Anspruch 1, dadurch gekennzeichnet, dass die Erfassungsmittel ausgebildet sind zum sensorlosen Bestimmen des Motordrehmomentsignals.
  3. Antriebsanordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Erfassungsmittel zum Bestimmen des Motordrehmomentsignals und/oder die Auswerteeinheit und/oder der Referenzdatenspeicher als Teil der Steuerung ausgebildet sind.
  4. Antriebsanordnung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Steuerung und/oder die Auswerteeinheit Rechenmittel vorsieht und derart ausgebildet ist, dass das Motordrehmomentsignal aus dem Zeitbereich in den Frequenzbereich transformiert wird.
  5. Antriebsanordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Steuerung mehrstufig ausgebildet ist und eine übergeordnete Maschinensteuereinheit sowie eine Mehrzahl von Steuermodulen vorsieht, wobei die Steuermodule über eine Datenbusleitung mit der Maschinensteuereinheit verbunden sind und wobei jeder Antrieb (4, 5, 6) des Wirkverbunds mit anderen Steuermodulen zusammenwirkt.
  6. Antriebsanordnung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Steuerung und/oder die Erfassungsmittel und/oder die Auswerteeinheit ausgebildet sind zum Bestimmen eines ersten Motordrehmomentsignals für einen ersten Antrieb (4) in dem Wirkverbund und eines zweiten Motordrehmomentsignals für ein benachbarten, zweiten Antrieb (5) in dem Wirkverbund und einer Differenz der Motordrehmomentsignale, und dass die Steuerung derart ausgebildet ist, dass aus der Differenz ein Verarbeitungsparameter für das Textil, bevorzugt eine Fadenspannung ermittelt wird.
  7. Antriebsanordnung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Steuerung und/oder die Erfassungsmittel und/oder die Auswerteeinheit ausgebildet ist zum Extrahieren einer Mehrzahl von Merkmalen aus dem Motordrehmomentsignal einerseits und aus dem Referenzsignalzustand andererseits und zum Zusammenfassen der Merkmale des Motordrehmomentsignals einerseits in einem ersten Merkmalsvektor und des Referenzsignalzustands andererseits in einem zweiten Merkmalsvektor und zum Vergleichen des ersten Merkmalsvektors mit dem zweiten Merkmalsvektor.
EP16190847.0A 2015-10-05 2016-09-27 Antriebsanordnung für eine textilmaschine Active EP3153609B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15188417 2015-10-05

Publications (2)

Publication Number Publication Date
EP3153609A1 EP3153609A1 (de) 2017-04-12
EP3153609B1 true EP3153609B1 (de) 2021-11-10

Family

ID=54288648

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16190847.0A Active EP3153609B1 (de) 2015-10-05 2016-09-27 Antriebsanordnung für eine textilmaschine

Country Status (1)

Country Link
EP (1) EP3153609B1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190367319A1 (en) * 2018-05-29 2019-12-05 Maschinenfabrik Rieter Ag Method for Determining Operating Conditions of a Textile Machine, and a Textile Machine

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH714082A1 (de) * 2017-08-25 2019-02-28 Rieter Ag Maschf Verfahren zum Betreiben einer Ringspinnmaschine und Ringspinnmaschine.
JP7390207B2 (ja) * 2020-02-20 2023-12-01 Tmtマシナリー株式会社 繊維機械及び糸張力把握方法
CN113291927A (zh) * 2021-05-25 2021-08-24 湖州师范学院 单纱整理集成设备的控制方法、设备、产品及存储介质
CN113373560B (zh) * 2021-05-25 2022-12-06 湖州师范学院 单纱整理集成设备的电机控制方法、设备、产品及介质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19840408A1 (de) * 1997-09-12 1999-03-18 Barmag Barmer Maschf Verfahren zum Messen einer Fadenzugkraft
JP2006002300A (ja) * 2004-06-18 2006-01-05 Toyota Industries Corp 紡機におけるドラフト装置の異常検出装置
DE102010009164B4 (de) * 2010-02-24 2020-07-02 Hanning Elektro-Werke Gmbh & Co. Kg Verfahren und Vorrichtung zum Steuern einer Textilmaschine oder eines angetriebenen Teils einer Textilmaschine
JP2013067916A (ja) * 2011-09-22 2013-04-18 Murata Mach Ltd 紡績機、巻取装置、及び繊維機械
WO2015028309A1 (de) * 2013-08-31 2015-03-05 Oerlikon Textile Gmbh & Co. Kg Verfahren zum erkennen eines fadenwickels und vorrichtung zum führen eines fadens
JP6366724B2 (ja) * 2013-10-26 2018-08-01 エーリコン テクスティル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトOerlikon Textile GmbH & Co. KG ゴデット、及び、ゴデットを制御する方法
DE102014014729A1 (de) * 2013-11-15 2015-05-21 Oerlikon Textile Gmbh & Co. Kg Texturiermaschine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190367319A1 (en) * 2018-05-29 2019-12-05 Maschinenfabrik Rieter Ag Method for Determining Operating Conditions of a Textile Machine, and a Textile Machine
US11673761B2 (en) * 2018-05-29 2023-06-13 Maschinenfabrik Rieter Ag Method for determining operating conditions of a textile machine, and a textile machine

Also Published As

Publication number Publication date
EP3153609A1 (de) 2017-04-12

Similar Documents

Publication Publication Date Title
EP3153609B1 (de) Antriebsanordnung für eine textilmaschine
EP2937560B1 (de) Windenergieanlagen-diagnosevorrichtung für generatorkomponenten
EP1525344B1 (de) Verfahren und vorrichtung zum liefern von fäden
DE102011053145A1 (de) Fehlerdiagnoseverfahren für Rollenförderer, Rollenförderer und Steuerung für Förderer
CH629456A5 (de) Elektronische einrichtung zur ueberwachung einer mehrzahl laufender faeden an einer textilmaschine.
DE2140067B2 (de) Verfahren zur produktionsverbesserung bei spinnmaschinen
DE19907684B4 (de) Textilmaschine mit Prozessoren an den Arbeitsstellen
EP2966201A2 (de) Semiautomatische offenend-rotorspinnmaschine
EP3760772A1 (de) Optimierung des betriebes einer spinnmaschine
DE10144459A1 (de) Überwachung von Werkzeugmaschinen-Komponenten mit einem Überwachungssystem
EP3672895A1 (de) Verfahren und vorrichtung zum texturieren eines synthetischen fadens
WO2016026734A1 (de) Verfahren zum aufwickeln mehrerer fäden und aufspulmaschine
EP0574693A2 (de) Verfahren und Vorrichtung zur Signalanalyse einer Regulierstrecke
EP3060506B1 (de) Galette und verfahren zur steuerung einer galette
EP1743770B1 (de) Druckmaschine und Verfahren zum Betreiben einer Druckmaschine
EP2565306B1 (de) Offenend-Rotorspinnmaschine
WO2019038631A1 (de) Verfahren zum betreiben einer ringspinnmaschine und ringspinnmaschine
EP3673102A1 (de) Verfahren zum betreiben einer ringspinnmaschine und ringspinnmaschine
EP3720996A1 (de) Verfahren zum betreiben einer spulmaschine zum umspulen von kopsen einer vorangehenden ringspinnmaschine
DE102010009941A1 (de) Verfahren zum Überwachen von Windturbinen
DE4404243B4 (de) Verfahren und Einrichtung zum Betreiben einer Offenend-Rotorspinneinheit mit einzelmotorischem elektrischem Antrieb des Spinnrotors
DE3510521A1 (de) Verfahren zum einstellen der betriebsparameter einer spinnmaschine
EP3305952B1 (de) Verfahren zum betreiben einer offenend-rotorspinneinrichtung und offenend-rotorspinneinrichtung
EP3561162A1 (de) Arbeitsstelle einer spinn- oder spulmaschine sowie verfahren zum betreiben einer arbeitsstelle für eine spinn- oder spulmaschine
DE2519221C2 (de) Verfahren und Vorrichtung zum Fühlen von Fadenbrüchen an Spinn- oder Zwirnmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170821

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHMIDT, UWE

Inventor name: NEUMANN, RICHARD

Inventor name: DE LA HAYE, RALF

Inventor name: STROEWER, JUERGEN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OERLIKON TEXTILE GMBH & CO. KG

17Q First examination report despatched

Effective date: 20201028

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HANNING ELEKTRO-WERKE GMBH & CO. KG

Owner name: OERLIKON TEXTILE GMBH & CO. KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210609

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1446175

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211115

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016014115

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220310

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220310

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220210

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220211

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016014115

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502016014115

Country of ref document: DE

Representative=s name: KEENWAY PATENTANWAELTE NEUMANN HEINE TARUTTIS , DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502016014115

Country of ref document: DE

Owner name: OERLIKON TEXTILE GMBH & CO. KG, DE

Free format text: FORMER OWNERS: HANNING ELEKTRO-WERKE GMBH & CO. KG, 33813 OERLINGHAUSEN, DE; OERLIKON TEXTILE GMBH & CO. KG, 42897 REMSCHEID, DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220927

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220927

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220927

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230925

Year of fee payment: 8

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1446175

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220927

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230920

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220927

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230927

Year of fee payment: 8

Ref country code: CH

Payment date: 20231001

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160927