EP3134220B1 - Procédé et dispositif de coulée continue de brames minces - Google Patents

Procédé et dispositif de coulée continue de brames minces Download PDF

Info

Publication number
EP3134220B1
EP3134220B1 EP15716054.0A EP15716054A EP3134220B1 EP 3134220 B1 EP3134220 B1 EP 3134220B1 EP 15716054 A EP15716054 A EP 15716054A EP 3134220 B1 EP3134220 B1 EP 3134220B1
Authority
EP
European Patent Office
Prior art keywords
strand
thin
mold
electromagnetic
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15716054.0A
Other languages
German (de)
English (en)
Other versions
EP3134220A1 (fr
Inventor
Eberhard Sowka
Frank Spelleken
Andy Rohe
Helmut OSTERBURG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
ThyssenKrupp AG
Original Assignee
ThyssenKrupp Steel Europe AG
ThyssenKrupp AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52829107&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3134220(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ThyssenKrupp Steel Europe AG, ThyssenKrupp AG filed Critical ThyssenKrupp Steel Europe AG
Publication of EP3134220A1 publication Critical patent/EP3134220A1/fr
Application granted granted Critical
Publication of EP3134220B1 publication Critical patent/EP3134220B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/122Accessories for subsequent treating or working cast stock in situ using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/103Distributing the molten metal, e.g. using runners, floats, distributors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/20Controlling or regulating processes or operations for removing cast stock

Definitions

  • the present invention is based on a method for thin-slab continuous casting according to the preamble of claim 1.
  • a metallic melt is produced, which is transferred by means of a steel ladle in a distributor. From the distributor, the metallic melt flows via a pouring tube into a mold, which is moved in a cooled and oscillating manner. In the mold, a strand is formed from the metallic melt with a solidified shell and a largely not yet solidified cross-section within the solidified shell. When leaving the mold, the strand is taken up by a transport system with a plurality of strand guide rollers, between which the strand is passed through the so-called pouring arc and is cooled to complete solidification.
  • EBR Electromagnetic Brake
  • the mold For the production of thin slabs with thicknesses between 40 to 120 millimeters, the mold typically has a funnel-shaped enlarged cross section in the upper part and a rectangular cross section in the lower part. Due to these small thicknesses, the solidification times in thin-slab continuous casting are comparatively short and the proportion of liquid melt in the interior of the partially solidified strand is low. This inevitably results in a coarse, strictly directed, columnar structure in the continuous casting of thin slabs. However, such a structure may adversely affect the surface and interior condition of the products made from the thin slabs.
  • an apparatus for casting metal which comprises a mold for forming a cast strand and means for supplying a primary flow of hot metallic melt to the mold.
  • the device in this case has a magnetic device which applies a static or periodic magnetic field to the flow of the metal in the non-solidified parts of the cast strand to act on the molten metal in the mold during casting. In this way, the flow of the hot metal is to be braked and split to achieve a secondary flow pattern in the mold.
  • Out DE 195 42 211 A1 is an electromagnetic stirring device for slab casting molds known by means of which the flow rate of the melt can be slowed down in the mold.
  • Out JP 2003-326339 A is a method for continuous casting of thin slabs is known, in which the currents are influenced in the mold by a nearly U-shaped electromagnetic field is applied to the dip tube.
  • the particular difficulty is to achieve a significant microstructural refinement in the case of the through-solidification times which are short compared to thick-slab continuous casting and the small-volume liquid fraction in the strand interior.
  • the present invention solves this problem.
  • a method for thin slab continuous casting comprising the steps of: supplying a metallic melt into a mold, forming a partially solidified thin slab strand from the metallic melt in the mold, reducing the flow rate of the metallic melt in partially solidified thin slab strand by means of a in the region of the mold arranged electromagnetic brake (EMBR) and discharging the partially solidified thin slab strand from the mold by means of a strand guide system, non-solidified parts of the partially solidified thin slab strand are stirred by means along the strand withdrawal direction of the thin slab downstream downstream of the mold arranged electromagnetic stirrer, wherein by means of the electromagnetic stirrer an electromagnetic traveling field in a along the strand withdrawal direction between 20 and 7,000 millimeters from the mold removed area de s thin slab strand is generated.
  • EMBR electromagnetic brake
  • the device according to the invention has the advantage over the prior art that a design for electromagnetic stirring designed for thin-slab casting achieves a refinement of the solidification structure in the interior of the thin slab strand and the simultaneous use of an electromagnetic brake prevents the flow induced by the agitator Increasing the flow velocity of the molten steel in the mold area to impermissibly strong local BadLiteschwankept, ie to BadLiteschwankept of, for example, more than 15 mm leads. High turbulence at the bath level can lead to strand breakthroughs or strand surface defects due to casting slag trapped at the bath level of the mold. Both strand breaks and strand surface defects should be avoided.
  • the expansion of the globulitic core zone in the thickness direction is then in particular at least 30%.
  • longitudinal streaks, microstructures, core segregations and internal cracking susceptibilities may occur reduced and the HIC resistance and the homogeneity of the mechanical and magnetic properties are increased.
  • an electromagnetic traveling field is generated in a region of the thin slab strand which is removed from the mold along the strand withdrawal direction between 20 and 7,000 millimeters.
  • a region of the thin slab strand which is between 20 and 7,000 millimeters from the mold is to be understood in particular as that region of the thin slab strand which has a distance of between 20 and 7,000 millimeters from the base of the mold.
  • the position of the electromagnetic stirrer and the electromagnetic traveling field relative to the mold could also over the distance to the bath level in the mold be defined, which is typically located about 100 millimeters below the mold top.
  • the electromagnetic stirrer is arranged such that the traveling field acts immediately below the mold on the not yet solidified parts of the strand, since a positive effect on the grain structure in already solidified parts of the strand by the traveling field is no longer possible.
  • the electromagnetic traveling field is generated in a region along the strand withdrawal direction between 50 and 3,000 millimeters away from the mold or from the bottom of the mold. It is also conceivable to define the position of the electromagnetic stirrer or of the electromagnetic alternating field along the strand withdrawal direction over the distance to the bath level in the mold:
  • the distance to the bath level along the strand withdrawal direction preferably comprises between 0.9 and 3.8 meters and preferably between 1 , 5 and 2.5 meters.
  • a single electromagnetic stirrer is arranged on one side of the thin slab strand, either on the fixed side or the loose side, or a separate electromagnetic stirrer is arranged on each side, ie both on the fixed side and on the loose side ,
  • that broad side of the strand guide segments is referred to as the fixed side, which always remains unchanged in its position and serves as a so-called reference line. Adjustments to the strand thickness formats are then always made on the opposite lot side.
  • the process according to the invention is used in particular for the production of thin slabs in the continuous casting process and hot strip or cold strip produced therefrom.
  • a thin slab in the sense of the present invention comprises in particular a slab with a thickness of between 40 and 120 millimeters.
  • the first transverse direction is always perpendicular to the strand withdrawal direction and parallel to the strand surface normal of the slab broadside, while the second transverse direction is always perpendicular to the strand withdrawal direction and parallel to the strand surface on the slab broadside.
  • the broad slab side is that side of the rectangular cross-section of the thin slab strand to understand, which has the greater extent.
  • the first and the second transverse direction thus both run perpendicular to the strand withdrawal direction, and perpendicular to each other.
  • the non-solidified parts within the mold and / or during the discharge of the partially solidified thin slab strand from the mold through the strand guide system by means of the electromagnetic stirrer, which is positioned below the mold, are stirred.
  • this ensures that during stirring the proportion of not yet solidified molten metal inside the thin slab strand is still sufficiently large, i. at least 50% of the strand thickness is to obtain a cross-section as large as possible core zone with fine-grained, globulitic structure, d. H. to obtain a globulitic core zone having a thicknesswise extension of the slab of at least 30%.
  • the electromagnetic stirrer is adjusted such that the electromagnetic traveling field along a second transverse direction, which is perpendicular to the strand withdrawal direction and parallel to a strand surface on a broad side of the thin slab strand, from a first edge region of the thin slab strand to a first edge region opposite the second edge region of the thin slab strand runs.
  • a stirring of the not yet solidified metallic melt in the thin slab strand is achieved, so that form on solidification, fine, globulitic grains in the solidification structure.
  • the electromagnetic traveling field is preferably reversed after a time span of 1 to 60 seconds, particularly preferably between 1 and 10 seconds, so that the electromagnetic traveling field subsequently runs along the second transverse direction from a second edge region of the thin slab strand to the first edge region of the thin slab strand. After a lapse of the period of 1 to 60 seconds, preferably again 1 to 10 seconds, the traveling electromagnetic field is reversed again and the cycle begins again.
  • a bidirectional, symmetrical traveling electromagnetic field across the width of the thin slab strand is generated by means of the electromagnetic stirrer, wherein the electromagnetic stirrer is adjusted so that a first subfield of the electromagnetic traveling field from the center of the thin slab strand to a first edge region of the thin slab strand runs and that a second subfield of the electromagnetic traveling field from the center to a second edge region of the thin slab strand opposite the first edge region runs. It is preferred this electromagnetic traveling field 1 to 60 seconds, more preferably held between 1 and 10 seconds. Thereafter, the electromagnetic traveling field generated by the electromagnetic stirrer and thus the direction of the two subfields are reversed.
  • This reverse electromagnetic traveling field is also preferably maintained between 1 to 60 seconds, and more preferably between 1 and 10 seconds. Thereafter, the traveling electromagnetic field is reversed again and the cycle starts again.
  • This preferred embodiment ensures a symmetrical stirring of the not yet solidified metallic melt within the already solidified edge zone of the thin slab strand, so that a symmetrical solidification structure with fine, globulitic grains is formed.
  • a bidirectional, symmetrical traveling electromagnetic field is generated across the width of the thin slab strand by means of the electromagnetic stirrer, wherein the electromagnetic stirrer is adjusted such that a first subfield of the electromagnetic traveling field from a first edge region of the thin slab strand runs to the center of the thin slab strand and that a second sub-field of the electromagnetic traveling field from a first edge region opposite the second edge region of the thin slab strand runs to the center of the thin slab strand.
  • this electromagnetic traveling field is held for 1 to 60 seconds, in particular between 1 and 10 seconds. Thereafter, the electromagnetic traveling field generated by the electromagnetic stirrer and thus the direction of the two subfields are reversed.
  • This reverse electromagnetic traveling field is also held between 1 to 60 seconds, in particular between 1 and 10 seconds. Thereafter, the traveling electromagnetic field is reversed again and the cycle starts again.
  • This preferred embodiment also ensures a symmetrical stirring of the not yet solidified metallic melt within the already solidified edge zone of the thin slab strand, so that a symmetrical solidification structure with fine, globulitic grains is formed.
  • an electromagnetic traveling field is generated across the width of the thin slab strand whose magnetic flux density averages preferably 0.1 to 0.6 Tesla, particularly preferably 0.3 to 0, 5 Tesla and most preferably substantially 0.4 Tesla. It has been found that an alternating field with amplitudes in the range of preferably 0.1 to 0.6 Tesla, more preferably 0.3 to 0.5 Tesla and most preferably substantially 0.4 Tesla sufficient to achieve an accelerated and uniform overheating degradation in the metallic melt.
  • This effect is advantageously achieved by an electromagnetic stirrer set in such a way that the flow rate of the non-solidified parts in the partially solidified thin slab strand is at most 0.7 meters per second or at least 0.2 meters per second, and preferably between 0.2 and 0.7 meters per second Second lies.
  • the associated circulation of the non-solidified parts in the thin slab strand ensures the accelerated and uniform reduction of overheating and thus for the desired microstructural refinement, without having to choose a lower overheating from the outset, through which the risk of immersion tube additions would increase dramatically.
  • the electromagnetic stirrer is adjusted such that the stirring frequency is at least 0.1 Hz or at most 10 Hertz, and preferably between 1 and 10 Hz. It has been shown that this stirring frequency range is particularly advantageous. At a stirring frequency less than 0.1 Hz is no electromagnetic traveling field, so that no stirring effect occurs. If the stirring frequency is greater than 10 Hz, then the penetration depth of the electromagnetic traveling field in the strand interior is too low and no structural refinement is achieved.
  • an electromagnetic field is generated within the mold whose magnetic flux density preferably 0.1 to 0.3 Tesla, more preferably 0.15 to 0.25 Tesla and all more preferably substantially 0.2 tesla.
  • the flow velocity of the metallic melt between the partially solidified edge regions of the strand is thereby braked, thus preventing pouring mirror fluctuations, as well as surface defects resulting from pouring mirror fluctuations (so-called shell defects) and internal defects (for example, slag inclusions).
  • the magnetic field strengths of the electromagnetic traveling field caused by the electromagnetic stirrer and of the field caused by the electromagnetic brake are matched to one another. It has been found that a tuning of the magnetic field strengths of the traveling electromagnetic field caused by the electromagnetic stirrer and the field caused by the electromagnetic brake is advantageous.
  • the vote is preferably carried out by When the electromagnetic stirrer is energized, the magnetic field strength of the electromagnetic brake field is increased by 20 to 80% of its basic value to values between 0.1 and 0.3 Tesla.
  • the basic value in this context is the magnetic field strength of the field of the electromagnetic brake, as is typically used without the additional use of an electromagnetic stirrer.
  • Typical basic settings for an electromagnetic brake without the use of an electromagnetic stirrer are fields with magnetic field strengths between 0.08 and 0.2 Tesla.
  • a device for thin slab continuous casting in particular using the method according to the invention, which comprises a supply means for supplying a metallic melt, a mold for forming a partially solidified thin slab strand from the metallic melt, one in the An electromagnetic brake for reducing the flow rate of the metallic melt inside the teilerstarrten strand within the mold and a strand guide system for discharging the partially solidified thin slab strand from the mold, wherein the device further comprises a along the strand withdrawal direction of the thin slab downstream downstream of the mold arranged electromagnetic stirrer for Stirring of non-solidified parts of the partially solidified thin slab strand, wherein the electromagnetic stirrer along the strand Abzu gsplatz between 20 and 7,000 millimeters from the mold is spaced.
  • the device according to the invention has the advantage over the prior art that the metallic melt is stirred by the electromagnetic stirrer during the continuous casting, whereby a refinement of the solidification microstructure in the interior of the thin slab strand is achieved.
  • the stirring of the metallic melt provides for an accelerated and uniform overheating degradation, which advantageously results in the formation of a core zone with a fine-grained, globulitic structure inside the thin slab strand, while coarse columnar crystalline structures are broken up by the agitation.
  • the electromagnetic stirrer in particular generates a spatially and / or temporally variable magnetic field in the region of the thin slab strand.
  • the electromagnetic stirrer preferably comprises a linear-field stirrer, which is arranged on one of the two broad sides of the thin-slab strand. It would also be conceivable, however, that a respective linear field stirrer is arranged on both opposite broad sides of the thin slab strand.
  • the electromagnetic stirrer comprises a rotary field stirrer or a helicoidal stirrer.
  • the electromagnetic stirrer is disposed along the strand take-off direction of the thin slab strand below the electromagnetic brake.
  • a rapid and uniform reduction of overheating is thus achieved in the not yet solidified parts of the thin slab before the solidification progresses into the interior of the thin slab strand, so that the refinement of the solidification microstructure is achieved.
  • the proportion of the globulitic core zone in the thin slab is greater, the closer the electromagnetic stirrer is arranged on the meniscus of the thin slab strand or on the bath mirror.
  • the electromagnetic stirrer for this purpose should advantageously be arranged along the strand withdrawal direction 20 to 7,000 millimeters and preferably 50 to 3,000 millimeters from the mold and in particular from the lower mold side.
  • the distance between the electromagnetic stirrer and the bath mirror preferably comprises between 0.9 and 3.8 meters and preferably between 1.5 and 2.5 meters.
  • the electromagnetic stirrer 20 to 1000 millimeters, preferably 20 to 200 millimeters and more preferably 20 to 40 millimeters from a surface of the thin slab strand is spaced along the first transverse direction.
  • the device according to the invention is used in particular for the production of thin slabs in the continuous casting process and hot strip or cold strip produced therefrom.
  • the hot strip or cold strip is used in particular for the production of electrical sheets (not grain-oriented or grain-oriented) or sheets of higher-strength steels with yield strength values greater than 400 megapascals (for example tempered steel).
  • a thin slab in the sense of In particular, the present invention includes a slab having a thickness of between 40 to 120 millimeters.
  • the electromagnetic stirrer comprises a linear field stirrer for generating an electromagnetic traveling field in the region of the thin slab strand, wherein the traveling direction of the electromagnetic traveling field is aligned parallel to the second transverse direction.
  • the electromagnetic stirrer is configured such that a first subfield of the traveling electromagnetic field travels from the center of the thin slab strand to a first edge region of the thin slab strand and a second subfield of the traveling electromagnetic field travels from the center to a second edge region of the thin slab strand opposite to the first edge region.
  • This electromagnetic traveling field is held between 1 and 60 seconds, preferably between 1 and 10 seconds.
  • the electromagnetic stirrer is adjusted such that the flow velocity of the metallic melt produced by the stirrer is at least 0.2 meters per second or at most 0.7 meters per second, and in particular between 0, 2 to 0.7 meters per second.
  • the flow velocity of the metallic melt produced by the stirrer is at least 0.2 meters per second or at most 0.7 meters per second, and in particular between 0, 2 to 0.7 meters per second.
  • the flow rate should not be less than 0.2 meters per second, because otherwise sufficient structural refinement can not be achieved.
  • a globulitic core zone can not be considered sufficient. whose thickness expansion is less than 30%.
  • the flow rate should also be no greater than 0.7 meters per second to avoid depletion of the melt on alloying elements in the region of the solidification front.
  • the depletion of the melt on alloying elements in the area of the solidification front can be measured in the solidified material. This phenomenon is called "white bands" or "white stripes”. White bands lead to inhomogeneous properties of the final product.
  • the electromagnetic brake in the upper half of the mold 20 to 150 millimeters, preferably 25 to 100 millimeters and particularly preferably substantially 75 millimeters from a surface of the thin slab strand along the first transverse direction is spaced .
  • the aforementioned distance is to be understood in particular to mean the smallest distance between the electromagnetic brake and the strand surface.
  • FIG. 2 is a schematic cross-sectional view of an apparatus 1 for producing thin slabs in the continuous casting method according to an exemplary embodiment of the present invention.
  • metallic melt 2 is transferred from a steel ladle 6 into a distributor 3 and poured from the distributor 3 via a pouring tube 4 (feeding means) into a mold 5 of the device 1.
  • the flow through the pouring tube is controlled in dependence on the pouring mirror 7 in the mold 5 with a stopper 8 or a slider.
  • the mold 5 comprises a mold having a downwardly open passage opening with a rectangular cross-section.
  • the broad sides 28 of the mold are spaced between 40 and 120 millimeters apart so that the mold 5 is suitable for casting thin slabs.
  • the mold consists of water-cooled copper plates, which cause a solidification of the supplied metallic melt in the edge region of the mold 5.
  • the mold 5 oscillates, thus adhering the strand surface to the mold 5 is prevented.
  • the thin slab strand 9 passes through the mold 5 along a vertical strand withdrawal direction 15.
  • the thin slab strand 9 is taken up by a transport system 12 (also referred to as a strand guiding system) with a plurality of strand guide rollers 13 and passed through a so-called pouring arc 14.
  • the thin slab strand 9 is cooled until complete solidification.
  • a first transverse direction 18 and a second transverse direction 30 are in FIG FIG. 1 outlined.
  • the first transverse direction 18 in this case runs perpendicular to the strand withdrawal direction 15 and parallel to a strand surface normal of the slab broadside 28 (the slab broadside 28 protrudes FIG. 1 in the plane of the drawing), while the second transverse direction 30 is perpendicular to the strand withdrawal direction 15 and parallel to the strand surface on the broad slab side 28, ie, perpendicular to the first transverse direction 18 extends.
  • an electromagnetic brake 16 (EMBR: Electromagnetic Brake) is arranged, which slows down the flow velocity of the metallic melt 2 inside the already partially solidified thin slab strand 9 and thus reduces Badadorschwankept in the mold 5.
  • the electromagnetic brake In the present example, FIG. 16 includes two coils arranged on both sides of the thin slab strand 9.
  • the electromagnetic brake 16 an electromagnetic field is generated within the mold 5, the magnetic flux density is preferably 0.1 to 0.3 Tesla and more preferably substantially 0.2 Tesla.
  • the device 1 below the mold 5, the device 1 according to the invention comprises an electromagnetic stirrer 17 for stirring non-solidified parts of the partially solidified thin slab strand 9.
  • the electromagnetic stirrer 17 comprises a linear-field stirrer which extends along one of the two broad sides 28 of the strand.
  • the Linearfeldrrocker generated across the width of the thin slab strand 9 an electromagnetic traveling field 19 (see FIGS. 2a and 2b ) which cyclically reciprocates between a first edge region 20 of the thin slab strand 9 and an opposite second edge region 21 of the thin slab strand 9 along a second transverse direction 30 that is perpendicular to the strand withdrawal direction 15 and parallel to the broad side 28 of the strand surface.
  • the traveling electromagnetic field 19 is generated in a region along the strand withdrawal direction 15 between 20 and 7,000 millimeters, preferably between 50 and 3,000 millimeters, away from the mold 5 and from the mold bottom 29 and comprises on average a magnetic flux density between 0.1 to zero , 6 Tesla and preferably of substantially 0.4 Tesla.
  • the electromagnetic traveling field leads to a stirring of the metallic melt, whereby an accelerated and uniform overheating degradation is effected in the metallic melt. This advantageously leads to the formation of a larger core zone with a fine-grained, globulitic microstructure in the interior of the thin slab strand 9, while coarse column-crystalline structures are restricted by the electromagnetic stirring.
  • an electromagnetic stirrer 17 set in such a way that the flow rate of the non-solidified parts in the partially solidified thin slab strand is less than 0.7 meters per second and preferably between 0.2 and 0.7 meters per second.
  • the fine-grained, globulitic core zone then forms in the solidification structure, whereby the formation of columnar crystals between the edge zone and the center region of the thin slab strand 9 is suppressed.
  • thin slabs are produced in particular for hot strip or cold strip.
  • the hot strip or cold strip is used in particular for the production of electrical sheets (non-grain oriented or grain oriented) or sheets of higher strength steels with yield strength values greater than 400 megapascals (eg tempered steel).
  • FIGS. 2a and 2b are schematic detail views of the device 1 for thin slab continuous casting in the mold and below the mold according to the above with reference to FIG. 1 illustrated exemplary embodiment of the present invention.
  • a sectional image view is illustrated along a sectional plane parallel to the strand withdrawal direction 15 and parallel to the second transverse direction 30.
  • a sectional view along a direction perpendicular to the strand withdrawal direction 15, ie perpendicular to the first transverse direction 18 and the second transverse direction 30 sectional image plane in the region of the electromagnetic stirrer 17 is illustrated, which corresponds to the cross section of the strand 9.
  • the supply means comprises the pouring tube 4, which dips into the metallic melt 2 located in the mold 5, and spout holes 22 formed in the lower part of the pouring tube 4 below the pouring mirror 7 on the pouring tube 4.
  • the metallic melt 2 is introduced by means of the spout holes 22 at an angle to the strand withdrawal direction 15 of the thin slab strand 9 (see flow arrows 23).
  • the electromagnetic stirrer 17, which is arranged below the mold 5, generates below the mold 5, the electromagnetic traveling field 19, which in turn causes currents that can reach into the mold 5 - possibly even up to the bath level.
  • the electromagnetic stirrer 17 is configured such that the traveling electromagnetic field 19 comprises two subfields, a first subfield 24 and a second subfield 25.
  • the first sub-field 24 of the traveling electromagnetic field 19 cycles between a center 26 of the thin slab strand 9 and the first edge region 20 of the thin slab strand 9, while the second sub-field 25 of the traveling electromagnetic field 19 cyclically between the center 26 and the second edge region 21 of the thin slab strand 9 wanders back and forth.
  • the movement of the electromagnetic traveling field 19 is represented schematically by the movement arrows 27.
  • the division of the electromagnetic traveling field 19 into two bidirectional, symmetrical subfields leads to a uniform and symmetrical flow in the interior of the thin slab strand 9 and thus also to a rapid and uniform removal of the overheating.
  • the electromagnetic stirrer 17 is preferably further adjusted such that the flow velocity of the metallic melt generated by the stirrer at the solidification front is between 0.2 to 0.7 meters per second.
  • the electromagnetic stirrer 17 must be set such that the currents generated in the metallic melt 2 by the electromagnetic stirrer 17 do not lead to increased bath level fluctuations and not to increased local bath level elevations in the mold 5. In this case, the magnetic field strengths of the electromagnetic stirrer 17 and the electromagnetic brake 16 should be matched to one another.
  • the tuning takes place, for example, by raising the magnetic field strength of the electromagnetic brake 16 by 20 to 80% of its basic value to values between 0.1 and 0.3 Tesla when the electromagnetic stirrer 17 is switched on.
  • the basic value in this context is the magnetic field strength of the electromagnetic brake 16, as is typically used without the additional use of an electromagnetic stirrer 17.
  • Typical basic settings for an electromagnetic brake 16 without the use of an electromagnetic stirrer 17 are 0.08 to 0.2 Tesla.
  • FIG. 2a In the lower part of FIG. 2a is the rectangular cross-section of the passage opening of the mold 5 can be seen schematically.
  • the electromagnetic traveling field 19 or the two subfields 24, 25 migrate along the broad sides 28 through the thin slab strand 9.
  • the traveling electromagnetic field 19 is not divided into two sub-fields 24, 25, but runs along the second transverse direction 30 cyclically between the first edge region 20 of the thin slab strand 9 and the opposite second edge region 21 of the thin slab strand 9 back and forth.
  • This embodiment is exemplary in FIG FIG. 2b illustrated.
  • GCC globulitic core zone
  • the test series prove that by adding an electromagnetic stirrer arranged below the mold, the proportion of the globulitic core zone (GKZ) increases from 0 to 10 percent to a proportion of 40 to 60 percent.
  • the share of the globulitic core zone should be at least 30 percent and preferably greater than 50 percent. Overheating of less than 20 K is to be avoided, however, as problems would otherwise occur in the form of clogging of the dip tubes in the mold, which may result in strand surface defects or even strand breakthroughs.
  • the distance between the mold or the base of the mold and the electromagnetic stirrer is thus advantageously between 20 and 7,000 millimeters and preferably between 50 and 3,000 millimeters.
  • a distance between 100 and 7,000 millimeters, between 500 and 6,500 millimeters, between 700 and 6,300 millimeters, between 700 and 4,400 millimeters or between 700 and 2,800 millimeters is particularly advantageous.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Claims (17)

  1. Procédé de coulée continue de brames minces, présentant les étapes de procédé suivantes:
    - amener un métal en fusion (2) dans une lingotière (5),
    - former une barre de brames minces partiellement solidifiée (9) à partir du métal en fusion (2) dans la lingotière (5),
    - réduire la vitesse d'écoulement du métal en fusion (2) dans la barre de brames minces partiellement solidifiée (9) au moyen d'un frein électromagnétique (16) disposé dans la région de la lingotière (5), et
    - évacuer la barre de brames minces partiellement solidifiée (9) hors de la lingotière (5) au moyen d'un système de guidage de la barre (12),
    caractérisé en ce que
    - on agite des parties non solidifiées de la barre de brames minces partiellement solidifiée (9) au moyen d'un agitateur électromagnétique (17) disposé le long de la direction d'extraction de barre (15) de la barre de brames minces (9) en aval en dessous de la lingotière (5),
    - dans lequel on produit au moyen de l'agitateur électromagnétique (17) un champ électromagnétique mobile (19) dans une région de la barre de brames minces (9) à une distance dans la direction d'extraction de barre (15) comprise entre 20 et 7000 millimètres de la lingotière (5).
  2. Procédé selon la revendication 1, dans lequel on produit le champ électromagnétique mobile (19) dans une région de la barre de brames minces (9) à une distance dans la direction d'extraction de barre (15) comprise entre 50 et 3000 millimètres de la lingotière (5).
  3. Procédé selon l'une quelconque des revendications précédentes, dans lequel on produit au moyen du frein électromagnétique (16) un champ électromagnétique à l'intérieur de la lingotière (5), dans lequel le frein électromagnétique (16) est disposé dans la moitié supérieure de la lingotière, de préférence à une distance comprise entre 20 et 150 millimètres d'une surface de la barre de brames minces le long d'une première direction transversale (18), qui s'étend perpendiculairement à la direction d'extraction de barre (15) et parallèlement à une normale à la surface de la barre sur une face large (28) de la barre de brames minces (9).
  4. Procédé selon l'une quelconque des revendications précédentes, dans lequel on règle l'agitateur électromagnétique (17) de telle manière que le champ électromagnétique mobile (19) se déplace le long d'une deuxième direction transversale (30), qui s'étend perpendiculairement à la direction d'extraction de barre (15) et perpendiculairement à la première direction transversale (18), d'une première région de bord (20) de la barre de brames minces (9) à une deuxième région de bord (21) de la barre de brames minces (9) opposée à la première région de bord (20).
  5. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel on produit au moyen de l'agitateur électromagnétique (17) un champ électromagnétique mobile bidirectionnel symétrique (19) sur la largeur de la barre de brames minces (9), dans lequel on règle l'agitateur électromagnétique (17) de telle manière qu'un premier sous-champ (24) du champ électromagnétique mobile (19) se déplace d'un centre (26) de la barre de brames minces (9) à une première région de bord (20) de la barre de brames minces (9) et qu'un second sous-champ (25) du champ électromagnétique mobile (19) se déplace du centre (26) de la barre de brames minces (9) à une deuxième région de bord (21) de la barre de brames minces (9) opposée à la première région de bord (20).
  6. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel on produit au moyen de l'agitateur électromagnétique (17) un champ électromagnétique mobile bidirectionnel symétrique (19) sur la largeur de la barre de brames minces (9), dans lequel on règle l'agitateur électromagnétique (17) de telle manière qu'un premier sous-champ (24) du champ électromagnétique mobile (19) se déplace d'une première région de bord (20) de la barre de brames minces (9) à un centre (26) de la barre de brames minces (9) et qu'un second sous-champ (25) du champ électromagnétique mobile (19) se déplace d'une deuxième région de bord (21) de la barre de brames minces (9) opposée à la première région de bord (20) au centre (26) de la barre de brames minces (9).
  7. Procédé selon l'une quelconque des revendications précédentes, dans lequel on produit au moyen de l'agitateur électromagnétique (17) un champ électromagnétique mobile dans la région de la barre de brames minces (9), dont la densité de flux magnétique vaut en moyenne de préférence 0,1 à 0,6 Tesla, de préférence encore 0,3 à 0,5 Tesla, et de préférence encore 0,4 Tesla.
  8. Procédé selon l'une quelconque des revendications précédentes, dans lequel on règle l'agitateur électromagnétique (17) de telle manière que la vitesse d'écoulement des parties non solidifiées dans la barre de brames minces (9) vaille au moins 0,2 mètres par seconde ou au maximum 0,7 mètres par seconde, et se situe de préférence entre 0,2 et 0,7 mètres par seconde.
  9. Procédé selon l'une quelconque des revendications précédentes, dans lequel on règle l'agitateur électromagnétique (17) de telle manière que la fréquence d'agitation vaille au moins 0,1 Hz ou au maximum 10 Hertz et se situe de préférence entre 0,1 et 10 Hz.
  10. Procédé selon l'une quelconque des revendications précédentes, dans lequel on produit au moyen du frein électromagnétique (16) à l'intérieur de la lingotière (5) un champ électromagnétique, dont la densité de flux magnétique vaut de préférence 0,1 à 0,3 Tesla, de préférence encore 0,15 à 0,25 Tesla et de préférence encore 0,2 Tesla.
  11. Procédé selon l'une quelconque des revendications précédentes, dans lequel on utilise le procédé de production de brames minces pour la fabrication de bande à chaud ou de bande à froid, en particulier pour la fabrication de tôles électriques ou de tôles en acier à très haute résistance, de préférence avec des valeurs de limite d'élasticité supérieures à 400 mégapascals.
  12. Dispositif (1) de coulée continue de brames minces, en particulier au moyen du procédé selon l'une quelconque des revendications précédentes, présentant
    - un moyen d'alimentation pour amener un métal en fusion (2),
    - une lingotière (5) pour former une barre de brames minces partiellement solidifiée (9) à partir du métal en fusion amené (2),
    - un frein électromagnétique (16) disposé dans la région de la lingotière (5) pour réduire la vitesse d'écoulement du métal en fusion (2) à l'intérieur de la barre de brames minces partiellement solidifiée (9) et
    - un système de guidage de barre (12) pour évacuer la barre de brames minces partiellement solidifiée (9) hors de la lingotière (2),
    caractérisé en ce que
    - le dispositif (1) présente un agitateur électromagnétique (17) disposé le long de la direction d'extraction de barre (15) de la barre de brames minces (9) en aval en dessous de la lingotière (5) pour agiter des parties non solidifiées de la barre de brames minces partiellement solidifiée (9), qui est situé à une distance le long de la direction d'extraction de barre (15) comprise entre 20 et 7000 millimètres de la lingotière (5).
  13. Dispositif (1) selon la revendication 12, dans lequel l'agitateur électromagnétique (17) est situé à une distance comprise entre 50 et 3000 millimètres de la lingotière (5) le long de la direction d'extraction de barre (15).
  14. Dispositif (1) selon une revendication 12 ou 13, dans lequel l'agitateur électromagnétique (17) comprend un agitateur à champ linéaire pour la production d'un champ électromagnétique mobile (19) dans la région de la barre de brames minces (9), dans lequel la direction de déplacement du champ électromagnétique mobile (19) est orientée perpendiculairement à la direction d'extraction de barre (15) et parallèlement à une deuxième direction transversale (30), qui s'étend perpendiculairement à la direction d'extraction de barre (15) et parallèlement à une surface de la barre sur une face large (28) de la barre de brames minces (9), et dans lequel la direction de déplacement du champ électromagnétique mobile (19) peut être inversée.
  15. Dispositif (1) selon l'une quelconque des revendications 12 à 14, dans lequel l'agitateur électromagnétique (17) est espacé de 20 à 1000 millimètres, de préférence de 20 à 200 millimètres et de préférence encore de 20 à 40 millimètres d'une surface de la barre de brames minces (9) le long d'une première direction transversale (18), qui s'étend perpendiculairement à la direction d'extraction de barre (15) et perpendiculairement à la deuxième direction transversale (30).
  16. Dispositif (1) selon l'une quelconque des revendications 12 à 15, dans lequel l'agitateur électromagnétique (17) est configuré de telle manière que la vitesse d'écoulement des parties non solidifiées dans la barre de brames minces partiellement solidifiée (9) se situe entre 0,2 et 0,7 mètres par seconde et/ou en ce que la fréquence d'agitation se situe entre 0,1 et 10 Hz.
  17. Dispositif (1) selon l'une quelconque des revendications 12 à 15, dans lequel le frein électromagnétique (16) est disposé dans la moitié supérieure de la lingotière, de préférence à une distance comprise entre 20 et 150 millimètres d'une surface de la barre de brames minces le long de la première direction transversale (18).
EP15716054.0A 2014-04-25 2015-04-15 Procédé et dispositif de coulée continue de brames minces Active EP3134220B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014105870.4A DE102014105870B4 (de) 2014-04-25 2014-04-25 Verfahren und Vorrichtung zum Dünnbrammen-Stranggießen
PCT/EP2015/058130 WO2015162039A1 (fr) 2014-04-25 2015-04-15 Procédé et dispositif de coulée continue de brames minces

Publications (2)

Publication Number Publication Date
EP3134220A1 EP3134220A1 (fr) 2017-03-01
EP3134220B1 true EP3134220B1 (fr) 2019-09-04

Family

ID=52829107

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15716054.0A Active EP3134220B1 (fr) 2014-04-25 2015-04-15 Procédé et dispositif de coulée continue de brames minces

Country Status (7)

Country Link
US (1) US10486228B2 (fr)
EP (1) EP3134220B1 (fr)
KR (1) KR20160146914A (fr)
CN (1) CN106536087B (fr)
DE (1) DE102014105870B4 (fr)
ES (1) ES2756700T3 (fr)
WO (1) WO2015162039A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4438199A1 (fr) 2023-03-30 2024-10-02 voestalpine Stahl GmbH Procédé de fabrication d'une bande ou tôle électrique et bande ou tôle électrique ainsi fabriquée

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015223788A1 (de) * 2015-11-30 2017-06-01 Sms Group Gmbh Verfahren zum Stranggießen eines Metallstranges und durch dieses Verfahren erhaltener Gießstrang
SK7957Y1 (sk) * 2016-04-29 2017-12-04 Pokusova Marcela Spôsob riadenia procesu tuhnutia kontinuálne liatych kovov a zliatin a zariadenie na uskutočňovanie tohto spôsobu
JP6879320B2 (ja) * 2018-05-31 2021-06-02 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP7151247B2 (ja) * 2018-07-27 2022-10-12 日本製鉄株式会社 薄スラブ連続鋳造の流動制御装置及び薄スラブの連続鋳造方法
CN114932206B (zh) * 2022-06-08 2023-05-16 沈阳工程学院 控制结晶器内金属液流动的独立可控复合磁场装置及方法
CN115194107B (zh) * 2022-07-13 2023-05-16 沈阳工程学院 控制金属液流动的多段位独立可调复合磁场装置及方法
CN115722639A (zh) * 2022-12-06 2023-03-03 湖南中科电气股份有限公司 一种用于薄板坯带电磁搅拌装置的扇形段

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0009803B1 (fr) 1978-10-06 1983-03-16 Concast Holding Ag Procédé de coulée continue d'acier
EP0040383B1 (fr) 1980-05-19 1983-10-12 Asea Ab Procédé et dispositif pour le brassage du métal liquide dans un lingot de coulée continue
EP0092126A1 (fr) 1982-04-19 1983-10-26 Asea Ab Procédé pour le brassage des zones non-solidifiées dans une billette de coulée
DE3113192C2 (de) 1980-04-02 1984-11-29 Kobe Steel, Ltd., Kobe, Hyogo Verfahren zum elektromagnetischen Rühren einer Stahlschmelze in mehreren Bereichen einer Stranggießanlage
JPS61193755A (ja) 1985-02-25 1986-08-28 Toshiba Corp 電磁撹拌方法
JPS61255749A (ja) 1985-05-08 1986-11-13 Kawasaki Steel Corp スラブ連続鋳造鋳片内の非金属介在物の減少方法
EP0401504B1 (fr) 1989-04-27 1994-07-06 Kawasaki Steel Corporation Procédé et appareil de coulée continue
EP0698434A1 (fr) 1994-08-22 1996-02-28 Sms Schloemann-Siemag Aktiengesellschaft Installation de coulée continue de brames minces
JPH08323454A (ja) 1995-05-30 1996-12-10 Sumitomo Metal Ind Ltd 広幅薄鋳片の連続鋳造方法
DE19542211A1 (de) 1995-11-13 1997-05-15 Schloemann Siemag Ag Elektromagnetische Rühreinrichtung für eine Brammenstranggießkokille
EP0815987A1 (fr) 1996-06-28 1998-01-07 Sms Schloemann-Siemag Aktiengesellschaft Agitateur et frein électromagnétique d'une installation de coulée continu
JP2000000648A (ja) 1998-06-16 2000-01-07 Kawasaki Steel Corp 鋼の連続鋳造方法および装置
JP2001087846A (ja) 1999-09-22 2001-04-03 Kawasaki Steel Corp 鋼スラブの連続鋳造方法および連続鋳造装置
DE10020703A1 (de) 2000-04-27 2001-10-31 Sms Demag Ag Verfahren und Einrichtung zum Stranggießen insbesondere von Dünnbrammen mit hohen Gießgeschwindigkeiten
JP2003326339A (ja) 2002-05-13 2003-11-18 Nippon Steel Corp 薄スラブの連続鋳造設備および連続鋳造方法
CN1142045C (zh) 1999-09-22 2004-03-17 大连理工大学 一种施加复合电磁场的电磁铸型和铸造方法
DE69824749T2 (de) 1997-09-03 2005-08-04 Abb Ab Verfahren und Vorrichtung zum kontinuierlichen oder semi-kontinuierlichen Gießen von Metall
CN201596751U (zh) 2009-12-25 2010-10-06 鞍钢股份有限公司 一种复合电磁搅拌装置
DE102009056000A1 (de) 2009-08-28 2011-03-03 Sms Siemag Ag Verfahren zum Gießen von flüssigen Metallen
DE212009000056U1 (de) 2008-05-20 2011-04-21 Siemens Vai Metals Technologies Gmbh Stranggießanlage zum Herstellen von dicken Brammen

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2810491A1 (de) 1978-03-08 1979-09-20 Aeg Elotherm Gmbh Verfahren zur beeinflussung der erstarrung einer schmelze waehrend des stranggiessens
FR2437900A1 (fr) * 1978-10-05 1980-04-30 Siderurgie Fse Inst Rech Procede de coulee continue des metaux avec brassage dans la zone du refroidissement secondaire
SE418934B (sv) * 1979-10-31 1981-07-06 Asea Ab Forfarande for omrorning av icke-stelnade partier i en gjutstreng fran en strenggjutningsmaskin
DE3322891A1 (de) * 1983-06-23 1985-01-03 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Einrichtung zum elektrodynamischen ruehren des sumpfes einer metallbramme
JPS60162559A (ja) * 1984-01-31 1985-08-24 Nippon Steel Corp 連鋳機における電磁撹拌制御法
JPS6349352A (ja) * 1986-08-13 1988-03-02 Hitachi Metals Ltd 工具鋼連鋳鋳片の内質改善方法
JP3180164B2 (ja) * 1992-02-04 2001-06-25 新日本製鐵株式会社 連鋳鋳片の内質改善方法および装置
DE10350076A1 (de) * 2003-10-27 2005-06-02 Siemens Ag Vorrichtung und Verfahren zum elektromagnetischen Rühren oder Bremsen von Metallguss, insbesondere Stahlstrangguss
WO2009133739A1 (fr) * 2008-04-28 2009-11-05 住友金属工業株式会社 Procédé de coulée en continu d'acier et agitateur électromagnétique utilisable pour celui-ci
JP5428780B2 (ja) * 2009-11-11 2014-02-26 新日鐵住金株式会社 鋼の連続鋳造方法

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0009803B1 (fr) 1978-10-06 1983-03-16 Concast Holding Ag Procédé de coulée continue d'acier
DE3113192C2 (de) 1980-04-02 1984-11-29 Kobe Steel, Ltd., Kobe, Hyogo Verfahren zum elektromagnetischen Rühren einer Stahlschmelze in mehreren Bereichen einer Stranggießanlage
EP0040383B1 (fr) 1980-05-19 1983-10-12 Asea Ab Procédé et dispositif pour le brassage du métal liquide dans un lingot de coulée continue
EP0092126A1 (fr) 1982-04-19 1983-10-26 Asea Ab Procédé pour le brassage des zones non-solidifiées dans une billette de coulée
JPS61193755A (ja) 1985-02-25 1986-08-28 Toshiba Corp 電磁撹拌方法
JPS61255749A (ja) 1985-05-08 1986-11-13 Kawasaki Steel Corp スラブ連続鋳造鋳片内の非金属介在物の減少方法
EP0401504B1 (fr) 1989-04-27 1994-07-06 Kawasaki Steel Corporation Procédé et appareil de coulée continue
EP0698434A1 (fr) 1994-08-22 1996-02-28 Sms Schloemann-Siemag Aktiengesellschaft Installation de coulée continue de brames minces
JPH08323454A (ja) 1995-05-30 1996-12-10 Sumitomo Metal Ind Ltd 広幅薄鋳片の連続鋳造方法
DE19542211A1 (de) 1995-11-13 1997-05-15 Schloemann Siemag Ag Elektromagnetische Rühreinrichtung für eine Brammenstranggießkokille
EP0815987A1 (fr) 1996-06-28 1998-01-07 Sms Schloemann-Siemag Aktiengesellschaft Agitateur et frein électromagnétique d'une installation de coulée continu
DE69824749T2 (de) 1997-09-03 2005-08-04 Abb Ab Verfahren und Vorrichtung zum kontinuierlichen oder semi-kontinuierlichen Gießen von Metall
JP2000000648A (ja) 1998-06-16 2000-01-07 Kawasaki Steel Corp 鋼の連続鋳造方法および装置
JP2001087846A (ja) 1999-09-22 2001-04-03 Kawasaki Steel Corp 鋼スラブの連続鋳造方法および連続鋳造装置
CN1142045C (zh) 1999-09-22 2004-03-17 大连理工大学 一种施加复合电磁场的电磁铸型和铸造方法
DE10020703A1 (de) 2000-04-27 2001-10-31 Sms Demag Ag Verfahren und Einrichtung zum Stranggießen insbesondere von Dünnbrammen mit hohen Gießgeschwindigkeiten
JP2003326339A (ja) 2002-05-13 2003-11-18 Nippon Steel Corp 薄スラブの連続鋳造設備および連続鋳造方法
DE212009000056U1 (de) 2008-05-20 2011-04-21 Siemens Vai Metals Technologies Gmbh Stranggießanlage zum Herstellen von dicken Brammen
DE102009056000A1 (de) 2009-08-28 2011-03-03 Sms Siemag Ag Verfahren zum Gießen von flüssigen Metallen
CN201596751U (zh) 2009-12-25 2010-10-06 鞍钢股份有限公司 一种复合电磁搅拌装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PETER HEINRICH, ET AL: "Productivity, quality and resource efficiency of CSP technology", CONTINUOUS CASTING, MILLENNIUM STEEL, 1 January 2004 (2004-01-01), pages 156 - 161, XP055756861

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4438199A1 (fr) 2023-03-30 2024-10-02 voestalpine Stahl GmbH Procédé de fabrication d'une bande ou tôle électrique et bande ou tôle électrique ainsi fabriquée

Also Published As

Publication number Publication date
WO2015162039A1 (fr) 2015-10-29
ES2756700T3 (es) 2020-04-27
DE102014105870A1 (de) 2015-10-29
KR20160146914A (ko) 2016-12-21
CN106536087B (zh) 2020-07-24
US10486228B2 (en) 2019-11-26
DE102014105870B4 (de) 2024-10-10
EP3134220A1 (fr) 2017-03-01
US20170036267A1 (en) 2017-02-09
CN106536087A (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
EP3134220B1 (fr) Procédé et dispositif de coulée continue de brames minces
EP0040383B1 (fr) Procédé et dispositif pour le brassage du métal liquide dans un lingot de coulée continue
DE2756112C3 (de) Verfahren und Vorrichtung zum horizontalen Stranggießen
DE69528954T2 (de) Stranggiessanlage für stahl
DE69710808T2 (de) Verfahren und Vorrichtung zum Stranggiessen unter Verwendung von mehreren elektromagnetischen Rührern
DE69530567T2 (de) Verfahren und vorrichtung zum kontinuierlichen giessen von metallschmelze
DE102005062854A1 (de) Verfahren und Einrichtung zum Erzeugen von metallischen Warmbändern insbesondere aus Leichtbaustahl
DE2720391A1 (de) Anordnung beim stranggiessen
DE69938126T2 (de) Stranggussverfahren
EP3993921B1 (fr) Alimentation de matière en fusion pour installations de coulée à bande
DE69217515T2 (de) Stranggiessen von Stahl
EP0036611B1 (fr) Procédé et dispositif pour soutenir une barre d'acier fabriquée par un procédé de coulée continue
DE69702268T2 (de) Stranggiessanlage
EP0009803B1 (fr) Procédé de coulée continue d'acier
DE3856161T2 (de) Verfahren und vorrichtung zum direkten giessen von metall zur bildung langer körper
DE3440235A1 (de) Verfahren und vorrichtung zum bandstranggiessen von metallen, insbesondere von stahl
EP0946318B1 (fr) Procede et installation de coulee continue de brames fines
DD148736A5 (de) Kontinuierliches stahl-giessverfahren
DD145069A5 (de) Verfahren zum stranggiessen von metall
DE3873698T2 (de) Verfahren und vorrichtung zur behandlung der nicht erstarrten bereiche eines giessstranges.
DE10020703A1 (de) Verfahren und Einrichtung zum Stranggießen insbesondere von Dünnbrammen mit hohen Gießgeschwindigkeiten
DE3100137C2 (de) Stranggießkokille zum Stranggießen von Metall mit einer Vibrationseinrichtung und Verfahren dazu
EP0674958A2 (fr) Procédé et dispositif pour la coulée d'un produit proche de ses dimensions finales
DE10355430A1 (de) Verfahren und Vorrichtung zur Temperaturführung einer Schmelze in einer gekühlten Stranggießkokille
DE2024747C3 (de) Verfahren zum halbkontinuierllchen Stranggießen, insbesondere von Stahl, und Vorrichtung zur Durchführung des Verfahrens *

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20160926

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP STEEL EUROPE AG

Owner name: THYSSENKRUPP AG

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B22D 11/16 20060101ALI20190313BHEP

Ipc: B22D 11/12 20060101AFI20190313BHEP

Ipc: B22D 11/115 20060101ALI20190313BHEP

INTG Intention to grant announced

Effective date: 20190412

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1174645

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015010236

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191205

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2756700

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200106

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502015010236

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: PRIMETALS TECHNOLOGIES AUSTRIA GMBH

Effective date: 20200604

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200415

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200415

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200415

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1174645

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200415

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502015010236

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240418

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240418

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240524

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240424

Year of fee payment: 10

Ref country code: FR

Payment date: 20240425

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240405

Year of fee payment: 10