EP3085799B1 - Kupferlegierung und verfahren zur herstellung davon - Google Patents
Kupferlegierung und verfahren zur herstellung davon Download PDFInfo
- Publication number
- EP3085799B1 EP3085799B1 EP16166305.9A EP16166305A EP3085799B1 EP 3085799 B1 EP3085799 B1 EP 3085799B1 EP 16166305 A EP16166305 A EP 16166305A EP 3085799 B1 EP3085799 B1 EP 3085799B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- mass
- copper alloy
- carbon
- alloy according
- melting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000881 Cu alloy Inorganic materials 0.000 title claims description 132
- 238000000034 method Methods 0.000 title claims description 31
- 238000004519 manufacturing process Methods 0.000 title claims description 23
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 74
- 229910052799 carbon Inorganic materials 0.000 claims description 66
- 238000010438 heat treatment Methods 0.000 claims description 41
- 239000000654 additive Substances 0.000 claims description 26
- 230000000996 additive effect Effects 0.000 claims description 26
- 239000002994 raw material Substances 0.000 claims description 25
- 238000005266 casting Methods 0.000 claims description 23
- 239000000203 mixture Substances 0.000 claims description 21
- 238000002844 melting Methods 0.000 claims description 19
- 230000008018 melting Effects 0.000 claims description 19
- 239000010949 copper Substances 0.000 claims description 17
- 239000000243 solution Substances 0.000 claims description 16
- 229910052758 niobium Inorganic materials 0.000 claims description 14
- 229910052726 zirconium Inorganic materials 0.000 claims description 14
- 229910052719 titanium Inorganic materials 0.000 claims description 13
- 238000000265 homogenisation Methods 0.000 claims description 11
- 239000012535 impurity Substances 0.000 claims description 10
- 229910052710 silicon Inorganic materials 0.000 claims description 10
- 229910052749 magnesium Inorganic materials 0.000 claims description 8
- 229910052748 manganese Inorganic materials 0.000 claims description 8
- 229910052725 zinc Inorganic materials 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- 229910052796 boron Inorganic materials 0.000 claims description 7
- 229910052791 calcium Inorganic materials 0.000 claims description 7
- 229910052698 phosphorus Inorganic materials 0.000 claims description 7
- 239000006104 solid solution Substances 0.000 claims description 6
- 238000001330 spinodal decomposition reaction Methods 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 3
- 239000011135 tin Substances 0.000 description 38
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 35
- 239000010955 niobium Substances 0.000 description 24
- 229910045601 alloy Inorganic materials 0.000 description 23
- 239000000956 alloy Substances 0.000 description 23
- 239000010936 titanium Substances 0.000 description 20
- 239000000463 material Substances 0.000 description 15
- 229910052759 nickel Inorganic materials 0.000 description 14
- 230000001965 increasing effect Effects 0.000 description 13
- 239000000047 product Substances 0.000 description 13
- 229910052718 tin Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 12
- 238000005242 forging Methods 0.000 description 11
- 238000013507 mapping Methods 0.000 description 11
- 238000004453 electron probe microanalysis Methods 0.000 description 10
- 229910002804 graphite Inorganic materials 0.000 description 10
- 239000010439 graphite Substances 0.000 description 10
- 238000009864 tensile test Methods 0.000 description 10
- 229910052802 copper Inorganic materials 0.000 description 9
- 238000005096 rolling process Methods 0.000 description 9
- 238000000635 electron micrograph Methods 0.000 description 8
- 238000005098 hot rolling Methods 0.000 description 8
- 238000009749 continuous casting Methods 0.000 description 7
- 238000005482 strain hardening Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 229910018100 Ni-Sn Inorganic materials 0.000 description 4
- 229910018532 Ni—Sn Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 229910000914 Mn alloy Inorganic materials 0.000 description 3
- 229910020018 Nb Zr Inorganic materials 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000012300 argon atmosphere Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 238000005097 cold rolling Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 238000010924 continuous production Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 229910020888 Sn-Cu Inorganic materials 0.000 description 1
- 229910020941 Sn-Mn Inorganic materials 0.000 description 1
- 229910019204 Sn—Cu Inorganic materials 0.000 description 1
- 229910008953 Sn—Mn Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000003483 aging Methods 0.000 description 1
- 229910000905 alloy phase Inorganic materials 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000010622 cold drawing Methods 0.000 description 1
- 238000000641 cold extrusion Methods 0.000 description 1
- 238000010273 cold forging Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000001192 hot extrusion Methods 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/06—Alloys based on copper with nickel or cobalt as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/023—Alloys based on nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/03—Making non-ferrous alloys by melting using master alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/02—Alloys based on copper with tin as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/002—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
Definitions
- the present invention relates to copper alloys and methods for manufacturing the same.
- PTL 1 discloses a copper alloy that is a Ni-Sn-Cu-based spinodal alloy to which Mn has been added to prevent grain boundary precipitation that may occur in copper alloy cast materials.
- Mn has been added to prevent grain boundary precipitation that may occur in copper alloy cast materials.
- Cr, Mo, Ti, Co, V, Nb, Zr, Fe, Si or the like when Cr, Mo, Ti, Co, V, Nb, Zr, Fe, Si or the like is added to this copper alloy, Ni-Sn-Mn, Si or those additive elements form a hard intermetallic compound that crystallizes out in the matrix, thus contributing to the increase of wear resistance and seizure resistance.
- PTL 2 discloses a copper alloy whose strength is increased without reducing the electric conductivity by adding Cr or Zr to copper, and further in which oxides of Cr or Zr are prevented from being formed by controlling the oxygen content to 60 ppm or less.
- This patent literature describes a technique for adding carbon to a molten material or a molten metal for reducing the oxygen content.
- PTL 2 discloses that the strength of this copper alloy is increased by adding Ni, Sn, Ti, Nb or the like to the copper alloy, and that grain coarsening is prevented by adding Ti or Nb.
- JP-A-2009-242895 discloses a copper alloy of 5 to 20wt% Ni and 5 to 10wt% Sn, the balance being Cu and inevitable impurities. JP-A-2009-242895 discloses that the copper alloy may additionally contain Mn, Fe, Co, Zn, Si, Mg, Ti, and Zr at ⁇ 1wt%.
- the copper alloys of PTLs 1 and 2 exhibit increased wear resistance and seizure resistance, and increased strength without reducing electric conductivity, the ductilities thereof are low in some cases. Accordingly, the copper alloy can be cracked, for example, during being worked, or the elongation of the resulting product can be small.
- a Cu-Ni-Sn-based copper alloy superior in ductility is desirable.
- the present invention is intended to solve these problems, and a major object of the invention is to provide a Cu-Ni-Sn-based copper alloy superior in ductility and a method for manufacturing the same.
- the following copper alloy is provided.
- the copper alloy of the present invention is as set out in claim 1.
- the copper alloy of the present invention is superior in ductility because of the presence therein of appropriate amounts of Ni, Sn, element A (at least one selected from the group consisting of Nb, Zr and Ti), and carbon.
- the copper alloy of the present invention contains 5% by mass to 25% by mass of Ni, 5% by mass to 10% by mass of Sn, 0.005% by mass to 0.5% by mass of element A (element A being at least one selected from the group consisting of Nb, Zr and Ti), and 0.005% by mass or more of carbon.
- element A being at least one selected from the group consisting of Nb, Zr and Ti
- the mole ratio of the carbon to the element A is 10.0 or less.
- the copper alloy of the present invention may contain 5% by mass to 25% by mass of Ni, 5% by mass to 10% by mass of Sn, 0.005% by mass to 0.5% by mass of element A (element A being at least one selected from the group consisting of Nb, Zr and Ti), 0.01% by mass to 1% by mass of an additive element (the additive element being at least one selected from the group consisting of Mn, Zn, Mg, Ca, Al, Si, P, and B), and 0.005% by mass or more of carbon.
- the mole ratio of the carbon to the element A may be 10.0 or less, and the balance of the composition of the copper alloy may be Cu and inevitable impurities.
- Ni is expected to produce the effect of inducing spinodal decomposition in age-hardening heat treatment subsequent to solution heat treatment, and of thereby increasing the strength of copper alloy.
- the Ni content is 5% by mass or more, the strength is more increased; when it is 25% by mass or less, the copper alloy exhibits a high ductility, and decrease in electric conductivity due to the addition of Ni is suppressed.
- the Ni content is more than 10% by mass.
- a copper alloy containing more than 10% by mass of Ni allows a larger amount of carbon to dissolve in the molten alloy when melted. Thus, such a copper alloy is expected to more efficiently form carbide described later.
- the Ni content is more preferably 14% by mass to 16% by mass.
- the copper alloy When Ni content is 14% by mass or more, the copper alloy is expected to more efficiently form carbide; when it is 16% by mass or less, the copper alloy exhibits a further high ductility, and decrease in electric conductivity due to the addition of Ni is further suppressed.
- Sn is expected to dissolve in the copper alloy to form solid solution, thereby increasing the strength.
- the strength is increased; when it is 10% by mass or less, a Sn enriched phase, which can reduce ductility, is not easily formed.
- the Sn content is more preferably 7% by mass to 9% by mass.
- Sn content is 7% by mass or more, the strength is further increased; when it is 9% by mass or less, formation of Sn enriched phase is further suppressed.
- Nb, Zr or Ti added as element A is expected to form a carbide with the carbon in the copper alloy, and thus to prevent elemental carbon from precipitating, or to prevent interstitial carbon from penetrating the alloy to form solid solution.
- the element A content is 0.005% by mass or more, the amount of carbon unable to form carbide is not excessively increased; when it is 0.5% by mass or less, the molten metal can be so flowable as to prevent casting defects.
- the element A content may be, for example, in the range of 0.01% by mass to 0.3% by mass. If element A is Nb, the content thereof may be, for example, in the range of 0.01% by mass to 0.1% by mass.
- element A is Zr, the content thereof may be, for example, in the range of 0.03% by mass to 0.3% by mass. If element A is Ti, the content thereof may be, for example, in the range of 0.01% by mass to 0.25% by mass. Although at least part of element A is considered to be present in the form of carbide, element A may be present in a form other than carbide. When element A is present as carbide, the grain size of the carbide may be, for example, in the range of 20 ⁇ m or less, or 10 ⁇ m or less. If the carbide has an excessively large grain size, it is a concern that the hard carbide is likely to cause the copper alloy to crack therefrom.
- Carbon (C) is expected to form a carbide with element A in the alloy.
- the carbide is effective in reducing the grain size of the alloy.
- Carbon with a content of 0.005% by mass or more can form so adequate an amount of carbide as helps form primary crystals in solidification of the alloy, thus reducing the grain size of the cast structure, and/or can function to pin dislocation effectively during solution heat treatment subsequent to hot working and thus to suppress the increase in size of the recrystallized grains.
- the lower limit of the element A content may be, for example, 0.01% by mass or more.
- the upper limit of the element A content may be, for example, 0.2% by mass or less, or 0.1% by mass or less.
- the mole ratio of carbon to element A is 10.0 or less, where MA (mol) represents the amount by mole of element A and MC (mol) represents the amount by mole of carbon (C).
- MA (mol) represents the amount by mole of element A
- MC (mol) represents the amount by mole of carbon (C).
- the MC/MA mole ratio may be 9.0 or less, 8.4 or less, or 8.0 or less.
- the lower limit of the MC/MA mole ratio may be, for example, 0.04 or more, 0.1 or more, or 0.2 or more.
- MC/MA mole ratio may be 5.2 or less, or in the range of lager than 5.2 to 8.4.
- the copper alloy of the present invention may further contain at least one additive element selected from the group consisting of Mn, Zn, Mg, Ca, Al, Si, P, and B. These additive elements, which are dissolved in the copper alloy to form a solid solution, are expected to deoxidize the molten metal or to prevent the grains from increasing in size during solution heat treatment. Mn is more preferred as the additive element.
- the content of the additive element may be, for example, 1% by mass or less in total.
- the content of the additive element is preferably in the range of 0.01% by mass to 1% by mass, more preferably in the range of 0.1% by mass to 0.5% by mass, and still more preferably in the range of 0.15% by mass to 0.3% by mass. When the content of the additive element is 0.01% by mass or more, the above-described effects can be satisfactorily produced. An additive element content of more than 1% by mass however does not produce a further effect corresponding to the amount added.
- the copper alloy of the present invention may be based on C72700 alloy having a composition of Cu-9% by mass Ni-6% by mass Sn; an alloy having a composition of Cu-21% by mass Ni-5% by mass Sn; or C72900 or C96900 alloy having a composition of Cu-15% by mass Ni-8% by mass Sn.
- the content (percent by mass) of each constituent can be in the range of the corresponding value ⁇ 1% by mass.
- the balance of the composition of the copper alloy of the present invention is Cu and inevitable impurities.
- the copper alloy of the present invention may contain 5% by mass to 25% by mass of Ni, 5% by mass to 10% by mass of Sn, 0.005% by mass to 0.5% by mass of element A (at least one element selected from the group consisting of Nb, Zr and Ti), 0.005% by mass or more of carbon, and the balance being Cu and inevitable impurities, with a carbon-to-element A mole ratio of 10.0 or less.
- the composition of the copper alloy of the present invention may contain 5% by mass to 25% by mass of Ni, 5% by mass to 10% by mass of Sn, 0.01% by mass to 1% by mass of any of the above-cited additive elements, 0.005% by mass to 0.5% by mass of element A (at least one element selected from the group consisting of Nb, Zr and Ti), 0.005% by mass or more of carbon, and the balance being copper and inevitable impurities, with a carbon-to-element A mole ratio of 10.0 or less.
- element A at least one element selected from the group consisting of Nb, Zr and Ti
- the inevitable impurities include, for example, Fe or at least one of Pb, Bi, Cd, Sb, S, As, Se, and Te, and the total content of the inevitable impurities is preferably 0.5% by mass or less, more preferably 0.2% by mass or less, and still more preferably 0.1% by mass or less.
- the grain size of the copper alloy of the present invention measured by the intercept procedure specified in ASTM E112 is preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, and still more preferably 50 ⁇ m or less. A smaller grain size leads to a higher ductility.
- the "elongation after fracture" of the copper alloy of the present invention is 10% or more.
- the tensile strength of the copper alloy of the present invention is 915 MPa or more.
- the copper alloy of the present invention may be in the shape of, for example, a plate, a strip, a line, a bar, a tube, or a block, and may have any other shape.
- the copper alloy of the present invention is preferably in a state in which element A and carbon are finely dispersed in the matrix thereof.
- element A and carbon may form a carbide, or may form an alloy phase or an intermetallic compound with at least one element of Cu, Ni, and Sn.
- the copper alloy may be in a solution form that will be subjected to hardening heat treatment.
- the solution form will undergo spinodal decomposition by hardening heat treatment.
- the solution form may have a tensile strength of less than 915 MPa.
- the copper alloy of the present invention may be prepared in the following manufacturing process.
- the manufacturing process of the copper alloy may include, for example, (a) melting and casting step, (b) homogenization heat treatment step, (c) hot working step, (d) solution heat treatment step, and (e) hardening heat treatment step. At least one of following steps (b) to (e) may be omitted as long as the manufacturing process includes melting and casting step. Each of the steps will be described below.
- raw materials are melted and subjected to casting. Any substances may be used as the raw materials without particularly limitation as long as a desired composition can be prepared.
- raw materials of Cu, Ni, Sn, and element A (and additive elements) elementary substances of these elements or alloys containing two or more of these elements may be used.
- a carbon-containing furnace or crucible or a carbon-containing covering material for the molten metal may be used, and this carbon is used as the raw material of carbon.
- only one of the furnace, crucible, covering material and the like may contain carbon, or two or more of them may contain carbon.
- the carbon in the furnace, crucible, covering material of molten metal, or the like may be graphite, coke or carbon black.
- the carbon content in the copper alloy can be adjusted by controlling the type of the furnace or crucible material, the type and amount of the covering material, the contact time with carbon, the temperature of contact with carbon, the contact area with carbon, or the like.
- raw materials selected according to the above-described composition of the copper alloy can be used.
- the raw materials may be selected and used so that the copper alloy can contain 5% by mass to 25% by mass of Ni, 5% by mass to 10% by mass of Sn, 0.005% by mass to 0.5% by mass of element A (element A is at least one selected from the group consisting of Nb, Zr and Ti), 0.005% by mass or more of carbon, and the balance being Cu and inevitable impurities, with a carbon-to-element A mole ratio of 10.0 or less.
- the raw materials may be selected and used so that the copper alloy can further contain 0.01% by mass to 1% by mass of an additive element (at least one selected from the group consisting of Mn, Zn, Mg, Ca, Al, Si, P, and B).
- the raw materials are selected and used so that the copper alloy can have a composition containing 14.0% by mass to 16.0% by mass of Ni and 7.0% by mass to 9.0% by mass of Sn.
- Element A may be Nb, and the raw materials may be selected and used so that the Nb content can be in the range of 0.005% by mass to 0.1% by mass.
- Element A may be Zr, and the raw materials may be selected and used so that the Zr content can be in the range of 0.005% by mass to 0.3% by mass.
- Element A may be Ti, and the raw materials may be selected and used so that the Zr content can be in the range of 0.005% by mass to 0.25% by mass.
- the raw materials may be selected and used so that the mole ratio of carbon to element A can be 8.4 or less.
- the use in such a manner of the raw materials suggests that a material having the same composition as a copper alloy will be used in the subsequent steps: the homogenization heat treatment step, the hot working step, the solution heat treatment step, and the hardening heat treatment step.
- the casting may be performed by a fully continuous process, a semi-continuous process or a batch process. Alternatively, horizontal casting, vertical casting or the like may be applied.
- the ingot may be in the form of, for example, a slab, a billet, a bloom, a plate, a bar, a tube, or a block, and may be in any other form.
- the copper alloy obtained in step (a) is heat-treated to eliminate or reduce in amount non-uniform textures, such as micro-segregates and compounds produced in nonequilibrium manner during casting, which may affect the subsequent steps, thus forming a uniform texture.
- the homogenization heat treatment may be performed by holding the alloy at a temperature, for example, in the range of 700°C to 1000°C, preferably 800°C to 900°C, for a period in the range of 3 hours to 24 hours, preferably 8 hours to 20 hours. In an alloy containing a large amount of Ni or Sn, the Ni or Sn is liable to segregate.
- the homogenization heat treatment however eliminates or reduces in amount, for example, the micro-segregates of Ni or Sn in the ingot, thus reducing the occurrence of cracks during hot working and preventing remaining non-uniform Sn enriched phases in the copper alloy from degrading the elongation and fatigue property of the alloy.
- the homogenization heat treatment may not be necessary for an ingot having, for example, such quality as to contain micro-segregates or dendrite arms having small distances therebetween (that is, an ingot that can produce a homogeneous texture by the subsequent solution heat treatment).
- the copper alloy obtained in step (a) or (b) is hot-worked into a desired shape.
- the hot working may be performed by, for example, hot rolling, hot extrusion, hot drawing, hot forging, or the like. These hot working methods may be combined.
- the hot rolling may be flat rolling using flat rolls, or other rolling, such as groove rolling using grooved rolls.
- the hot working may be performed at a temperature in the range of 600°C to 900°C, preferably 700°C to 900°C.
- the equivalent strain produced in the hot forging may be 0.5 or more, 3 or more, or 5 or more.
- the equivalent strain is defined as the sum of the absolute values of natural logarithms of the ratio of cross-section areas before and after working.
- the copper alloy obtained in any of steps (a) to (c) is heated and then rapidly cooled to dissolve Ni, Sn and the like in Cu for forming a solid solution.
- the solution heat treatment may be performed by holding the alloy, for example, at a temperature in the range of 700°C to 950°C for a period in the range of 5 seconds to 6 hours, and subsequently cooling the alloy immediately and rapidly at a cooling rate of 20°C/s or more using water, oil or air.
- the alloy is preferably held at a temperature in the range of 750°C to 850°C for a period in the range of 5 seconds to 500 seconds (more preferably in the range of 30 seconds to 240 seconds), and then immediately cooled with water.
- the alloy is preferably held at a temperature in the range of 790°C to 870°C for a period in the range of 0.75 hour to 6 hours (more preferably in the range of 1 hour to 4 hours), and then immediately cooled with water.
- the copper alloy obtained in step (d) is subjected to heat treatment for spinodal decomposition and is thus hardened.
- the hardening heat treatment may be performed, for example, at a temperature in the range of 300°C to 500°C for a period in the range of 1 hour to 10 hours.
- the alloy may be held at a temperature in the range of 320°C to 420°C for a period in the range of 1 hour to 10 hours.
- the alloy may be held at a temperature in the range of 300°C to 450°C for a period in the range of 2 hours to 3 hours.
- the alloy may be held at a temperature in the range of 350°C to 500°C for a period in the range of 2 hours to 3 hours. If a thin plate is subjected to mill hardening heat treatment, the holding time can be shortened in each of the above cases because the thin plate has a small heat capacity.
- the above-described copper alloy of the present invention is superior in ductility. Accordingly, the copper alloy can be used in, for example, articles required to have a high strength and a large elongation after fracture. Since the copper alloy exhibits satisfactory ductility at high temperatures, and is accordingly not liable to crack during hot working. Furthermore, the copper alloy that has been subjected to solution heat treatment and hardening heat treatment has high strength and exhibits high ductility and high absorbed energy of Charpy impact test, and is accordingly expected to be used in wider range of applications including an application requiring high reliability. In general, copper alloys having a large Sn content are liable to crack during hot working. In contrast, the copper alloy of the present invention is not liable to crack during hot working in spite of a relatively high Sn content.
- the copper alloy of the present invention exhibits satisfactory ductility during hot working or in the resulting product in spite of a relatively high Ni content.
- the copper alloy of the present invention is superior in ductility and good in workability during hot working or cold working, wide varieties of manufacturing methods and intended product shapes can be applied.
- Known Cu-Ni-Sn-based copper alloys, of which the hot working is difficult, are casted into plates by a horizontal continuous casting process capable of casting with dimensions relatively close to the intended product dimensions, and then the plates are worked into articles in a strip shape, such as thin plates, through repetitions of cold rolling and annealing.
- the copper alloy having the composition according to the present invention is superior in ductility and is not liable to crack during hot forging or hot rolling of the ingot.
- the copper alloy of the present invention can therefore be relatively easily worked into dimensions or a shape relatively close to the dimensions or shape of the intended product.
- the known horizontal continuous casting does not cause a large problem in large-lot mass production.
- molten metal tends to remain in the horizontal melting holding furnace and results in a reduced yield.
- the copper alloy of the present invention can be casted by, for example, vertical continuous casting and can be casted in a small lot production with a high yield, accordingly being suitable for semi-continuous casting as well as fully continuous casting. Since vertical continuous casting can be applied, round ingots and rectangular ingots can be easily produced. Such a round ingot or rectangular ingot can be easily forged into a product in a block or billet shape having a large cross section with an aspect ratio close to 1.
- the copper alloy of the present invention is good in workability in hot rolling or cold rolling and can be worked into products in various shapes. Accordingly, the copper alloy is expected to be used for products other than thin plates and strips.
- the copper alloy of the present invention which is a Cu-Ni-Sn-based copper alloy having a high strength and a low friction coefficient, can be suitably used for sliding members, such as bearings, and structural members such as bars, tubes and blocks.
- the copper alloy is suitable for use as conductive members, such as wires, leaf springs (thin plate strip materials) of connectors or the like because of high strength, electric conductivity and bending formability thereof.
- the copper alloy is superior in stress relaxation characteristic and is accordingly suitable for use as terminal members such as burn-in socket, relay terminals, or springs that are used in high-temperature environment.
- the copper alloy of the above-described embodiment is prepared in a manufacturing process including steps (a) to (e).
- the process is not limited to this.
- the process may consist of step (a), omitting steps (b) to (e).
- the As-cast material produced through such a process is suitably used in steps (b) to (e) and the like, and has good workability and can provide a highly ductile and strong article.
- the manufacturing process may omit steps (c) to (e), step (d) and (e), or step (e).
- the resulting material produced through such a process is suitably used in the operation of the omitted step or the like.
- the manufacturing process of the copper alloy may further include a cold working step between steps (d) and (e).
- the cold working may be performed by, for example, cold rolling, cold extrusion, cold drawing, cold forging, or the like. These cold working methods may be combined.
- the cold working step may be substituted for step (c), or may be performed between steps (c) and (d). In this instance, the cold working step and an annealing step may be repeated.
- the cold working may be performed by any one of the above-mentioned methods.
- Experimental Examples 3 4, 6, 8 to 16, 18, 20, and 21 correspond to Examples of the present invention
- Experiment Examples 1, 2, 5, 7, 17, and 19 correspond to Comparative Examples.
- the present invention is not limited to the following Experimental Examples, and it should be appreciated that various forms can be applied to the invention within the technical scope of the invention.
- Raw materials including electrolytic copper, electrolytic nickel, tin and 35% by mass Mn-Cu alloy were melted in a graphite or ceramic crucible in an argon atmosphere in a high-frequency induction melting furnace to yield a 110 mm in diameter by 200 mm ingot of Cu-15% by mass Ni-8% by mass Sn-0.2% by mass Mn alloy containing additive elements shown in Table 2.
- the Nb source was 60% by mass Nb-Ni; the Zr source was metallic Zr; and the Ti source was metallic Ti.
- a carbon source a graphite-containing covering material for molten metal was optionally used.
- the carbon content was controlled by varying the type and amount of the covering material added to the molten metal, the contact time between the molten metal and the covering material, or the temperature at which the molten metal was held.
- the amounts of element A shown in the Tables were values measured by a wet chemical analysis (ICP), and the amounts of carbon in the Tables were values measured by a infrared absorption method after combustion in oxygen flow with a carbon analyzer.
- the ingot After being held at 900°C for 8 hours for homogenization heat treatment, the ingot was cut into a 42 mm in diameter ⁇ 95 mm round bar as a material for hot rolling with grooved rolls. The round bar was heated to 850°C and then rolled into a rectangular bar with a cross section of about 16 mm ⁇ 16 mm by the rolling. The states of cracks that occurred after the rolling are shown in Table 2.
- the groove-rolled bar After being heated at 830°C for 2 hours, the groove-rolled bar was immediately cooled in water for solution treatment, and then subjected to hardening heat treatment at 370°C for 4 hours. The resulting rectangular bar was worked into a specimen for tensile test, and the specimen was subjected to tensile test (according to JIS Z 2241, the same applies hereinafter) at room temperature. The results of the tensile test are shown in Table 2.
- Fig. 2 shows an electron micrograph (COMPO image, the same applies hereinafter) and EPMA analysis results (characteristic X-ray images of carbon and niobium) of the ingot of Experimental Example 6.
- the white granular phase in the COMPO image was observed at the same position as the white portions in the characteristic X-ray images representing the presence of carbon or niobium. This suggests that the white phase is a Nb carbide phase.
- the average grain sizes of the microstructure after being subjected to hardening heat treatment in Experimental Examples 4, 5 and 6 were measured by the intercept procedure specified in ASTM E112.
- FIG. 3 shows electron micrographs and EPMA mapping results of the microstructure of the ingot of Experimental Example 9.
- Fig. 4 shows electron micrographs and EPMA mapping results of the copper alloy after being subjected to hardening heat treatment in Experimental Example 8.
- the images denoted by CP are COMPO images at positions of mapping performed, and images denoted by Zr, Cu, C, Ni, or Sn are EPMA mapping images of the corresponding element.
- the higher content of the corresponding element is the whiter mapping image, which is originally a color image.
- portions in the EPMA mapping images corresponding to the angulated phases in the COMPO images larger amounts of carbon and Zr were observed, while Cu, Ni and Sn were smaller in amount.
- the angulated phases were Zr carbide phases.
- the phases that were assumed to be Zr carbide phases were further subjected to composition analysis (at three points for each) using a COMPO image ( ⁇ 3000).
- the results are shown in Table 1.
- Table 1 the mole ratio of Zr to carbon in the angulated phases was about 1:1, and this suggests that the phases were of ZrC.
- the average grain sizes of the microstructure after being subjected to hardening heat treatment in Experimental Examples 9 and 11, measured in the same manner were each 35 ⁇ m.
- Fig. 5 shows an electron micrograph and EPMA mapping images of Experimental Example 2. Fig. 5 suggests that samples not containing element A causes carbon to precipitate, and that such a microstructure reduces ductility.
- Raw materials including electrolytic copper, electrolytic nickel, tin and 35% by mass Mn-Cu alloy were melted in a graphite crucible in an argon atmosphere in a high-frequency induction melting furnace to yield an ingot of Cu-15% by mass Ni-8% by mass Sn-0.2% by mass Mn alloy containing additive elements shown in Table 3.
- the sound part of the ingot measured 275 mm in diameter ⁇ 500 mm.
- the Nb source was 60% by mass Nb-Ni alloy.
- the carbon source was the graphite crucible, and the carbon content was adjusted by controlling the contact time between the graphite crucible and the molten metal or the time at which the molten metal was held.
- the ingot After being held at 900°C for 8 hours for homogenization heat treatment, the ingot was turned at the surface and was hot-extruded into a round bar of about 100 mm in diameter at 850°C. After being heated at 830°C for 2 hours, the round bar was immediately cooled in water for solution treatment, and then subjected to hardening heat treatment at 370°C for 4 hours. The resulting round bar was worked into a specimen for tensile test, and the specimen was subjected to tensile test at room temperature. The results of the tensile test are shown in Table 3.
- Raw materials including electrolytic copper, electrolytic nickel, tin and 35% by mass Mn-Cu alloy were melted in a graphite crucible in an argon atmosphere in a high-frequency induction melting furnace to yield an ingot of Cu-15% by mass Ni-8% by mass Sn-0.2% by mass Mn alloy containing additive elements shown in Table 4.
- the sound part of the ingot measured 275 mm in diameter ⁇ 380 mm.
- the Nb source was 60% by mass Nb-Ni alloy, and the Zr source was metallic Zr.
- the carbon source was the same graphite crucible as in Experimental Examples 17 and 18.
- the ingot, surface of which was turned was held at 900°C for 8 hours for homogenization heat treatment and was then cooled to 850°C.
- the sample was subjected to hot forging for an intended round bar of about 180 mm in diameter ⁇ 600 mm with an equivalent strain of 6.
- the copper alloy is expected to be used in a wide range of applications.
- Table 4 Additive elements Evaluation Element A C Mole ratio MC/MA Equivalent strain (target value: 6) Nb Zr mass% mass% mass% - - Experimental Example 19 Not added Not added 0.012 - 0.7 Experimental Example 20 0.072 Not added 0.013 1.4 6 Experimental Example 21 Not added 0.099 0.011 0.8 6 Relative small creases and cracks occurred in the surface, but the forging was operated while cracks were removed by grinding
- the present invention can be applied to the field related to copper alloy.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Conductive Materials (AREA)
Claims (20)
- Kupferlegierung, bestehend aus:5 Masse-% bis 25 Masse-% Ni;5 Masse-% bis 10 Masse-% Sn;0,005 Masse-% bis 0,5 Masse-% eines Elements A, wobei Element A zumindest ein aus der aus Nb, Zr und Ti bestehenden Gruppe ausgewähltes Element ist;0,005 Masse-% oder mehr Kohlenstoff, wobei das Molverhältnis des Kohlenstoffs zu Element A 10,0 oder weniger beträgt;gegebenenfalls 0,01 Masse-% bis 1 Masse-% eines Zusatzelements, wobei das Zusatzelements zumindest ein aus der aus Mn, Zn, Mg, Ca, Al, Si, P und B bestehenden Gruppe ausgewähltes Element ist; undder Rest der Zusammensetzung der Kupferlegierung Cu und unvermeidbare Verunreinigungen ist.
- Kupferlegierung nach Anspruch 1, wobei 0,01 Masse-% bis 1 Masse-% des Zusatzelements vorliegen, wobei das Zusatzelement zumindest ein aus der aus Mn, Zn, Mg, Ca, Al, Si, P und B bestehenden Gruppe ausgewähltes Element ist.
- Kupferlegierung nach Anspruch 1 oder 2, die 14,0 Masse-% bis 16,0 Masse-% Ni und 7,0 Masse-% bis 9,0 Masse-% Sn enthält.
- Kupferlegierung nach einem der Ansprüche 1 bis 3, wobei Element A Nb ist und 0,005 Masse-% bis 0,1 Masse-% Nb enthalten sind.
- Kupferlegierung nach einem der Ansprüche 1 bis 3, wobei Element A Zr ist und 0,005 Masse-% bis 0,3 Masse-% Zr enthalten sind.
- Kupferlegierung nach einem der Ansprüche 1 bis 3, wobei Element A Ti ist und 0,005 Masse-% bis 0,25 Masse-% Ti enthalten sind.
- Kupferlegierung nach einem der Ansprüche 1 bis 6, wobei zumindest ein Teil von Element A als Carbid vorliegt.
- Kupferlegierung nach einem der Ansprüche 1 bis 7, wobei das Molverhältnis von Kohlenstoff zu Element A 8,4 oder weniger beträgt.
- Kupferlegierung nach einem der Ansprüche 1 bis 8, wobei die Kupferlegierung eine Bruchdehnung von 10 % oder mehr aufweist.
- Kupferlegierung nach einem der Ansprüche 1 bis 9, wobei die Kupferlegierung eine Zugfestigkeit von 915 MPa oder mehr aufweist.
- Verfahren zur Herstellung einer Kupferlegierung, wobei das Verfahren Folgendes umfasst:einen Schmelz- und Gießschritt des Schmelzens und Gießens von Rohmaterialien, die aus Folgendem bestehen:5 Masse-% bis 25 Masse-% Ni;5 Masse-% bis 10 Masse-% Sn;0,005 Masse-% bis 0,5 Masse-% von Element A, wobei Element A zumindest ein aus der aus Nb, Zr und Ti bestehenden Gruppe ausgewähltes Element ist;
0,005 Masse-% oder mehr Kohlenstoff, wobei das Molverhältnis des Kohlenstoffs zu Element A 10,0 oder weniger beträgt;gegebenenfalls 0,01 Masse-% bis 1 Masse-% eines Zusatzelements, wobei das Zusatzelements zumindest ein aus der aus Mn, Zn, Mg, Ca, Al, Si, P und B bestehenden Gruppe ausgewähltes Element ist; undder Rest der Zusammensetzung der Rohmaterialien aus Cu und unvermeidbaren Verunreinigungen besteht. - Verfahren zur Herstellung einer Kupferlegierung nach Anspruch 11, wobei das Verfahren weiters Folgendes umfasst:einen Homogenisierungswärmebehandlungsschritt, bei dem die dem Schmelz- und Gießschritt unterzogene Kupferlegierung einer Homogenisierungswärmebehandlung bei einer Temperatur im Bereich von 700 °C bis 1000 °C für einen Zeitraum im Bereich von 3 Stunden bis 10 Stunden unterzogen wird.
- Verfahren zur Herstellung einer Kupferlegierung nach Anspruch 11 oder 12, wobei das Verfahren weiters Folgendes umfasst:einen Lösungswärmebehandlungsschritt, bei dem die dem Schmelz- und Gießschritt unterzogene Kupferlegierung auf eine Temperatur von 700 °C oder mehr erhitzt wird und die Kupferlegierung dann mit einer Rate von 20 °C/s oder mehr rasch abgekühlt wird, wodurch eine feste Lösung ausgebildet wird.
- Verfahren zur Herstellung einer Kupferlegierung nach einem der Ansprüche 11 bis 13, wobei das Verfahren weiters Folgendes umfasst:einen Härtungswärmebehandlungsschritt, bei dem die dem Schmelz- und Gießschritt unterzogene Kupferlegierung einer Wärmebehandlung unterzogen wird, um eine spinodale Auflösung zu verursachen, wodurch die Kupferlegierung gehärtet wird.
- Verfahren zur Herstellung einer Kupferlegierung nach einem der Ansprüche 11 bis 14, wobei die Rohmaterialien im Schmelz- und Gießschritt 0,01 Masse-% bis 1 Masse-% des Zusatzelements enthalten, das zumindest ein aus der aus Mn, Zn, Mg, Ca, Al, Si, P und B bestehenden Gruppe ausgewähltes Element ist.
- Verfahren zur Herstellung einer Kupferlegierung nach einem der Ansprüche 11 bis 15, wobei im Schmelz- und Gießschritt Rohmaterialien verwendet werden, die 14,0 Masse-% bis 16,0 Masse-% Ni und 7,0 Masse-% bis 9,0 Masse-% Sn enthalten.
- Verfahren zur Herstellung einer Kupferlegierung nach einem der Ansprüche 11 bis 16, wobei im Schmelz- und Gießschritt Rohmaterialien verwendet werden, von denen Element A Nb ist und 0,005 Masse-% bis 0,1 Masse-% Nb enthalten sind.
- Verfahren zur Herstellung einer Kupferlegierung nach einem der Ansprüche 11 bis 16, wobei im Schmelz- und Gießschritt Rohmaterialien verwendet werden, von denen Element A Zr ist und 0,005 Masse-% bis 0,3 Masse-% Zr enthalten sind.
- Verfahren zur Herstellung einer Kupferlegierung nach einem der Ansprüche 11 bis 16, wobei im Schmelz- und Gießschritt Rohmaterialien verwendet werden, von denen Element A Ti ist und 0,005 Masse-% bis 0,25 Masse-% Ti enthalten sind.
- Verfahren zur Herstellung einer Kupferlegierung nach einem der Ansprüche 11 bis 19, wobei im Schmelz- und Gießschritt Rohmaterialien mit einem Molverhältnis von Kohlenstoff zu Element A von 8,4 oder weniger verwendet werden.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015087888A JP5925936B1 (ja) | 2015-04-22 | 2015-04-22 | 銅合金 |
JP2016037126A JP6563831B2 (ja) | 2016-02-29 | 2016-02-29 | 銅合金及びその製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3085799A1 EP3085799A1 (de) | 2016-10-26 |
EP3085799B1 true EP3085799B1 (de) | 2018-01-17 |
Family
ID=55752223
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16166305.9A Active EP3085799B1 (de) | 2015-04-22 | 2016-04-21 | Kupferlegierung und verfahren zur herstellung davon |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3085799B1 (de) |
KR (1) | KR102502373B1 (de) |
CN (1) | CN106065443B (de) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110462091B (zh) * | 2017-02-04 | 2022-06-14 | 美题隆公司 | 生产铜镍锡合金的方法 |
WO2018235458A1 (ja) * | 2017-06-22 | 2018-12-27 | 日本精線株式会社 | ばね用銅合金極細線及びその製造方法 |
CN110964942B (zh) * | 2019-12-19 | 2021-07-30 | 江苏隆达超合金股份有限公司 | 一种高强耐磨铜合金管材的制备工艺 |
CN115141954B (zh) * | 2021-03-31 | 2024-05-31 | 日本碍子株式会社 | 铜合金及其制造方法 |
US11767578B2 (en) | 2021-05-26 | 2023-09-26 | National Tsing Hua University | High strength and wear resistant multi-element copper alloy and article comprising the same |
CN113789459B (zh) * | 2021-09-02 | 2022-07-12 | 宁波博威合金材料股份有限公司 | 一种铜镍锡合金及其制备方法和应用 |
CN114351063B (zh) * | 2021-12-14 | 2022-11-18 | 华南理工大学 | 一种CuNiSn系合金棒材的短流程热处理方法 |
CN114457255B (zh) * | 2022-01-25 | 2022-07-15 | 深圳御矿新材料有限公司 | 适用于音圈电机的高性能铜合金带箔材 |
CN115786766B (zh) * | 2022-11-23 | 2024-07-05 | 河南科技大学 | 一种油气开采用多元Cu-Ni-Sn基合金及其制备方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2501275B2 (ja) | 1992-09-07 | 1996-05-29 | 株式会社東芝 | 導電性および強度を兼備した銅合金 |
JPH08283889A (ja) | 1995-04-14 | 1996-10-29 | Chuetsu Gokin Chuko Kk | 高強度・高硬度銅合金 |
JP4472979B2 (ja) * | 2003-12-17 | 2010-06-02 | トヨタ自動車株式会社 | 肉盛用耐摩耗性銅基合金 |
US8349466B2 (en) | 2007-02-22 | 2013-01-08 | Kennametal Inc. | Composite materials comprising a hard ceramic phase and a Cu-Ni-Sn alloy |
JP2008248355A (ja) | 2007-03-30 | 2008-10-16 | Nikko Kinzoku Kk | 電子部品用チタン銅及びこれを用いた電子部品 |
JP2009242895A (ja) * | 2008-03-31 | 2009-10-22 | Nippon Mining & Metals Co Ltd | 曲げ加工性に優れた高強度銅合金 |
EP2653574B1 (de) | 2010-12-13 | 2017-05-31 | Nippon Seisen Co., Ltd. | Kupferlegierung und herstellungsverfahren für die kupferlegierung |
-
2016
- 2016-04-21 EP EP16166305.9A patent/EP3085799B1/de active Active
- 2016-04-22 KR KR1020160049256A patent/KR102502373B1/ko active IP Right Grant
- 2016-04-22 CN CN201610256704.4A patent/CN106065443B/zh active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
CN106065443A (zh) | 2016-11-02 |
KR20160125917A (ko) | 2016-11-01 |
CN106065443B (zh) | 2021-01-29 |
EP3085799A1 (de) | 2016-10-26 |
KR102502373B1 (ko) | 2023-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3085799B1 (de) | Kupferlegierung und verfahren zur herstellung davon | |
EP2784167B1 (de) | Cu-Ti-basierte Kupferlegierungsfolie, Herstellungsverfahren dafür, und elektrischen Strom führendes Bauteil | |
EP2570505B1 (de) | Kupferlegierung und gewalztes kupferlegierungsmaterial für elektronische vorrichtung und verfahren zur herstellung dieser legierung | |
EP3037561B1 (de) | Kupferlegierung für elektrische und elektronische vorrichtungen, blech aus einer kupferlegierung für für elektrische und elektronische vorrichtungen, komponente für für elektrische und elektronische vorrichtungen, endgerät und sammelschiene | |
KR101331339B1 (ko) | 전자 재료용 Cu-Ni-Si-Co 계 구리 합금 및 그 제조 방법 | |
JP4189687B2 (ja) | マグネシウム合金材 | |
TWI465591B (zh) | Cu-Ni-Si alloy and its manufacturing method | |
EP2256219A1 (de) | Kupferlegierungswerkstoff | |
EP2530175A1 (de) | Kupferlegierung von hoher festigkeit und hoher elektrischer leitfähigkeit | |
EP2940166B1 (de) | Kupferlegierung für elektrische und elektronische einrichtung, kupferlegierungsdünnschicht für elektrische und elektronische einrichtung sowie leitfähiges teil und endgerät für elektrische und elektronische einrichtung | |
TWI429764B (zh) | Cu-Co-Si alloy for electronic materials | |
US10072321B2 (en) | Copper nickel alloy | |
EP3375897B1 (de) | Kupferlegierungsmaterial | |
CN111212923B (zh) | 铸造用模具材料及铜合金原材料 | |
JP5555154B2 (ja) | 電気・電子部品用銅合金およびその製造方法 | |
JP2009079271A (ja) | Ca含有Mg合金圧延材 | |
JP6563831B2 (ja) | 銅合金及びその製造方法 | |
JP5610789B2 (ja) | 銅合金板材および銅合金板材の製造方法 | |
US20150348665A1 (en) | Copper alloy for electric and electronic device, copper alloy sheet for electric and electronic device, conductive component for electric and electronic device, and terminal | |
JP6821290B2 (ja) | 電子部品用Cu−Ni−Co−Si合金 | |
TWI639163B (zh) | Cu-Co-Ni-Si alloy for electronic parts, and electronic parts | |
JP5522692B2 (ja) | 高強度銅合金鍛造材 | |
JP5688744B2 (ja) | 高強度高靱性銅合金鍛造材 | |
JP6154996B2 (ja) | 高強度銅合金材およびその製造方法 | |
JP6185799B2 (ja) | Cu−Ti系銅合金および製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20170113 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20170802 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 964477 Country of ref document: AT Kind code of ref document: T Effective date: 20180215 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602016001344 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 3 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180117 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 964477 Country of ref document: AT Kind code of ref document: T Effective date: 20180117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180117 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180117 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180117 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180417 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180117 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180117 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180117 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180117 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180117 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180417 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180517 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180418 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180117 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602016001344 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180117 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180117 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180117 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180117 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180117 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180117 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180117 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180117 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180430 |
|
26N | No opposition filed |
Effective date: 20181018 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180421 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180430 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180421 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190430 Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180421 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180117 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180117 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20160421 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230228 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240229 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240308 Year of fee payment: 9 |