EP3066022A1 - Récipients flexibles faciles à vider - Google Patents

Récipients flexibles faciles à vider

Info

Publication number
EP3066022A1
EP3066022A1 EP14802557.0A EP14802557A EP3066022A1 EP 3066022 A1 EP3066022 A1 EP 3066022A1 EP 14802557 A EP14802557 A EP 14802557A EP 3066022 A1 EP3066022 A1 EP 3066022A1
Authority
EP
European Patent Office
Prior art keywords
container
structural support
product
volume
flexible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP14802557.0A
Other languages
German (de)
English (en)
Inventor
Ken Mcguire
Scott Stanley
Lee ARENT
Jun You
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Publication of EP3066022A1 publication Critical patent/EP3066022A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D75/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
    • B65D75/008Standing pouches, i.e. "Standbeutel"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D75/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D35/00Pliable tubular containers adapted to be permanently or temporarily deformed to expel contents, e.g. collapsible tubes for toothpaste or other plastic or semi-liquid material; Holders therefor
    • B65D35/02Body construction
    • B65D35/10Body construction made by uniting or interconnecting two or more components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D31/00Bags or like containers made of paper and having structural provision for thickness of contents
    • B65D31/16Bags or like containers made of paper and having structural provision for thickness of contents of special shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D33/00Details of, or accessories for, sacks or bags
    • B65D33/004Information or decoration elements, e.g. level indicators, detachable tabs or coupons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D33/00Details of, or accessories for, sacks or bags
    • B65D33/02Local reinforcements or stiffening inserts, e.g. wires, strings, strips or frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D35/00Pliable tubular containers adapted to be permanently or temporarily deformed to expel contents, e.g. collapsible tubes for toothpaste or other plastic or semi-liquid material; Holders therefor
    • B65D35/24Pliable tubular containers adapted to be permanently or temporarily deformed to expel contents, e.g. collapsible tubes for toothpaste or other plastic or semi-liquid material; Holders therefor with auxiliary devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D75/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
    • B65D75/04Articles or materials wholly enclosed in single sheets or wrapper blanks
    • B65D75/20Articles or materials wholly enclosed in single sheets or wrapper blanks in sheets or blanks doubled around contents and having their opposed free margins united, e.g. by pressure-sensitive adhesive, crimping, heat-sealing, or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D75/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
    • B65D75/52Details
    • B65D75/525External rigid or semi-rigid supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D75/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
    • B65D75/52Details
    • B65D75/54Cards, coupons, or other inserts or accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D75/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
    • B65D75/52Details
    • B65D75/54Cards, coupons, or other inserts or accessories
    • B65D75/56Handles or other suspension means
    • B65D75/566Hand holes or suspension apertures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D75/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
    • B65D75/52Details
    • B65D75/58Opening or contents-removing devices added or incorporated during package manufacture
    • B65D75/5861Spouts
    • B65D75/5866Integral spouts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D75/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
    • B65D75/52Details
    • B65D75/58Opening or contents-removing devices added or incorporated during package manufacture
    • B65D75/5861Spouts
    • B65D75/5872Non-integral spouts
    • B65D75/5877Non-integral spouts connected to a planar surface of the package wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D75/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
    • B65D75/52Details
    • B65D75/58Opening or contents-removing devices added or incorporated during package manufacture
    • B65D75/5861Spouts
    • B65D75/5872Non-integral spouts
    • B65D75/5883Non-integral spouts connected to the package at the sealed junction of two package walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/02Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage
    • B65D81/03Wrappers or envelopes with shock-absorbing properties, e.g. bubble films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2205/00Venting means
    • B65D2205/02Venting holes

Definitions

  • the present disclosure relates in general to containers, and in particular, to containers made from flexible material, wherein the containers are easy to empty.
  • Fluent products include liquid products and/or pourable solid products.
  • a container can be used to receive, contain, and dispense one or more fluent products.
  • a container can be used to receive, contain, and/or dispense individual articles or separately packaged portions of a product.
  • a container can include one or more product volumes.
  • a product volume can be configured to be filled with one or more fluent products.
  • a container receives a fluent product when its product volume is filled. Once filled to a desired volume, a container can be configured to contain the fluent product in its product volume, until the fluent product is dispensed.
  • a container contains a fluent product by providing a barrier around the fluent product. The barrier prevents the fluent product from escaping the product volume.
  • the barrier can also protect the fluent product from the environment outside of the container.
  • a filled product volume is typically closed off by a cap or a seal.
  • a container can be configured to dispense one or more fluent products contained in its product volume(s). Once dispensed, an end user can consume, apply, or otherwise use the fluent product(s), as appropriate.
  • a container may be configured to be refilled and reused or a container may be configured to be disposed of after a single fill or even after a single use.
  • a container should be configured with sufficient structural integrity, such that it can receive, contain, and dispense its fluent product(s), as intended, without failure.
  • a container for fluent product(s) can be handled, displayed for sale, and put into use.
  • a container can be handled in many different ways as it is made, filled, decorated, packaged, shipped, and unpacked.
  • a container can experience a wide range of external forces and environmental conditions as it is handled by machines and people, moved by equipment and vehicles, and contacted by other containers and various packaging materials.
  • a container for fluent product(s) should be configured with sufficient structural integrity, such that it can be handled in any of these ways, or in any other way known in the art, as intended, without failure.
  • a container can also be displayed for sale in many different ways as it is offered for purchase.
  • a container can be offered for sale as an individual article of commerce or packaged with one or more other containers or products, which together form an article of commerce.
  • a container can be offered for sale as a primary package with or without a secondary package.
  • a container can be decorated to display characters, graphics, branding, and/or other visual elements when the container is displayed for sale.
  • a container can be configured to be displayed for sale while laying down or standing up on a store shelf, while presented in a merchandising display, while hanging on a display hanger, or while loaded into a display rack or a vending machine.
  • a container for fluent product(s) should be configured with a structure that allows it to be displayed in any of these ways, or in any other way known in the art, as intended, without failure.
  • a container can also be put into use in many different ways, by its end user.
  • a container can be configured to be held and/or gripped by an end user, so a container should be appropriately sized and shaped for human hands; and for this purpose, a container can include useful structural features such as a handle and/or a gripping surface.
  • a container can be stored while laying down or standing up on a support surface, while hanging on or from a projection such as a hook or a clip, or while supported by a product holder, or (for refillable or rechargeable containers) positioned in a refilling or recharging station.
  • a container can be configured to dispense fluent product(s) while in any of these storage positions or while being held by the user.
  • a container can be configured to dispense fluent product(s) through the use of gravity, and/or pressure, and/or a dispensing mechanism, such as a pump, or a straw, or through the use of other kinds of dispensers known in the art.
  • Some containers can be configured to be filled and/or refilled by a seller (e.g. a merchant or retailer) or by an end user.
  • a container for fluent product(s) should be configured with a structure that allows it to be put to use in any of these ways, or in any other way known in the art, as intended, without failure.
  • a container can also be configured to be disposed of by the end user, as waste and/or recyclable material, in various ways.
  • One conventional type of container for fluent products is a rigid container made from solid material(s).
  • Examples of conventional rigid containers include molded plastic bottles, glass jars, metal cans, cardboard boxes, etc. These conventional rigid containers are well-known and generally useful; however their designs do present several notable difficulties.
  • Some rigid containers for fluent products can be expensive to make.
  • Some rigid containers are made by a process shaping one or more solid materials.
  • Other rigid containers are made with a phase change process, where container materials are heated (to soften/melt), then shaped, then cooled (to harden/solidify). Both kinds of making are energy intensive processes, which can require complex equipment.
  • some conventional rigid containers for fluent products can be prone to certain kinds of damage. If a rigid container is pushed against a rough surface, then the container can become scuffed, which may obscure printing on the container. If a rigid container is pressed against a hard object, then the container can become dented, which may look unsightly. And if a rigid container is dropped, then the container can rupture, which may cause its fluent product to be lost.
  • the present disclosure describes various embodiments of containers made from flexible material. Because these containers are made from flexible material, these containers can be less expensive to make, can use less material, and can be easier to decorate, when compared with conventional rigid containers. First, these containers can be less expensive to make, because the conversion of flexible materials (from sheet form to finished goods) generally requires less energy and complexity, than formation of rigid materials (from bulk form to finished goods). Second, these containers can use less material, because they are configured with novel support structures that do not require the use of the thick solid walls used in conventional rigid containers. Third, these flexible containers can be easier to print and/or decorate, because they are made from flexible materials, and flexible materials can be printed and/or decorated as conformable webs, before they are formed into containers.
  • these flexible containers can be less prone to scuffing, denting, and rupture, because flexible materials allow their outer surfaces to deform when contacting surfaces and objects, and then to bounce back.
  • fluent products in these flexible containers can be more readily and carefully dispensed, because the sides of flexible containers can be more easily and controllably squeezed by human hands.
  • the containers of the present disclosure are made from flexible material, they can be configured with sufficient structural integrity, such that they can receive, contain, and dispense fluent product(s), as intended, without failure.
  • these containers can be configured with sufficient structural integrity, such that they can withstand external forces and environmental conditions from handling, without failure.
  • these containers can be configured with structures that allow them to be displayed and put into use, as intended, without failure.
  • the present disclosure provides various containers that include a resiliently deformable product volume and a dispenser configured to dispense fluent product from the product volume.
  • the product volume When no dispensing force is applied to the product volume, the product volume has an undeformed state and a first interior volume.
  • the product volume When a dispensing force is applied to the product volume, the product volume is resiliently deformable to a deformed state in which the product volume is reduced to a second interior volume less than the first interior volume, and the dispenser can dispense at least some of the fluent product from the product volume.
  • the dispensing force is released, the product volume is self restoring to the undeformed state.
  • Figure 1A illustrates a front view of an embodiment of a stand up flexible container.
  • Figure IB illustrates a side view of the stand up flexible container of Figure 1A.
  • Figure 1C illustrates a top view of the stand up flexible container of Figure 1 A.
  • Figure ID illustrates a bottom view of the stand up flexible container of Figure 1 A.
  • Figure IE illustrates a perspective view of an alternative embodiment of the stand up flexible container of Figure 1A, including an asymmetric structural support frame.
  • Figure IF illustrates a perspective view of an alternative embodiment of the stand up flexible container of Figure 1A, including an internal structural support frame.
  • Figure 1G illustrates a perspective view of an alternative embodiment of the stand up flexible container of Figure 1A, including an external structural support frame.
  • Figure 2A illustrates a top view of a stand up flexible container having a structural support frame that has an overall shape like a frustum.
  • Figure 2B illustrates a front view of the container of Figure 2A.
  • Figure 2C illustrates a side view of the container of Figure 2A.
  • Figure 2D illustrates an isometric view of the container of Figure 2A.
  • Figure 2E illustrates a perspective view of an alternative embodiment of the stand up flexible container of Figure 2A, including an asymmetric structural support frame.
  • Figure 2F illustrates a perspective view of an alternative embodiment of the stand up flexible container of Figure 1A, including an internal structural support frame.
  • Figure 2G illustrates a perspective view of an alternative embodiment of the stand up flexible container of Figure 2A, including an external structural support frame.
  • Figure 3 A illustrates a top view of a stand up flexible container having a structural support frame that has an overall shape like a pyramid.
  • Figure 3B illustrates a front view of the container of Figure 3A.
  • Figure 3C illustrates a side view of the container of Figure 3A.
  • Figure 3D illustrates an isometric view of the container of Figure 3A.
  • Figure 3E illustrates a perspective view of an alternative embodiment of the stand up flexible container of Figure 3A, including an asymmetric structural support frame.
  • Figure 3F illustrates a perspective view of an alternative embodiment of the stand up flexible container of Figure 3A, including an internal structural support frame.
  • Figure 3G illustrates a perspective view of an alternative embodiment of the stand up flexible container of Figure 3A, including an external structural support frame.
  • Figure 4A illustrates a top view of a stand up flexible container having a structural support frame that has an overall shape like a trigonal prism.
  • Figure 4B illustrates a front view of the container of Figure 4A.
  • Figure 4C illustrates a side view of the container of Figure 4A.
  • Figure 4D illustrates an isometric view of the container of Figure 4A.
  • Figure 4E illustrates a perspective view of an alternative embodiment of the stand up flexible container of Figure 4A, including an asymmetric structural support frame.
  • Figure 4F illustrates a perspective view of an alternative embodiment of the stand up flexible container of Figure 4A, including an internal structural support frame.
  • Figure 4G illustrates a perspective view of an alternative embodiment of the stand up flexible container of Figure 4A, including an external structural support frame.
  • Figure 5A illustrates a top view of a stand up flexible container having a structural support frame that has an overall shape like a tetragonal prism.
  • Figure 5B illustrates a front view of the container of Figure 5A.
  • Figure 5C illustrates a side view of the container of Figure 5A.
  • Figure 5D illustrates an isometric view of the container of Figure 5A.
  • Figure 5E illustrates a perspective view of an alternative embodiment of the stand up flexible container of Figure 5A, including an asymmetric structural support frame.
  • Figure 5F illustrates a perspective view of an alternative embodiment of the stand up flexible container of Figure 5A, including an internal structural support frame.
  • Figure 5G illustrates a perspective view of an alternative embodiment of the stand up flexible container of Figure 5 A, including an external structural support frame.
  • Figure 6A illustrates a top view of a stand up flexible container having a structural support frame that has an overall shape like a pentagonal prism.
  • Figure 6B illustrates a front view of the container of Figure 6A.
  • Figure 6C illustrates a side view of the container of Figure 6A.
  • Figure 6D illustrates an isometric view of the container of Figure 6A.
  • Figure 6E illustrates a perspective view of an alternative embodiment of the stand up flexible container of Figure 6A, including an asymmetric structural support frame.
  • Figure 6F illustrates a perspective view of an alternative embodiment of the stand up flexible container of Figure 6A, including an internal structural support frame.
  • Figure 6G illustrates a perspective view of an alternative embodiment of the stand up flexible container of Figure 6A, including an external structural support frame.
  • Figure 7A illustrates a top view of a stand up flexible container having a structural support frame that has an overall shape like a cone.
  • Figure 7B illustrates a front view of the container of Figure 7A.
  • Figure 7C illustrates a side view of the container of Figure 7A.
  • Figure 7D illustrates an isometric view of the container of Figure 7A.
  • Figure 7E illustrates a perspective view of an alternative embodiment of the stand up flexible container of Figure 7A, including an asymmetric structural support frame.
  • Figure 7F illustrates a perspective view of an alternative embodiment of the stand up flexible container of Figure 7A, including an internal structural support frame.
  • Figure 7G illustrates a perspective view of an alternative embodiment of the stand up flexible container of Figure 7A, including an external structural support frame.
  • Figure 8A illustrates a top view of a stand up flexible container having a structural support frame that has an overall shape like a cylinder.
  • Figure 8B illustrates a front view of the container of Figure 8A.
  • Figure 8C illustrates a side view of the container of Figure 8A.
  • Figure 8D illustrates an isometric view of the container of Figure 8A.
  • Figure 8E illustrates a perspective view of an alternative embodiment of the stand up flexible container of Figure 8A, including an asymmetric structural support frame.
  • Figure 8F illustrates a perspective view of an alternative embodiment of the stand up flexible container of Figure 8A, including an internal structural support frame.
  • Figure 8G illustrates a perspective view of an alternative embodiment of the stand up flexible container of Figure 8A, including an external structural support frame.
  • Figure 9A illustrates a top view of an embodiment of a self-supporting flexible container, having an overall shape like a square.
  • Figure 9B illustrates an end view of the flexible container of Figure 9A.
  • Figure 9C illustrates a perspective view of an alternative embodiment of the self-supporting flexible container of Figure 9A, including an asymmetric structural support frame.
  • Figure 9D illustrates a perspective view of an alternative embodiment of the self-supporting flexible container of Figure 9A, including an internal structural support frame.
  • Figure 9E illustrates a perspective view of an alternative embodiment of the self-supporting flexible container of Figure 9A, including an external structural support frame.
  • Figure 10A illustrates a top view of an embodiment of a self-supporting flexible container, having an overall shape like a triangle.
  • Figure 10B illustrates an end view of the flexible container of Figure 10A.
  • Figure IOC illustrates a perspective view of an alternative embodiment of the self-supporting flexible container of Figure 10A, including an asymmetric structural support frame.
  • Figure 10D illustrates a perspective view of an alternative embodiment of the self-supporting flexible container of Figure 10A, including an internal structural support frame.
  • Figure 10E illustrates a perspective view of an alternative embodiment of the self-supporting flexible container of Figure 10A, including an external structural support frame.
  • Figure 11A illustrates a top view of an embodiment of a self-supporting flexible container, having an overall shape like a circle.
  • Figure 1 IB illustrates an end view of the flexible container of Figure 11A.
  • Figure 11C illustrates a perspective view of an alternative embodiment of the self-supporting flexible container of Figure 11 A, including an asymmetric structural support frame.
  • Figure 11D illustrates a perspective view of an alternative embodiment of the self-supporting flexible container of Figure 11 A, including an internal structural support frame.
  • Figure HE illustrates a perspective view of an alternative embodiment of the self-supporting flexible container of Figure 11 A, including an external structural support frame.
  • Figure 12A illustrates an isometric view of push-pull type dispenser.
  • Figure 12B illustrates an isometric view of dispenser with a flip-top cap.
  • Figure 12C illustrates an isometric view of dispenser with a screw-on cap.
  • Figure 12D illustrates an isometric view of rotatable type dispenser.
  • Figure 12E illustrates an isometric view of nozzle type dispenser with a cap.
  • Figure 13A illustrates an isometric view of straw dispenser.
  • Figure 13B illustrates an isometric view of straw dispenser with a lid.
  • Figure 13C illustrates an isometric view of flip up straw dispenser.
  • Figure 13D illustrates an isometric view of straw dispenser with bite valve.
  • Figure 14A illustrates an isometric view of pump type dispenser.
  • Figure 14B illustrates an isometric view of pump spray type dispenser.
  • Figure 14C illustrates an isometric view of trigger spray type dispenser.
  • Figure 15 illustrates a front view of another embodiment of a stand up flexible container, similar to the container illustrated in Figures 1A-1D, but having a dispenser disposed on or at a bottom of the container.
  • Figure 16A illustrates the flexible container of Figure 15 in an undeformed state.
  • Figure 16B illustrates a dispensing force applied to the flexible container of Figure 15.
  • Figure 16C illustrates the flexible container of Figure 15 deformed to a deformed state in response to the application of the dispensing force.
  • Figure 16D illustrates the flexible container of Figure 15 fully restored to the undeformed state upon release of the dispensing force.
  • the present disclosure describes various embodiments of containers made from flexible material. Because these containers are made from flexible material, these containers can be less expensive to make, can use less material, and can be easier to decorate, when compared with conventional rigid containers. First, these containers can be less expensive to make, because the conversion of flexible materials (from sheet form to finished goods) generally requires less energy and complexity, than formation of rigid materials (from bulk form to finished goods). Second, these containers can use less material, because they are configured with novel support structures that do not require the use of the thick solid walls used in conventional rigid containers. Third, these flexible containers can be easier to decorate, because their flexible materials can be easily printed before they are formed into containers.
  • any embodiment of flexible containers, as described herein, can be configured to dispense fluent products by pouring the fluent products out of its product volume.
  • the containers of the present disclosure are made from flexible material, they can be configured with sufficient structural integrity, such that they can receive, contain, and dispense fluent product(s), as intended, without failure. Also, these containers can be configured with sufficient structural integrity, such that they can withstand external forces and environmental conditions from handling, without failure. Further, these containers can be configured with structures that allow them to be displayed for sale and put into use, as intended, without failure.
  • any disclosure of a particular value can, in various alternate embodiments, also be understood as a disclosure of a range equal to about that particular value (i.e. +/- 20%).
  • ambient conditions refers to a temperature within the range of 15- 35 degrees Celsius and a relative humidity within the range of 35-75%.
  • any disclosure of a particular value can, in various alternate embodiments, also be understood as a disclosure of a range equal to approximately that particular value (i.e. +/- 15%).
  • any of the flexible materials can be configured to have a basis weight of 10-1000 gsm, or any integer value for gsm from 10-1000, or within any range formed by any of these values, such as 20-800 gsm, 30-600 gsm, 40-400 gsm, or 50-200, etc.
  • the term “bottom” refers to the portion of the container that is located in the lowermost 30% of the overall height of the container, that is, from 0-30% of the overall height of the container. As used herein, the term bottom can be further limited by modifying the term bottom with a particular percentage value, which is less than 30%.
  • a reference to the bottom of the container can, in various alternate embodiments, refer to the bottom 25% (i.e. from 0-25% of the overall height), the bottom 20% (i.e. from 0-20% of the overall height), the bottom 15% (i.e. from 0- 15% of the overall height), the bottom 10% (i.e. from 0-10% of the overall height), or the bottom 5% (i.e. from 0-5% of the overall height), or any integer value for percentage between 0% and 30%.
  • branding refers to a visual element intended to distinguish a product from other products. Examples of branding include one of more of any of the following: trademarks, trade dress, logos, icons, and the like.
  • any surface of the flexible container can include one or more brandings of any size, shape, or configuration, disclosed herein or known in the art, in any combination.
  • characters refers to a visual element intended to convey information. Examples of characters include one or more of any of the following: letters, numbers, symbols, and the like.
  • any surface of the flexible container can include one or more characters of any size, shape, or configuration, disclosed herein or known in the art, in any combination.
  • a closed container refers to a state of a product volume, wherein fluent products within the product volume are prevented from escaping the product volume (e.g. by one or more materials that form a barrier, and by a cap), but the product volume is not necessarily hermetically sealed.
  • a closed container can include a vent, which allows a head space in the container to be in fluid communication with air in the environment outside of the container.
  • the term "deformed state” refers to the state of the product volume when an external pressure (e.g., a dispensing force) is applied to the one or more walls of the flexible container.
  • the product volume is resiliently deformable, with the one or more walls of the flexible container defining the product volume being movable.
  • the one or more walls can move to varying degrees when the product volume is transitioning to the deformed state.
  • the flexible container is configured such that the one or more walls move to return the product volume to the undeformed state.
  • the term “deflation feature” refers to one or more structural features provided with a flexible container and configured for use in deflating some or all of the expanded structural support volume(s) of the flexible container, by allowing expansion material(s) inside of the structural support volume to escape into the environment, so that the structural support volume is no longer expanded.
  • a deflation feature can be used when the flexible container is ready to be disposed of (i.e. as waste, compost, and/or recyclable material). Any of the flexible containers disclosed herein can be configured with any number of any kind of deflation feature, configured in any way disclosed herein or known in the art.
  • a cutting device which is a rigid element that includes a point or edge configured to cut and/or pierce through flexible material(s) that form at least part of a structural support volume.
  • a cutting device can be included with a flexible container by attaching the device to any portion of the outside (e.g. top, middle, side, bottom, etc.) of the container with adhesive, or under a label, or any other way known in the art, for externally attaching rigid elements to a container.
  • a cutting device can be included with a flexible container by including the device with other packaging material, such as attached to an outer carton, inside of an overwrap layer, in between containers provided together, etc.
  • a cutting device can be included with a flexible container by including the device inside of any portion of the container, such as in a product volume, in a structural support volume, in a mixing chamber, in a dedicated space for the device, in a base structure, or any other way known in the art, for internally including rigid elements within a container.
  • a cutting device can be included with a flexible container, by making the cutting device integral with or detachable from another rigid element that is part of the container, such as a rigid base structure, cap, dispenser, fitment, connecting element, reinforcing element, or any other rigid element for containers disclosed herein or known in the art.
  • a cutting device can be configured to be any convenient size and any workable shape and can be used manually or through use of a tool.
  • flexible materials that can be turned into a rigid cutting device through rolling up or folding flexible materials are also envisioned.
  • An exit channel can be configured to be opened in material(s) that border or define at least a portion of the fillable space of a structural support volume.
  • An exit channel can be an existing connection (e.g. seam, seal, or joint) in the container, which is configured to fail (e.g. separate and at least partially open) when exposed to opening forces.
  • An exit channel can also be formed with one or more points, lines, and/or areas of weakness (e.g. thinned, scored, perforated, frangible seal, etc.), which are configured to fail or to otherwise be breached, when exposed to opening forces.
  • An exit channel can be protected by another material, such as an adhesive label, to ensure the exit channel remains closed until the user wishes to deflate.
  • An exit channel can further be formed by configuring the container with one or more tear initiation sites (such as a notch in an edge, a pull-tab, etc.) such that a tear propagating from the site(s) can open the flexible material.
  • An exit channel can be configured to be any convenient size and any workable shape and can be opened manually (by grasping and pulling, by poking with a finger or fingernail, or any other way) or through use of a tool or by overpressurizing a structural support volume (through application of compressive force or controlled environmental conditions) such that the structural support volume fails when its expansion material(s) burst out.
  • Still another kind of deflation feature is a valve, connected to the fillable space of a structural support volume, wherein the valve can be opened to the container's environment.
  • Embodiments of the present disclosure can use as a deflation feature, any and all embodiments of valves (including materials, structures, and/or features for valves, as well as any and all methods of making and/or using such valves), as disclosed in the following patent documents: US nonprovisional patent application 13/379,655 filed June 21, 2010, entitled “Collapsible Bottle, Method Of Manufacturing a Blank For Such Bottle and Beverage-Filled Bottle Dispensing System" in the name of Reidl, published as US2012/0097634; US nonprovisional patent application 10/246893 filed September 19, 2002, entitled “Bubble-Seal Apparatus for Easily Opening a Sealed Package” in the name of Perell, et al., published as 20040057638; and US patent 7,585,528 filed December 16, 2002, entitled “Package having an inflated frame
  • directly connected refers to a configuration wherein elements are attached to each other without any intermediate elements therebetween, except for any means of attachment (e.g. adhesive).
  • dispenser refers to a structure configured to dispense fluent product(s) from a product volume and/or from a mixing volume to the environment outside of the container.
  • any dispenser can be configured in any way disclosed herein or known in the art, including any suitable size, shape, and flow rate.
  • a dispenser can be a push-pull type dispenser, a dispenser with a flip-top cap, a dispenser with a screw-on cap, a rotatable type dispenser, dispenser with a cap, a pump type dispenser, a pump spray type dispenser, a trigger spray type dispenser, a straw dispenser, a flip up straw dispenser, a straw dispenser with bite valve, a dosing dispenser, etc.
  • a dispenser can be a parallel dispenser, providing multiple flow channels in fluid communication with multiple product volumes, wherein those flow channels remain separate until the point of dispensing, thus allowing fluent products from multiple product volumes to be dispensed as separate fluent products, dispensed together at the same time.
  • a dispenser can be a mixing dispenser, providing one or more flow channels in fluid communication with multiple product volumes, with multiple flow channels combined before the point of dispensing, thus allowing fluent products from multiple product volumes to be dispensed as the fluent products mixed together.
  • a dispenser can be formed by a frangible opening.
  • a dispenser can utilize one or more valves and/or dispensing mechanisms disclosed in the art, such as those disclosed in: published US patent application 2003/0096068, entitled “One-way valve for inflatable package”; US patent 4,988,016 entitled “Self-sealing container”; and US 7,207,717, entitled “Package having a fluid actuated closure”; each of which is hereby incorporated by reference.
  • any of the dispensers disclosed herein may be incorporated into a flexible container either directly, or in combination with one or more other materials or structures (such as a fitment), or in any way known in the art.
  • dispensers disclosed herein can be configured for both dispensing and filling, to allow filling of product volume(s) through one or more dispensers.
  • a product volume can include one or more filling structure(s) (e.g. for adding water to a mixing volume) in addition to or instead of one or more dispenser(s). Any location for a dispenser, disclosed herein can alternatively be used as a location for a filling structure.
  • a product volume can include one or more filling structures in addition to any dispenser(s).
  • any location for a dispenser, disclosed herein can alternatively be used as a location for an opening, through which product can be filled and/or dispensed, wherein the opening may be reclosable or non-reclosable, and can be configured in any way known in the art of packaging.
  • an opening can be: a line of weakness, which can be torn open; a zipper seal, which can be pulled open and pressed closed (e.g. a press seal), or opened and closed with a slider; openings with adhesive-based closures; openings with cohesive-based closures; openings with closures having fasteners (e.g. snaps, tin tie, etc.), openings with closures having micro-sized fasteners (e.g. with opposing arrays of interlocking fastening elements, such as hook, loops, and/or other mating elements, etc.), and any other kind of opening for packages or containers, with or without a closure, known in the art.
  • fasteners e.g. snaps, tin tie
  • the term "dispensing force” refers to an external force applied to one or more portions of the flexible container for the purpose of dispensing fluent product(s) from the container.
  • the external force can, for example, be a squeeze, force applied by a user (e.g., a consumer) of the container, or some other force, for example, as applied by a dispensing unit or housing.
  • the magnitude of the external force can have any value between about 0.1 and about 550 N, or can be within any range formed by these values, such as, between about 2 to 200 N, about 30 to 100 N, etc.
  • the term "disposable” refers to a container which, after dispensing a product to an end user, is not configured to be refilled with an additional amount of the product, but is configured to be disposed of (i.e. as waste, compost, and/or recyclable material). Part, parts, or all of any of the embodiments of flexible containers, disclosed herein, can be configured to be disposable.
  • the term "durable” refers to a container that is reusable more than non-durable containers.
  • the term "effective base contact area" refers to a particular area defined by a portion of the bottom of the container, when the container (with all of its product volume(s) filled 100% with water) is standing upright and its bottom is resting on a horizontal support surface.
  • the effective base contact area lies in a plane defined by the horizontal support surface.
  • the effective base contact area is a continuous area bounded on all sides by an outer periphery.
  • the outer periphery is formed from an actual contact area and from a series of projected areas from defined cross-sections taken at the bottom of the container.
  • the actual contact area is the one or more portions of the bottom of the container that contact the horizontal support surface, when the effective base contact area is defined.
  • the effective base contact area includes all of the actual contact area. However, in some embodiments, the effective base contact area may extend beyond the actual contact area.
  • the series of projected area are formed from five horizontal cross-sections, taken at the bottom of the flexible container. These cross-sections are taken at 1%, 2%, 3%, 4%, and 5% of the overall height.
  • the outer extent of each of these cross-sections is projected vertically downward onto the horizontal support surface to form five (overlapping) projected areas, which, together with the actual contact area, form a single combined area. This is not a summing up of the values for these areas, but is the formation of a single combined area that includes all of these (projected and actual) areas, overlapping each other, wherein any overlapping portion makes only one contribution to the single combined area.
  • the outer periphery of the effective base contact area is formed as described below.
  • the terms convex, protruding, concave, and recessed are understood from the perspective of points outside of the combined area.
  • the outer periphery is formed by a combination of the outer extent of the combined area and any chords, which are straight line segments constructed as described below.
  • chord For each continuous portion of the combined area that has an outer perimeter with a shape that is concave or recessed, a chord is constructed across that portion. This chord is the shortest straight line segment that can be drawn tangent to the combined area on both sides of the concave/recessed portion.
  • one or more chords are constructed around the outer perimeter of the combined area, across the one or more discontinuities (open spaces disposed between the portions). These chords are straight lines segments drawn tangent to the outermost separate portions of the combined area. These chords are drawn to create the largest possible effective base contact area.
  • the outer periphery is formed by a combination of the outer extent of the combined area and any chords, constructed as described above, which all together enclose the effective base area. Any chords that are bounded by the combined area and/or one or more other chords, are not part of the outer periphery and should be ignored.
  • any of the embodiments of flexible containers, disclosed herein, can be configured to have an effective base contact area from 1 to 50,000 square centimeters (cm ), or any integer value for cm 2 between 1 and 50,000 cm 2 , or within any range formed by any of the preceding values, such as: from 2 to 25,000 cm 2 , 3 to 10,000 cm 2 , 4 to 5,000 cm 2 , 5 to 2,500 cm 2 , from 10 to 1,000 cm 2 , from 20 to 500 cm 2 , from 30 to 300 cm 2 , from 40 to 200 cm 2 , or from 50 to 100 cm 2 , etc.
  • an effective base contact area from 1 to 50,000 square centimeters (cm ), or any integer value for cm 2 between 1 and 50,000 cm 2 , or within any range formed by any of the preceding values, such as: from 2 to 25,000 cm 2 , 3 to 10,000 cm 2 , 4 to 5,000 cm 2 , 5 to 2,500 cm 2 , from 10 to 1,000 cm 2 , from 20 to 500 cm 2 , from 30 to 300 cm 2
  • expansion refers to the state of one or more flexible materials that are configured to be formed into a structural support volume, after the structural support volume is made rigid by one or more expansion materials.
  • An expanded structural support volume has an overall width that is significantly greater than the combined thickness of its one or more flexible materials, before the structural support volume is filled with the one or more expansion materials.
  • expansion materials include liquids (e.g. water), gases (e.g.
  • expansion materials can be added at atmospheric pressure, or added under pressure greater than atmospheric pressure, or added to provide a material change that will increase pressure to something above atmospheric pressure.
  • its one or more flexible materials can be expanded at various points in time, with respect to its manufacture, sale, and use, including, for example: before or after its product volume(s) are filled with fluent product(s), before or after the flexible container is shipped to a seller, and before or after the flexible container is purchased by an end user.
  • the term “filled” refers to the state when the product volume contains an amount of fluent product(s) that is equal to a full capacity for the product volume, with an allowance for head space, under ambient conditions.
  • the term filled can be modified by using the term filled with a particular percentage value, wherein 100% filled represents the maximum capacity of the product volume.
  • flat refers to a surface that is without significant projections or depressions.
  • the term "flexible container” refers to a container configured to have a product volume, wherein one or more flexible materials form 50-100% of the overall surface area of the one or more materials that define the three-dimensional space of the product volume.
  • the flexible container can be configured to have a product volume, wherein one or more flexible materials form a particular percentage of the overall area of the one or more materials that define the three- dimensional space, and the particular percentage is any integer value for percentage between 50% and 100%, or within any range formed by any of these values, such as: 60-100%, or 70-100%, or 80- 100%, or 90-100%, etc.
  • One kind of flexible container is a film-based container, which is a flexible container made from one or more flexible materials, which include a film.
  • the middle of the flexible container (apart from any fluent product) can be configured to have an overall middle mass, wherein one or more flexible materials form a particular percentage of the overall middle mass, and the particular percentage is any integer value for percentage between 50% and 100%, or within any range formed by any of the preceding values, such as: 60-100%, or 70- 100%, or 80-100%, or 90-100%, etc.
  • the entire flexible container (apart from any fluent product) can be configured to have an overall mass, wherein one or more flexible materials form a particular percentage of the overall mass, and the particular percentage is any integer value for percentage between 50% and 100%, or within any range formed by any of the preceding values, such as: 60-100%, or 70-100%, or 80-100%, or 90- 100%, etc.
  • any of the flexible materials can be configured to have a flexibility factor of 1,000- 2,500,000 N/m, or any integer value for flexibility factor from 1,000-2,500,000 N/m, or within any range formed by any of these values, such as 1,000-1,500,000 N/m, 1,500-1,000,000 N/m, 2,500- 800,000 N/m, 5,000-700,000 N/m, 10,000-600,000 N/m, 15,000-500,000 N/m, 20,000-400,000 N/m, 25,000-300,000 N/m, 30,000-200,000 N/m, 35,000-100,000 N/m, 40,000-90,000 N/m, or 45,000- 85,000 N/m, etc.
  • flexible material examples include one or more of any of the following: films (such as plastic films), elastomers, foamed sheets, foils, fabrics (including wovens and nonwovens), biosourced materials, and papers, in any configuration, as separate material(s), or as layer(s) of a laminate, or as part(s) of a composite material, in a microlayered or nanolayered structure, and in any combination, as described herein or as known in the art.
  • films such as plastic films
  • elastomers foamed sheets
  • foils fabrics (including wovens and nonwovens), biosourced materials, and papers, in any configuration, as separate material(s), or as layer(s) of a laminate, or as part(s) of a composite material, in a microlayered or nanolayered structure, and in any combination, as described herein or as known in the art.
  • thermoplastic polymers can include polyolefins such as polyethylene and/or copolymers thereof, including low density, high density, linear low density, or ultra low density polyethylenes.
  • polypropylene and/or polypropylene copolymers including atactic polypropylene; isotactic polypropylene, syndiotactic polypropylene, and/or combinations thereof can also be used.
  • Polybutylene is also a useful polyolefin.
  • polystyrene resin examples include polyamides or copolymers thereof, such as Nylon 6, Nylon 11, Nylon 12, Nylon 46, Nylon 66; polyesters and/or copolymers thereof, such as maleic anhydride polypropylene copolymer, polyethylene terephthalate; olefin carboxylic acid copolymers such as ethylene/acrylic acid copolymer, ethylene/maleic acid copolymer, ethylene/methacrylic acid copolymer, ethylene/vinyl acetate copolymers or combinations thereof; polyacrylates, polymethacrylates, and/or their copolymers such as poly(methyl methacrylates).
  • thermoplastic polymers include polyesters, polycarbonates, polyvinyl acetates, poly(oxymethylene), styrene copolymers, polyacrylates, polymethacrylates, poly(methyl methacrylates), polystyrene/methyl methacrylate copolymers, polyetherimides, polysulfones, and/or combinations thereof.
  • thermoplastic polymers can include polypropylene, polyethylene, polyamides, polyvinyl alcohol, ethylene acrylic acid, polyolefin carboxylic acid copolymers, polyesters, and/or combinations thereof.
  • Biodegradable thermoplastic polymers also are contemplated for use herein.
  • Biodegradable materials are susceptible to being assimilated by microorganisms, such as molds, fungi, and bacteria when the biodegradable material is buried in the ground or otherwise contacts the microorganisms
  • Suitable biodegradable polymers also include those biodegradable materials which are environmentally-degradable using aerobic or anaerobic digestion procedures, or by virtue of being exposed to environmental elements such as sunlight, rain, moisture, wind, temperature, and the like.
  • the biodegradable thermoplastic polymers can be used individually or as a combination of biodegradable or non-biodegradable polymers.
  • Biodegradable polymers include polyesters containing aliphatic components.
  • polyesters are ester polycondensates containing aliphatic constituents and poly(hydroxycarboxylic) acid.
  • the ester polycondensates include diacids/diol aliphatic polyesters such as polybutylene succinate, polybutylene succinate co-adipate, aliphatic/aromatic polyesters such as terpolymers made of butylenes diol, adipic acid and terephthalic acid.
  • the poly(hydroxycarboxylic) acids include lactic acid based homopolymers and copolymers, polyhydroxybutyrate (PHB), or other polyhydroxyalkanoate homopolymers and copolymers.
  • Such polyhydroxyalkanoates include copolymers of PHB with higher chain length monomers, such as C6-C12, and higher, polyhydroxyalkanaotes, such as those disclosed in U.S. Patent Numbers RE 36,548 and 5,990,271, polyglycolic acid, and polycaprolactone.
  • Non-limiting examples of suitable commercially available polymers include Basell Profax PH-835 (a 35 melt flow rate Ziegler-Natta isotactic polypropylene from Lyondell-Basell), Basell Metocene MF-650W (a 500 melt flow rate metallocene isotactic polypropylene from Lyondell- Basell), Polybond 3200 (a 250 melt flow rate maleic anhydride polypropylene copolymer from Crompton), Exxon Achieve 3854 (a 25 melt flow rate metallocene isotactic polypropylene from Exxon-Mobil Chemical), Mosten NB425 (a 25 melt flow rate Ziegler-Natta isotactic polypropylene from Unipetrol), Danimer 27510 (a polyhydroxyalkanoate polypropylene from Danimer Scientific LLC), Dow Aspun 6811A (a 27 melt index polyethylene polypropylene copolymer from Dow Chemical), and Eastman 9921 (a polyester terephthalic homopolymer with
  • thermoplastic polymer component of a flexible material can be a single polymer species as described above or a blend of two or more thermoplastic polymers as described above.
  • flexible materials can further include one or more additives, as described herein and/or as known in the art.
  • additives include perfumes, dyes, pigments, nanoparticles, antistatic agents, fillers, photoactives, and other classes of additives known in the art, and combinations.
  • the films disclosed herein can contain a single additive or a mixture of any number of additives.
  • Contemplated fillers include, but are not limited to inorganic fillers such as, for example, the oxides of magnesium, aluminum, silicon, and titanium. These materials can be added as inexpensive fillers or processing aides. Other inorganic materials that can function as fillers include hydrous magnesium silicate, titanium dioxide, calcium carbonate, clay, chalk, boron nitride, limestone, diatomaceous earth, mica glass quartz, and ceramics. Additionally, inorganic salts, including alkali metal salts, alkaline earth metal salts, phosphate salts, can be used. Additionally, alkyd resins can also be added as fillers. Alkyd resins can comprise a polyol, a polyacid or anhydride, and/or a fatty acid.
  • Additional contemplated additives include nucleating and clarifying agents for the thermoplastic polymer.
  • suitable for polypropylene for example, are benzoic acid and derivatives (e.g. sodium benzoate and lithium benzoate), as well as kaolin, talc and zinc glycerolate.
  • Dibenzlidene sorbitol (DBS) is an example of a clarifying agent that can be used.
  • Other nucleating agents that can be used are organocarboxylic acid salts, sodium phosphate and metal salts (for example aluminum dibenzoate).
  • Contemplated nanoparticles include metals, metal oxides, allotropes of carbon, clays, organically modified clays, sulfates, nitrides, hydroxides, oxy/hydroxides, particulate water- insoluble polymers, silicates, phosphates, and carbonates.
  • Examples include silicon dioxide, carbon black, graphite, graphene, fullerenes, expanded graphite, carbon nanotubes, talc, calcium carbonate, bentonite, montmorillonite, kaolin, zinc glycerolate, silica, aluminosilicates, boron nitride, aluminum nitride, barium sulfate, calcium sulfate, antimony oxide, feldspar, mica, nickel, copper, iron, cobalt, steel, gold, silver, platinum, aluminum, wollastonite, aluminum oxide, zirconium oxide, titanium dioxide, cerium oxide, zinc oxide, magnesium oxide, tin oxide, iron oxides (Fe203, Fe304) and mixtures thereof.
  • Thermoplastic polymers, and their variations, as disclosed herein can be formed into a film and can comprise many different configurations, depending on the film properties desired.
  • the properties of the film can be manipulated by varying, for example, the thickness, or in the case of multilayered films, the number of layers, the chemistry of the layers, i.e., hydrophobic or hydrophilic, and the types of polymers used to form the polymeric layers.
  • the films disclosed herein can be multi-layer films.
  • the film can have at least two layers (e.g., a first film layer and a second film layer).
  • the first film layer and the second film layer can be layered adjacent to each other to form the multi-layer film.
  • a multi-layer film can have at least three layers (e.g., a first film layer, a second film layer and a third film layer).
  • the second film layer can at least partially overlie at least one of an upper surface or a lower surface of the first film layer.
  • the third film layer can at least partially overlie the second film layer such that the second film layer forms a core layer.
  • multi-layer films can include additional layers (e.g., binding layers, non- permeable layers, etc.).
  • multi-layer films can comprise from about 2 layers to about 1000 layers; in certain embodiments from about 3 layers to about 200 layers; and in certain embodiments from about 5 layers to about 100 layers, or any integer value for number of layers, in any of these ranges.
  • each respective layer can be made from any material disclosed herein or known in the art, in any manner disclosed herein or known in the art.
  • a multi-layer film can include a 3-layer arrangement wherein a first film layer and a third film layer form the skin layers and a second film layer is formed between the first film layer and the third film layer to form a core layer.
  • the third film layer can be the same or different from the first film layer, such that the third film layer can comprise a composition as described herein. It will be appreciated that similar film layers could be used to form multi-layer films having more than 3 layers.
  • One embodiment for using multi-layer films is to control the location of the oil. For example, in a 3 layer film, the core layer may contain the oil while the outer layer do not. Alternatively, the inner layer may not contain oil and the outer layers do contain oil.
  • a tie layer can be positioned between them.
  • the purpose of the tie layer is to provide a transition and adequate adhesion between incompatible materials.
  • An adhesive or tie layer is typically used between layers of layers that exhibit delamination when stretched, distorted, or deformed.
  • the delamination can be either microscopic separation or macroscopic separation. In either event, the performance of the film may be compromised by this delamination. Consequently, a tie layer that exhibits adequate adhesion between the layers is used to limit or eliminate this delamination.
  • a tie layer is generally useful between incompatible materials. For instance, when a polyolefin and a copoly(ester-ether) are the adjacent layers, a tie layer is generally useful.
  • the tie layer is chosen according to the nature of the adjacent materials, and is compatible with and/or identical to one material (e.g. nonpolar and hydrophobic layer) and a reactive group which is compatible or interacts with the second material (e.g. polar and hydrophilic layer).
  • one material e.g. nonpolar and hydrophobic layer
  • a reactive group which is compatible or interacts with the second material (e.g. polar and hydrophilic layer).
  • Suitable backbones for the tie layer include polyethylene (low density - LDPE, linear low density - LLDPE, high density - HDPE, and very low density - VLDPE) and polypropylene.
  • the reactive group may be a grafting monomer that is grafted to this backbone, and is or contains at least one alpha- or beta- ethylenically unsaturated carboxylic acid or anhydrides, or a derivative thereof.
  • carboxylic acids and anhydrides which maybe mono-, di-, or polycarboxylic acids, are acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, itaconic anhydride, maleic anhydride, and substituted malic anhydride, e.g. dimethyl maleic anhydride.
  • derivatives of the unsaturated acids are salts, amides, imides and esters e.g. mono- and disodium maleate, acrylamide, maleimide, and diethyl fumarate.
  • a particularly tie layer is a low molecular weight polymer of ethylene with about 0.1 to about
  • one or more unsaturated monomers which can be copolymerized with ethylene, e.g., maleic acid, fumaric acid, acrylic acid, methacrylic acid, vinyl acetate, acrylonitrile, methacrylonitrile, butadiene, carbon monoxide, etc.
  • unsaturated monomers e.g., maleic acid, fumaric acid, acrylic acid, methacrylic acid, vinyl acetate, acrylonitrile, methacrylonitrile, butadiene, carbon monoxide, etc.
  • exemplary embodiments are acrylic esters, maleic anhydride, vinyl acetate, and methyacrylic acid.
  • Anhydrides can be used as grafting monomers, for example maleic anhydride can be used.
  • An exemplary class of materials suitable for use as a tie layer is a class of materials known as anhydride modified ethylene vinyl acetate sold by DuPont under the tradename Bynel®, e.g., Bynel® 3860.
  • Another material suitable for use as a tie layer is an anhydride modified ethylene methyl acrylate also sold by DuPont under the tradename Bynel®, e.g., Bynel® 2169.
  • Maleic anhydride graft polyolefin polymers suitable for use as tie layers are also available from Elf Atochem North America, Functional Polymers Division, of Philadelphia, PA as OrevacTM.
  • a polymer suitable for use as a tie layer material can be incorporated into the composition of one or more of the layers of the films as disclosed herein. By such incorporation, the properties of the various layers are modified so as to improve their compatibility and reduce the risk of delamination.
  • intermediate layers besides tie layers can be used in the multi-layer film disclosed herein.
  • a layer of a polyolefin composition can be used between two outer layers of a hydrophilic resin to provide additional mechanical strength to the extruded web. Any number of intermediate layers may be used.
  • polyethylene resins such as low density polyethylene (LDPE), linear low density polyethylene (LLDPE), ethylene vinyl acetate (EVA), ethylene methyl acrylate (EMA), polypropylene, and poly(vinyl chloride).
  • LDPE low density polyethylene
  • LLDPE linear low density polyethylene
  • EVA ethylene vinyl acetate
  • EMA ethylene methyl acrylate
  • polypropylene and poly(vinyl chloride).
  • Polymeric layers of this type can have mechanical properties that are substantially equivalent to those described above for the hydrophobic layer.
  • the films can further include additional additives.
  • opacifying agents can be added to one or more of the film layers.
  • Such opacifying agents can include iron oxides, carbon black, aluminum, aluminum oxide, titanium dioxide, talc and combinations thereof. These opacifying agents can comprise about 0.1% to about 5% by weight of the film; and in certain embodiments, the opacifying agents can comprise about 0.3% to about 3% of the film. It will be appreciated that other suitable opacifying agents can be employed and in various concentrations. Examples of opacifying agents are described in US Patent Number 6,653,523.
  • the films can comprise other additives, such as other polymers materials (e.g., a polypropylene, a polyethylene, a ethylene vinyl acetate, a polymethylpentene any combination thereof, or the like), a filler (e.g., glass, talc, calcium carbonate, or the like), a mold release agent, a flame retardant, an electrically conductive agent, an anti- static agent, a pigment, an antioxidant, an impact modifier, a stabilizer (e.g., a UV absorber), wetting agents, dyes, a film anti-static agent or any combination thereof.
  • Film antistatic agents include cationic, anionic, and/or, nonionic agents.
  • Cationic agents include ammonium, phosphonium and sulphonium cations, with alkyl group substitutions and an associated anion such as chloride, methosulphate, or nitrate.
  • Anionic agents contemplated include alkylsulphonates.
  • Nonionic agents include polyethylene glycols, organic stearates, organic amides, glycerol monostearate (GMS), alkyl di-ethanolamides, and ethoxylated amines.
  • Other filler materials can comprise fibers, structural reinforcing agents, and all types of biosourced materials such as oils (hydrogenated soy bean oil), fats, starch, etc.
  • materials that are safe/approved for food contact may be selected.
  • materials that are approved for medical usage, or materials that can be sterilized through retort, autoclave, or radiation treatment, or other sterilization processes known in the art may be used.
  • part, parts, or all of a flexible material can be coated or uncoated, treated or untreated, processed or unprocessed, in any manner known in the art.
  • parts, parts, or about all, or approximately all, or substantially all, or nearly all, or all of a flexible material can made of sustainable, bio-sourced, recycled, recyclable, and/or biodegradable material.
  • Part, parts, or about all, or approximately all, or substantially all, or nearly all, or all of any of the flexible materials described herein can be partially or completely translucent, partially or completely transparent, or partially or completely opaque.
  • films and elastomers for use as flexible materials these can be formed in any manner known in the art, such as casting, extruding (blown or flat; singly or with coextrusion), calendering, depositing solution(s), skiving, etc. then slitting, cutting, and/or converting the films and/or elastomers into the desired sizes or shapes, as sheets or webs, as will be understood by one skilled in the art.
  • blown films multiple processes can be used including: collapsed bubble to create a blocked film, and double and or triple bubble processes.
  • Flexible materials may further be subjected to any number or orienting, tenter frame, tenter hook, stretching, or activation processes.
  • foamed sheets for use as flexible materials these can be formed in any manner known in the art, by mixing base ingredients, adding the foaming mixture to a mold or shaping apparatus, then curing, cutting, and/or converting the foam into the desired sizes or shapes, as sheets or webs.
  • nonwoven fabrics these can be formed in any manner known in the art using spunbonded fibers and/or meltblown fibers, staple-length and/or continuous fibers, with any layering, mixing, or other combination known in the art.
  • Other materials listed herein for use as flexible materials can be made in any manner known in the art.
  • the flexible materials used to make the containers disclosed herein can be formed in any manner known in the art, and can be joined together using any kind of joining or sealing method known in the art, including, for example, heat sealing (e.g. conductive sealing, impulse sealing, ultrasonic sealing, etc.), welding, crimping, bonding, adhering, and the like, and combinations of any of these.
  • heat sealing e.g. conductive sealing, impulse sealing, ultrasonic sealing, etc.
  • welding crimping, bonding, adhering, and the like, and combinations of any of these.
  • the term "flexibility factor” refers to a material parameter for a thin, easily deformable, sheet-like material, wherein the parameter is measured in Newtons per meter, and the flexibility factor is equal to the product of the value for the Young's modulus of the material (measured in Pascals) and the value for the overall thickness of the material (measured in meters).
  • fluent product refers to one or more liquids and/or pourable solids, and combinations thereof.
  • fluent products include one or more of any of the following: bites, bits, creams, chips, chunks, crumbs, crystals, emulsions, flakes, gels, grains, granules, jellies, kibbles, liquid solutions, liquid suspensions, lotions, nuggets, ointments, particles, particulates, pastes, pieces, pills, powders, salves, shreds, sprinkles, and the like, either individually or in any combination.
  • fluent product and “flowable product” are used interchangeably and are intended to have the same meaning.
  • Any of the product volumes disclosed herein can be configured to include one or more of any fluent product disclosed herein, or known in the art, in any combination.
  • the "fluent product" can have a viscosity, at 25 degrees Celsius and 0.1 s-1, of between about .0003 Pa*s to about 100,000 Pa*s, or within any ranged formed by any of the preceding values, such as: between .0001 Pa*s to about .01 Pa*s, between about .0001 Pa*s to about .1 Pa*s, between about .0001 Pa*s to about 1 Pa*s, between about .0001 Pa*s to about 10 Pa*s, between about .001 Pa*s to about .01 Pa*s, between about .001 Pa*s to about .1 Pa*s, between about .001 Pa*s to about 1 Pa*s, between about .001 Pa*s to about 10 Pa*s, between about .001 Pa*s to about 100 Pa*s, between about .01 Pa*s to about 1 Pa*s, between about .01 Pa*s to about 10 Pa*s, between about .01 Pa*s to about 100 Pa*s, between about .01 Pa*s
  • the fluent product can have a minimum viscosity, at 25 degrees Celsius, equal to a value within any one of these ranges.
  • the fluent product can have a minimum viscosity (i.e., a viscosity of at least), at 25 degrees Celsius, of about .001 Pa*s, about .01 Pa*s, about .1 Pa*s, about 1 Pa*s, about 10 Pa*s, or some other value between about .0003 Pa*s to about 100,000 Pa*s.
  • Some fluents like solvents e.g. acetone
  • Some fluents like solvents (e.g. acetone) have low viscosities whereas some materials such as putty have higher viscosities.
  • the term “formed” refers to the state of one or more materials that are configured to be formed into a product volume, after the product volume is provided with its defined three-dimensional space.
  • graphics refers to a visual element intended to provide a decoration or to communicate information. Examples of graphics include one or more of any of the following: colors, patterns, designs, images, and the like.
  • any surface of the flexible container can include one or more graphics of any size, shape, or configuration, disclosed herein or known in the art, in any combination.
  • the term “height area ratio” refers to a ratio for the container, with units of per centimeter (cm 1 ), which is equal to the value for the overall height of the container (with all of its product volume(s) filled 100% with water, and with overall height measured in centimeters) divided by the value for the effective base contact area of the container (with all of its product volume(s) filled 100% with water, and with effective base contact area measured in square centimeters).
  • any of the flexible containers can be configured to have a height area ratio from 0.3 to 3.0 per centimeter, or any value in increments of 0.05 cm “1 between 0.3 and 3.0 per centimeter, or within any range formed by any of the preceding values, such as: from 0.35 to 2.0 cm “1 , from 0.4 to 1.5 cm “1 , from 0.4 to 1.2 cm “1 , or from 0.45 to 0.9 cm “1 , etc.
  • any surface of the flexible container can include one or more indicia of any size, shape, or configuration, disclosed herein or known in the art, in any combination.
  • directly connected refers to a configuration wherein elements are attached to each other with one or more intermediate elements therebetween.
  • joind refers to a configuration wherein elements are either directly connected or indirectly connected.
  • lateral refers to a direction, orientation, or measurement that is parallel to a lateral centerline of a container, when the container is standing upright on a horizontal support surface, as described herein.
  • a lateral orientation may also be referred to a "horizontal” orientation, and a lateral measurement may also be referred to as a "width.”
  • the term "like-numbered” refers to similar alphanumeric labels for corresponding elements, as described below.
  • Like-numbered elements have labels with the same last two digits; for example, one element with a label ending in the digits 20 and another element with a label ending in the digits 20 are like-numbered.
  • Like-numbered elements can have labels with a differing first digit, wherein that first digit matches the number for its figure; as an example, an element of Figure 3 labeled 320 and an element of Figure 4 labeled 420 are like-numbered.
  • Like- numbered elements can have labels with a suffix (i.e. the portion of the label following the dash symbol) that is the same or possibly different (e.g. corresponding with a particular embodiment); for example, a first embodiment of an element in Figure 3A labeled 320-a and a second embodiment of an element in Figure 3B labeled 320-b, are like numbered.
  • longitudinal refers to a direction, orientation, or measurement that is parallel to a longitudinal centerline of a container, when the container is standing upright on a horizontal support surface, as described herein.
  • a longitudinal orientation may also be referred to a "vertical” orientation.
  • a longitudinal measurement When expressed in relation to a horizontal support surface for a container, a longitudinal measurement may also be referred to as a "height", measured above the horizontal support surface.
  • the term “middle” refers to the portion of the container that is located in between the top of the container and the bottom of the container.
  • the term middle can be modified by describing the term middle with reference to a particular percentage value for the top and/or a particular percentage value for the bottom.
  • a reference to the middle of the container can, in various alternate embodiments, refer to the portion of the container that is located between any particular percentage value for the top, disclosed herein, and/or any particular percentage value for the bottom, disclosed herein, in any combination.
  • mixing volume refers to a type product volume that is configured to receive one or more fluent product(s) from one or more product volumes and/or from the environment outside of the container.
  • multiple dose refers to a product volume that is sized to contain a particular amount of product that is about equal to two or more units of typical consumption, application, or use by an end user.
  • Any of the embodiments of flexible containers, disclosed herein, can be configured to have one or more multiple dose product volumes.
  • a container with only one product volume, which is a multiple dose product volume, is referred to herein as a “multiple dose container.”
  • any disclosure of a particular value can, in various alternate embodiments, also be understood as a disclosure of a range equal to approximately that particular value (i.e. +/- 5%).
  • non-durable refers to a container that is temporarily reusable, or disposable, or single use.
  • non-fluent product refers to materials, products, and/or articles that are not liquids, pourable solids, or combinations or liquids and pourable solids.
  • Any of the flexible containers disclosed herein can be configured for packaging one or more of any non-fluent product disclosed herein, or known in the art, in any combination.
  • flexible containers When used for non-fluent products, flexible containers, as disclosed herein, can provide benefits associated with partly or fully supporting and/or enclosing the non-fluent product with primary and/or secondary packaging that includes one or more structural support volumes, one or more structural support members, and/or one or more structural support frames; for example, so the non- fluent product can be supported and/or enclosed by packaging that is self-supporting and/or standing upright, as will be understood by one skilled in the art.
  • nonstructural panel refers to a layer of one or more adjacent sheets of flexible material, the layer having an outermost major surface that faces outward, toward the environment outside of the flexible container, and an innermost major surface that faces inward, toward product volume(s) disposed within the flexible container; a nonstructural panel is configured such that, the layer, does not independently provide substantial support in making the container self-supporting and/or standing upright.
  • all height refers to a distance that is measured while the container is standing upright on a horizontal support surface, the distance measured vertically from the upper side of the support surface to a point on the top of the container, which is farthest away from the upper side of the support surface.
  • any of the embodiments of flexible containers, disclosed herein, can be configured to have an overall height from 2.0 cm to 100.0 cm, or any value in increments of 0.1 cm between 2.0 and 100.0 cm, or within any range formed by any of the preceding values, such as: from 4.0 to 90.0 cm, from 5.0 to 80.0 cm, from 6.0 to 70.0 cm, from 7.0 to 60.0 cm, from 8.0 to 50.0 cm, from 9.0 to 40.0 cm, or from 10.0 to 30.0, etc.
  • any of the flexible materials can be configured to have an overall thickness 5- 500 micrometers ( ⁇ ), or any integer value for micrometers from 5-500, or within any range formed by any of these values, such as 10-500 ⁇ , 20-400 ⁇ , 30-300 ⁇ , 40-200 ⁇ , 50-100 ⁇ , or 50- 150 ⁇ , etc.
  • the term "product volume” refers to an enclosable three-dimensional space that is configured to receive and directly contain one or more fluent product(s), wherein that space is defined by one or more materials that form a barrier that prevents the fluent product(s) from escaping the product volume.
  • the fluent products come into contact with the materials that form the enclosable three-dimensional space; there is no intermediate material or container, which prevents such contact.
  • product volume and “product receiving volume” are used interchangeably and are intended to have the same meaning.
  • any of the embodiments of flexible containers, disclosed herein, can be configured to have any number of product volumes including one product volume, two product volumes, three product volumes, four product volumes, five product volumes, six product volumes, or even more product volumes. In some embodiments, one or more product volumes can be enclosed within another product volume.
  • any of the product volumes disclosed herein can have a product volume of any size, including from 0.001 liters to 100.0 liters, or any value in increments of 0.001 liters between 0.001 liters and 3.0 liters, or any value in increments of 0.01 liters between 3.0 liters and 10.0 liters, or any value in increments of 1.0 liters between 10.0 liters and 100.0 liters, or within any range formed by any of the preceding values, such as: from 0.001 to 2.2 liters, 0.01 to 2.0 liters, 0.05 to 1.8 liters, 0.1 to 1.6 liters, 0.15 to 1.4 liters, 0.2 to 1.2 liters, 0.25 to 1.0 liters, etc.
  • a product volume can have any shape in any orientation.
  • a product volume can be included in a container that has a structural support frame, and a product volume can be included in a container that does not have a structural support frame.
  • the term “recoverable” refers to a volume that is configured to return to within about 95% to about 100% of its original volume after a dispensing force deforming the container is released, through resiliency or self restoring properties of the container or product volume.
  • the product volume or the container itself can said to be recoverable.
  • the term recoverable can be further modified to indicate a time over which the recovery happens, e.g. recoverable within a time less than about 1 minute.
  • the term recoverable can also be further modified by including an extent to which the deformation to a second volume has occurred, e.g. recoverable after a deformation of 50%, or recoverable after a deformation of 90%, where the percentage refers to percentage of the initial volume.
  • the term "recoverable volume” refers to the amount of volume that a container can recover by itself, through resiliency or self restoring properties, after a dispensing force deforming the contain is released, and is calculated as the difference between the initial volume and a second reduced volume, where the second reduced volume is produced by deforming the container to dispense fluent.
  • the term “recoverable volume percentage” refers to the volume, as a percentage of the initial volume, that the product volume can be reduced to and still fully restore itself to a value within about 95% of its initial volume. Recoverable volume percentage is calculated by dividing the recoverable volume by the initial volume and multiplying by 100.
  • the term "resilient material” refers to a foam, sponge-like, or other compressible resilient material disposed within the product volume and configured to restore the product volume to the undeformed state when the dispensing force is released.
  • the resilient material can include one or more rigid elements or physical springs.
  • the term "resting on a horizontal support surface” refers to the container resting directly on the horizontal support surface, without other support.
  • the term "sealed,” when referring to a product volume, refers to a state of the product volume wherein fluent products within the product volume are prevented from escaping the product volume (e.g. by one or more materials that form a barrier, and by a seal), and the product volume is hermetically sealed.
  • the term “self-supporting” refers to a container that includes a product volume and a structural support frame, wherein, when the container is resting on a horizontal support surface, in at least one orientation, the structural support frame is configured to prevent the container from collapsing and to give the container an overall height that is significantly greater than the combined thickness of the materials that form the container, even when the product volume is unfilled.
  • Any of the embodiments of flexible containers, disclosed herein, can be configured to be self-supporting.
  • self-supporting flexible containers of the present disclosure can be used to form pillow packs, pouches, doy packs, sachets, tubes, boxes, tubs, cartons, flow wraps, gusseted packs, jugs, bottles, jars, bags in boxes, trays, hanging packs, blister packs, or any other forms known in the art.
  • single use refers to a closed container which, after being opened by an end user, is not configured to be reclosed. Any of the embodiments of flexible containers, disclosed herein, can be configured to be single use.
  • single dose refers to a product volume that is sized to contain a particular amount of product that is about equal to one unit of typical consumption, application, or use by an end user.
  • Any of the embodiments of flexible containers, disclosed herein, can be configured to have one or more single dose product volumes.
  • a container with only one product volume, which is a single dose product volume, is referred to herein as a "single dose container.”
  • the terms “stand up,” “stands up,” “standing up”, “stand upright”, “stands upright”, and “standing upright” refer to a particular orientation of a self-supporting flexible container, when the container is resting on a horizontal support surface. This standing upright orientation can be determined from the structural features of the container and/or indicia on the container. In a first determining test, if the flexible container has a clearly defined base structure that is configured to be used on the bottom of the container, then the container is determined to be standing upright when this base structure is resting on the horizontal support surface.
  • the container is determined to be standing upright when the container is oriented to rest on the horizontal support surface such that the indicia on the flexible container are best positioned in an upright orientation. If the second test cannot determine the standing upright orientation, then, in a third determining test, the container is determined to be standing upright when the container is oriented to rest on the horizontal support surface such that the container has the largest overall height. If the third test cannot determine the standing upright orientation, then, in a fourth determining test, the container is determined to be standing upright when the container is oriented to rest on the horizontal support surface such that the container has the largest height area ratio. If the fourth test cannot determine the standing upright orientation, then, any orientation used in the fourth determining test can be considered to be a standing upright orientation.
  • the term “stand up container” refers to a self-supporting container, wherein, when the container (with all of its product volume(s) filled 100% with water) is standing up, the container has a height area ratio from 0.4 to 1.5 cm "1 . Any of the embodiments of flexible containers, disclosed herein, can be configured to be stand up containers.
  • structural support frame refers to a rigid structure formed of one or more structural support members, joined together, around one or more sizable empty spaces and/or one or more nonstructural panels, and generally used as a major support for the product volume(s) in the flexible container and in making the container self- supporting and/or standing upright.
  • structural support frame when a flexible container includes a structural support frame and one or more product volumes, the structural support frame is considered to be supporting the product volumes of the container, unless otherwise indicated.
  • structural support member refers to a rigid, physical structure, which includes one or more expanded structural support volumes, and which is configured to be used in a structural support frame, to carry one or more loads (from the flexible container) across a span.
  • a structure that does not include at least one expanded structural support volume, is not considered to be a structural support member, as used herein.
  • a structural support member has two defined ends, a middle between the two ends, and an overall length from its one end to its other end.
  • a structural support member can have one or more cross-sectional areas, each of which has an overall width that is less than its overall length.
  • a structural support member can be configured in various forms.
  • a structural support member can include one, two, three, four, five, six or more structural support volumes, arranged in various ways.
  • a structural support member can be formed by a single structural support volume.
  • a structural support member can be formed by a plurality of structural support volumes, disposed end to end, in series, wherein, in various embodiments, part, parts, or about all, or approximately all, or substantially all, or nearly all, or all of some or all of the structural support volumes can be partly or fully in contact with each other, partly or fully directly connected to each other, and/or partly or fully joined to each other.
  • a structural support member can be formed by a plurality of support volumes disposed side by side, in parallel, wherein, in various embodiments, part, parts, or about all, or approximately all, or substantially all, or nearly all, or all of some or all of the structural support volumes can be partly or fully in contact with each other, partly or fully directly connected to each other, and/or partly or fully joined to each other.
  • a structural support member can include a number of different kinds of elements.
  • a structural support member can include one or more structural support volumes along with one or more mechanical reinforcing elements (e.g. braces, collars, connectors, joints, ribs, etc.), which can be made from one or more rigid (e.g. solid) materials.
  • mechanical reinforcing elements e.g. braces, collars, connectors, joints, ribs, etc.
  • Structural support members can have various shapes and sizes. Part, parts, or about all, or approximately all, or substantially all, or nearly all, or all of a structural support member can be straight, curved, angled, segmented, or other shapes, or combinations of any of these shapes. Part, parts, or about all, or approximately all, or substantially all, or nearly all, or all of a structural support member can have any suitable cross-sectional shape, such as circular, oval, square, triangular, star- shaped, or modified versions of these shapes, or other shapes, or combinations of any of these shapes.
  • a structural support member can have an overall shape that is tubular, or convex, or concave, along part, parts, or about all, or approximately all, or substantially all, or nearly all, or all of a length.
  • a structural support member can have any suitable cross-sectional area, any suitable overall width, and any suitable overall length.
  • a structural support member can be substantially uniform along part, parts, or about all, or approximately all, or substantially all, or nearly all, or all of its length, or can vary, in any way described herein, along part, parts, or about all, or approximately all, or substantially all, or nearly all, or all of its length.
  • a cross-sectional area of a structural support member can increase or decrease along part, parts, or all of its length.
  • Part, parts, or all of any of the embodiments of structural support members of the present disclosure can be configured according to any embodiment disclosed herein, including any workable combination of structures, features, materials, and/or connections from any number of any of the embodiments disclosed herein.
  • structural support volume refers to a fillable space made from one or more flexible materials, wherein the space is configured to be at least partially filled with one or more expansion materials, which create tension in the one or more flexible materials, and form an expanded structural support volume.
  • One or more expanded structural support volumes can be configured to be included in a structural support member.
  • a structural support volume is distinct from structures configured in other ways, such as: structures without a fillable space (e.g. an open space), structures made from inflexible (e.g. solid) materials, structures with spaces that are not configured to be filled with an expansion material (e.g.
  • any spaces defined by the unattached area between adjacent layers in a multi-layer panel may contain any gas or vapor composition of single or multiple chemistries including air, nitrogen or a gas composition comprising, as examples, greater than 80% nitrogen, greater than 20% carbon dioxide, greater than 10% of a noble gas, less than 15% oxygen; the gas or vapor contained in such spaces may include water vapor at a relative humidity of 0-100%, or any integer percentage value in this range.
  • structural support volume and “expandable chamber” are used interchangeably and are intended to have the same meaning.
  • a structural support frame can include a plurality of structural support volumes, wherein some of or all of the structural support volumes are in fluid communication with each other. In other embodiments, a structural support frame can include a plurality of structural support volumes, wherein some of or none of the structural support volumes are in fluid communication with each other. Any of the structural support frames of the present disclosure can be configured to have any kind of fluid communication disclosed herein.
  • the term "substantially” modifies a particular value, by referring to a range equal to the particular value, plus or minus ten percent (+/- 10%).
  • any disclosure of a particular value can, in various alternate embodiments, also be understood as a disclosure of a range equal to approximately that particular value (i.e. +/- 10%).
  • the term "temporarily reusable" refers to a container which, after dispensing a product to an end user, is configured to be refilled with an additional amount of a product, up to ten times, before the container experiences a failure that renders it unsuitable for receiving, containing, or dispensing the product.
  • the term temporarily reusable can be further limited by modifying the number of times that the container can be refilled before the container experiences such a failure.
  • a reference to temporarily reusable can, in various alternate embodiments, refer to temporarily reusable by refilling up to eight times before failure, by refilling up to six times before failure, by refilling up to four times before failure, or by refilling up to two times before failure, or any integer value for refills between one and ten times before failure.
  • Any of the embodiments of flexible containers, disclosed herein can be configured to be temporarily reusable, for the number of refills disclosed herein.
  • thickness refers to a measurement that is parallel to a third centerline of a container, when the container is standing upright on a horizontal support surface, as described herein.
  • a thickness may also be referred to as a "depth.”
  • top refers to the portion of the container that is located in the uppermost 20% of the overall height of the container, that is, from 80-100% of the overall height of the container.
  • the term top can be further limited by modifying the term top with a particular percentage value, which is less than 20%.
  • a reference to the top of the container can, in various alternate embodiments, refer to the top 15% (i.e. from 85-100% of the overall height), the top 10% (i.e. from 90-100% of the overall height), or the top 5% (i.e. from 95-100% of the overall height), or any integer value for percentage between 0% and 20%.
  • the term “unexpanded” refers to the state of one or more materials that are configured to be formed into a structural support volume, before the structural support volume is made rigid by an expansion material.
  • the term "unfilled” refers to the state of the product volume when it does not contain a fluent product.
  • an article of manufacture could be a container blank with an unformed product volume, wherein sheets of flexible material, with portions joined together, are laying flat against each other.
  • flexible containers may be used across a variety of industries for a variety of products.
  • any embodiment of flexible containers, as described herein may be used across the consumer products industry, including any of the following products, any of which can take any workable fluent product form described herein or known in the art: baby care products (e.g. soaps, shampoos, and lotions); beauty care products for cleaning, treating, beautifying, and/or decorating human or animal hair (e.g. hair shampoos, hair conditioners, hair dyes, hair colorants, hair repair products, hair growth products, hair removal products, hair minimization products, etc.); beauty care products for cleaning, treating, beautifying, and/or decorating human or animal skin (e.g.
  • soaps body washes, body scrubs, facial cleansers, astringents, sunscreens, sun block lotions, lip balms, cosmetics, skin conditioners, cold creams, skin moisturizers, antiper spirants, deodorants, etc.
  • beauty care products for cleaning, treating, beautifying, and/or decorating human or animal nails (e.g. nail polishes, nail polish removers, etc.); grooming products for cleaning, treating, beautifying, and/or decorating human facial hair (e.g. shaving products, pre-shaving products, after shaving products, etc.); health care products for cleaning, treating, beautifying, and/or decorating human or animal oral cavities (e.g.
  • Health care products for treating human and/or animal health conditions e.g. medicines, medicaments, pharmaceuticals, vitamins, nutraceuticals, nutrient supplements (for calcium, fiber, etc.), cough treatment products, cold remedies, lozenges, treatments for respiratory and/or allergy conditions, pain relievers, sleep aids, gastrointestinal treatment products (for heartburn, upset stomach, diarrhea, irritable bowel syndrome, etc.), purified water, treated water, etc.); pet care products for feeding and/or caring for animals (e.g.
  • pet food pet vitamins, pet medicines, pet chews, pet treats, etc.
  • fabric care products for cleaning, conditioning, refreshing and/or treating fabrics, clothes and/or laundry e.g. laundry detergents, fabric conditioners, fabric dyes, fabric bleaches, etc.
  • dish care products for home, commercial, and/or industrial use e.g. dish soaps and rinse aids for hand-washing and/or machine washing
  • cleaning and/or deodorizing products for home, commercial, and/or industrial use e.g. soft surface cleaners, hard surface cleaners, glass cleaners, ceramic tile cleaners, carpet cleaner, wood cleaners, multi- surface cleaners, surface disinfectants, kitchen cleaners, bath cleaners (e.g. sink, toilet, tub, and/or shower cleaners), appliance cleaning products, appliance treatment products, car cleaning products, car deodorizing products, air cleaners, air deodorizers, air disinfectants, etc.), and the like.
  • any embodiment of flexible containers, as described herein, may be used across additional areas of home, commercial, and/or industrial, building and/or grounds, construction and/or maintenance, including any of the following products, any of which can take any workable fluent product form (e.g. liquid, granular, powdered, etc.) described herein or known in the art: products for establishing, maintaining, modifying, treating, and/or improving lawns, gardens, and/or grounds (e.g. grass seeds, vegetable seeds, plant seeds, birdseed, other kinds of seeds, plant food, fertilizer, soil nutrients and/or soil conditions (e.g.
  • workable fluent product form e.g. liquid, granular, powdered, etc.
  • products for establishing, maintaining, modifying, treating, and/or improving lawns, gardens, and/or grounds e.g. grass seeds, vegetable seeds, plant seeds, birdseed, other kinds of seeds, plant food, fertilizer, soil nutrients and/or soil conditions (e.g.
  • products for landscaping use e.g. topsoils, potting soils, general use soils, mulches, wood chips, tree bark nuggets, sands, natural stones and/or rocks (e.g. decorative stones, pea gravel, gravel, etc.) of all kinds, man-made compositions based on stones and rocks (e.g. paver bases, etc.)
  • products for starting and/or fueling fires in grills, fire pits, fireplaces, etc. e.g.
  • fire logs fire starting nuggets, charcoal, lighter fluid, matches, etc.
  • lighting products e.g. light bulbs and light tubes or all kinds including: incandescents, compact fluorescents, fluorescents, halogens, light emitting diodes, of all sizes, shapes, and uses
  • chemical products for construction, maintenance, remodeling, and/or decorating e.g.
  • any embodiment of flexible containers, as described herein may be used across the food and beverage industry, including any of the following products, any of which can take any workable fluent product form described herein or known in the art: foods such as basic ingredients (e.g. grains such as rice, wheat, corn, beans, and derivative ingredients made from any of these, as well as nuts, seeds, and legumes, etc.), cooking ingredients (e.g. sugar, spices such as salt and pepper, cooking oils, vinegars, tomato pastes, natural and artificial sweeteners, flavorings, seasonings, etc.), baking ingredients (e.g.
  • basic ingredients e.g. grains such as rice, wheat, corn, beans, and derivative ingredients made from any of these, as well as nuts, seeds, and legumes, etc.
  • cooking ingredients e.g. sugar, spices such as salt and pepper, cooking oils, vinegars, tomato pastes, natural and artificial sweeteners, flavorings, seasonings, etc.
  • baking ingredients e.g.
  • baking powders starches, shortenings, syrups, food colorings, fillings, gelatins, chocolate chips and other kinds of chips, frostings, sprinkles, toppings, etc.
  • dairy foods e.g. creams, yogurts, sour creams, wheys, caseins, etc.
  • spreads e.g. jams, jellies, etc.
  • sauces e.g. barbecue sauces, salad dressings, tomato sauces, etc.
  • condiments e.g.
  • ketchups mustards, relishes, mayonnaises, etc.
  • processed foods noodles and pastas, dry cereals, cereal mixes, premade mixes, snack chips and snacks and snack mixes of all kinds, pretzels, crackers, cookies, candies, chocolates of all kinds, marshmallows, puddings, etc.
  • beverages such as water, milks, juices, flavored and/or carbonated beverages (e.g. soda), sports drinks, coffees, teas, spirits, alcoholic beverages (e.g. beer, wine, etc.), etc.
  • ingredients for making or mixing into beverages e.g. coffee beans, ground coffees, cocoas, tea leaves, dehydrated beverages, powders for making beverages, natural and artificial sweeteners, flavorings, etc.).
  • any of the embodiments of flexible containers disclosed herein can also be sterilized (e.g. by treatment with ultraviolet light or peroxide-based compositions), to make the containers safe for use in storing food and/or beverage.
  • the containers can be configured to be suitable for retort processes.
  • any embodiment of flexible containers, as described herein, may be used across the medical industry, in the areas of medicines, medical devices, and medical treatment, including uses for receiving, containing, storing and/or dispensing, any of the following fluent products, in any form known in the art: bodily fluids from humans and/or animals (e.g.
  • amniotic fluid aqueous humour, vitreous humour, bile, blood, blood plasma, blood serum, breast milk, cerebrospinal fluid, cerumen (earwax), chyle, chime, endolymph (and perilymph), ejaculate, runny feces, gastric acid, gastric juice, lymph, mucus (including nasal drainage and phlegm), pericardial fluid, peritoneal fluid, pleural fluid, pus, rheum, saliva, sebum (skin oil), semen, sputum, synovial fluid, tears, sweat, vaginal secretion, vomit, urine, etc.); fluids for intravenous therapy to human or animal bodies (e.g.
  • volume expanders e.g. crystalloids and colloids
  • blood-based products including blood substitutes, buffer solutions, liquid-based medications (which can include pharmaceuticals), parenteral nutritional formulas (e.g. for intravenous feeding, wherein such formulas can include salts, glucose, amino acids, lipids, supplements, nutrients, and/or vitamins); other medicinal fluids for administering to human or animal bodies (e.g. medicines, medicaments, nutrients, nutraceuticals, pharmaceuticals, etc.) by any suitable method of administration (e.g. orally (in solid, liquid, or pill form), topically, intranasally, by inhalation, or rectally.
  • Any of the embodiments of flexible containers disclosed herein can also be sterilized (e.g. by treatment with ultraviolet light or peroxide-based compositions or through an autoclave or retort process), to make the containers safe for use in sterile medical environments.
  • any embodiment of flexible containers may be used across any and all industries that use internal combustion engines (such as the transportation industry, the power equipment industry, the power generation industry, etc.), including products for vehicles such as cars, trucks, automobiles, boats, aircraft, etc., with such containers useful for receiving, containing, storing, and/or dispensing, any of the following fluent products, in any form known in the art: engine oil, engine oil additives, fuel additives, brake fluids, transmission fluids, engine coolants, power steering fluids, windshield wiper fluids, products for vehicle care (e.g.
  • Any embodiment of flexible containers, as described herein, can also be used for receiving, containing, storing, and/or dispensing, non-fluent products, in any of the following categories: Baby Care products, including disposable wearable absorbent articles, diapers, training pants, infant and toddler care wipes, etc. and the like; Beauty Care products including applicators for applying compositions to human or animal hair, skin, and/or nails, etc. and the like; Home Care products including wipes and scrubbers for all kinds of cleaning applications and the like; Family Care products including wet or dry bath tissue, facial tissue, disposable handkerchiefs, disposable towels, wipes, etc.
  • Baby Care products including disposable wearable absorbent articles, diapers, training pants, infant and toddler care wipes, etc. and the like
  • Beauty Care products including applicators for applying compositions to human or animal hair, skin, and/or nails, etc. and the like
  • Home Care products including wipes and scrubbers for all kinds of cleaning applications and the like
  • Family Care products including wet or dry bath tissue, facial tissue, disposable hand
  • Feminine Care products including catamenial pads, incontinence pads, interlabial pads, panty liners, pessaries, sanitary napkins, tampons, tampon applicators, wipes, etc. and the like;
  • Health Care products including oral care products such as oral cleaning devices, dental floss, flossing devices, toothbrushes, etc. and the like;
  • Pet Care products including grooming aids, pet training aids, pet devices, pet toys, etc. and the like;
  • Portable Power products including electrochemical cells, batteries, battery current interrupters, battery testers, battery chargers, battery charge monitoring equipment, battery charge/discharge rate controlling equipment, "smart" battery electronics, flashlights, etc.
  • Small Appliance Products including hair removal appliances (including, e.g. electric foil shavers for men and women, charging and/or cleaning stations, electric hair trimmers, electric beard trimmers, electric epilator devices, cleaning fluid cartridges, shaving conditioner cartridges, shaving foils, and cutter blocks); oral care appliances (including, e.g., electric toothbrushes with accumulator or battery, refill brushheads, interdental cleaners, tongue cleaners, charging stations, electric oral irrigators, and irrigator clip on jets); small electric household appliances (including, e.g., coffee makers, water kettles, handblenders, handmixers, food processors, steam cookers, juicers, citrus presses, toasters, coffee or meat grinders, vacuum pumps, irons, steam pressure stations for irons and in general non electric attachments therefore, hair care appliances (including, e.g., electric hair driers, hairstylers, hair curlers, hair straighteners, cordless gas heated styler/irons and gas cartridges therefore, and air filter attachment
  • Figures 1A-1D illustrates various views of an embodiment of a stand up flexible container
  • Figure 1A illustrates a front view of the container 100.
  • the container 100 is standing upright on a horizontal support surface 101.
  • a coordinate system 110 provides lines of reference for referring to directions in the figure.
  • the coordinate system 110 is a three-dimensional Cartesian coordinate system with an X-axis, a Y-axis, and a Z-axis, wherein each axis is perpendicular to the other axes, and any two of the axes define a plane.
  • the X-axis and the Z-axis are parallel with the horizontal support surface
  • Figure 1A also includes other lines of reference, for referring to directions and locations with respect to the container 100.
  • a lateral centerline 111 runs parallel to the X-axis.
  • An XY plane at the lateral centerline 111 separates the container 100 into a front half and a back half.
  • An XZ plane at the lateral centerline 111 separates the container 100 into an upper half and a lower half.
  • a longitudinal centerline 114 runs parallel to the Y-axis.
  • a YZ plane at the longitudinal centerline 114 separates the container 100 into a left half and a right half.
  • a third centerline 117 runs parallel to the Z-axis. The lateral centerline 111, the longitudinal centerline 114, and the third centerline 117 all intersect at a center of the container 100.
  • a disposition with respect to the lateral centerline 111 defines what is longitudinally inboard 112 and longitudinally outboard 113.
  • first location When a first location is nearer to the lateral centerline 111 than a second location, the first location is considered to be disposed longitudinally inboard 112 to the second location. And, the second location is considered to be disposed longitudinally outboard 113 from the first location.
  • lateral refers to a direction, orientation, or measurement that is parallel to the lateral centerline 111.
  • a lateral orientation may also be referred to a horizontal orientation, and a lateral measurement may also be referred to as a width.
  • a disposition with respect to the longitudinal centerline 114 defines what is laterally inboard 115 and laterally outboard 116.
  • first location When a first location is nearer to the longitudinal centerline 114 than a second location, the first location is considered to be disposed laterally inboard 115 to the second location. And, the second location is considered to be disposed laterally outboard 116 from the first location.
  • longitudinal refers to a direction, orientation, or measurement that is parallel to the longitudinal centerline 114.
  • a longitudinal orientation may also be referred to a vertical orientation.
  • a longitudinal direction, orientation, or measurement may also be expressed in relation to a horizontal support surface for the container 100.
  • the first location When a first location is nearer to the support surface than a second location, the first location can be considered to be disposed lower than, below, beneath, or under the second location. And, the second location can be considered to be disposed higher than, above, or upward from the first location.
  • a longitudinal measurement may also be referred to as a height, measured above the horizontal support surface 100.
  • a measurement that is made parallel to the third centerline 117 is referred to a thickness or depth.
  • a disposition in the direction of the third centerline 117 and toward a front 102-1 of the container is referred to as forward 118 or in front of.
  • a disposition in the direction of the third centerline 117 and toward a back 102-2 of the container is referred to as backward 119 or behind.
  • the container 100 includes a top 104, a middle 106, and a bottom 108, the front 102-1, the back 102-2, and left and right sides 109.
  • the top 104 is separated from the middle 106 by a reference plane 105, which is parallel to the XZ plane.
  • the middle 106 is separated from the bottom 108 by a reference plane 107, which is also parallel to the XZ plane.
  • the container 100 has an overall height of 100-oh.
  • the front 102-1 and the back 102-2 of the container are joined together at a seal 129, which extends around the outer periphery of the container 100, across the top 104, down the side 109, and then, at the bottom of each side 109, splits outward to follow the front and back portions of the base 190, around their outer extents.
  • the container 100 includes a structural support frame 140, a product volume 150, a dispenser 160, panels 180-1 and 180-2, and a base structure 190. A portion of panel 180-1 is illustrated as broken away, in order to show the product volume 150.
  • the product volume 150 is configured to contain one or more fluent products.
  • the dispenser 160 allows the container 100 to dispense these fluent product(s) from the product volume 150 through a flow channel 159 then through the dispenser 160, to the environment outside of the container 100.
  • the dispenser 160 is disposed in the center of the uppermost part of the top 104, however, in various alternate embodiments, the dispenser 160 can be disposed anywhere else on the top 140, middle 106, or bottom 108, including anywhere on either of the sides 109, on either of the panels 180-1 and 180-2, and on any part of the base 190 of the container 100.
  • the structural support frame 140 supports the mass of fluent product(s) in the product volume 150, and makes the container 100 stand upright.
  • the panels 180-1 and 180-2 are relatively flat surfaces, overlaying the product volume 150, and are suitable for displaying any kind of indicia.
  • part, parts, or about all, or approximately all, or substantially all, or nearly all, or all of either or both of the panels 180-1 and 180-2 can include one or more curved surfaces.
  • the base structure 190 supports the structural support frame 140 and provides stability to the container 100 as it stands upright.
  • the structural support frame 140 is formed by a plurality of structural support members.
  • the structural support frame 140 includes top structural support members 144-1 and 144-2, middle structural support members 146-1, 146-2, 146-3, and 146-4, as well as bottom structural support members 148-1 and 148-2.
  • the top structural support members 144-1 and 144-2 are disposed on the upper part of the top 104 of the container 100, with the top structural support member 144-1 disposed in the front 102-1 and the top structural support member 144-2 disposed in the back 102-2, behind the top structural support member 144-1.
  • the top structural support members 144-1 and 144-2 are adjacent to each other and can be in contact with each other along the laterally outboard portions of their lengths.
  • the top structural support members 144-1 and 144-2 can be in contact with each other at one or more relatively smaller locations and/or at one or more relatively larger locations, along part, or parts, or about all, or approximately all, or substantially all, or nearly all, or all of their overall lengths, so long as there is a flow channel 159 between the top structural support members 144-1 and 144-2, which allows the container 100 to dispense fluent product(s) from the product volume 150 through the flow channel 159 then through the dispenser 160.
  • the top structural support members 144-1 and 144-2 are not directly connected to each other. However, in various alternate embodiments, the top structural support members 144-1 and 144-2 can be directly connected and/or joined together along part, or parts, or about all, or approximately all, or substantially all, or nearly all, or all of their overall lengths.
  • the top structural support members 144-1 and 144-2 are disposed substantially above the product volume 150. Overall, each of the top structural support members 144-1 and 144-2 is oriented about horizontally, but with its ends curved slightly downward. And, overall each of the top structural support members 144-1 and 144-2 has a cross-sectional area that is substantially uniform along its length; however the cross-sectional area at their ends are slightly larger than the cross-sectional area in their middles.
  • the middle structural support members 146-1, 146-2, 146-3, and 146-4 are disposed on the left and right sides 109, from the top 104, through the middle 106, to the bottom 108.
  • the middle structural support member 146-1 is disposed in the front 102-1, on the left side 109; the middle structural support member 146-4 is disposed in the back 102-2, on the left side 109, behind the middle structural support member 146-1.
  • the middle structural support members 146-1 and 146-4 are adjacent to each other and can be in contact with each other along substantially all of their lengths.
  • the middle structural support members 146-1 and 146-4 can be in contact with each other at one or more relatively smaller locations and/or at one or more relatively larger locations, along part, or parts, or about all, or approximately all, or substantially all, or nearly all, or all of their overall lengths.
  • the middle structural support members 146-1 and 146-4 are not directly connected to each other.
  • the middle structural support members 146-1 and 146-4 can be directly connected and/or joined together along part, or parts, or about all, or approximately all, or substantially all, or nearly all, or all of their overall lengths.
  • the middle structural support member 146-2 is disposed in the front 102-1, on the right side 109; the middle structural support member 146-3 is disposed in the back 102-2, on the right side 109, behind the middle structural support member 146-2.
  • the middle structural support members 146-2 and 146-3 are adjacent to each other and can be in contact with each other along substantially all of their lengths.
  • the middle structural support members 146-2 and 146- 3 can be in contact with each other at one or more relatively smaller locations and/or at one or more relatively larger locations, along part, or parts, or about all, or approximately all, or substantially all, or nearly all, or all of their overall lengths.
  • the middle structural support members 146-2 and 146-3 are not directly connected to each other. However, in various alternate embodiments, the middle structural support members 146-2 and 146-3 can be directly connected and/or joined together along part, or parts, or about all, or approximately all, or substantially all, or nearly all, or all of their overall lengths.
  • the middle structural support members 146-1, 146-2, 146-3, and 146-4 are disposed substantially laterally outboard from the product volume 150. Overall, each of the middle structural support members 146-1, 146-2, 146-3, and 146-4 is oriented about vertically, but angled slightly, with its upper end laterally inboard to its lower end. And, overall each of the middle structural support members 146-1, 146-2, 146-3, and 146-4 has a cross-sectional area that changes along its length, increasing in size from its upper end to its lower end.
  • the bottom structural support members 148-1 and 148-2 are disposed on the bottom 108 of the container 100, with the bottom structural support member 148-1 disposed in the front 102-1 and the bottom structural support member 148-2 disposed in the back 102-2, behind the top structural support member 148-1.
  • the bottom structural support members 148-1 and 148-2 are adjacent to each other and can be in contact with each other along substantially all of their lengths.
  • the bottom structural support members 148-1 and 148-2 can be in contact with each other at one or more relatively smaller locations and/or at one or more relatively larger locations, along part, or parts, or about all, or approximately all, or substantially all, or nearly all, or all of their overall lengths.
  • the bottom structural support members 148-1 and 148-2 are not directly connected to each other. However, in various alternate embodiments, the bottom structural support members 148-1 and 148-2 can be directly connected and/or joined together along part, or parts, or about all, or approximately all, or substantially all, or nearly all, or all of their overall lengths.
  • the bottom structural support members 148-1 and 148-2 are disposed substantially below the product volume 150, but substantially above the base structure 190. Overall, each of the bottom structural support members 148-1 and 148-2 is oriented about horizontally, but with its ends curved slightly upward. And, overall each of the bottom structural support members 148-1 and 148-2 has a cross-sectional area that is substantially uniform along its length.
  • the left end of the top structural support member 144-1 is joined to the upper end of the middle structural support member 146-1; the lower end of the middle structural support member 146-1 is joined to the left end of the bottom structural support member 148-1; the right end of the bottom structural support member 148-1 is joined to the lower end of the middle structural support member 146-2; and the upper end of the middle structural support member 146-2 is joined to the right end of the top structural support member 144-1.
  • the left end of the top structural support member 144-2 is joined to the upper end of the middle structural support member 146-4; the lower end of the middle structural support member 146-4 is joined to the left end of the bottom structural support member 148-2; the right end of the bottom structural support member 148-2 is joined to the lower end of the middle structural support member 146-3; and the upper end of the middle structural support member 146-3 is joined to the right end of the top structural support member 144-2.
  • the ends of the structural support members, which are joined together are directly connected, all around the periphery of their walls.
  • any of the structural support members 144-1, 144-2, 146-1, 146-2, 146-3, 146-4, 148-1, and 148-2 can be joined together in any way described herein or known in the art.
  • adjacent structural support members can be combined into a single structural support member, wherein the combined structural support member can effectively substitute for the adjacent structural support members, as their functions and connections are described herein.
  • one or more additional structural support members can be added to the structural support members in the structural support frame 140, wherein the expanded structural support frame can effectively substitute for the structural support frame 140, as its functions and connections are described herein.
  • a flexible container may not include a base structure.
  • Figure IB illustrates a side view of the stand up flexible container 100 of Figure 1A.
  • Figure 1C illustrates a top view of the stand up flexible container 100 of Figure 1A.
  • Figure ID illustrates a bottom view of the stand up flexible container 100 of Figure 1A.
  • Figure IE illustrates a perspective view of a container 100-1, which is an alternative embodiment of the stand up flexible container 100 of Figure 1A, including an asymmetric structural support frame 140-1, a first portion of the product volume 150-lb, a second portion of the product volume 150-la, and a dispenser 160-1.
  • the embodiment of Figure IE is similar to the embodiment of Figure 1A with like-numbered terms configured in the same way, except that the frame 140-1 extends around about half of the container 100-1, directly supporting a first portion of the product volume 150-lb, which is disposed inside of the frame 140-1, and indirectly supporting a second portion of the product volume 150-la, which is disposed outside of the frame 140-1.
  • any stand-up flexible container of the present disclosure can be modified in a similar way, such that: the frame extends around only part or parts of the container, and/or the frame is asymmetric with respect to one or more centerlines of the container, and/or part or parts of one or more product volumes of the container are disposed outside of the frame, and/or part or parts of one or more product volumes of the container are indirectly supported by the frame.
  • Figure IF illustrates a perspective view of a container 100-2, which is an alternative embodiment of the stand up flexible container 100 of Figure 1A, including an internal structural support frame 140-2, a product volume 150-2, and a dispenser 160-2.
  • the embodiment of Figure IF is similar to the embodiment of Figure 1A with like-numbered terms configured in the same way, except that the frame 140-2 is internal to the product volume 150-2.
  • any stand-up flexible container of the present disclosure can be modified in a similar way, such that: part, parts, or all of the frame (including part, parts, or all of one or more of any structural support members that form the frame) are about, approximately, substantially, nearly, or completely enclosed by one or more product volumes.
  • Figure 1G illustrates a perspective view of a container 100-3, which is an alternative embodiment of the stand up flexible container 100 of Figure 1A, including an external structural support frame 140-3, a product volume 150-3, and a dispenser 160-3.
  • the embodiment of Figure 1G is similar to the embodiment of Figure 1A with like-numbered terms configured in the same way, except that the product volume 150-3 is not integrally connected to the frame 140-3 (that is, not simultaneously made from the same web of flexible materials), but rather the product volume 150-3 is separately made and then joined to the frame 140-3.
  • the product volume 150-3 can be joined to the frame in any convenient manner disclosed herein or known in the art.
  • the product volume 150-3 is disposed within the frame 140-3, but the product volume 150-3 has a reduced size and a somewhat different shape, when compared with the product volume 150 of Figure 1A; however, these differences are made to illustrate the relationship between the product volume 150-3 and the frame 140-3, and are not required.
  • any stand-up flexible container of the present disclosure can be modified in a similar way, such that one or more the product volumes are not integrally connected to the frame.
  • Figures 2A-8G illustrate embodiments of stand up flexible containers having various overall shapes. Any of the embodiments of Figures 2A-8G can be configured according to any of the embodiments disclosed herein, including the embodiments of Figures 1A-1G. Any of the elements (e.g. structural support frames, structural support members, panels, dispensers, etc.) of the embodiments of Figures 2A-8G, can be configured according to any of the embodiments disclosed herein. While each of the embodiments of Figures 2A-8G illustrates a container with one dispenser, in various embodiments, each container can include multiple dispensers, according to any embodiment described herein. Figures 2A-8G illustrate exemplary additional/alternate locations for dispenser with phantom line outlines.
  • Part, parts, or about all, or approximately all, or substantially all, or nearly all, or all of each of the panels in the embodiments of Figures 2A-8G is suitable to display any kind of indicia.
  • Each of the side panels in the embodiments of Figures 2A-8G is configured to be a nonstructural panel, overlaying product volume(s) disposed within the flexible container, however, in various embodiments, one or more of any kind of decorative or structural element (such as a rib, protruding from an outer surface) can be joined to part, parts, or about all, or approximately all, or substantially all, or nearly all, or all of any of these side panels.
  • any of the embodiments of Figures 2A-8G can be configured to include any structure or feature for flexible containers, disclosed herein.
  • any of the embodiments of Figures 2A-8G can be configured to include any kind of base structure disclosed herein.
  • Figure 2A illustrates a front view of a stand up flexible container 200 having a structural support frame 240 that has an overall shape like a frustum.
  • the frustum shape is based on a four-sided pyramid, however, in various embodiments, the frustum shape can be based on a pyramid with a different number of sides, or the frustum shape can be based on a cone.
  • the support frame 240 is formed by structural support members disposed along the edges of the frustum shape and joined together at their ends.
  • the structural support members define a rectangular shaped top panel 280-t, trapezoidal shaped side panels 280-1, 280-2, 280-3, and 280-4, and a rectangular shaped bottom panel (not shown).
  • Each of the side panels 280-1, 280-2, 280-3, and 280-4 is about flat, however in various embodiments, part, parts, or about all, or approximately all, or substantially all, or nearly all, or all of any of the side panels can be approximately flat, substantially flat, nearly flat, or completely flat.
  • the container 200 includes a dispenser 260, which is configured to dispense one or more fluent products from one or more product volumes disposed within the container 200.
  • the dispenser 260 is disposed in the center of the top panel 280-t, however, in various alternate embodiments, the dispenser 260 can be disposed anywhere else on the top, sides, or bottom, of the container 200, according to any embodiment described or illustrated herein.
  • Figure 2B illustrates a front view of the container 200 of Figure 2A, including exemplary additional/alternate locations for a dispenser, any of which can also apply to the back of the container.
  • Figure 2C illustrates a side view of the container 200 of Figure 2A, including exemplary additional/alternate locations for a dispenser (shown as phantom lines), any of which can apply to either side of the container.
  • Figure 2D illustrates an isometric view of the container 200 of Figure 2A.
  • Figure 2E illustrates a perspective view of a container 200-1, which is an alternative embodiment of the stand up flexible container 200 of Figure 2A, including an asymmetric structural support frame 240-1, a first portion of the product volume 250- lb, a second portion of the product volume 250- la, and a dispenser 260-1, configured in the same manner as the embodiment of Figure IE, except based on the container 200.
  • Figure 2F illustrates a perspective view of a container 200-2, which is an alternative embodiment of the stand up flexible container 200 of Figure 2A, including an internal structural support frame 240-2, a product volume 250-2, and a dispenser 260-2, configured in the same manner as the embodiment of Figure IF, except based on the container 200.
  • Figure 2G illustrates a perspective view of a container 200-3, which is an alternative embodiment of the stand up flexible container 200 of Figure 2A, including an external structural support frame 240-3, a non- integral product volume 250-3 joined to and disposed within the frame 240-3, and a dispenser 260-3, configured in the same manner as the embodiment of Figure 1G, except based on the container 200.
  • Figure 3A illustrates a front view of a stand up flexible container 300 having a structural support frame 340 that has an overall shape like a pyramid.
  • the pyramid shape is based on a four-sided pyramid, however, in various embodiments, the pyramid shape can be based on a pyramid with a different number of sides.
  • the support frame 340 is formed by structural support members disposed along the edges of the pyramid shape and joined together at their ends.
  • the structural support members define triangular shaped side panels 380-1, 380-2, 380-3, and 380-4, and a square shaped bottom panel (not shown).
  • Each of the side panels 380-1, 380-2, 380-3, and 380-4 is about flat, however in various embodiments, part, parts, or about all, or approximately all, or substantially all, or nearly all, or all of any of the side panels can be approximately flat, substantially flat, nearly flat, or completely flat.
  • the container 300 includes a dispenser 360, which is configured to dispense one or more fluent products from one or more product volumes disposed within the container 300.
  • the dispenser 360 is disposed at the apex of the pyramid shape, however, in various alternate embodiments, the dispenser 360 can be disposed anywhere else on the top, sides, or bottom, of the container 300.
  • Figure 3B illustrates a front view of the container 300 of Figure 3 A, including exemplary additional/alternate locations for a dispenser (shown as phantom lines), any of which can also apply to any side of the container.
  • Figure 3C illustrates a side view of the container 300 of Figure 3A.
  • Figure 3D illustrates an isometric view of the container 300 of Figure 3A.
  • Figure 3E illustrates a perspective view of a container 300-1, which is an alternative embodiment of the stand up flexible container 300 of Figure 3 A, including an asymmetric structural support frame 340-1, a first portion of the product volume 350- lb, a second portion of the product volume 350- la, and a dispenser 360-1, configured in the same manner as the embodiment of Figure IE, except based on the container 300.
  • Figure 3F illustrates a perspective view of a container 300-2, which is an alternative embodiment of the stand up flexible container 300 of Figure 3A, including an internal structural support frame 340-2, a product volume 350-2, and a dispenser 360-2, configured in the same manner as the embodiment of Figure IF, except based on the container 300.
  • Figure 3G illustrates a perspective view of a container 300-3, which is an alternative embodiment of the stand up flexible container 300 of Figure 3A, including an external structural support frame 340-3, a non- integral product volume 350-3 joined to and disposed within the frame 340-3, and a dispenser 360-3, configured in the same manner as the embodiment of Figure 1G, except based on the container 300.
  • Figure 4A illustrates a front view of a stand up flexible container 400 having a structural support frame 440 that has an overall shape like a trigonal prism.
  • the prism shape is based on a triangle.
  • the support frame 440 is formed by structural support members disposed along the edges of the prism shape and joined together at their ends.
  • the structural support members define a triangular shaped top panel 480-t, rectangular shaped side panels 480-1, 480-2, and 480-3, and a triangular shaped bottom panel (not shown).
  • Each of the side panels 480-1, 480-2, and 480-3 is about flat, however in various embodiments, part, parts, or about all, or approximately all, or substantially all, or nearly all, or all of the side panels can be approximately flat, substantially flat, nearly flat, or completely flat.
  • the container 400 includes a dispenser 460, which is configured to dispense one or more fluent products from one or more product volumes disposed within the container 400.
  • the dispenser 460 is disposed in the center of the top panel 480-t, however, in various alternate embodiments, the dispenser 460 can be disposed anywhere else on the top, sides, or bottom, of the container 400.
  • Figure 4B illustrates a front view of the container 400 of Figure 4A, including exemplary additional/alternate locations for a dispenser (shown as phantom lines), any of which can also apply to any side of the container 400.
  • Figure 4C illustrates a side view of the container 400 of Figure 4A.
  • Figure 4D illustrates an isometric view of the container 400 of Figure 4A.
  • Figure 4E illustrates a perspective view of a container 400-1, which is an alternative embodiment of the stand up flexible container 400 of Figure 4A, including an asymmetric structural support frame 440-1, a first portion of the product volume 450- lb, a second portion of the product volume 450- la, and a dispenser 460-1, configured in the same manner as the embodiment of Figure IE, except based on the container 400.
  • Figure 4F illustrates a perspective view of a container 400-2, which is an alternative embodiment of the stand up flexible container 400 of Figure 4A, including an internal structural support frame 440-2, a product volume 450-2, and a dispenser 460-2, configured in the same manner as the embodiment of Figure IF, except based on the container 400.
  • Figure 4G illustrates a perspective view of a container 400-3, which is an alternative embodiment of the stand up flexible container 400 of Figure 4A, including an external structural support frame 440-3, a non- integral product volume 450-3 joined to and disposed within the frame 440-3, and a dispenser 460-3, configured in the same manner as the embodiment of Figure 1G, except based on the container 400.
  • Figure 5A illustrates a front view of a stand up flexible container 500 having a structural support frame 540 that has an overall shape like a tetragonal prism.
  • the prism shape is based on a square.
  • the support frame 540 is formed by structural support members disposed along the edges of the prism shape and joined together at their ends.
  • the structural support members define a square shaped top panel 580-t, rectangular shaped side panels 580-1, 580-2, 580-3, and 580-4, and a square shaped bottom panel (not shown).
  • Each of the side panels 580-1, 580-2, 580-3, and 580-4 is about flat, however in various embodiments, part, parts, or about all, or approximately all, or substantially all, or nearly all, or all of any of the side panels can be approximately flat, substantially flat, nearly flat, or completely flat.
  • the container 500 includes a dispenser 560, which is configured to dispense one or more fluent products from one or more product volumes disposed within the container 500.
  • the dispenser 560 is disposed in the center of the top panel 580-t, however, in various alternate embodiments, the dispenser 560 can be disposed anywhere else on the top, sides, or bottom, of the container 500.
  • Figure 5B illustrates a front view of the container 500 of Figure 5A, including exemplary additional/alternate locations for a dispenser (shown as phantom lines), any of which can also apply to any side of the container 500.
  • Figure 5C illustrates a side view of the container 500 of Figure 5A.
  • Figure 5D illustrates an isometric view of the container 500 of Figure 5A.
  • Figure 5E illustrates a perspective view of a container 500-1, which is an alternative embodiment of the stand up flexible container 500 of Figure 5A, including an asymmetric structural support frame 540-1, a first portion of the product volume 550- lb, a second portion of the product volume 550- la, and a dispenser 560-1, configured in the same manner as the embodiment of Figure IE, except based on the container 500.
  • Figure 5F illustrates a perspective view of a container 500-2, which is an alternative embodiment of the stand up flexible container 500 of Figure 5A, including an internal structural support frame 540-2, a product volume 550-2, and a dispenser 560-2, configured in the same manner as the embodiment of Figure IF, except based on the container 500.
  • Figure 5G illustrates a perspective view of a container 500-3, which is an alternative embodiment of the stand up flexible container 500 of Figure 5A, including an external structural support frame 540-3, a non- integral product volume 550-3 joined to and disposed within the frame 540-3, and a dispenser 560-3, configured in the same manner as the embodiment of Figure 1G, except based on the container 500.
  • Figure 6A illustrates a front view of a stand up flexible container 600 having a structural support frame 640 that has an overall shape like a pentagonal prism.
  • the prism shape is based on a pentagon.
  • the support frame 640 is formed by structural support members disposed along the edges of the prism shape and joined together at their ends.
  • the structural support members define a pentagon shaped top panel 680-t, rectangular shaped side panels 680-1, 680-2, 680-3, 680-4, and 680-5, and a pentagon shaped bottom panel (not shown).
  • Each of the side panels 680-1, 680-2, 680-3, 680-4, and 680-5 is about flat, however in various embodiments, part, parts, or about all, or approximately all, or substantially all, or nearly all, or all of any of the side panels can be approximately flat, substantially flat, nearly flat, or completely flat.
  • the container 600 includes a dispenser 660, which is configured to dispense one or more fluent products from one or more product volumes disposed within the container 600.
  • the dispenser 660 is disposed in the center of the top panel 680-t, however, in various alternate embodiments, the dispenser 660 can be disposed anywhere else on the top, sides, or bottom, of the container 600.
  • Figure 6B illustrates a front view of the container 600 of Figure 6 A, including exemplary additional/alternate locations for a dispenser (shown as phantom lines), any of which can also apply to any side of the container 600.
  • Figure 6C illustrates a side view of the container 600 of Figure 6A.
  • Figure 6D illustrates an isometric view of the container 600 of Figure 6A.
  • Figure 6E illustrates a perspective view of a container 600-1, which is an alternative embodiment of the stand up flexible container 600 of Figure 6A, including an asymmetric structural support frame 640-1, a first portion of the product volume 650- lb, a second portion of the product volume 650- la, and a dispenser 660-1, configured in the same manner as the embodiment of Figure IE, except based on the container 600.
  • Figure 6F illustrates a perspective view of a container 600-2, which is an alternative embodiment of the stand up flexible container 600 of Figure 6A, including an internal structural support frame 640-2, a product volume 650-2, and a dispenser 660-2, configured in the same manner as the embodiment of Figure IF, except based on the container 600.
  • Figure 6G illustrates a perspective view of a container 600-3, which is an alternative embodiment of the stand up flexible container 600 of Figure 6A, including an external structural support frame 640-3, a non- integral product volume 650-3 joined to and disposed within the frame 640-3, and a dispenser 660-3, configured in the same manner as the embodiment of Figure 1G, except based on the container 600.
  • Figure 7A illustrates a front view of a stand up flexible container 700 having a structural support frame 740 that has an overall shape like a cone.
  • the support frame 740 is formed by curved structural support members disposed around the base of the cone and by straight structural support members extending linearly from the base to the apex, wherein the structural support members are joined together at their ends.
  • the structural support members define curved somewhat triangular shaped side panels 780-1, 780-2, and 780-3, and a circular shaped bottom panel (not shown).
  • Each of the side panels 780-1, 780-2, and 780-3 is curved, however in various embodiments, part, parts, or about all, or approximately all, or substantially all, or nearly all, or all of any of the side panels can be approximately flat, substantially flat, nearly flat, or completely flat.
  • the container 700 includes a dispenser 760, which is configured to dispense one or more fluent products from one or more product volumes disposed within the container 700.
  • the dispenser 760 is disposed at the apex of the conical shape, however, in various alternate embodiments, the dispenser 760 can be disposed anywhere else on the top, sides, or bottom, of the container 700.
  • Figure 7B illustrates a front view of the container 700 of Figure 7A.
  • Figure 7C illustrates a side view of the container 700 of Figure 7A, including exemplary additional/alternate locations for a dispenser (shown as phantom lines), any of which can also apply to any side panel of the container 700.
  • Figure 7D illustrates an isometric view of the container 700 of Figure 7A.
  • Figure 7E illustrates a perspective view of a container 700-1, which is an alternative embodiment of the stand up flexible container 700 of Figure 7A, including an asymmetric structural support frame 740-1, a first portion of the product volume 750- lb, a second portion of the product volume 750- la, and a dispenser 760-1, configured in the same manner as the embodiment of Figure IE, except based on the container 700.
  • Figure 7F illustrates a perspective view of a container 700-2, which is an alternative embodiment of the stand up flexible container 700 of Figure 7A, including an internal structural support frame 740-2, a product volume 750-2, and a dispenser 760-2, configured in the same manner as the embodiment of Figure IF, except based on the container 700.
  • Figure 7G illustrates a perspective view of a container 700-3, which is an alternative embodiment of the stand up flexible container 700 of Figure 7A, including an external structural support frame 740-3, a non- integral product volume 750-3 joined to and disposed within the frame 740-3, and a dispenser 760-3, configured in the same manner as the embodiment of Figure 1G, except based on the container 700.
  • Figure 8 A illustrates a front view of a stand up flexible container 800 having a structural support frame 840 that has an overall shape like a cylinder.
  • the support frame 840 is formed by curved structural support members disposed around the top and bottom of the cylinder and by straight structural support members extending linearly from the top to the bottom, wherein the structural support members are joined together at their ends.
  • the structural support members define a circular shaped top panel 880-t, curved somewhat rectangular shaped side panels 880-1, 880-2, 880-3, and 880-4, and a circular shaped bottom panel (not shown).
  • Each of the side panels 880-1, 880-2, 880-3, and 880-4, is curved, however in various embodiments, part, parts, or about all, or approximately all, or substantially all, or nearly all, or all of any of the side panels can be approximately flat, substantially flat, nearly flat, or completely flat.
  • the container 800 includes a dispenser 860, which is configured to dispense one or more fluent products from one or more product volumes disposed within the container 800.
  • the dispenser 860 is disposed in the center of the top panel 880-t, however, in various alternate embodiments, the dispenser 860 can be disposed anywhere else on the top, sides, or bottom, of the container 800.
  • Figure 8B illustrates a front view of the container 800 of Figure 8A, including exemplary additional/alternate locations for a dispenser (shown as phantom lines), any of which can also apply to any side panel of the container 800.
  • Figure 8C illustrates a side view of the container 800 of Figure 8A.
  • Figure 8D illustrates an isometric view of the container 800 of Figure 8A.
  • Figure 8E illustrates a perspective view of a container 800-1, which is an alternative embodiment of the stand up flexible container 800 of Figure 8A, including an asymmetric structural support frame 840-1, a first portion of the product volume 850- lb, a second portion of the product volume 850- la, and a dispenser 860-1, configured in the same manner as the embodiment of Figure IE, except based on the container 800.
  • Figure 8F illustrates a perspective view of a container 800-2, which is an alternative embodiment of the stand up flexible container 800 of Figure 8A, including an internal structural support frame 840-2, a product volume 850-2, and a dispenser 860-2, configured in the same manner as the embodiment of Figure IF, except based on the container 800.
  • Figure 8G illustrates a perspective view of a container 800-3, which is an alternative embodiment of the stand up flexible container 800 of Figure 8A, including an external structural support frame 840-3, a non- integral product volume 850-3 joined to and disposed within the frame 840-3, and a dispenser 860-3, configured in the same manner as the embodiment of Figure 1G, except based on the container 800.
  • any stand up flexible container with a structural support frame can be configured to have an overall shape that corresponds with any other known three-dimensional shape, including any kind of polyhedron, any kind of prismatoid, and any kind of prism (including right prisms and uniform prisms).
  • Figure 9A illustrates a top view of an embodiment of a self-supporting flexible container 900, having an overall shape like a square.
  • Figure 9B illustrates an end view of the flexible container 900 of Figure 9 A.
  • the container 900 is resting on a horizontal support surface 901.
  • a coordinate system 910 provides lines of reference for referring to directions in the figure.
  • the coordinate system 910 is a three-dimensional Cartesian coordinate system, with an X-axis, a Y-axis, and a Z-axis.
  • the X-axis and the Z-axis are parallel with the horizontal support surface 901 and the Y-axis is perpendicular to the horizontal support surface 901.
  • Figure 9A also includes other lines of reference, for referring to directions and locations with respect to the container 100.
  • a lateral centerline 911 runs parallel to the X-axis.
  • An XY plane at the lateral centerline 911 separates the container 100 into a front half and a back half.
  • An XZ plane at the lateral centerline 911 separates the container 100 into an upper half and a lower half.
  • a longitudinal centerline 914 runs parallel to the Y-axis.
  • a YZ plane at the longitudinal centerline 914 separates the container 900 into a left half and a right half.
  • a third centerline 917 runs parallel to the Z-axis.
  • the lateral centerline 911, the longitudinal centerline 914, and the third centerline 917 all intersect at a center of the container 900.
  • the container 900 includes a top 904, a middle 906, and a bottom 908, the front 902-1, the back 902-2, and left and right sides 909.
  • the upper half and the lower half of the container are joined together at a seal 929, which extends around the outer periphery of the container 900.
  • the bottom of the container 900 is configured in the same way as the top of the container 900.
  • the container 900 includes a structural support frame 940, a product volume 950, a dispenser 960, a top panel 980-t and a bottom panel (not shown). A portion of the top panel 980-t is illustrated as broken away, in order to show the product volume 950.
  • the product volume 950 is configured to contain one or more fluent products.
  • the dispenser 960 allows the container 900 to dispense these fluent product(s) from the product volume 950 through a flow channel 959 then through the dispenser 960, to the environment outside of the container 900.
  • the structural support frame 940 supports the mass of fluent product(s) in the product volume 950.
  • the top panel 980-t and the bottom panel are relatively flat surfaces, overlaying the product volume 950, and are suitable for displaying any kind of indicia.
  • the structural support frame 940 is formed by a plurality of structural support members.
  • the structural support frame 940 includes front structural support members 943-1 and 943-2, intermediate structural support members 945-1, 945-2, 945-3, and 945-4, as well as back structural support members 947-1 and 947-2.
  • each of the structural support members in the container 900 is oriented horizontally.
  • each of the structural support members in the container 900 has a cross-sectional area that is substantially uniform along its length, although in various embodiments, this cross-sectional area can vary.
  • Upper structural support members 943-1, 945-1, 945-2, and 947-1 are disposed in an upper part of the middle 906 and in the top 904, while lower structural support members 943-2, 945-4, 945-3, and 947-2 are disposed in a lower part of the middle 906 and in the bottom 908.
  • the upper structural support members 943-1, 945-1, 945-2, and 947-1 are disposed above and adjacent to the lower structural support members 943-2, 945-4, 945-3, and 947-2, respectively.
  • adjacent upper and lower structural support members can be in contact with each other at one or more relatively smaller locations and/or at one or more relatively larger locations, along part, or parts, or about all, or approximately all, or substantially all, or nearly all, or all of their overall lengths, so long as there is a gap in the contact for the flow channel 959, between the structural support members 943-1 and 943-2.
  • the upper and lower structural support members are not directly connected to each other.
  • adjacent upper and lower structural support members can be directly connected and/or joined together along part, or parts, or about all, or approximately all, or substantially all, or nearly all, or all of their overall lengths.
  • structural support members 943-1, 945-2, 947-1, and 945-1 are joined together to form a top square that is outward from and surrounding the product volume 950, and the ends of structural support members 943-2, 945-3, 947-2, and 945-4 are also joined together to form a bottom square that is outward from and surrounding the product volume 950.
  • the ends of the structural support members, which are joined together are directly connected, all around the periphery of their walls.
  • any of the structural support members of the embodiment of Figures 9A-9B can be joined together in any way described herein or known in the art.
  • adjacent structural support members can be combined into a single structural support member, wherein the combined structural support member can effectively substitute for the adjacent structural support members, as their functions and connections are described herein.
  • one or more additional structural support members can be added to the structural support members in the structural support frame 940, wherein the expanded structural support frame can effectively substitute for the structural support frame 940, as its functions and connections are described herein.
  • Figure 9C illustrates a perspective view of a container 900-1, which is an alternative embodiment of the self-supporting flexible container 900 of 9igure 1A, including an asymmetric structural support frame 940-1, a first portion of the product volume 950- lb, a second portion of the product volume 950- la, and a dispenser 960-1.
  • the embodiment of Figure 9C is similar to the embodiment of Figure 9A with like-numbered terms configured in the same way, except that the frame 940-1 extends around about half of the container 900-1, directly supporting a first portion of the product volume 950- lb, which is disposed inside of the frame 940-1, and indirectly supporting a second portion of the product volume 950- la, which is disposed outside of the frame 940-1.
  • any self-supporting flexible container of the present disclosure can be modified in a similar way, such that: the frame extends around only part or parts of the container, and/or the frame is asymmetric with respect to one or more centerlines of the container, and/or part or parts of one or more product volumes of the container are disposed outside of the frame, and/or part or parts of one or more product volumes of the container are indirectly supported by the frame.
  • Figure 9D illustrates a perspective view of a container 900-2, which is an alternative embodiment of the self-supporting flexible container 900 of Figure 9A, including an internal structural support frame 940-2, a product volume 950-2, and a dispenser 960-2.
  • the embodiment of Figure 9D is similar to the embodiment of Figure 9A with like-numbered terms configured in the same way, except that the frame 940-2 is internal to the product volume 950-2.
  • any self-supporting flexible container of the present disclosure can be modified in a similar way, such that: part, parts, or all of the frame (including part, parts, or all of one or more of any structural support members that form the frame) are about, approximately, substantially, nearly, or completely enclosed by one or more product volumes.
  • Figure 9E illustrates a perspective view of a container 900-3, which is an alternative embodiment of the stand up flexible container 900 of Figure 9A, including an external structural support frame 940-3, a product volume 950-3, and a dispenser 960-3.
  • the embodiment of Figure 9E is similar to the embodiment of Figure 9A with like-numbered terms configured in the same way, except that the product volume 950-3 is not integrally connected to the frame 940-3 (that is, not simultaneously made from the same web of flexible materials), but rather the product volume 950-3 is separately made and then joined to the frame 940-3.
  • the product volume 950-3 can be joined to the frame in any convenient manner disclosed herein or known in the art.
  • the product volume 950-3 is disposed within the frame 940-3, but the product volume 950-3 has a reduced size and a somewhat different shape, when compared with the product volume 950 of Figure 9A; however, these differences are made to illustrate the relationship between the product volume 950-3 and the frame 940-3, and are not required.
  • any self- supporting flexible container of the present disclosure can be modified in a similar way, such that one or more the product volumes are not integrally connected to the frame.
  • Figures 10A-11E illustrate embodiments of self-supporting flexible containers (that are not stand up containers) having various overall shapes. Any of the embodiments of Figures 10A-11E can be configured according to any of the embodiments disclosed herein, including the embodiments of Figures 9A-9E. Any of the elements (e.g. structural support frames, structural support members, panels, dispensers, etc.) of the embodiments of Figures lOA-1 IE, can be configured according to any of the embodiments disclosed herein. While each of the embodiments of Figures 10A-11E illustrates a container with one dispenser, in various embodiments, each container can include multiple dispensers, according to any embodiment described herein.
  • Part, parts, or about all, or approximately all, or substantially all, or nearly all, or all of each of the panels in the embodiments of Figures 10A-11E is suitable to display any kind of indicia.
  • Each of the top and bottom panels in the embodiments of Figures 10A-11E is configured to be a nonstructural panel, overlaying product volume(s) disposed within the flexible container, however, in various embodiments, one or more of any kind of decorative or structural element (such as a rib, protruding from an outer surface) can be joined to part, parts, or about all, or approximately all, or substantially all, or nearly all, or all of any of these panels.
  • any of the embodiments of Figures 10A-11E can be configured to include any structure or feature for flexible containers, disclosed herein.
  • Figure 10A illustrates a top view of an embodiment of a self-supporting flexible container
  • a self-supporting flexible container can have an overall shape like a polygon having any number of sides.
  • the support frame 1040 is formed by structural support members disposed along the edges of the triangular shape and joined together at their ends.
  • the structural support members define a triangular shaped top panel 1080-t, and a triangular shaped bottom panel (not shown).
  • the top panel 1080-t and the bottom panel are about flat, however in various embodiments, part, parts, or about all, or approximately all, or substantially all, or nearly all, or all of any of the side panels can be approximately flat, substantially flat, nearly flat, or completely flat.
  • the container 1000 includes a dispenser 1060, which is configured to dispense one or more fluent products from one or more product volumes disposed within the container 1000.
  • the dispenser 1060 is disposed in the center of the front, however, in various alternate embodiments, the dispenser 1060 can be disposed anywhere else on the top, sides, or bottom, of the container 1000.
  • Figure 10A includes exemplary additional/alternate locations for a dispenser (shown as phantom lines).
  • Figure 10B illustrates an end view of the flexible container 1000 of Figure 10B, resting on a horizontal support surface 1001.
  • Figure IOC illustrates a perspective view of a container 1000-1, which is an alternative embodiment of the self-supporting flexible container 1000 of Figure 10A, including an asymmetric structural support frame 1040-1, a first portion of the product volume 1050- lb, a second portion of the product volume 1050- la, and a dispenser 1060-1, configured in the same manner as the embodiment of Figure 9C, except based on the container 1000.
  • Figure 10D illustrates a perspective view of a container 1000-2, which is an alternative embodiment of the self-supporting flexible container 1000 of Figure 10A, including an internal structural support frame 1040-2, a product volume 1050-2, and a dispenser 1060-2, configured in the same manner as the embodiment of Figure 9D, except based on the container 1000.
  • Figure 10E illustrates a perspective view of a container 1000-3, which is an alternative embodiment of the self-supporting flexible container 1000 of Figure 10A, including an external structural support frame 1040-3, a non-integral product volume 1050-3 joined to and disposed within the frame 1040-3, and a dispenser 1060-3, configured in the same manner as the embodiment of Figure 9E, except based on the container 1000.
  • Figure 11A illustrates a top view of an embodiment of a self-supporting flexible container 1100 (that is not a stand up flexible container) having a product volume 1150 and an overall shape like a circle.
  • the support frame 1140 is formed by structural support members disposed around the circumference of the circular shape and joined together at their ends.
  • the structural support members define a circular shaped top panel 1180-t, and a circular shaped bottom panel (not shown).
  • the top panel 1180-t and the bottom panel are about flat, however in various embodiments, part, parts, or about all, or approximately all, or substantially all, or nearly all, or all of any of the side panels can be approximately flat, substantially flat, nearly flat, or completely flat.
  • the container 1100 includes a dispenser 1160, which is configured to dispense one or more fluent products from one or more product volumes disposed within the container 1100.
  • the dispenser 1160 is disposed in the center of the front, however, in various alternate embodiments, the dispenser 1160 can be disposed anywhere else on the top, sides, or bottom, of the container 1100.
  • Figure 11A includes exemplary additional/alternate locations for a dispenser (shown as phantom lines).
  • Figure 11B illustrates an end view of the flexible container 1100 of Figure 10B, resting on a horizontal support surface 1101.
  • Figure 11C illustrates a perspective view of a container 1100-1, which is an alternative embodiment of the self-supporting flexible container 1100 of Figure 11A, including an asymmetric structural support frame 1140-1, a first portion of the product volume 1150- lb, a second portion of the product volume 1150- la, and a dispenser 1160-1, configured in the same manner as the embodiment of Figure 9C, except based on the container 1100.
  • Figure 11D illustrates a perspective view of a container 1100-2, which is an alternative embodiment of the self-supporting flexible container 1100 of Figure 11A, including an internal structural support frame 1140-2, a product volume 1150-2, and a dispenser 1160-2, configured in the same manner as the embodiment of Figure 9D, except based on the container 1100.
  • Figure HE illustrates a perspective view of a container 1100-3, which is an alternative embodiment of the self-supporting flexible container 1100 of Figure 11A, including an external structural support frame 1140-3, a non-integral product volume 1150-3 joined to and disposed within the frame 1140-3, and a dispenser 1160-3, configured in the same manner as the embodiment of Figure 9E, except based on the container 1100.
  • any self-supporting container with a structural support frame can be configured to have an overall shape that corresponds with any other known three-dimensional shape.
  • any self-supporting container with a structural support frame as disclosed herein, can be configured to have an overall shape (when observed from a top view) that corresponds with a rectangle, a polygon (having any number of sides), an oval, an ellipse, a star, or any other shape, or combinations of any of these.
  • Figures 12A-14C illustrate various exemplary dispensers, which can be used with the flexible containers disclosed herein.
  • Figure 12A illustrates an isometric view of push-pull type dispenser 1260-a.
  • Figure 12B illustrates an isometric view of dispenser with a flip-top cap 1260-b.
  • Figure 12C illustrates an isometric view of dispenser with a screw-on cap 1260-c.
  • Figure 12D illustrates an isometric view of rotatable type dispenser 1260-d.
  • Figure 12E illustrates an isometric view of nozzle type dispenser with a cap 1260-d.
  • Figure 13A illustrates an isometric view of straw dispenser 1360- a.
  • Figure 13B illustrates an isometric view of straw dispenser with a lid 1360-b.
  • Figure 13C illustrates an isometric view of flip up straw dispenser 1360-c.
  • Figure 13D illustrates an isometric view of straw dispenser with bite valve 1360-d.
  • Figure 14A illustrates an isometric view of pump type dispenser 1460-a, which can, in various embodiments be a foaming pump type dispenser.
  • Figure 14B illustrates an isometric view of pump spray type dispenser 1460-b.
  • Figure 14C illustrates an isometric view of trigger spray type dispenser 1460-c.
  • Figure 15 illustrates another embodiment of a stand up flexible container 1500.
  • the container 1500 is substantially similar to the flexible container 100 described above and has the same components referenced by common reference numbers.
  • the container 1500 includes, in relevant part, a pair of sides 1509, a structural support frame 1540, a product volume 1550, a dispenser 1560, a front panel 1580-1, a rear panel (not shown), and a base structure 1590.
  • the structural support frame 1540 is similar to the structural support frame 140 of the container 100. As such, the structural support frame 1540 is formed by a plurality of structural support members, including middle structural support members 1546-1 and 1546-2.
  • the product volume 1550 is configured to contain one or more fluent products.
  • the dispenser 1560 allows the container 1500 to dispense the fluent product(s) from the product volume 1500, through the dispenser 1560, and to the environment outside of the container 1500. Unlike the dispenser 160, which is disposed on or at a top portion of the container 100, the dispenser 1560 is disposed on or at a bottom of the container 1500.
  • the flexible containers described herein are configured to be "Easy to Empty.”
  • the flexible containers described herein are configured such that a user (e.g., a consumer) of the flexible containers can easily and quickly evacuate a desired amount of fluent product(s) from the flexible containers. This is, in general, due to the resiliency of the containers.
  • these flexible containers have a resiliently deformable product volume.
  • the product volume has an undeformed state and a first interior volume.
  • the product volume is deformable to a deformed state in which the product volume is reduced to a second interior volume less than the first interior volume.
  • the dispenser in fluid communication with the product volume can, in turn, dispense at least some of the fluent product(s) from the product volume.
  • the product volume is configured to be fully restored to the undeformed state (i.e., the product volume does not suffer from a loss of shape) after the desired amount of fluent product(s) has been evacuated from the flexible container.
  • the product volume is configured to be self restoring, such that following the evacuation of the desired amount of fluent product(s) from the flexible container, the product volume can automatically restore itself to the undeformed state.
  • This resiliency provides benefits of: maintaining standup during the course of usage, maintaining similar appearance during usage (container does not collapse or crumple), easy dispensing of product, maintaining stability to tipping over during the course of usage.
  • FIGS 16A-16D will now be used to more specifically illustrate the "Easy to Empty" characteristics of the flexible containers described herein.
  • the flexible container 1500 is referenced, but it will be appreciated that the other containers described herein can have similar characteristics.
  • Figure 16A depicts the flexible container 1500 when the product volume 1550 is filled with a fluent product and no dispensing force is applied to the product volume 1550.
  • the product volume 1550 shown in Figure 16A is in an undeformed state and has a first interior volume containing the fluent product.
  • the container 1500 has an initial weight.
  • the container 1500 by itself, can, for example, have an initial weight of between 1 to 100.
  • the container 1500 has a weight of 10.7 g.
  • the container 1500 has a weight of 11.4 g.
  • Figure 16B depicts a dispensing force F being applied to the container 1500.
  • the dispensing force F is applied to a portion of the structural support frame 1540, and, more particularly, to opposing structural support members (e.g., structural support members 1546-1, 1546- 2) of the container 1500.
  • the dispensing force F can be applied directly to one or more portions of the product volume 1550 (e.g., one or more walls of the product volume 1550) or to one or more other locations on or of the container 1500 (e.g., a top portion of the container 1500, a bottom portion of the container 1500).
  • the product volume 1550 is resiliently deformable to the deformed state shown in FIG. 16C and, in the process, the dispenser 1560 can dispense at least a portion of the fluent product from the product volume 1550.
  • substantially all (e.g., approximately 90% to approximately 100%) of the dispensing force F applied to the container 1500 is utilized to deform or reduce the product volume 1550 and, in turn, dispense the fluent product from the product volume 1550.
  • the magnitude of the dispensing force F applied to the container 1500 may be less, in some cases significantly less, than the dispensing force required to be applied to known rigid containers. Beneficially, this may also result in a much more direct correlation between the amount of fluent product dispensed and the magnitude of the dispensing force F and can lead to consumer preference over a rigid container.
  • significant delays at least from the user's perspective, may exist between the time at which the dispensing force is applied and the time at which fluent product is dispensed in direct response to the application of the dispensing force. These delays may occur because, for example, the walls must first be deformed and/or gravity is relied on.
  • the fluent product contained in the container 1500 can be dispensed in direct response to the application of the dispensing force F.
  • the product volume 1550 When the product volume 1550 is in the deformed state, the product volume 1550 has a second internal volume less than the first interior volume (which the product volume 1550 has when the product volume 1550 is in the undeformed state), and the dispenser 1560 can dispense at least a portion of the fluent product from the product volume 1550.
  • the second internal volume can be 10% less, 20% less, 30% less, 40% less, 50% less, 60% less, 70% less, 80% less, 90% less, 95% less, nearly 100% less, substantially 100% less, or some other percentage less than the first internal volume.
  • the opposing structural support members e.g., structural support members 1546-1, 1546-2
  • opposing portions of the product volume 1550 are displaced closer to one another.
  • opposing walls 1548-1, 1548-2 defined, at least in part, by the structural support members 1546-1, 1546-2, respectively can contact one another.
  • different portions of the container 1500 can contact one another, or portions of the container 1500 need not contact one another when the product volume 1550 is in the deformed state.
  • the weight of the container 1500 can decrease in a substantially proportional manner. This is because a bulk of the weight of the container 1500 is attributable the fluent product, rather than the structure of the container 1500 itself. This is contrary to known rigid containers, wherein a bulk of the weight of the rigid container can be attributable to the rigid container itself, such that the weight of these rigid containers does not decrease in a substantially proportional manner as the rigid container dispenses fluent product.
  • the container 1500 can also include one or more release coatings disposed on one or more interior portions of the product volume 1550 to facilitate the timely evacuation of the fluent product from the product volume 1550.
  • the release coatings can, for example, be a material that is hydrophobic, omni-phobic, oleophobic, or otherwise repels fluent product(s) such as a "lotus leaf surface with structures of the size that trap air pockets and limit liquid contact, a liquid impregnated surface such as are known in the art, surface modifications with fluorinated or silicon containing polymers or small molecules that limit wetting, powders or particles, oils, lubricating fluids and combinations of these.
  • US Patent Application Publication No. 20040037961 US Patent No.
  • non-wetting coatings are, for reference, hereby incorporated herein in their entirety.
  • the nonwetting coatings may be present as an additive in the flexible material that blooms to the surface, or as a coating that is applied in any manner such as spray coating or printing.
  • the product volume 1550 can be substantially fully restored, by the self resilient nature of the product volume 1550, to the undeformed state, and, thus, its previous volume (i.e., the first internal volume).
  • the product volume 1550 can substantially recover its original shape (original volume).
  • the product volume 1550 is generally at least 95% recoverable (i.e., fully recoverable up to a reduction of 95% of its original volume).
  • the product volume 1550 can return to substantially 100% of the first internal volume when the dispensing force F is released.
  • the product volume 1550 When, as another example, the product volume 1550 is deformed and reduced to a second internal volume that is 90% less than the first internal volume, the product volume 1550 can return to substantially 100% of the first internal volume when the dispensing force F is released. In other examples, the product volume 1550 can be deformed and reduced to a greater or lesser extent and return to substantially 100% of the first internal volume when the dispensing force F is released.
  • the container 1500 can, for example, be configured to permit air to enter the product volume 1550, through, for example, the dispenser 1560, some other dispenser (e.g., one or more of the dispensers described above), a vent, or a valve, after the dispensing force F has been released.
  • the structural support frame 1540 can, in turn, provide the restoring force needed to restore the product volume 1550 to its undeformed state.
  • the one or more structural support members can act to force the product volume 1550 back to the undeformed state.
  • a resilient material and/or one or more spring elements can be disposed within the product volume 1550 to restore the product volume 1550 back to the undeformed state.
  • These resilient materials could include, for example, a sponge, a foam, or rigid spring elements.
  • the deformation and restoration described above in connection with FIGS. 16A-16D can happen any number of times while the fluent product is evacuated from the product volume 1550, all while the product volume 1550 substantially maintains its original shape. Stated another way, the container 1500 can be self-reversibly deformed numerous times throughout use as the fluent product level decreases and even after the product volume is fully empty.
  • the reversible squeeze out volume refers to the amount of water that could be squeezed out before the container no longer popped back into shape by itself (i.e., the maximum amount of deformation at which the container was still self-restoring), which is also known as the recoverable volume herein.
  • the maximum squeeze out volume possible refers to the maximum amount of water that could be squeezed out by applying a manual force to the container.
  • the maximum evacuation percentage is the maximum squeeze out possible volume divided by the initial volume, multiplied by 100.
  • the recoverable volume percentage maximum evacuation percentage, and recoverable volume per weight of the container were all then calculated based on these values. As the table indicates, the two flexible containers had a significantly higher recoverable volume than the other known containers.
  • the two flexible containers had a much greater ability to recover their original volumes.
  • the two flexible containers also had a higher maximum evacuation percentage than the other known containers. In other words, more water was evacuated from the two flexible containers than the other known containers. Specifically, greater than about 95 of the water originally contained in the flexible containers was evacuated from these containers, a far greater percentage than seen with any of the known containers. As such, more water was evacuated from the containers (the containers were thus easier to empty), while at the same time the flexible containers exhibited a significantly greater ability to recover their original shapes.
  • Part, parts, or all of any of the embodiments disclosed herein can be combined with part, parts, or all of other embodiments known in the art of flexible containers, including those described below.
  • Embodiments of the present disclosure can use any and all embodiments of materials, structures, and/or features for flexible containers, as well as any and all methods of making and/or using such flexible containers, as disclosed in the following patent applications: (1) US non- provisional application 13/888,679 filed May 7, 2013, entitled “Flexible Containers” and published as US20130292353 (applicant's case 12464M); (2) US non-provisional application 13/888,721 filed May 7, 2013, entitled “Flexible Containers” and published as US20130292395 (applicant's case 12464M2); (3) US non-provisional application 13/888,963 filed May 7, 2013, entitled “Flexible Containers” published as US20130292415 (applicant's case 12465M); (4) US non-provisional application 13/888,756 May 7, 2013, entitled “Flexible Containers Having a Decoration Panel” published as US20130292287 (applicant's case 12559M); (5) US non-
  • Embodiments of the present disclosure can use any and all embodiments of materials, structures, and/or features for flexible containers, as well as any and all methods of making and/or using such flexible containers, as disclosed in the following patent documents: US patent 5,137,154, filed October 29, 1991, entitled “Food bag structure having pressurized compartments” in the name of Cohen, granted August 11, 1992; PCT international patent application WO 96/01775 filed July 5, 1995, published January 26, 1995, entitled “Packaging Pouch with Stiffening Air Channels” in the name of Prats (applicant Danapak Holding A/S); PCT international patent application WO 98/01354 filed July 8, 1997, published January 15, 1998, entitled “A Packaging Container and a Method of its Manufacture” in the name of Naslund; US patent 5,960,975 filed March 19, 1997, entitled “Packaging material web for a self-supporting packaging container wall, and packaging containers made from the web” in the name of Lennartsson (applicant Tetra Laval), granted October 5, 1999;
  • a flexible container can include a vertically oriented transparent strip, disposed on a portion of the container that overlays the product volume, and configured to show the level of the fluent product in the product volume.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Packages (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)
  • Closures For Containers (AREA)
  • Tubes (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)

Abstract

L'invention concerne divers récipients qui incluent un volume de produit déformable élastiquement et un distributeur conçu pour distribuer un produit fluide depuis le volume de produit. Quand aucune force de distribution n'est appliquée au volume de produit, le volume de produit a un état non déformé et un premier volume intérieur. Quand une force de distribution est appliquée au volume de produit, le volume de produit est déformable élastiquement en un état déformé, dans lequel le volume de produit est réduit à un second volume intérieur inférieur au premier volume intérieur et le distributeur peut distribuer au moins une partie du produit fluide depuis le volume de produit. Quand la force de distribution est relâchée, le volume de produit retrouve complètement son état non déformé.
EP14802557.0A 2013-11-06 2014-11-06 Récipients flexibles faciles à vider Ceased EP3066022A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361900488P 2013-11-06 2013-11-06
PCT/US2014/064208 WO2015069820A1 (fr) 2013-11-06 2014-11-06 Récipients flexibles faciles à vider

Publications (1)

Publication Number Publication Date
EP3066022A1 true EP3066022A1 (fr) 2016-09-14

Family

ID=51947498

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14802557.0A Ceased EP3066022A1 (fr) 2013-11-06 2014-11-06 Récipients flexibles faciles à vider

Country Status (11)

Country Link
US (1) US20150122841A1 (fr)
EP (1) EP3066022A1 (fr)
JP (1) JP2016537279A (fr)
KR (1) KR20160067923A (fr)
CN (1) CN105764808A (fr)
BR (1) BR112016010218A2 (fr)
CA (1) CA2925919A1 (fr)
MX (1) MX2016005515A (fr)
PH (1) PH12016500834A1 (fr)
RU (1) RU2016112180A (fr)
WO (1) WO2015069820A1 (fr)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2873004A1 (fr) * 2012-05-07 2013-11-14 The Procter & Gamble Company Materiaux flexibles destines a des recipients flexibles
WO2014025609A1 (fr) 2012-08-06 2014-02-13 The Procter & Gamble Company Procédés de fabrication de récipients souples
BR112016001874A2 (pt) 2013-08-01 2017-08-01 Procter & Gamble recipientes flexíveis descartáveis possuindo elementos de superfície
EP3027529B1 (fr) 2013-08-01 2017-10-04 The Procter and Gamble Company Contenants flexibles à soudure améliorée et leurs procédés de fabrication
WO2015069822A1 (fr) 2013-11-06 2015-05-14 The Procter & Gamble Company Contenants souples et leurs procédés de fabrication
US9981759B2 (en) 2013-11-06 2018-05-29 The Procter & Gamble Company Flexible containers and methods of making the same
CN105705431B (zh) 2013-11-06 2018-02-23 宝洁公司 柔性容器以及形成所述柔性容器的方法
WO2015069857A1 (fr) 2013-11-06 2015-05-14 The Procter & Gamble Company Contenants flexibles dotés de systèmes d'évents
CN105705428B (zh) 2013-11-06 2018-06-19 宝洁公司 具有柔性阀的柔性容器
MX2016005518A (es) 2013-11-06 2016-07-22 Procter & Gamble Envases flexibles y metodos para su fabricacion.
US9932218B2 (en) 2016-03-04 2018-04-03 BIBO Barmaid LLC Cold beverage dispenser and cutter assembly for cold beverage dispenser
CA2968690A1 (fr) 2014-12-19 2016-06-23 The Procter & Gamble Company Groupe de recipients flexibles
BR112017012815A2 (pt) 2014-12-19 2018-07-03 Procter & Gamble método para a produção de uma linha de recipientes flexíveis
BR112017012790A2 (pt) 2014-12-19 2018-01-02 Procter & Gamble recipientes flexíveis com dimensionamento facilmente variável
US9914575B2 (en) 2015-04-10 2018-03-13 The Procter & Gamble Company Flexible containers with puckered corners
KR101971817B1 (ko) 2015-04-10 2019-04-23 더 프록터 앤드 갬블 캄파니 제품 분배 가시화부를 가진 가요성 용기
BR112017021707A2 (pt) 2015-04-10 2018-07-10 Procter & Gamble recipientes flexíveis com vedações de reforço
CN107406184B (zh) 2015-04-10 2019-07-12 宝洁公司 带有整体分配喷管的柔性容器
USD789215S1 (en) 2015-05-08 2017-06-13 The Procter & Gamble Company Flexible container for fluent products
WO2017004106A1 (fr) 2015-06-30 2017-01-05 The Procter & Gamble Company Récipients souples comportant des parties amovibles
WO2017042905A1 (fr) * 2015-09-09 2017-03-16 花王株式会社 Contenant en matériau en feuilles
US10457457B2 (en) 2016-04-26 2019-10-29 The Procter & Gamble Company Flexible containers with bottom support structure
US10183785B2 (en) 2016-04-26 2019-01-22 The Proctor & Gamble Company Flexible containers with venting structure
CN110198832B (zh) 2017-02-21 2021-07-09 宝洁公司 制备开孔的柔性容器的方法
US11111036B2 (en) 2017-02-22 2021-09-07 The Procter & Gamble Company Methods of making flexible containers with structural support frames
US20180257836A1 (en) 2017-03-08 2018-09-13 The Procter & Gamble Company Flexible containers with graphics of rigid containers
WO2018175149A1 (fr) 2017-03-24 2018-09-27 The Procter & Gamble Company Procédés d'ouverture de récipients souples
EP3615431B1 (fr) 2017-04-27 2021-10-06 The Procter & Gamble Company Procédés d'ajout de matériau d'expansion à des contenants souples
US10836528B2 (en) 2017-04-27 2020-11-17 The Procter & Gamble Company Methods of sealing flexible containers with expansion materials
US20190352033A1 (en) 2018-05-16 2019-11-21 The Procter & Gamble Company Method of Performing a Task in Registration With a Seal In Materials and Flexible Containers Made By Method
US11338975B2 (en) 2018-05-16 2022-05-24 The Procter & Gamble Company Container blanks for flexible packages and methods of making flexible packages
WO2020018776A1 (fr) 2018-07-20 2020-01-23 The Procter & Gamble Company Emballage d'expédition souple façonné et procédé de fabrication
JP7094835B2 (ja) * 2018-08-27 2022-07-04 大和製罐株式会社 容器用シート材からなる容器
JP7135692B2 (ja) * 2018-10-05 2022-09-13 ニプロ株式会社 排液システム
RU188362U1 (ru) * 2018-10-15 2019-04-09 Андрей Игоревич Литвиненко Мини-контейнер для пищевых веществ
CN110280462B (zh) * 2019-06-28 2021-11-02 上海市第一人民医院 一种具有超疏水疏油性能的复合涂层镍钛合金材料及其制备方法
JP7288139B2 (ja) * 2020-03-13 2023-06-06 花王株式会社 シート材容器
US11897682B2 (en) 2020-03-13 2024-02-13 The Procter & Gamble Company Flexible package
CN115279663B (zh) * 2020-03-13 2024-04-16 花王株式会社 片材容器
KR102534867B1 (ko) * 2020-07-21 2023-05-19 주식회사 인더케그 발효주 제조장치
US11858713B2 (en) 2020-10-30 2024-01-02 The Procter & Gamble Company Inflation feature for package, inflation rig assembly, and method of inflating

Family Cites Families (156)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1752085A (en) * 1928-06-25 1930-03-25 Robert B Minton Flexible oil can
US2245738A (en) * 1940-02-14 1941-06-17 Ivan M Taylor Plural-compartment envelope
US2432288A (en) * 1945-11-14 1947-12-09 Samuel L Chasin Insect powder sprayer
US2543163A (en) * 1948-02-24 1951-02-27 Greiner Leonard Bottling or dispensing container
US2715980A (en) * 1950-10-09 1955-08-23 Leo M Harvey Liquid handling dispenser
US2788921A (en) * 1955-06-16 1957-04-16 Galinas Bernard Spray duster
US2870954A (en) * 1956-05-15 1959-01-27 Reynolds Metals Co Vacuum package
US3030952A (en) * 1956-12-24 1962-04-24 Baxter Don Inc Solution administration device and method of forming the same
US3229813A (en) * 1959-05-08 1966-01-18 Johnson & Johnson Sterile package
FR1314002A (fr) * 1961-11-24 1963-01-04 Procédé et dispositif pour distribuer une substance non compacte
US3161326A (en) * 1962-05-02 1964-12-15 Packaging Frontiers Inc Package holder
US3220609A (en) * 1965-06-16 1965-11-30 Robert Maxwell Corp Dispenser
DE1486484A1 (de) * 1965-06-24 1969-06-04 Linder Dr Fritz Bakteriendicht abschliessbarer Plastikbeutel zur Aufnahme von zu sterilisierendem Gut
US3432087A (en) * 1966-09-01 1969-03-11 Alfred P Costello Package valve
US3381887A (en) * 1967-04-14 1968-05-07 Nat Distillers Chem Corp Sealing patch valve for plastic bags
US4088166A (en) * 1974-11-21 1978-05-09 Baxter Travenol Laboratories, Inc. Molded collapsible solution container having gusset portions
US4000846A (en) * 1975-06-30 1977-01-04 Dunkin' Donuts Incorporated Pressure relief valve and bag incorporating same
US4134535A (en) * 1976-06-04 1979-01-16 Hag Aktiengesellschaft Pressure relief valve for packing containers
US4151318A (en) * 1976-06-21 1979-04-24 Mobil Oil Corporation Laminar thermoplastic film constructions
US4090541A (en) * 1976-11-23 1978-05-23 Baxter Travenol Laboratories, Inc. Flexible collapsible container
US4154366A (en) * 1977-01-31 1979-05-15 Acres Alexander D Dispensing container
US4163509A (en) * 1977-02-22 1979-08-07 The Procter & Gamble Company Squeeze dispenser with self closing valve
US4206870A (en) * 1978-12-08 1980-06-10 Quad Corporation Pressure relief valve
GB2067972B (en) * 1980-01-28 1983-12-14 Balfour Beatty Ltd Receptacle for use in impregnation of fluid-permeable bodis
FR2474457B2 (fr) * 1980-01-28 1985-11-29 Vittel Eaux Min Poignee rigide pour recipient en matiere synthetique
US4420101A (en) * 1981-11-18 1983-12-13 Diamond International Corp. Squeeze bottle with self-venting dispensing closure
US4470153A (en) * 1982-03-08 1984-09-04 St. Regis Paper Company Multiwall pouch bag with vent strip
NZ209507A (en) * 1983-10-06 1986-07-11 Canadian Ind Thermoplastic valve bag:perforated outer wall with mesh inner liner
US4615922A (en) * 1983-10-14 1986-10-07 American Can Company Oriented polymeric film
US4613643A (en) * 1984-02-09 1986-09-23 Tokuyama Soda Kabushiki Kaisha Porous sheet
US4595629A (en) * 1984-03-09 1986-06-17 Chicopee Water impervious materials
US4550441A (en) * 1984-07-18 1985-10-29 St. Regis Paper Company Vented bag
US4673109A (en) * 1985-10-18 1987-06-16 Steiner Company, Inc. Liquid soap dispensing system
US4705085A (en) * 1985-12-09 1987-11-10 Brown Dwight C Inflatable beverage insulator
US4760937A (en) * 1986-06-16 1988-08-02 Evezich Paul D Squeezable device for ejecting retained materials
JPH069945Y2 (ja) * 1987-06-22 1994-03-16 大日本印刷株式会社 自立性チュ−ブ容器
US4872558A (en) * 1987-08-25 1989-10-10 Pharo Daniel A Bag-in-bag packaging system
US4918904A (en) * 1987-08-25 1990-04-24 Pharo Daniel A Method for forming clam-like packaging system
US4842165A (en) * 1987-08-28 1989-06-27 The Procter & Gamble Company Resilient squeeze bottle package for dispensing viscous products without belching
US4898306A (en) * 1988-01-13 1990-02-06 Reseal International Limited Partnership Collapsible container for flowable substances
US4858755A (en) * 1988-01-22 1989-08-22 Kuivanen Lawrence J Inflatable display container
US4861632A (en) * 1988-04-19 1989-08-29 Caggiano Michael A Laminated bag
US4932562A (en) * 1988-04-29 1990-06-12 Triparte, Ltd. Liquid dispensing system
US5018646A (en) * 1988-11-23 1991-05-28 S. C. Johnson & Son, Inc. Squeezable fluid container
US4930667A (en) * 1989-01-23 1990-06-05 Steiner Company, Inc. Breathing device for soap dispenser
US4988016A (en) 1989-01-30 1991-01-29 James P. Hawkins Self-sealing container
US5048705A (en) * 1989-03-03 1991-09-17 Lynd Properties, Inc. Bottle and drinking tube assembly
US5254073A (en) * 1990-04-27 1993-10-19 Kapak Corporation Method of making a vented pouch
US5059036A (en) * 1990-04-27 1991-10-22 Kapak Corporation Vented pouch arrangement and method
US5344045A (en) * 1990-12-17 1994-09-06 The Coca-Cola Company Liquid container system
US5301838A (en) * 1991-01-23 1994-04-12 Continental Pet Technologies, Inc. Multilayer bottle with separable inner layer and method for forming same
US5238150A (en) * 1991-02-01 1993-08-24 William Dispenser Corporation Dispenser with compressible piston assembly for expelling product from a collapsible reservoir
DE4129838A1 (de) * 1991-02-16 1992-08-20 Bosch Gmbh Robert Ueberdruckventil fuer verpackungsbehaelter
CA2110411A1 (fr) * 1991-06-07 1992-12-10 Leane Kristine Davis Flacon pressable elastique employant une soupape anti-vide
US5793387A (en) * 1991-06-19 1998-08-11 Hewlett-Packard Company Method and apparatus for ink-jet ink level detection
DE4139555A1 (de) * 1991-09-18 1993-03-25 Gaplast Gmbh Behaelter
US5137154A (en) 1991-10-29 1992-08-11 Douglas M. Clarkson Food bag structure having pressurized compartments
US5305920A (en) * 1991-11-20 1994-04-26 The Procter & Gamble Company Bag-in-bottle package with reusable resilient squeeze bottle and disposable inner receptacle which inverts upon emptying without attachment near its midpoint to squeeze bottle
US5433353A (en) * 1991-11-21 1995-07-18 Flinn; Christopher R. Fluid storage and dispensing container having check valve
US5213236A (en) * 1991-12-06 1993-05-25 Liquid Molding Systems, Inc. Dispensing valve for packaging
JP2555407Y2 (ja) * 1992-01-10 1997-11-26 株式会社吉野工業所 倒立形のチューブ容器
US5261899A (en) * 1992-04-06 1993-11-16 The Procter & Gamble Company Multilayer film exhibiting an opaque appearance
US5307955A (en) * 1992-06-25 1994-05-03 The Procter & Gamble Company Flaccid bottom delivery package having a self-sealing closure for dispensing liquid materials
US5427830A (en) * 1992-10-14 1995-06-27 Air Packaging Technologies, Inc. Continuous, inflatable plastic wrapping material
US5345622A (en) * 1993-02-08 1994-09-13 Clifford Plone Method of fabricating inflatable bathing tub and associated support apparatus
US5399022A (en) * 1993-02-25 1995-03-21 Ab Specialty Packaging, Inc. Venting structure for a multiple ply bag
SE504893C2 (sv) * 1993-04-19 1997-05-20 Tetra Laval Holdings & Finance Förpackningsmaterial samt sätt att tillverka detsamma
ID23491A (id) 1994-01-28 1995-09-07 Procter & Gamble Kopolimer-kopolimer yang dapat dibiodegradasi dan baha-bahan plastik yang terdiri dari kopolimer-kopolimer yang dapat dibiodegradasi
SG49096A1 (en) * 1994-01-28 1998-05-18 Procter & Gamble Biodegradable 3-polyhydtoxybuyrate/3- polyhydroxyhexanoate copolymer films
DE4408244A1 (de) * 1994-03-11 1995-09-14 Bosch Gmbh Robert Laminat für die Herstellung von Verpackungsbehältern
US5487490A (en) * 1994-03-30 1996-01-30 Codev Corp. Product dispenser with air displacement device
JPH07329993A (ja) * 1994-06-02 1995-12-19 Toagosei Co Ltd ハイブリッド容器
DK82794A (da) 1994-07-08 1996-01-09 Danapak Holding As Emballagebeholder
US5447235A (en) * 1994-07-18 1995-09-05 Air Packaging Technologies, Inc. Bag with squeeze valve and method for packaging an article therein
JP3621418B2 (ja) * 1994-08-26 2005-02-16 エス.シー.ジョンソン ホーム ストーレイジ,インコーポレーテッド 冷凍庫貯蔵バッグ
US5419465A (en) * 1994-09-26 1995-05-30 Schroeder; Jeffrey J. Automatic volume dispensing fluid container
TW367297B (en) * 1994-11-18 1999-08-21 Hosokawa Yoko Kk Bag for bag-in-box and bag-in-box
TW330217B (en) 1994-12-20 1998-04-21 Kimberly Clark Co Low gauge films and film/nonwoven laminates
BR9506839A (pt) * 1994-12-21 1997-10-14 Wella Ag Recipiente de material plástico em forma de garrafa
US6251489B1 (en) * 1994-12-21 2001-06-26 Mark E. Weiss Sterilizable flexible pouch package
US5624035A (en) * 1995-06-07 1997-04-29 Inno Design, Inc. Carrying case with inflatable sections
US5819829A (en) * 1996-01-26 1998-10-13 Matthews; James F. Golf bag rain hood
SE506348C2 (sv) 1996-04-01 1997-12-08 Tetra Laval Holdings & Finance Förpackningsmaterialbana för en självbärande förpackningsbehållarvägg jämte av banan tillverkad förpackningsbehållare
US5916685A (en) * 1996-07-09 1999-06-29 Tetra Laval Holdings & Finance, Sa Transparent high barrier multilayer structure
SE9602739D0 (sv) 1996-07-10 1996-07-10 Ingemar Naeslund Förpackning
US5769232A (en) * 1996-08-16 1998-06-23 Cash; Ronnie L. Inflatable protective lining sysem for containers
US5871790A (en) * 1997-03-04 1999-02-16 Union Camp Corporation Laminated bag wall construction
JPH10329851A (ja) * 1997-05-30 1998-12-15 Taoka Chem Co Ltd 瞬間接着剤が充填されたラミネートチューブの製造方法
US5921167A (en) * 1997-08-26 1999-07-13 Primex Aerospace Company Hermetic shear seal for piston displacement fuel tank
US6170985B1 (en) * 1997-10-15 2001-01-09 Lyle F. Shabram, Jr. Bag with venting means
US5996800A (en) * 1998-03-18 1999-12-07 Pratt; David W. Resealable plastic bag having venting means
US6179142B1 (en) * 1998-04-13 2001-01-30 The Coca-Cola Company Wire-frame bottle and method of manufacturing same
US6120817A (en) * 1998-08-07 2000-09-19 General Mills, Inc. Container for storing fine particles
US6073812A (en) * 1999-01-25 2000-06-13 Steris Inc. Filtered venting system for liquid containers which are susceptible to contamination from external bioburden
FR2791645B1 (fr) * 1999-04-02 2001-06-15 Valois Sa Echantillon de produit fluide destine a la presse
US6670007B1 (en) * 1999-04-07 2003-12-30 Owens-Brockway Plastic Products Inc. Multilayer container
US6247603B1 (en) * 1999-08-20 2001-06-19 Continental Plastic Containers, Inc. Container coating for increasing product outage
JP3707977B2 (ja) * 2000-02-01 2005-10-19 株式会社ザック 包装食品および包装食品用容器
JP2001247117A (ja) * 2000-03-03 2001-09-11 Ever Prospect Internatl Ltd 容 器
JP3602043B2 (ja) * 2000-09-19 2004-12-15 株式会社ザック 包装容器、包装食品、および包装飼料
US7175903B1 (en) * 2000-11-17 2007-02-13 Pliant Corporation Heat sealable polyvinyl chloride films
US6623866B2 (en) * 2001-04-04 2003-09-23 Exxonmobil Oil Corporation Multilayer films including anti-block
SE518406C2 (sv) 2001-04-25 2002-10-08 Eco Lean Res & Dev As Förpackning och sätt att framställa sådan förpackning
US6576329B2 (en) * 2001-06-12 2003-06-10 Exxonmobil Oil Corporation Multilayer thermoplastic film
US6827105B1 (en) * 2001-09-04 2004-12-07 Keamark, Inc. Valve
US20030136798A1 (en) * 2001-11-09 2003-07-24 Michael Wilford Flexible plastic container
AU2002365970A1 (en) * 2001-11-16 2003-06-10 3M Innovative Properties Company Inflatable packaging system
US6827492B2 (en) * 2001-12-05 2004-12-07 Leland B. Cook One-way concealed-valve vented storage bag
ES2347773T3 (es) 2001-12-19 2010-11-04 Cryovac, Inc. Envase que tiene un bastidor inflado.
US20040007596A1 (en) * 2002-01-02 2004-01-15 Laverdure Roland J. A. Easy open self closing outlet for gable-top cartons
US20080199110A1 (en) * 2002-01-08 2008-08-21 Brent Anderson Fluids container
AU2003226736A1 (en) * 2002-04-15 2003-10-27 Unilever Plc Device for storing and squeezing sachets
US6705492B2 (en) * 2002-06-27 2004-03-16 Method Products, Inc. Bottom-dispensing liquid soap dispenser
US6983845B2 (en) * 2002-06-28 2006-01-10 S.C. Johnson Home Storage, Inc. Recloseable storage bag with user-deformable air vent
US20040000503A1 (en) * 2002-06-28 2004-01-01 Shah Ketan N. Recloseable storage bag with porous evacuation portal
US6932509B2 (en) * 2002-06-28 2005-08-23 S. C. Johnson Home Storage, Inc. Recloseable storage bag with secondary closure members
US6662827B1 (en) * 2002-07-15 2003-12-16 Sonoco Development, Inc. Overpressure relief valve for packaging container
DE10239071A1 (de) * 2002-08-26 2004-03-11 Basf Ag Verfahren zur Herstellung von Oberflächen, auf denen Flüssigkeiten nicht haften
US6726364B2 (en) 2002-09-19 2004-04-27 Poppack, Llc Bubble-seal apparatus for easily opening a sealed package
US7244223B2 (en) * 2003-05-30 2007-07-17 Avery Dennison Corporation Food bag release valve
TW583985U (en) * 2003-06-02 2004-04-11 Chin-Liang Lin Collection bag for bio protection
SE525952C2 (sv) * 2003-10-02 2005-05-31 Eco Lean Res & Dev As Metod och anordning för gasfyllning och försegling av en för gasfyllning avsedd kanal i en förpackning av kollapsande slag, samt ett förpackningsämne innefattande en sådan kanal
SE525979C2 (sv) * 2003-10-02 2005-06-07 Eco Lean Res & Dev As Förpackningsämne och förpackning framställd därav
ES2245207B1 (es) 2003-12-30 2007-02-16 Volpak, S.A. Envase de material flexible.
US20050255200A1 (en) * 2004-05-17 2005-11-17 Dai Nippon Printing Co., Ltd. Food packaging bag, food-packaged body, and method for manufacturing the same
SI1607339T1 (sl) * 2004-05-27 2008-08-31 Rkw Ag Rheinische Kunststoffwerke Vrečka iz umetne mase z nadtlačnim prezračevanjem
JP4736364B2 (ja) 2004-07-20 2011-07-27 凸版印刷株式会社 自立袋
US7534039B2 (en) * 2004-07-22 2009-05-19 Sunbeam Products, Inc. Vacuum packaging films patterned with protruding cavernous structures
US7798713B2 (en) * 2004-08-27 2010-09-21 Pactiv Corporation Polymeric bags with pressure relief valves
AR046175A1 (es) * 2004-10-07 2005-11-30 Celomat S A Una valvula unidireccional liberadora de presion aplicable a un envase que contiene un producto que emite gases, en la que coexisten un medio fluido y una burbuja de aire, y un envase que incluye a dicha valvula
EP1812318B1 (fr) 2004-11-05 2011-07-13 Mark Steele Emballage presentant une fermeture par fluide
CN1326754C (zh) * 2005-01-07 2007-07-18 盛金英 软体包装袋
DE202005016704U1 (de) 2005-01-17 2006-03-16 Georg Menshen Gmbh & Co. Kg Beutel zur Aufnahme von Flüssigkeiten, Schüttgütern oder Gegenständen
DE102005002301A1 (de) 2005-01-17 2006-07-27 Georg Menshen Gmbh & Co. Kg Beutel zur Aufnahme von Flüssigkeiten, Schüttgütern oder Gegenständen
TW200708304A (en) * 2005-03-25 2007-03-01 Nipro Corp Package of freeze storage container and process for producing the same
US7837387B2 (en) * 2005-04-06 2010-11-23 Avery Dennison Corporation Evacuatable container
SE528619C2 (sv) * 2005-05-13 2006-12-27 Eco Lean Res & Dev As Anordning och metod för gasfyllning av en kanal i en förpackning
US7628297B2 (en) * 2005-07-27 2009-12-08 Rexam Closure Systems Inc. Dispensing closure, package and method of manufacture
US7410057B2 (en) * 2005-09-07 2008-08-12 Air-Paq, Inc. Structure of air-packing device
JP4742168B2 (ja) * 2006-05-22 2011-08-10 アクシス アーベー ビデオ監視カメラが検出した対象物の特性を識別する方法および機器
KR200438541Y1 (ko) * 2007-02-21 2008-02-21 방원서 공기유입구가 형성된 소형 식품 저장용기
US20080314933A1 (en) * 2007-03-23 2008-12-25 Christopher Leonoff Rapid flow bottle
US8003178B2 (en) 2007-05-15 2011-08-23 Kraft Foods Global Brands Llc Container with improved release properties
CN101827541B (zh) * 2007-10-22 2011-12-21 出光统一科技株式会社 咬合件以及带咬合件的包装袋
JP2009184690A (ja) 2008-02-05 2009-08-20 Toppan Printing Co Ltd 自立袋
WO2010054334A2 (fr) * 2008-11-10 2010-05-14 Eco.Logic Brands Cuves contenant un liquide thermoformées
EP2437988B1 (fr) 2009-06-05 2016-01-27 Biosphere Holdings Corporation Article d'emballage flexible à rigide et son procédé d'utilisation et de fabrication
CN102574606A (zh) 2009-06-21 2012-07-11 约翰·托马斯·里德尔 可折叠瓶、制造用于这种瓶的毛坯的方法以及饮料填充瓶分配系统
JP5413141B2 (ja) * 2009-11-13 2014-02-12 凸版印刷株式会社 包装容器及びこの包装容器を用いた食品包装体の製造方法
US8910834B2 (en) * 2010-11-24 2014-12-16 Method Products, Pbc Flexible container having a grip
EP2665783B1 (fr) 2011-01-19 2024-06-19 President and Fellows of Harvard College Surfaces glissantes poreuses imprégnées de liquides et leur application biologique
NZ620507A (en) 2011-08-05 2015-10-30 Massachusetts Inst Technology Devices incorporating a liquid - impregnated surface
JP5871634B2 (ja) * 2012-01-25 2016-03-01 ライオン株式会社 チューブ容器及びチューブ容器入り製品
EP2631195B1 (fr) 2012-02-23 2015-04-08 Cryovac, Inc. Sachet et son procédé de fabrication
CA2873004A1 (fr) 2012-05-07 2013-11-14 The Procter & Gamble Company Materiaux flexibles destines a des recipients flexibles
WO2014025609A1 (fr) 2012-08-06 2014-02-13 The Procter & Gamble Company Procédés de fabrication de récipients souples

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2015069820A1 *

Also Published As

Publication number Publication date
PH12016500834A1 (en) 2016-06-13
RU2016112180A (ru) 2017-12-07
CN105764808A (zh) 2016-07-13
KR20160067923A (ko) 2016-06-14
US20150122841A1 (en) 2015-05-07
MX2016005515A (es) 2016-07-22
CA2925919A1 (fr) 2015-05-14
JP2016537279A (ja) 2016-12-01
BR112016010218A2 (pt) 2017-08-08
WO2015069820A1 (fr) 2015-05-14

Similar Documents

Publication Publication Date Title
EP3066024B1 (fr) Contenants flexibles dotés de systèmes d'évents
EP3066025B1 (fr) Procédé de fabrication d'un récipient souple
EP3066023B1 (fr) Récipients souples et procédés de fabrication correspondants
CA2981847C (fr) Contenants souples comprenant des joints de renforcement
EP3066026B1 (fr) Récipients flexibles et methodes pour la fabrication de ces derniers
EP3066029B1 (fr) Contenants flexibles présentant des valves flexibles
EP3280657B1 (fr) Contenants souples à coins froncés
CA2981731C (fr) Recipients souples dotes d'une visibilite de distribution de produit
EP3280658B1 (fr) Contenants souples à bec verseur intégré
WO2015069820A1 (fr) Récipients flexibles faciles à vider
WO2016164681A1 (fr) Contenants souples dotés d'éléments inférieurs intermédiaires
EP3317198A1 (fr) Récipients souples comportant des parties amovibles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160503

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170711

APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20190812