EP3019702B1 - Axialkolbenmaschine - Google Patents

Axialkolbenmaschine Download PDF

Info

Publication number
EP3019702B1
EP3019702B1 EP14736347.7A EP14736347A EP3019702B1 EP 3019702 B1 EP3019702 B1 EP 3019702B1 EP 14736347 A EP14736347 A EP 14736347A EP 3019702 B1 EP3019702 B1 EP 3019702B1
Authority
EP
European Patent Office
Prior art keywords
inlet
cylinders
axial piston
pistons
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14736347.7A
Other languages
English (en)
French (fr)
Other versions
EP3019702A1 (de
Inventor
Asmus Carstensen
Artur Semke
Thomas Schulenburg
Andreas Herr
Marcus Dallmann
Jörg Volkmann
Thomas Maischik
Bernd Hupfeld
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP3019702A1 publication Critical patent/EP3019702A1/de
Application granted granted Critical
Publication of EP3019702B1 publication Critical patent/EP3019702B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B3/00Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F01B3/0002Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F01B3/0005Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders having two or more sets of cylinders or pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B3/00Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F01B3/02Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis with wobble-plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B3/00Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F01B3/10Control of working-fluid admission or discharge peculiar thereto
    • F01B3/101Control of working-fluid admission or discharge peculiar thereto for machines with stationary cylinders
    • F01B3/102Changing the piston stroke by changing the position of the swash plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C1/00Reciprocating-piston liquid engines
    • F03C1/02Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders
    • F03C1/06Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinder axes generally coaxial with, or parallel or inclined to, main shaft axis
    • F03C1/0602Component parts, details
    • F03C1/0605Adaptations of pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C1/00Reciprocating-piston liquid engines
    • F03C1/02Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders
    • F03C1/06Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinder axes generally coaxial with, or parallel or inclined to, main shaft axis
    • F03C1/061Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinder axes generally coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F03C1/0615Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinder axes generally coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders distributing members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/122Details or component parts, e.g. valves, sealings or lubrication means
    • F04B1/124Pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/14Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B1/141Details or component parts
    • F04B1/146Swash plates; Actuating elements

Definitions

  • the invention relates to an axial piston machine and in particular to an axial piston motor for a cycle device for utilizing waste heat of an internal combustion engine.
  • Utilization of this waste heat represents a possibility to increase the overall efficiency of a drive unit of the motor vehicle and thus to reduce fuel consumption.
  • the DE 10 2008 028 467 A1 describes a device for using waste heat of an internal combustion engine.
  • a first heat exchanger, the evaporator, a Dampf Vietnamese mixesvoriques is integrated into the exhaust system of the internal combustion engine.
  • the heat energy transferred in the heat exchanger from the exhaust gas to a working medium of the steam cycle device is partially converted into mechanical energy in an expansion device which can be used, for example, to assist the propulsion of a motor vehicle or to generate electrical energy.
  • the working medium Downstream of the expansion device, the working medium is cooled in a second heat exchanger, the condenser, where it condenses.
  • a feed pump an increase in pressure of the working medium and its supply to the evaporator.
  • an axial piston motor can be used, as is known from DE 10 2010 052 508 A1 is known.
  • Axial piston engines have a cylinder body in which a plurality of cylinders are formed in a uniform pitch.
  • a piston is movably guided, wherein a phase offset is provided in the piston positions, which corresponds to the pitch between the cylinders with respect to a movement cycle of the piston ("piston cycle": OT ⁇ UT ⁇ OT or UT ⁇ OT ⁇ UT) ,
  • a pressurized fluid is successively introduced into the corresponding cylinder to exert a working stroke (OT ⁇ UT) of each piston, where appropriate (in the case of a pneumatic axial piston engine) expanding and causing movement of the respective piston.
  • Axial piston compressors or pumps have a structure substantially identical to axial piston motors, wherein mechanical drive power is transmitted from the shaft via the obliquely arranged plate to the pistons and a rotational movement of the shaft or an associated drive motor is translated into the cyclical movement of the pistons ,
  • a fluid previously introduced into the cylinder during an intake stroke (OT ⁇ UT) is displaced and / or compressed and expelled.
  • Axial piston machines (axial piston motors and axial piston compressors or pumps) are regularly executed in one of three designs.
  • the shaft In the swash plate and the bent axis design of the cylinder body rotates together with the piston.
  • the shaft In the swashplate design, the shaft is arranged parallel to the cylinder body and rotatably connected thereto. The movement of the piston controlling oblique plate is fixed.
  • the longitudinal axes of the shaft, including the flange ("oblique plate") on which the pistons engage, and the cylinder are oblique to each other.
  • the cylinder body In the swash plate type, the cylinder body does not rotate with the pistons guided therein. The same applies to a swash plate to which the pistons are connected via connecting rods.
  • the swash plate is rotatably mounted on a swash plate, wherein the support surface of the swash plate and thus the orientation of the swash plate is aligned obliquely with respect to the longitudinal axes of the cylinder.
  • the swash plate is rotatably connected to the shaft.
  • a groove is regularly provided at one or more points on the outer or inner circumference of the annular swash plate, which engages in an elongated, curved extending projection of the housing or a component connected to the housing.
  • the intake and exhaust valves of axial piston engines are regularly formed in the form of a rotary valve which is non-rotatably connected to the shaft and temporarily connects intake and exhaust ports of the individual cylinders to an intake and exhaust passage depending on the respective piston positions.
  • the present invention seeks to provide a Taumelinbauart axial piston machine, which is characterized by the highest possible efficiency and / or a uniform course.
  • the invention is based on the finding that in an axial piston machine of the swash plate design as a result of fixing the swash plate to prevent rotation a nonuniformity in the wobbling motion is generated, which leads to a non-uniform phase offset in the piston positions of adjacent pistons and in a non-uniform velocity curve of adjacent pistons. Thereby arise on the one hand rotational irregularities.
  • the performance and efficiency of the axial piston machine is adversely affected, since the movement of individual pistons no longer fits exactly to the provided and provided by the rotational movement of the shaft valve timing. For example, it can be provided that the intake valves for all cylinders should be opened as exactly as possible at top dead center (TDC) of the respective piston.
  • the inlet openings of all cylinders are arranged and formed identical with respect to the respective cylinders in conventional axial piston machines. Accordingly, the successive opening of the inlet openings takes place by the rotating with the shaft rotary valve after always the same, the division between the cylinders corresponding partial rotation of the shaft.
  • the non-uniformity, which is introduced by the translation of the rotational movement of the shaft in the cyclic linear movement of the piston is not taken into account. This can thus lead to the inlet openings being opened by the rotary valve in individual cylinders before the associated piston reaches the TDC or after it has already passed the TDC. This leads to a deteriorated filling of these cylinders.
  • the basic idea of the invention is to compensate for the non-uniformity in the piston movements, which is due to the translation of the rotational movement of the shaft into the cyclical linear movement of the piston.
  • a generic axial piston machine having a cylinder body in which a plurality (preferably at least three) cylinders are formed, as well as in the cylinders movably guided pistons, wherein the pistons are connected to a swash plate which rotatably bears against a swash plate, and wherein a fluid flow in and out of the cylinders is controlled by means of inlet and outlet valves, according to the invention achieved in that varying divisions between the (in particular fixed) connections of the piston to the swash plate and / or varying opening times for the inlet and / or outlet valves are provided ,
  • the varying opening times are adapted such that the inlet and / or the exhaust valves of all cylinders open and / or close at identical piston position of the associated piston.
  • the filling of the cylinder and thus the performance and possibly also the efficiency of the axial piston machine can be improved.
  • the opening times of the intake valves of all cylinders are matched to the TDCs of the respective pistons by a cylinder-selective adaptation.
  • the varying opening times are adapted such that the opening duration of the inlet and / or outlet valves of at least some of the cylinders is different.
  • the different opening duration ie the angular ranges of the part rotations of the shaft between the opening and re-closing of the inlet or outlet valves, defined by the sum of the respective angle ⁇ (length of the inlet and outlet openings 28) and the angle ⁇ (length of the inlet opening of the rotary valve 38, see. Fig. 8 )
  • the different opening duration is adapted such that the masses of the in each case a piston cycle in the cylinders enclosed subsets of the fluid are as equal as possible.
  • the inlet and / or outlet valves may be in the form of a (multiple) rotary slide valve.
  • the intake and / or exhaust valves may include intake and / or exhaust ports for the individual cylinders that are temporarily released and covered by a rotary valve.
  • the varying opening times (and thus also varying opening duration of the individual intake and / or exhaust valves) can then be determined by a varying pitch between the inlet and / or outlet openings of individual cylinders and / or by different lengths (relative to the direction of movement relative to the rotary valve). the inlet and / or outlet openings of the cylinder can be achieved.
  • phase relationship between inlet and outlet of all cylinders may be constant, only one (combined) inlet and outlet opening per cylinder be provided. If different phase relationships between inlet and outlet are to be provided for the individual cylinders, at least one inlet and at least one outlet opening may be provided at different radii per cylinder, which are temporarily released by corresponding openings of the rotary valve.
  • the Fig. 1 to 12 show an embodiment of an axial piston according to the invention in the form of an axial piston motor.
  • the axial piston motor can be used, for example, in a cycle device for utilizing waste heat of an internal combustion engine of a motor vehicle.
  • a vaporized and superheated and pressurized working medium expands in the axial piston motor, whereby part of the thermal and potential energy of the working medium is converted into mechanical energy.
  • the axial piston motor is designed in swash plate design.
  • This comprises a cylinder body 10, which forms a plurality (in this case six) of cylinders 12 which are aligned parallel to one another and extend through the entire cylinder body 10.
  • a piston 14 is movably guided.
  • the pistons 14 are connected via a connecting rod 16 with an annular swash plate 18.
  • the swash plate 18 is rotatably mounted on a swash plate 20 which is rotatably connected to a (output) shaft 22 of the axial piston motor.
  • the swash plate 18 and the swash plate 20 have (coaxial) longitudinal axes which are inclined at a defined angle to the longitudinal axes (and the axis of rotation of the shaft 22) of the cylinder 12. This angle is adjustable by means of an adjusting bolt 24.
  • the adjusting screw 24 provided with an external thread is guided in a threaded opening of the shaft 22.
  • the pressure of the successively entering into the individual cylinder 12 working medium leads due to the inclination of the swash plate 18 to a directed in the circumferential direction force component in the connection points of the connecting rod 16 at the Swashplate 18.
  • This force component causes the desired rotation of the shaft 22.
  • the swash plate 18 is placed in a tumbling motion, leading to an up and down movement of the with the swash plate 18th via the connecting rod 16 connected piston 14 leads.
  • each of the pistons 14 cyclically moves between a top dead center (TDC) and a bottom dead center (TDC).
  • the pistons 14 work with two clocks.
  • the movement between the TDC and the TDC of each piston 14 is effected by the working medium flowing into the respective cylinders 12 (working stroke).
  • the relaxed working fluid from the respective cylinders 12 is ejected (exhaust stroke).
  • the inflow and expulsion of the working fluid at the designated timing is realized by means of intake and exhaust valves for each of the cylinders 12 formed by a rotary valve device.
  • the rotary valve device comprises a cylinder head plate 26 which abuts the cylinder body 10 on the front side on the side remote from the swash plate 18.
  • the cylinder head plate 26 has a combined intake and exhaust port 28 for each of the cylinders 12 (see FIG. Fig. 12 ). Further openings 30 are used to receive screws 32, through which a housing head 34, the cylinder head plate 26, the cylinder body 10 and a swash plate 18 and the swash plate 20 surrounding housing 36 are interconnected.
  • a rotary valve 38 On the cylinder head plate 26 is a rotary valve 38, which is rotatably connected to the shaft 22 and thus rotates relative to the cylinder head plate 26 during operation of the axial piston motor.
  • the inlet and outlet openings 28 of the cylinder head plate 26 are alternately and once per revolution of the shaft 22 in registration with an inlet port 40 and with an outlet opening 42 of the rotary valve 38 is brought.
  • the inlet opening 40 and the outlet opening 42 are arranged on the same circular path around the center (the axis of rotation) of the rotary valve 38.
  • the vaporous working medium is supplied to the respective cylinder 12 via a central inlet 44 and a radially extending inlet channel 46 integrated into the rotary valve 38.
  • the working fluid is expelled from the respective cylinder 12 and discharged through outlets 48 from the axial piston motor.
  • the length of the inlet opening 40 of the rotary valve 38 (with respect to the direction of rotation relative to the cylinder head plate 26) is selected such that an overlap (and thus Inlet valve opening) with the inlet and outlet opening 28 is always given only a cylinder 12, while the much longer (only interrupted by reinforcing struts 60) outlet opening 42 of the rotary valve 38, a simultaneous opening of several outlet valves (by covering with the corresponding inlet and outlet openings 28th the cylinder head plate 26) provides.
  • the inlet channel 46 of the rotary valve 38 is formed for manufacturing reasons open to the outside. During assembly of the axial piston motor, this opening is closed by means of a spherical closure body 50 (cf. Fig. 5 ).
  • a securing sleeve 52 is provided which is non-rotatably connected via securing pins 54 (with respect to the axis of rotation of the shaft 22) to the cylinder body 10.
  • the securing sleeve 52 is also connected via a cardan-like joint arrangement with the swash plate 18.
  • the hinge assembly 18 rotatably binds the swash plate 18 (with respect to the axis of rotation of the shaft 22) to the locking sleeve 52 and thus to the cylinder body 10, but at the same time allows the wobble of the swash plate.
  • the joint arrangement comprises a joint ring 56, which is rotatable about a respective first axis about the two bearing pins 58 with the securing sleeve 52 (see FIG. Fig. 3 ) and about a second, perpendicular to the first axis extending axis rotatably with the swash plate 18 (see. Fig. 4 ) connected is.
  • substantially functionally similar axial piston machines is provided to arrange the cylinder 12 in a uniform pitch in the cylinder body 10 and to provide a corresponding arrangement of the connection of the connecting rod 16 to the swash plate 18.
  • identical inlet and outlet openings 28 are provided in the cylinder head plate 26 for the individual cylinders 12. This leads due to the rotationally fixed connection of the swash plate 18 with the cylinder body 10 to non-uniform piston movements and - resulting - to a nonuniform phase offset between adjacent piston 14.
  • the pitch between all adjacent cylinders 60 °.
  • the phase offset of the piston movements ie the partial rotation of the shaft 22, after the adjacent piston 14 each reach their TDC or UT, is not exactly 60 °, but up to a few degrees more or less.
  • the Fig. 14 visualizes this effect. There is shown over a revolution of the shaft 22, the movement of the six pistons 14 (solid lines). In addition, a sinusoidal comparison movement is entered with dashed line for each piston 14. The Fig. 14 shows that all real piston movements deviate from the respective sinusoidal comparison movement, wherein the deviations of the individual piston movements are also partially different. Only in the cylinder body 10 opposite, ie offset by 180 ° arranged piston 14 have identical (only 180 ° out of phase) Kolbenmogsverstructure on. Furthermore clarifies the Fig.
  • the phase offset to the movements of the two adjacent pistons is several degrees less than that due to the different phase offset from the pitch of 60 ° the 60 ° division expected 60 °.
  • the phase offset amounts to 180 ° in accordance with the pitch. The non-uniformity and the phase offset in or between the piston movements tends to increase with increasing inclination angle of the swash plate 18.
  • the Fig. 15 visualizes the differences in the filling of the individual cylinders 12 in a generic axial piston machine. There is over a revolution of the shaft 22, the course of the filling of the cylinder 12, that is, the change in the mass of the working fluid in the individual cylinders 12, shown. There, too, it appears that the course of the filling is the same (only 180 ° out of phase) only with cylinders 12 located opposite one another in the cylinder body 10.
  • the inlet and outlet openings 28 of the cylinder head plate 26 assigned to the individual cylinders 12 are individually adapted such that a substantially identical filling results for all cylinders 12 (cf. Fig. 12 ). It is provided on the one hand that the division between the individual adjacent inlet and outlet openings 28 (relative to their central axes) may be different, so that, for example, ⁇ 1 ⁇ ⁇ 2 .
  • the arrangement of the inlet and outlet openings 28 and thus the pitch is selected such that all intake valves substantially always open in the TDC of the respective piston 14 (by an incipient overlap of the inlet and outlet openings 28 of the cylinder head plate 26 with the inlet opening 40 of the rotary valve 38).
  • the lengths of the inlet and outlet openings 28 relative to the direction of the relative movement between the cylinder head plate 26 and the rotary valve 38 are different.
  • the lengths of the inlet and outlet openings 28 are indicated as angular ranges.
  • ⁇ 1 ⁇ ⁇ 2 the pitch is selected such that all intake valves substantially always open in the TDC of the respective piston 14 (by an incipient overlap of the inlet and outlet openings 28 of the cylinder head plate 26 with the inlet opening 40 of the rotary valve 38).
  • a longer opening duration should be provided for piston movements which are relatively flat in the region of their OTs, in order to achieve an identical filling in comparison to piston movements that are relatively acute in the OTs.
  • the Fig. 16 shows that according to the invention for all cylinders 12 substantially identical Greungsverrise can be realized.
  • Fig. 13 shows a correspondingly formed swash plate 18, which in an axial piston according to the Fig. 1 to 11 can be used. It may be useful not only to adapt the pitches between the connections of the piston 14 to the swash plate 18, but also according to the pitches between adjacent cylinders 12 in the cylinder body 10, which may then be identical to that of the swash plate 18.
  • An axial piston machine according to the invention with an adapted connection of the pistons 14 to the swash plate 18 can preferably be combined with adapted opening time of the individual valves, ie, for example, with respect to their length adapted inlet and outlet openings 28 in the cylinder head plate 26, so that in addition a compensation of the different waveforms of Piston movements can be done.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Reciprocating Pumps (AREA)
  • Hydraulic Motors (AREA)

Description

  • Die Erfindung betrifft eine Axialkolbenmaschine und insbesondere einen Axialkolbenmotor für eine Kreisprozessvorrichtung zur Nutzung von Abwärme einer Brennkraftmaschine.
  • Kraftfahrzeuge werden derzeit zumeist mittels Brennkraftmaschinen angetrieben, in denen Kraftstoffe verbrannt und die dabei freigesetzte Wärmeenergie teilweise in mechanische Arbeit umgewandelt wird. Der Wirkungsgrad von Hubkolben-Brennkraftmaschinen, die für den Antrieb von Kraftfahrzeugen nahezu ausschließlich eingesetzt werden, liegt bei ca. einem Drittel der eingesetzten Primärenergie. Demnach stellt zwei Drittel der bei der Verbrennung freigesetzten Wärmeenergie Abwärme dar, die entweder über die Motorkühlung oder den Abgasstrang als Verlustwärme an die Umgebung abgegeben wird.
  • Eine Nutzung dieser Abwärme stellt eine Möglichkeit dar, den Gesamtwirkungsgrad einer Antriebseinheit des Kraftfahrzeugs zu steigern und damit den Kraftstoffverbrauch zu senken.
  • Die DE 10 2008 028 467 A1 beschreibt eine Vorrichtung zur Nutzung von Abwärme einer Verbrennungskraftmaschine. Dazu ist in den Abgasstrang der Verbrennungskraftmaschine ein erster Wärmetauscher, der Verdampfer, einer Dampfkreisprozessvorrichtung integriert. Die in dem Wärmetauscher von dem Abgas auf ein Arbeitsmedium der Dampfkreisprozessvorrichtung übertragene Wärmeenergie wird in einer Expansionsvorrichtung teilweise in mechanische Energie umgewandelt, die beispielsweise zur Unterstützung des Antriebs eines Kraftfahrzeugs oder zur Erzeugung elektrischer Energie genutzt werden kann. Stromab der Expansionsvorrichtung wird das Arbeitsmedium in einem zweiten Wärmetauscher, dem Kondensator, abgekühlt, wobei es kondensiert. Über eine Speisepumpe erfolgt eine Druckerhöhung des Arbeitsmediums und dessen Zufuhr zu dem Verdampfer.
  • Als Expansionsvorrichtung in einem solchen System zur Abwärmenutzung kann ein Axialkolbenmotor eingesetzt werden, wie dies aus der DE 10 2010 052 508 A1 bekannt ist.
  • Axialkolbenmotoren weisen einen Zylinderkörper auf, in dem mehrere Zylinder in gleichmäßiger Teilung ausgebildet sind. In jedem der Zylinder ist ein Kolben beweglich geführt, wobei ein Phasenversatz in den Kolbenpositionen vorgesehen ist, der bezogen auf einen Bewegungszyklus der Kolben ("Kolbenzyklus": OT→UT→OT bzw. UT→OT→UT) der Teilung zwischen den Zylindern entspricht. Über Einlass- und Auslassventile wird zur Ausübung eines Arbeitstakts (OT→UT) jedes Kolbens ein unter Druck stehendes Fluid nacheinander in den entsprechenden Zylinder eingebracht, das dort gegebenenfalls (bei einem pneumatischen Axialkolbenmotor) expandiert und eine Bewegung des jeweiligen Kolbens bewirkt. In einem sich an den Arbeitstakt anschließenden Auslasstakt (UT→OT) jedes Kolbens wird das Fluid wieder ausgestoßen. Die Bewegungen der Kolben werden über eine schräg zu den Längsachsen der Zylinder angeordneten Platte, an die die Kolben direkt oder über Pleuel angebunden sind, auf eine Abtriebswelle übertragen.
  • Axialkolbenverdichter bzw. -pumpen weisen einen zu Axialkolbenmotoren im Wesentlichen identischen Aufbau auf, wobei mechanische Antriebsleistung von der Welle über die schräg angeordnete Platte auf die Kolben übertragen und dabei eine Drehbewegung der Welle bzw. eines damit verbundenen Antriebsmotors in die zyklische Bewegung der Kolben übersetzt wird. In dem Arbeitstakt (UT→OT) der einzelnen Kolben wird ein zuvor während eines Ansaugtakts (OT→UT) in die Zylinder eingebrachtes Fluid verdrängt und/oder verdichtet und ausgestoßen.
  • Axialkolbenmaschinen (Axialkolbenmotoren und Axialkolbenverdichter bzw. -pumpen) werden regelmäßig in einer von drei Bauweisen ausgeführt.
  • Bei der Schrägscheiben- sowie der Schrägachsenbauart rotiert der Zylinderkörper mitsamt den Kolben. Bei der Schrägscheibenbauart ist die Welle dabei parallel zum Zylinderkörper angeordnet und drehfest mit diesem verbunden. Die die Bewegung der Kolben steuernde schräge Platte ist feststehend ausgebildet. Bei der Schrägachsenbauart verlaufen die Längsachsen der Welle, einschließlich des Flansches ("schräge Platte"), an dem die Kolben angreifen, und der Zylinder schräg zueinander. Bei der Taumelscheibenbauart rotiert der Zylinderkörper mit den darin geführten Kolben nicht. Gleiches gilt für eine Taumelscheibe, an der die Kolben über Pleuel angebunden sind. Die Taumelscheibe liegt drehbar auf einem Taumelscheibenfuß auf, wobei die Auflagefläche des Taumelscheibenfußes und damit die Ausrichtung der Taumelscheibe schräg bezüglich der Längsachsen der Zylinder ausgerichtet ist. Der Taumelscheibenfuß ist drehfest mit der Welle verbunden.
  • Bei Axialkolbenmaschinen der Taumelscheibenbauart ist regelmäßig vorgesehen, ein ungewolltes Mitdrehen der Taumelscheibe mit dem Taumelscheibenfuß durch eine drehfeste Fixierung der Taumelscheibe in oder an dem Gehäuse der Axialkolbenmaschine sicherzustellen. Hierzu wird regelmäßig an einer oder mehreren Stellen auf dem Außen- oder Innenumfang der ringförmigen Taumelscheibe eine Nut vorgesehen, in die ein länglicher, gekrümmt verlaufender Vorsprung des Gehäuses oder eines mit dem Gehäuse verbundenen Bauteils eingreift. Diese Nut-Vorsprung-Verbindungen verhindern ein Verdrehen der Taumelscheibe, erlauben gleichzeitig aber eine Bewegung entlang des Verlaufs des Vorsprungs, wodurch die Taumelbewegung der Taumelscheibe ermöglicht wird.
  • Die Einlass- und Auslassventile von Axialkolbenmaschinen werden regelmäßig in Form eines Drehschiebers ausgebildet, der drehfest mit der Welle verbunden ist und in Abhängigkeit von den jeweiligen Kolbenpositionen Einlass- und Auslassöffnungen der einzelnen Zylinder temporär mit einem Einlass- bzw. Auslasskanal verbindet.
  • Ausgehend von diesem Stand der Technik lag der Erfindung die Aufgabe zugrunde, eine Axialkolbenmaschine der Taumelscheibenbauart anzugeben, die sich durch einen möglichst hohen Wirkungsgrad und/oder einen gleichförmigen Verlauf auszeichnet.
  • Diese Aufgabe wird durch eine Axialkolbenmaschine gemäß dem unabhängigen Patentanspruch 1 gelöst. Vorteilhafte Ausgestaltungen davon sind Gegenstand der abhängigen Patentansprüche und ergeben sich aus der nachfolgenden Beschreibung der Erfindung.
  • Der Erfindung liegt die Erkenntnis zugrunde, dass bei einer Axialkolbenmaschine der Taumelscheibenbauart infolge der Fixierung der Taumelscheibe zur Verdrehsicherung eine Ungleichförmigkeit in der Taumelbewegung erzeugt wird, die zu einem ungleichförmigen Phasenversatz in den Kolbenpositionen benachbarter Kolben sowie in einem ungleichförmigen Geschwindigkeitsverlauf benachbarter Kolben führt. Dadurch entstehen zum einen Drehungleichförmigkeiten. Zum anderen wird dadurch die Leistung und der Wirkungsgrad der Axialkolbenmaschine negativ beeinflusst, da die Bewegung einzelner Kolben nicht mehr exakt zu den vorgesehenen und durch die Drehbewegung der Welle vorgegebenen Ventilsteuerzeiten passt. Beispielsweise kann vorgesehen sein, dass die Einlassventile für alle Zylinder möglichst exakt zum oberen Totpunkt (OT) des jeweiligen Kolbens geöffnet werden sollen. Die Einlassöffnungen aller Zylinder sind bei konventionellen Axialkolbenmaschinen identisch bezüglich der jeweiligen Zylinder angeordnet und ausgebildet. Demnach erfolgt das nacheinander folgende Öffnen der Einlassöffnungen durch den mit der Welle mitrotierenden Drehschieber nach immer der gleichen, der Teilung zwischen den Zylindern entsprechenden Teildrehung der Welle. Die Ungleichförmigkeit, die durch die Übersetzung der Drehbewegung der Welle in die zyklische Linearbewegung des Kolben eingebracht wird, wird dabei nicht berücksichtigt. Dies kann somit dazu führen, dass bei einzelnen Zylindern die Einlassöffnungen von dem Drehschieber geöffnet werden, bevor der dazugehörige Kolben den OT erreicht bzw. nachdem dieser den OT bereits passiert hat. Dies führt zu einer verschlechterten Füllung dieser Zylinder.
  • Grundgedanke der Erfindung ist, die Ungleichförmigkeit in den Kolbenbewegungen, die in der Übersetzung der Drehbewegung der Welle in die zyklische Linearbewegung des Kolbens begründet ist, zu kompensieren.
  • Dies wird bei einer gattungsgemäßen Axialkolbenmaschine, die einen Zylinderkörper, in dem mehrere (vorzugsweise mindestens drei) Zylinder ausgebildet sind, sowie in den Zylindern beweglich geführte Kolben aufweist, wobei die Kolben an einer Taumelscheibe angebunden sind, der drehbar an einem Taumelscheibenfuß anliegt, und wobei eine Fluidströmung in die und aus den Zylindern mittels Einlass- und Auslassventilen gesteuert wird, erfindungsgemäß dadurch erreicht, dass variierende Teilungen zwischen den (insbesondere feststehenden) Anbindungen der Kolben an der Taumelscheibe und/oder variierende Öffnungszeiten für die Einlass- und/oder Auslassventile vorgesehen sind.
  • Durch eine Variation der Teilungen der Anbindungen der Kolben an die Taumelscheibe kann eine in der Übersetzung begründete Verschiebung der Gesamtbewegung der Kolben ausgeglichen werden, so dass im Ergebnis die Kolben immer nach einer gleichbleibenden Teildrehung der Welle ihren OT und/oder UT erreichen.
  • Durch eine Variation der Öffnungszeiten für die Einlass- und/oder Auslassventile kann erreicht werden, dass trotz der durch die Übersetzung bedingten Ungleichförmigkeiten in den Kolbenbewegungen die Öffnungszeiten möglichst exakt zu den jeweiligen Kolbenstellungen passen.
  • Insbesondere kann vorgesehen sein, dass die variierenden Öffnungszeiten derart angepasst sind, dass die Einlass- und/oder die Auslassventile aller Zylinder bei identischer Kolbenposition der zugehörigen Kolben öffnen und/oder schließen. Dadurch kann die Füllung der Zylinder und damit die Leistung und gegebenenfalls auch der Wirkungsgrad der Axialkolbenmaschine verbessert werden. Beispielsweise kann vorgesehen sein, dass durch eine zylinderselektive Anpassung die Öffnungszeitpunkte der Einlassventile aller Zylinder auf die OTs der jeweiligen Kolben abgestimmt werden.
  • Weiterhin kann vorgesehen sein, dass die variierenden Öffnungszeiten derart angepasst sind, dass die Öffnungsdauer der Einlass- und/oder der Auslassventile zumindest einiger der Zylinder unterschiedlich ist. Dadurch kann insbesondere der Einfluss, den die unterschiedlichen Geschwindigkeitsverläufe der Kolbenbewegungen auf die Füllung der Zylinder mit dem Fluid haben kann, kompensiert werden. Vorzugsweise ist daher vorgesehen, dass die unterschiedliche Öffnungsdauer (d.h. die Winkelbereiche der Teildrehungen der Welle zwischen dem Öffnen und dem erneuten Schließen der Einlass- oder Auslassventile, definiert durch die Summe der jeweiligen Winkel α (Länge der Ein- und Auslassöffnungen 28) und des Winkels γ (Länge der Einlassöffnung des Drehschiebers 38, vgl. Fig. 8)) derart angepasst ist, dass die Massen der in jeweils einem Kolbenzyklus in den Zylindern eingeschlossenen Teilmengen des Fluids möglichst gleich sind.
  • In einer bevorzugten Ausgestaltung der erfindungsgemäßen Axialkolbenmaschine kann vorgesehen sein, dass die Einlass- und/oder die Auslassventile in Form eines (Mehrfach-)Drehschieberventils ausgebildet sind. Demnach können die Einlass- und/oder Auslassventile Einlass- und/oder Auslassöffnungen für die einzelnen Zylinder umfassen, die temporär mittels eines Drehschiebers freigegeben und abgedeckt werden. Die variierenden Öffnungszeiten (und damit auch variierende Öffnungsdauer der einzelnen Einlass- und/oder Auslassventile) können dann durch eine variierende Teilung zwischen den Einlass- und/oder Auslassöffnungen einzelner Zylinder und/oder durch unterschiedliche Längen (bezogen auf die Bewegungsrichtung relativ zu dem Drehschieber) der Einlass- und/oder Auslassöffnungen der Zylinder erzielt werden. Dabei kann, sofern die Phasenbeziehung zwischen Ein- und Auslass aller Zylinder konstant sein kann, nur eine (kombinierte) Ein- und Auslassöffnung je Zylinder vorgesehen sein. Sofern für die einzelnen Zylinder unterschiedliche Phasenbeziehungen zwischen Ein- und Auslass vorgesehen sein sollen, können je Zylinder mindestens eine Einlass- und mindestens eine Auslassöffnung auf unterschiedlichen Radien vorgesehen sein, die von entsprechenden Öffnungen des Drehschiebers temporär freigegebenen werden.
  • Die Erfindung wird im Folgenden anhand von in den Zeichnungen dargestellten Ausführungsbeispielen näher erläutert. In den Zeichnungen zeigt:
  • Fig. 1:
    eine Ausführungsform eines erfindungsgemäßen Axialkolbenmotors in einer perspektivischen Darstellung;
    Fig. 2:
    den Axialkolbenmotor in einer Draufsicht;
    Fig. 3:
    den Axialkolbenmotor in einem Schnitt entlang der Ebene III - III in Fig. 2;
    Fig. 4:
    den Axialkolbenmotor in einem Schnitt entlang der Ebene IV - IV in Fig. 2;
    Fig. 5:
    einen vergrößerten Ausschnitt des Axialkolbenmotors in einem Schnitt entlang der Ebene V - V in Fig. 2;
    Fig. 6:
    den Drehschieber des Axialkolbenmotors in einer perspektivischen Darstellung;
    Fig. 7:
    den Drehschieber in einer Ansicht von oben;
    Fig. 8:
    den Drehschieber in einer Ansicht von unten;
    Fig. 9:
    den Drehschieber in einem Schnitt entlang der Ebene IX - IX in Fig. 7;
    Fig. 10:
    den Drehschieber in einem Schnitt entlang der Ebene X - X in Fig. 7;
    Fig. 11:
    den Drehschieber in einem Schnitt entlang der Ebene XI - XI in Fig. 7;
    Fig. 12:
    die Zylinderkopfplatte des Axialkolbenmotors in einer Draufsicht;
    Fig. 13:
    eine Taumelscheibe für eine erfindungsgemäße Axialkolbenmaschine in einer Draufsicht;
    Fig. 14:
    den Verlauf der Kolbenbewegungen bei einer gattungsgemäßen Axialkolbenmaschine mit sechs Zylindern;
    Fig. 15:
    den Verlauf der Zylinderfüllungen bei einer gattungsgemäßen Axialkolbenmaschine mit sechs Zylindern; und
    Fig. 16:
    den Verlauf der Zylinderfüllungen bei einer erfindungsgemäßen Axialkolbenmaschine mit sechs Zylindern.
  • Die Fig. 1 bis 12 zeigen eine Ausführungsform einer erfindungsgemäßen Axialkolbenmaschine in Form eines Axialkolbenmotors. Der Axialkolbenmotor kann beispielsweise in einer Kreisprozessvorrichtung zur Nutzung von Abwärme eines Verbrennungsmotors eine Kraftfahrzeugs eingesetzt werden. Dabei expandiert ein verdampftes und überhitztes sowie unter Druck stehendes Arbeitsmedium in dem Axialkolbenmotor, wodurch ein Teil der thermischen und potentiellen Energie des Arbeitsmediums in mechanische Energie gewandelt wird.
  • Der Axialkolbenmotor ist in Taumelscheibenbauart ausgeführt. Dieser umfasst einen Zylinderkörper 10, der eine Mehrzahl (hier: sechs) von parallel zueinander ausgerichteten, sich durch den gesamten Zylinderkörper 10 erstreckenden Zylindern 12 ausbildet. In jedem der Zylinder 12 ist ein Kolben 14 beweglich geführt. Die Kolben 14 sind über jeweils ein Pleuel 16 mit einer ringförmigen Taumelscheibe 18 verbunden. Die Taumelscheibe 18 ist drehbar auf einem Taumelscheibenfuß 20 gelagert, der drehfest mit einer (Abtriebs-)Welle 22 des Axialkolbenmotors verbunden ist.
  • Die Taumelscheibe 18 sowie der Taumelscheibenfuß 20 weisen (koaxiale) Längsachsen auf, die in einem definierten Winkel zu den Längsachsen (und der Rotationsachse der Welle 22) der Zylinder 12 geneigt verlaufen. Dieser Winkel ist mittels eines Einstellbolzens 24 einstellbar. Dazu ist der mit einem Außengewinde versehene Einstellbolzen 24 in einer Gewindeöffnung der Welle 22 geführt.
  • Der Druck des nacheinander in die einzelnen Zylinder 12 eintretenden Arbeitsmediums führt aufgrund der Schrägstellung der Taumelscheibe 18 zu einer in Umfangsrichtung gerichteten Kraftkomponente in den Anbindungsstellen der Pleuel 16 an der Taumelscheibe 18. Diese Kraftkomponente bewirkt die gewünschte Drehung der Welle 22. Infolge der Drehung der Welle 22 sowie des damit drehfest verbundenen Taumelscheibenfußes 20 wird die Taumelscheibe 18 in eine taumelnde Bewegung versetzt, die zu einer Auf- und Ab-Bewegung der mit der Taumelscheibe 18 über die Pleuel 16 verbundenen Kolben 14 führt. Dabei bewegt sich jeder der Kolben 14 zyklisch zwischen einem oberen Totpunkt (OT) und einem unteren Totpunkt (UT).
  • Die Kolben 14 arbeiten mit zwei Takten. Die Bewegung zwischen dem OT und dem UT jedes Kolbens 14 wird durch das in die jeweiligen Zylinder 12 einströmende Arbeitsmedium bewirkt (Arbeitstakt). Bei der von der Taumelscheibe 18 geführten Bewegung der Kolben 14 zwischen dem UT und dem OT wird das entspannte Arbeitsmedium aus den jeweiligen Zylindern 12 ausgestoßen (Ausstoßtakt). Das Einströmen und Ausstoßen des Arbeitsmediums zu den vorgesehenen Steuerzeiten wird mittels Einlass- und Auslassventilen für jeden der Zylinder 12 realisiert, die von einer Drehschieberventilvorrichtung ausgebildet werden.
  • Die Drehschieberventilvorrichtung umfasst eine Zylinderkopfplatte 26, die stirnseitig auf der von der Taumelscheibe 18 beabstandeten Seite an dem Zylinderkörper 10 anliegt. Die Zylinderkopfplatte 26 weist eine kombinierte Ein- und Auslassöffnung 28 für jeden der Zylinder 12 auf (vgl. Fig. 12). Weitere Öffnungen 30 dienen der Aufnahme von Schrauben 32, durch die ein Gehäusekopf 34, die Zylinderkopfplatte 26, der Zylinderkörper 10 sowie ein die Taumelscheibe 18 und den Taumelscheibenfuß 20 umgebendes Gehäuse 36 miteinander verbunden sind. An der Zylinderkopfplatte 26 liegt ein Drehschieber 38 an, der drehfest mit der Welle 22 verbunden ist und sich somit im Betrieb des Axialkolbenmotors relativ zu der Zylinderkopfplatte 26 dreht. Dadurch werden die Ein- und Auslassöffnungen 28 der Zylinderkopfplatte 26 abwechselnd und einmal je Umdrehung der Welle 22 in Überdeckung mit einer Einlassöffnung 40 sowie mit einer Auslassöffnung 42 des Drehschiebers 38 gebracht. Die Einlassöffnung 40 und die Auslassöffnung 42 sind dazu auf derselben Kreisbahn um das Zentrum (die Drehachse) des Drehschiebers 38 angeordnet. Bei einer Überdeckung mit der Einlassöffnung 40 wird dem jeweiligen Zylinder 12 über einen zentralen Einlass 44 und einen in den Drehschieber 38 integrierten, radial verlaufenden Einlasskanal 46 das dampfförmige Arbeitsmedium zugeführt. Bei einer Überdeckung mit der Auslassöffnung 42 wird das Arbeitsmedium aus dem jeweiligen Zylinder 12 ausgestoßen und über Auslässe 48 aus dem Axialkolbenmotor abgeführt. Dabei ist die Länge der Einlassöffnung 40 des Drehschiebers 38 (hinsichtlich der Richtung der Drehung relativ zu der Zylinderkopfplatte 26) derart gewählt, dass eine Überdeckung (und damit Einlassventilöffnung) mit der Ein- und Auslassöffnung 28 immer nur eines Zylinders 12 gegeben ist, während die deutlich längere (lediglich durch Verstärkungsstreben 60 unterbrochene) Auslassöffnung 42 des Drehschiebers 38 ein gleichzeitiges Öffnen mehrerer Auslassventile (durch ein Überdecken mit den entsprechenden Ein- und Auslassöffnungen 28 der Zylinderkopfplatte 26) vorsieht.
  • Der Einlasskanal 46 des Drehschiebers 38 ist aus fertigungstechnischen Gründen nach außen offen ausgebildet. Bei der Montage des Axialkolbenmotors wird diese Öffnung mittels eines kugelförmigen Verschlusskörpers 50 verschlossen (vgl. Fig. 5).
  • Um zu verhindern, dass die Taumelscheibe 18 von der Drehbewegung des Taumelscheibenfußes 20 mitgenommen wird, ist vorgesehen, diese drehfest (bezüglich der Rotationsachse der Welle 22) mit dem Zylinderkörper 10 zu verbinden. Dazu ist eine Sicherungshülse 52 vorgesehen, die über Sicherungsstifte 54 drehfest (bezüglich der Rotationsachse der Welle 22) mit dem Zylinderkörper 10 verbunden ist. Die Sicherungshülse 52 ist zudem über eine kardanartige Gelenkanordnung mit der Taumelscheibe 18 verbunden. Die Gelenkanordnung bindet die Taumelscheibe 18 drehfest (bezüglich der Rotationsachse der Welle 22) an die Sicherungshülse 52 und damit an den Zylinderkörper 10, lässt gleichzeitig jedoch die Taumelbewegung der Taumelscheibe zu. Die Gelenkanordnung umfasst einen Gelenkring 56, der über jeweils zwei Lagerstifte 58 um eine erste Achse drehbar mit der Sicherungshülse 52 (vgl. Fig. 3) sowie um eine zweite, zu der ersten Achse senkrecht verlaufende Achse drehbar mit der Taumelscheibe 18 (vgl. Fig. 4) verbunden ist.
  • Bei bekannten, zu dem beschriebenen erfindungsgemäßen Axialkolbenmotor im Wesentlichen funktionsgleichen Axialkolbenmaschinen ist vorgesehen, die Zylinder 12 in gleichmäßiger Teilung in dem Zylinderkörper 10 anzuordnen sowie eine entsprechende Anordnung der Anbindung der Pleuel 16 an der Taumelscheibe 18 vorzusehen. Zudem sind identische Ein- und Auslassöffnungen 28 in der Zylinderkopfplatte 26 für die einzelnen Zylinder 12 vorgesehen. Dies führt infolge der drehfesten Verbindung der Taumelscheibe 18 mit dem Zylinderkörper 10 zu ungleichförmigen Kolbenbewegungen und - daraus folgend - zu einem ungleichmäßigen Phasenversatz zwischen benachbarten Kolben 14. So beträgt bei einer Axialkolbenmaschine mit sechs Zylindern 12 die Teilung zwischen allen benachbarten Zylindern 60°. Der Phasenversatz der Kolbenbewegungen, d.h. die Teildrehung der Welle 22, nach der benachbarte Kolben 14 jeweils ihren OT oder UT erreichen, beträgt jedoch nicht exakt 60°, sondern bis zu einige Grad mehr oder weniger.
  • Die Fig. 14 visualisiert diesen Effekt. Dort ist über einer Umdrehung der Welle 22 die Bewegung der sechs Kolben 14 (durchgezogene Linien) dargestellt. Zudem ist für jeden Kolben 14 eine sinusförmige Vergleichsbewegung mit gestrichelter Linie eingetragen. Die Fig. 14 zeigt, dass alle realen Kolbenbewegungen von der jeweiligen sinusförmigen Vergleichsbewegung abweichen, wobei die Abweichungen der einzelnen Kolbenbewegungen zudem teilweise unterschiedlich sind. Lediglich sich im Zylinderkörper 10 gegenüberliegende, d.h. um 180° versetzt angeordnete Kolben 14 weisen identische (lediglich um 180° phasenversetzte) Kolbenbewegungsverläufe auf. Weiterhin verdeutlicht die Fig. 14 den unterschiedlichen, von der Teilung von 60° abweichenden Phasenversatz in den Bewegungen benachbarter Kolben 14. Z.B. beträgt, bezogen auf die Bewegung des bei 180° seinen OT erreichenden Kolbens 14, der Phasenversatz zu den Bewegungen der beiden benachbarten Kolben mehrere Grad weniger als die infolge der 60°-Teilung zu erwartenden 60°. Für die sich im Zylinderkörper 10 jeweils gegenüberliegenden Kolben 14 beträgt der Phasenversatz dagegen entsprechend der Teilung 180°. Die Ungleichförmigkeit und der Phasenversatz in bzw. zwischen den Kolbenbewegungen nimmt dabei tendenziell mit zunehmendem Neigungswinkel der Taumelscheibe 18 zu.
  • Der Phasenversatz zwischen den Bewegungen benachbarter Kolben 14 in Verbindung mit der symmetrischen Anordnung der Einlass- und Auslassöffnungen 28 in der Zylinderkopfplatte 26 konventioneller Axialkolbenmaschinen führt dazu, dass die Ein- und Auslassventile nicht immer exakt zur vorgesehenen Stellung des jeweiligen Kolbens 14 (z.B. im OT) öffnen. Dies sowie die unterschiedlichen Verläufe der Kolbenbewegungen führen zu einer unterschiedlichen Füllung der Zylinder 12, die für zumindest einige der Zylinder 12 unterhalb der vorgesehenen Füllung bleibt. Dies resultiert in einer geringeren Leistung und gegebenenfalls auch in einem geringeren Wirkungsgrad der Axialkolbenmaschine.
  • Die Fig. 15 visualisiert die Unterschiede in der Füllung der einzelnen Zylinder 12 bei einer gattungsgemäßen Axialkolbenmaschine. Dort ist über einer Umdrehung der Welle 22 der Verlauf der Füllung der Zylinder 12, d.h. die Veränderung der Masse des Arbeitsmediums in den einzelnen Zylindern 12, dargestellt. Auch dort zeigt sich, dass der Verlauf der Füllung lediglich bei sich im Zylinderkörper 10 gegenüberliegenden Zylindern 12 gleich (lediglich um 180° phasenversetzt) ist.
  • Um dieses Problem zu vermeiden, ist bei dem erfindungsgemäßen Axialkolbenmotor vorgesehen, dass die den einzelnen Zylindern 12 zugeordneten Ein- und Auslassöffnungen 28 der Zylinderkopfplatte 26 derart individuell angepasst sind, dass sich eine im Wesentlichen identische Füllung für alle Zylinder 12 ergibt (vgl. Fig. 12). Hierbei ist zum einen vorgesehen, dass die Teilung zwischen den einzelnen benachbarten Ein- und Auslassöffnungen 28 (bezogen auf Ihre Mittelachsen) unterschiedlich sein kann, so dass beispielsweise β1 ≠ β2 ist. Insbesondere ist die Anordnung der Ein- und Auslassöffnungen 28 und damit die Teilung derart gewählt, dass alle Einlassventile im Wesentlichen immer im OT des jeweiligen Kolbens 14 öffnen (durch eine beginnende Überdeckung der Ein- und Auslassöffnungen 28 der Zylinderkopfplatte 26 mit der Einlassöffnung 40 des Drehschiebers 38). Zudem sind die Längen der Ein- und Auslassöffnungen 28 bezogen auf die Richtung der Relativbewegung zwischen der Zylinderkopfplatte 26 und dem Drehschieber 38 unterschiedlich. Infolge der rotierenden Relativbewegung des Drehschiebers 38 und der Zylinderkopfplatte 26 sind die Längen der Ein- und Auslassöffnungen 28 als Winkelbereiche angegeben. Demnach ist beispielsweise α1 ≠ α2. Grundsätzlich kann vorgesehen sein, dass für Kolbenbewegungen, die im Bereich Ihrer OTs relativ flach verlaufen, eine längere Öffnungsdauer vorgesehen sein sollte, um eine identische Füllung im Vergleich zu in den OTs relativ spitz verlaufenden Kolbenbewegungen zu erreichen. Die Fig. 16 zeigt, dass erfindungsgemäß für alle Zylinder 12 im Wesentlichen identische Füllungsverläufe realisiert werden können.
  • Alternativ oder zusätzlich zu einer Anpassung der Öffnungszeiten der Einlassventile kann auch vorgesehen sein, die Teilungen zwischen den Anbindungen der Pleuel 26 an die Taumelscheibe 18 anzupassen, wodurch unterschiedliche Phasenverschiebungen der (Gesamt-)Bewegungen benachbarter Kolben 14 vermieden werden können. Die Fig. 13 zeigt eine entsprechend ausgebildete Taumelscheibe 18, die in einem Axialkolbenmotor gemäß der Fig. 1 bis 11 eingesetzt werden kann. Dabei kann es sinnvoll sein, nicht nur die Teilungen zwischen den Anbindungen der Kolben 14 an die Taumelscheibe 18 anzupassen, sondern entsprechend auch die Teilungen zwischen benachbarten Zylindern 12 in dem Zylinderkörper 10, die dann identisch zu derjenigen der Taumelscheibe 18 sein können. Eine erfindungsgemäße Axialkolbenmaschine mit einer angepassten Anbindung der Kolben 14 an die Taumelscheibe 18 kann vorzugsweise mit angepasster Öffnungsdauer der einzelnen Ventile, d.h. beispielsweise hinsichtlich ihrer Länge angepassten Ein- und Auslassöffnungen 28 in der Zylinderkopfplatte 26 kombiniert werden, so dass zusätzlich eine Kompensation der unterschiedlichen Verlaufsformen der Kolbenbewegungen erfolgen kann.
  • Bezugszeichenliste
  • 10
    Zylinderkörper
    12
    Zylinder
    14
    Kolben
    16
    Pleuel
    18
    Taumelscheibe
    20
    Taumelscheibenfuß
    22
    Welle
    24
    Einstellbolzen
    26
    Zylinderkopfplatte
    28
    Ein- und Auslassöffnung
    30
    Öffnung
    32
    Schraube
    34
    Gehäusekopf
    36
    Gehäuse
    38
    Drehschieber
    40
    Einlassöffnung
    42
    Auslassöffnung
    44
    Einlass
    46
    Einlasskanal
    48
    Auslass
    50
    Verschlusskörper
    52
    Sicherungshülse
    54
    Sicherungsstift
    56
    Gelenkring
    58
    Lagerstift
    60
    Verstärkungsstrebe

Claims (6)

  1. Axialkolbenmaschine mit einem Zylinderkörper (10), in dem mehrere Zylinder (12) ausgebildet sind, und mit in den Zylindern (12) beweglich geführten Kolben (14), wobei die Kolben (14) an eine Taumelscheibe (18) angebunden sind, die drehbar an einem Taumelscheibenfuß (20) anliegt, und wobei eine Fluidströmung in die und aus den Zylindern (12) mittels Einlass- und Auslassventilen gesteuert wird, gekennzeichnet durch variierende Teilungen zwischen den Anbindungen der Kolben (14) an der Taumelscheibe (18) und/oder zylinderselektiv variierende Öffnungszeiten für die Einlass- und/oder Auslassventile.
  2. Axialkolbenmaschine gemäß Anspruch 1, dadurch gekennzeichnet, dass die Teilungen derart angepasst sind, dass benachbarte Kolben (14) immer nach einer gleichbleibenden Teildrehung des Taumelscheibenfußes (20) ihren OT und/oder UT erreichen.
  3. Axialkolbenmaschine gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Öffnungszeiten derart angepasst sind, dass die Einlass- und/oder Auslassventile aller Zylinder (12) bei identischer Kolbenposition der zugehörigen Kolben (14) öffnen und/oder schließen.
  4. Axialkolbenmaschine gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Öffnungszeiten derart angepasst sind, dass die Öffnungsdauer der Einlass- und/oder der Auslassventile zumindest einiger der Zylinder (12) unterschiedlich ist.
  5. Axialkolbenmaschine gemäß Anspruch 4, dadurch gekennzeichnet, dass die unterschiedliche Öffnungsdauer derart angepasst ist, dass die Massen der in einem Zyklus in den einzelnen Zylindern (12) eingeschlossenen Teilmengen des Fluids möglichst gleich sind.
  6. Axialkolbenmaschine gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Einlass- und/oder die Auslassventile Einlass- und/oder Auslassöffnungen (28) für die Zylinder (12) umfassen, die temporär mittels eines Drehschiebers (38) freigegeben und abgedeckt werden, wobei die variierenden Öffnungszeiten durch variierende Teilungen zwischen den Einlass- und/oder Auslassöffnungen (28) benachbarter Zylinder (12) und/oder durch variierende Längen der Einlass- und/oder Auslassöffnungen (28) erzielt wird.
EP14736347.7A 2013-07-11 2014-07-01 Axialkolbenmaschine Active EP3019702B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013213614.5A DE102013213614A1 (de) 2013-07-11 2013-07-11 Axialkolbenmaschine
PCT/EP2014/063915 WO2015003954A1 (de) 2013-07-11 2014-07-01 Axialkolbenmaschine

Publications (2)

Publication Number Publication Date
EP3019702A1 EP3019702A1 (de) 2016-05-18
EP3019702B1 true EP3019702B1 (de) 2017-11-15

Family

ID=51136452

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14736347.7A Active EP3019702B1 (de) 2013-07-11 2014-07-01 Axialkolbenmaschine

Country Status (4)

Country Link
EP (1) EP3019702B1 (de)
CN (1) CN105378224B (de)
DE (1) DE102013213614A1 (de)
WO (1) WO2015003954A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015204367A1 (de) * 2015-03-11 2016-09-15 Mahle International Gmbh Axialkolbenmaschine
DE102015204374A1 (de) 2015-03-11 2016-09-15 Mahle International Gmbh Axialkolbenmaschine
DE102015207909A1 (de) * 2015-04-29 2016-11-03 Mahle International Gmbh Axialkolbenmaschine
DE102015215477A1 (de) * 2015-08-13 2017-02-16 Mahle International Gmbh Pumpvorrichtung, insbesondere Axialkolbenpumpe, für eine Abwärmenutzungseinrichtung eines Kraftfahrzeugs
DE102017105609A1 (de) * 2017-03-16 2018-09-20 Volkswagen Aktiengesellschaft Axialkolbenmotor, Kreisprozessvorrichtung, Antriebseinheit und Kraftfahrzeug
DE102017105610A1 (de) 2017-03-16 2018-09-20 Volkswagen Aktiengesellschaft Axialkolbenmotor und Kreisprozessvorrichtung
CN109026378A (zh) * 2018-07-22 2018-12-18 青海新源动力技术有限公司 一种传动角自适应的摇盘机构
CN109798231A (zh) * 2019-03-22 2019-05-24 哈尔滨工业大学 一种斜盘式微型柱塞泵
CN114087252A (zh) * 2021-12-09 2022-02-25 中国船舶重工集团公司第七0三研究所 一种章动液压马达

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2238252A (en) * 1939-01-17 1941-04-15 Anthony William Dellcr Multiple plunger variable delivery pump
CH363946A (de) * 1956-06-05 1962-08-15 Wiggermann Georg Schiebersteuerung bei mehrzylindrigen Kolbenmaschinen, insbesondere für hydraulische Motoren und Pumpen
CH490610A (de) * 1967-06-09 1970-05-15 Karl Marx Stadt Ind Werke Hydraulische Kolbenmaschine
DE3622220A1 (de) * 1986-07-02 1988-01-07 Linde Ag Axialkolbenmaschine mit einer umlaufenden zylindertrommel
JPH01267367A (ja) * 1988-04-15 1989-10-25 Nachi Fujikoshi Corp 多連ピストンポンプ
ZA935640B (en) * 1992-08-06 1995-08-08 Hydrowatt Syst Axial piston machine, in particular axial piston pump or axial piston motor
EP1658417B1 (de) * 2003-07-25 2009-11-11 Voglaire, Helene Axialzylinderbrennkraftmaschine
DE102009028467A1 (de) 2009-08-12 2011-02-17 Robert Bosch Gmbh Vorrichtung zur Nutzung von Abwärme
DE102010036917A1 (de) * 2010-08-09 2012-02-09 Amovis Gmbh Axialkolbenmaschine
DE102010052508A1 (de) 2010-11-26 2012-05-31 Daimler Ag Abwärmenutzungsvorrichtung
DE102011118622B4 (de) * 2011-11-16 2017-06-29 Mahle International Gmbh Axialkolbenmaschine mit Auslasssteuerung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN105378224A (zh) 2016-03-02
DE102013213614A1 (de) 2015-01-15
CN105378224B (zh) 2018-08-28
EP3019702A1 (de) 2016-05-18
WO2015003954A1 (de) 2015-01-15

Similar Documents

Publication Publication Date Title
EP3019702B1 (de) Axialkolbenmaschine
DE3224482C2 (de) Kolbenmaschine
WO1996022453A1 (de) Kraftmaschine
DE102011052481A1 (de) Axialkolbenmaschine
EP3214262B1 (de) Motor-verdichter-einheit
WO2009141422A2 (de) Motor mit einer kurvenscheibe
WO1995034749A1 (de) Verbrennungsmotor
EP3596309B1 (de) Axialkolbenmotor und kreisprozessvorrichtung
DE102006024321A1 (de) Verbrennungsmotor
DE102007039309B4 (de) Rotationskolbenmaschine
DE102017105613A1 (de) Kolbenmaschine und Kreisprozessvorrichtung
DE102007004736B4 (de) Wärme-Kraftmotor mit Steuergetriebe
DE3825864A1 (de) Drehende kolben-versetzungseinrichtung
DE102009024505B4 (de) Hubkolbenmaschine und Verfahren zum Betrieb einer Hubkolbenmaschine
EP3596310B1 (de) Axialkolbenmotor, kreisprozessvorrichtung, antriebseinheit und kraftfahrzeug
DE69000473T2 (de) Fluidummaschine mit rotierender bewegung.
DE2353807A1 (de) Bogenkolben-brennkraftmaschine
DE3742304A1 (de) Vorrichtung zur umsetzung einer oszillationsbewegung in eine rotationsbewegung mittels eines kurbeltriebs, dessen kurbelzapfen sich drehwinkelabhaengig radial bewegt
DE529267C (de) Brennstoffeinspritzpumpe fuer gemischverdichtende Brennkraftmaschinen
DE3411987A1 (de) Verbrennungskraftmaschine, druckgasmotor oder kompressor in form eines kolbenmotors
DE102005035897B4 (de) Drehschiebersteuerung
DE19839227A1 (de) Kraftmaschine, insbesondere Brennkraftmaschine, sowie Kolben
AT511166A1 (de) Fluidenergiemaschine mit zwei gegenüberliegenden zylinderrotoren
DE1035970B (de) Kraftstoffeinspritzpumpe fuer Brennkraftmaschinen
DE102012210639A1 (de) Axialkolbenmaschine, die vorzugsweise durch einen Dampfkraftprozess antreibbar ist

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151130

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20170215

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170721

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DALLMANN, MARCUS

Inventor name: HERR, ANDREAS

Inventor name: HUPFELD, BERND

Inventor name: MAISCHIK, THOMAS

Inventor name: SEMKE, ARTUR

Inventor name: VOLKMANN, JOERG

Inventor name: CARSTENSEN, ASMUS

Inventor name: SCHULENBURG, THOMAS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: AT

Ref legal event code: REF

Ref document number: 946493

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014006247

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180215

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180216

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014006247

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

26N No opposition filed

Effective date: 20180817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180701

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180701

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140701

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180315

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 946493

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190701

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230725

Year of fee payment: 10

Ref country code: DE

Payment date: 20230731

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240725

Year of fee payment: 11