EP2958867A1 - Substrat pour dispositif a diode electroluminescente organique - Google Patents

Substrat pour dispositif a diode electroluminescente organique

Info

Publication number
EP2958867A1
EP2958867A1 EP14713170.0A EP14713170A EP2958867A1 EP 2958867 A1 EP2958867 A1 EP 2958867A1 EP 14713170 A EP14713170 A EP 14713170A EP 2958867 A1 EP2958867 A1 EP 2958867A1
Authority
EP
European Patent Office
Prior art keywords
layer
substrate according
vitreous material
diffusing
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14713170.0A
Other languages
German (de)
English (en)
Inventor
Bérangère RAGUENET
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR1351619A external-priority patent/FR3002533A1/fr
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Publication of EP2958867A1 publication Critical patent/EP2958867A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/02Surface treatment of glass, not in the form of fibres or filaments, by coating with glass
    • C03C17/04Surface treatment of glass, not in the form of fibres or filaments, by coating with glass by fritting glass powder
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/20Compositions for glass with special properties for chemical resistant glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/04Frit compositions, i.e. in a powdered or comminuted form containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/44Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the composition of the continuous phase
    • C03C2217/45Inorganic continuous phases
    • C03C2217/452Glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/77Coatings having a rough surface
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention relates to the field of substrates for organic light - emitting diode devices. It relates more specifically to chemical compositions of vitreous material and glass frits particularly well suited to the formation of layers.
  • Organic light-emitting diode devices which will be referred to hereinafter by their acronym OLED, usually used in the art, are devices emitting light by means of a phenomenon of electroluminescence. These OLED devices generally include an organic electroluminescent system between two electrodes. One of the electrodes is deposited on a glass sheet in the form of an electroconductive layer. OLED devices can be used as display screens or as lighting devices.
  • the light extracted from the device is a white, polychromatic light.
  • the light extraction efficiency is, however, naturally low, of the order of 0.25, the light being trapped inside the device because of differences in refractive indices between its different elements.
  • vitreous materials whose chemical composition comprises 40 to 60% by weight of B1 2 O 3 and 5 to 30% by weight of ZnO.
  • the vitreous materials are generally obtained by a process in which a glass frit (with the same chemical composition as the material) is mixed with a typically organic medium to form a paste, which is deposited on the glass sheet before it is baked. .
  • the glass transition temperature of the glass frit must be low enough to be able to cook at temperatures at which the glass sheet can not be deformed. At the same time, the frit must not crystallize (devitrify) during cooking, which would have the effect of generating too much roughness and high optical absorption.
  • the linear thermal expansion coefficient of the frit must also be adapted to that of the glass sheet, generally be close to the latter, or slightly lower, in order to avoid during the cooling the appearance in the glassy material of mechanical stresses susceptible to damage it.
  • the object of the invention is to provide compositions of vitreous material (and glass frit) having a good compromise between improved chemical resistance, in particular to acids, a high refractive index, a coefficient of thermal expansion and a transition temperature. vitreous, and low ability to devitrification.
  • the subject of the invention is a diffusing substrate for an organic light-emitting diode device comprising a glass sheet coated on one of its faces with a layer comprising a vitreous material, such that said vitreous material has a chemical composition comprising the following constituents, varying within the weight limits defined below:
  • the invention also relates to an organic light-emitting diode device comprising a diffusing substrate according to the invention, wherein an electroconductive layer is disposed on the layer comprising a vitreous material.
  • an electroconductive layer is disposed on the layer comprising a vitreous material.
  • the subject of the invention is also a glass frit whose chemical composition comprises the following constituents, varying within the weight limits defined below:
  • the preferred characteristics in terms of oxide contents concern both the chemical composition of the vitreous material deposited on the glass sheet and that of the glass frit (used for the deposition).
  • the contents indicated are weight contents.
  • the weight content of Bi 2 0 3 is advantageously at least 62%, in particular 63% and even 64% or 65% and / or at most 83%, in particular 82% or even 81%, even 80%, 79%. % or 78%. It is preferably in a range from 65 to 80%, especially 68 to 75%.
  • a too low content of Bi 2 0 3 does not make it possible to obtain the desired refractive indices, while too high a content leads to unacceptable glass yellowing.
  • the weight content of B 2 O 3 is preferably at least 6%, especially 7% or 7.5% and / or at most 11%, especially 10%, or even 9.5% or 9%. It is preferably in a range from 6 to 11%, especially from 7 to 10%.
  • a high content of B 2 O 3 has the effect of increasing the glass transition temperature and lowering the chemical resistance of the material, while a too low content makes the glass more easily devitrifiable.
  • the weight content of SiO 2 is preferably at least 7%, especially 7.5% or even 8% and / or at most 18%, 17%, 16%, 15%, 14%, or 13% including 12% or 11% and even 10% or 9%. It is preferably in a range from 7 to 12%, especially 7.5 to 10%. An excessively high content of SiO 2 causes a detrimental reduction in the refractive index, while a too low content decreases both the chemical resistance and the thermal stability.
  • the weight content of ZnO is preferably at most 9.5%, especially 9% or 8%, even 7% or 6% or 5%, and even less than 5%. According to one embodiment, the ZnO content is even at most 1%, especially 0.5%, or 0.1%, or even zero.
  • the weight content of ZnO is preferably in a range from 2 to 8%, especially from 3 to 6%. High levels of ZnO are detrimental to good chemical resistance, particularly to acids, and increase the risk of devitrification.
  • the weight content of MgO is preferably at most 3%, especially 2.5% and even 2%. In some embodiments, this content is even less than 0.5% and even 0.1%, or even zero. In another embodiment, the MgO content is at least 0.5%, especially 1%, more particularly in a range from 0.5 to 3%, especially 1 to 2.5%. The addition of MgO makes it possible to improve the chemical resistance of the vitreous material.
  • the sum of the weight contents of MgO and ZnO is advantageously at least 1%, in particular 2% or 3% and even 4 or 5% and / or at most 9%, in particular 8% and even 7%. It is preferably in a range from 2 to 9%, especially 3 to 8% or 2 to 5%. It appeared that a cumulative content of MgO and ZnO too high resulted in a risk of devitrification during the manufacture of the frit.
  • the weight content of CaO is preferably at most 4% and even 3% or 2%. In some embodiments, this content is even less than 0.5% and even 0.1%, or even zero. In another embodiment, the CaO content is at least 0.5%, especially 1%, more particularly in a range of 1 to 4%, especially 1.5 to 3.5%.
  • the sum of the weight contents of CaO and MgO is preferably at least 0.5%, especially 1% or 1.5%, or even 2% or 3%. According to one embodiment, it may, however, be less than 0.5% and even 0.1%, or even zero.
  • the sum of the weight contents of CaO and MgO is preferably in a range from 0.5 to 4%.
  • the addition of CaO and / or MgO, in addition to a decrease in the ZnO content improves the acid resistance of the vitreous material.
  • the content of Al 2 O 3 is preferably at least 1%, especially 2%. It is preferably in a range from 1 to 6% or 1 to 4%, especially 2 to 3%.
  • the addition of alumina improves the chemical resistance of the material.
  • the BaO content is advantageously at most 10%, especially 5% and even 3% or even 1% or 0.5%, or even 0.1%. It can even be zero.
  • the total content of alkaline oxides (Li 2 0, Na 2 ⁇ 0, K 2 O) is preferably at most 3%, especially 2% and even 1% or 0.5%. According to a preferred embodiment, this content is preferably in a range from 0.02 to 1%, especially from 0.05 to 0.2%. In this case, the only alkaline oxide present is advantageously Na 2 ⁇ 0.
  • the addition of alkaline oxides, even at low levels, has the effect of significantly reducing the glass transition temperature.
  • each of the lower bounds can be combined with each of the upper bounds, the set of possible ranges not being recalled here for the sake of brevity.
  • each range for a given oxide can be combined with any other range for the other oxides.
  • not all combinations can be indicated so as not to unnecessarily burden the present text.
  • Tables 1 and 2 define 10 particularly preferred compositions resulting from combinations of ranges defined above. It goes without saying that each of these ranges can be combined with any other range from tables for other oxides.
  • the sum of the weight contents of Bi 2 O 3 , B 2 O 3 , SiO 2 , ZnO, MgO, BaO and CaO is at least 95%, especially 96% or 97% and even 98% or 99% .
  • the sum of the weight contents of B1 2 O 3 , B 2 O 3 , SiO 2 , ZnO, MgO and CaO is at least 95%, especially 96% or 97% and even 98% or 99%.
  • the total content of P 2 O 5 , b 2 0 5 and V 2 0 5 is preferably at most 1%, especially 0.5%, and even zero.
  • the composition is preferably free of lead oxide.
  • the chemical composition of the vitreous material or the frit may advantageously comprise the oxides T1O 2 and / or SnO 2 , which have proved to be particularly effective in terms of improving the resistance to acids.
  • the T1O 2 content is preferably at least 0.5% or 1% and / or at most 5% / 2% in particular.
  • the content of SnO 2 is preferably at least 0.2% or 0.5% and / or at most 5%, especially 3% or 2%.
  • the total content of T1O 2 and ZrO 2 is at most 1%, especially 0.5% and even 0.1%, or even zero, these oxides may have an adverse effect on the devitrification of this type of glasses.
  • the total content of coloring elements (Fe 2 O 3 , CuO, CoO, Cr 2 O 3 , MnO 2 , Se, Ag, Cu, Au, Nd 2 O 3 , Er 2 O 3 ) is also preferably zero (except impurities inevitable).
  • Antimony oxide (Sb 2 O 3) can be added to the composition in order to reduce the light absorption of the layer, in particular to make it less yellow. Its content is preferably at least 1, especially 2% and / or at most 5%, especially 4 or 3%.
  • the refractive index for a wavelength of 550 nm of the glass constituting the vitreous material or the glass frit is preferably in a range from 1.8 to 2.2, in particular from 1.85 to 2, 1, and even 1.88 to 2.0, or even 1.89 to 1.98.
  • the glass transition temperature Tg of the glass constituting the vitreous material or the glass frit is preferably in a range from 440 to 500 ° C., in particular from 450 to 480 ° C.
  • the glass transition temperature is measured by Differential Scanning Calorimetry (DSC), under nitrogen, with a temperature rise rate of 10 ° C / min. We consider here the beginning of the curve ("onset temperature") for the determination of the Tg.
  • the difference between the crystallization temperature Tx and the glass transition temperature Tg is preferably at least 100 ° C in order to avoid any devitrification of the vitreous material during its shaping.
  • the crystallization temperature is determined by taking into consideration the start of the crystallization (onset temperature) curve, obtained by differential scanning calorimetry.
  • the linear thermal expansion coefficient between 20 and 300 ° C of the glass constituting the vitreous material or the glass frit is preferably in a range from 70 to 100.10 -7 / ° C, particularly 75 to 95.10 "7 ° C, and even 80 to 90.10 " 7 ° C
  • the glass sheet preferably has a refractive index for a wavelength of 550 nm in a range from 1.4 to 1.6. It is preferably a glass of the silico-soda-lime type, obtained by the floating process (known as the "float" process), discharging the molten glass onto a molten tin bath.
  • the glass sheet is preferably colorless and has a light transmittance of at least 80% or even 90% within the meaning of EN 410: 1998.
  • the thickness of the glass sheet is preferably in a range from 0.1 to 6 mm, in particular from 0.3 to 3 mm.
  • the glass sheet is coated on one of its faces with a layer comprising a vitreous material.
  • this layer is deposited in contact with the glass sheet.
  • the layer covers at least 80%, especially 90% and even 95% of the surface of the glass sheet.
  • the layer is advantageously made of vitreous material.
  • the glass sheet diffuses the light (it may be in particular a satin glass, for example by an acid treatment), or that a layer diffuser is disposed under the layer comprising a vitreous material, in particular in contact with both the glass sheet and the layer consisting of vitreous material.
  • the diffusing aspect is thus not obtained by the layer itself.
  • the layer comprising a vitreous material further comprises diffusing elements.
  • the layer is even advantageously made of vitreous material and diffusing elements.
  • the layer is itself diffusing, and it will be called diffusing layer.
  • the diffusing elements are chosen from particles and cavities.
  • the diffusing layer can contain both particles and cavities.
  • the particles are preferably chosen from particles of alumina, zirconia, silica, titanium dioxide, calcium carbonate and barium sulfate.
  • the diffusing layer may comprise a single type of particles, or several different types of particles.
  • the cavities are preferably formed during cooking by removal of organic compounds, for example medium. They are preferably closed and not connected.
  • the diffusing elements preferably have a characteristic dimension allowing diffusion of the visible light, especially between 200 nm and 5 ⁇ m. A characteristic dimension may be a median diameter.
  • the mass concentration of particles in the diffusing layer is preferably in a range from 0.2 to 10%, especially from 0.5 to 8%, and even from 0.8 to 5%.
  • the diffusing elements can be distributed homogeneously in the vitreous material. They may alternatively be distributed in a heterogeneous manner, for example by providing gradients.
  • the diffusing layer may also consist of several elementary layers differentiating from each other by a different nature, size or proportion of diffusing elements.
  • the physical thickness of the layer comprising a vitreous material is preferably in a range from 0.5 to 100 ⁇ m, especially from 1 to 80 ⁇ m and more particularly from 2 to 60 ⁇ m, or even from 2 to 30 ⁇ m.
  • Other layers may be deposited on the layer comprising a vitreous material, and in particular in contact with it. It may for example be a planarization layer, intended to cover any particles located on the surface of the layer comprising a vitreous material, in particular of the diffusing layer, so as to reduce the roughness of the latter.
  • the planarization layer may for example consist of the vitreous material defined above, or of another vitreous material.
  • a barrier layer for example silica or silicon nitride, the thickness of which is in particular in a range from 5 to 30 nm, may be deposited on the layer comprising a glassy material or the planarization layer, in contact with it .
  • the blur is at least 40%, especially 50%, and even 60% or 70%, even 80%.
  • the blur sometimes called “sail” is measured by a haze-meter according to ASTM D1003.
  • the layer comprising a vitreous material is advantageously coated with an electroconductive layer.
  • the latter is preferably in direct contact with the layer comprising a vitreous material, or optionally with the planarization layer or the barrier layer.
  • the electroconductive layer is preferably based on a transparent conductive oxide (TCO), such as, for example, indium tin oxide (ITO).
  • TCO transparent conductive oxide
  • ITO indium tin oxide
  • Other conductive materials are possible, for example silver layers or conductive polymers.
  • the diffusing substrate may thus comprise (or consist of), by way of examples: A non-diffusing glass sheet, then a diffusing layer consisting of the vitreous material and diffusing elements, then (optionally) a planarization layer, then (optionally) a barrier layer, and finally an electroconductive layer, each layer mentioned being in direct contact with the layer which precedes it and the layer which follows it,
  • a non-diffusing glass sheet then a diffusing layer, then a layer made of vitreous material, then (optionally) a barrier layer, and finally an electroconductive layer, each layer mentioned being in direct contact with the layer that precedes it and the layer that follows it,
  • a diffusing glass sheet then a layer consisting of the glassy material, then (optionally) a barrier layer, and finally an electroconductive layer, each layer mentioned being in direct contact with the layer that precedes and the layer that follows.
  • the glass sheet coated with the layer comprising a vitreous material and the electroconductive layer (acting as a first electrode) is associated with an organic electroluminescent system in the form of a less a layer of organic material, itself coated with an electroconductive layer acting as second electrode.
  • the organic electroluminescent system is therefore located between the substrate and the second electrode, in direct contact with the first and the second electrode.
  • the electroluminescent system is preferably composed of several layers: hole injection layer (for example polyethylene dioxythiophene doped with polystyrene sulfonic acid or copper phthalocyanine), hole transport layer (for example triphenylamine derivatives), emission layer (for example metal complexes of quinoline derivatives), electron transport layer (for example, oxadiazole, triazole, bathophenanthroline derivatives, etc.), layer of injection of electrons (for example lithium or cesium) etc.
  • hole injection layer for example polyethylene dioxythiophene doped with polystyrene sulfonic acid or copper phthalocyanine
  • hole transport layer for example triphenylamine derivatives
  • emission layer for example metal complexes of quinoline derivatives
  • electron transport layer for example, oxadiazole, triazole, bathophenanthroline derivatives, etc.
  • layer of injection of electrons for example lithium or cesium
  • the OLED device according to the invention is preferably used as a source of polychromatic lighting, in particular white light. It is preferably a rear-emission device in the sense that light is emitted through the glass sheet.
  • the second electrode is made of a reflective material, for example a metal film, in particular aluminum, silver, magnesium, etc.
  • the OLED device therefore comprises successively a glass sheet, a layer comprising a vitreous material, optionally a barrier or planarization layer, an electroconductive layer (typically made of ITO), a multi-layer electroluminescent system and a reflecting electrode.
  • the glass frit according to the invention is preferably obtained by melting raw materials and then forming the frit.
  • the raw materials (oxides, carbonates, etc.) can be melted at temperatures of the order of 950 to 1100 ° C., and then the glass obtained can be cast, for example rolled between two rolls.
  • the glass obtained can then be milled, for example in a ball mill, a jet mill, a ball mill, or an attritor mill.
  • the glass frit is preferably in the form of particles whose dgo is at most 10 ⁇ m, in particular 5 ⁇ m, or even 4 ⁇ m.
  • the distribution of Particle diameters can be determined using a laser granulometer.
  • the layer comprising a vitreous material is preferably obtained by a process in which:
  • the glass frit according to the invention is mixed with an organic medium so as to form a paste
  • the organic medium is typically selected from alcohols, glycols, terpineol esters.
  • the mass proportion of medium is preferably in a range from 10 to 50%.
  • the deposition of the paste can be carried out in particular by screen printing, by roll coating, by dipping, by knife application, by spraying, by spinning, by vertical layering or by means of a slot-shaped die (slot die coating).
  • a screen made of textile or metal mesh, layering tools and a doctor blade the control of the thickness being ensured by the choice of the mesh of the screen and its tension, by the choice of the distance between the glass sheet and the screen, by the pressures and speeds of movement of the doctor blade.
  • the deposits are typically dried at a temperature of 100 to 150 ° C by infrared or ultraviolet radiation depending on the nature of the medium.
  • the firing is preferably carried out in an oven at a temperature in a range from 500 to 600 ° C, especially from 510 to 580 ° C.
  • the electroconductive layer may be deposited by a variety of thin film deposition techniques, such as for example the cathodic sputtering technique, in particular assisted by magnetic field (magnetron process), chemical vapor deposition (CVD), in particular assisted by plasma (PECVD, APPECVD), or liquid deposition.
  • Different glass frits were obtained by melting raw materials. To do this, sufficient raw materials were carried to obtain 300 g of glass for 1 h 30 at a temperature of 1000 ° C in crucibles heated by Joule effect of 400 cm 3 .
  • Tg glass transition temperature
  • T x crystallization temperature
  • n the refractive index for a wavelength of 550 nm
  • the leaching of bismuth in an acid medium denoted L and expressed in mg / l.
  • the T x is measured by differential scanning calorimetry.
  • Bismuth leaching was measured by dipping glass substrates coated with a layer of the glassy material studied in an acidic solution. To do this, layers 10 .mu.m thick were deposited by screen printing on soda-lime-calcium glass substrates, from frits having a d90 of 3.4 .mu.m and a d50 of 1.7 .mu.m.
  • the acid solution is a solution based on acetic acid sold under the Neutrax reference by the company Franklab, diluted to 1.3% by volume in deionized water to reach a pH of 3.
  • Comparative Examples C1 to C5 devitrify too easily to be shaped glassy material, hence their very high light absorption.
  • the examples according to the invention all have significantly better acid resistance than that of Comparative Example C6.
  • the resistance to the bases was also evaluated by measuring the mass loss (denoted "Mb") obtained after immersing the samples in a pH11 solution (solution diluted to 1% of the concentrate marketed by Borer under the trade name deconex® PV 110) for 18 h at 50 ° C.
  • Mb mass loss

Abstract

L'invention a pour objet un substrat diffusant pour dispositif à diode électroluminescente organique comprenant une feuille de verre revêtue sur une de ses faces d'une couche comprenant un matériau vitreux, telle que ledit matériau vitreux possède une composition chimique comprenant les constituants suivants, variant dans les limites pondérales ci-après définies: Bi2O3 60-85%, B2O3 5-12%, SiO2 6-20%, MgO+ZnO 0-9,5%, Al2O3 0-7%, Li2O+Na2O+K2O 0-5%, CaO 0-5%, BaO 0-20%.

Description

SUBSTRAT POUR DISPOSITIF A DIODE ELECTROLUMINESCENTE
ORGANIQUE
L' invention se rapporte au domaine des substrats pour dispositifs à diode électroluminescente organique. Elle concerne plus précisément des compositions chimiques de matériau vitreux et de frittes de verre particulièrement bien adaptées à la formation de couches. Les dispositifs à diode électroluminescente organique, que nous appellerons dans la suite du texte selon leur acronyme anglais OLED, usuellement utilisé dans la technique, sont des dispositifs émettant de la lumière grâce à un phénomène d' électroluminescence . Ces dispositifs OLED comprennent généralement un système électroluminescent organique entre deux électrodes. Une des électrodes est déposée sur une feuille de verre sous la forme d'une couche électro-conductrice. Les dispositifs OLED peuvent être utilisés comme écrans de visualisation ou comme dispositifs d'éclairage.
Dans une application en tant que dispositif d'éclairage (lampe etc.), la lumière extraite du dispositif est une lumière blanche, polychromatique . L'efficacité d'extraction de la lumière est toutefois naturellement faible, de l'ordre de 0,25, la lumière étant piégée à l'intérieur du dispositif du fait des différences d'indices de réfraction entre ses différents éléments.
Pour résoudre ce problème, il est connu, par exemple de la demande WO 2011/089343, de disposer entre la feuille de verre (d'indice 1,5 lorsqu'elle est en verre silico- sodo-calcique) et l'électrode, une couche diffusante interne comprenant un matériau vitreux d' indice de réfraction élevé (typiquement entre 1,7 et 2,0) et des éléments diffusants, par exemple des particules. La demande susmentionnée décrit des matériaux vitreux dont la composition chimique comprend 40 à 60% en poids de B12O3 et 5 à 30% en poids de ZnO.
Les matériaux vitreux sont généralement obtenus par un procédé dans lequel on mélange une fritte de verre (de même composition chimique que le matériau) et un médium typiquement organique pour former une pâte, que l'on dépose sur la feuille de verre avant de la cuire.
La température de transition vitreuse de la fritte de verre doit être suffisamment basse afin de pouvoir cuire à des températures auxquelles la feuille de verre ne peut pas se déformer. En même temps, la fritte ne doit pas cristalliser (dévitrifier) lors de la cuisson, ce qui aurait pour effet de générer une rugosité trop importante ainsi qu'une absorption optique élevée.
Le coefficient de dilatation thermique linéaire de la fritte doit également être adapté à celui de la feuille de verre, généralement être proche de ce dernier, ou légèrement inférieur, afin d'éviter lors du refroidissement l'apparition dans le matériau vitreux de contraintes mécaniques susceptibles de l'endommager.
Afin d'éviter le dépôt de poussières sur la couche susceptible de créer un court-circuit, il est d'usage de procéder à un nettoyage poussé de la couche avant le dépôt de la couche électro-conductrice. Ce nettoyage met généralement en œuvre des passages dans des cuves à ultrasons où la couche est soumise à l'action de détergents, successivement basiques (pour décoller les particules restées en surface) et acides (afin de neutraliser la surface de la couche et éviter tout redépôt de particules). L'attaque acide est susceptible de dégrader le matériau vitreux, créant une rugosité de surface inacceptable pour l'application finale.
L' invention a pour but de proposer des compositions de matériau vitreux (et de fritte de verre) présentant un bon compromis entre une résistance chimique améliorée, notamment aux acides, un indice de réfraction élevé, un coefficient de dilatation thermique et une température de transition vitreuse adaptés, et une faible aptitude à la dévitrification . A cet effet, l'invention a pour objet un substrat diffusant pour dispositif à diode électroluminescente organique comprenant une feuille de verre revêtue sur une de ses faces d'une couche comprenant un matériau vitreux, telle que ledit matériau vitreux possède une composition chimique comprenant les constituants suivants, variant dans les limites pondérales ci-après définies :
Bi203 60-85%
B203 5-12%
Si02 6-20%
MgO+ZnO 0-9,5%
A1203 0-7%, notamment 0-5%
Li20+Na20+K20 0-5%
CaO 0-5%
BaO 0-20%. L'invention a également pour objet un dispositif à diode électroluminescente organique comprenant un substrat diffusant selon l'invention, dans lequel une couche électro-conductrice est disposée sur la couche comprenant un matériau vitreux. Par l'emploi de termes « sur » ou « sous », on n'entend pas nécessairement que les couches soient en contact, seulement qu'elles soient plus proches du substrat (« sous ») ou plus éloignées (« sur ») . Le cas où les couches sont en contact n'est toutefois pas exclu.
L'invention a aussi pour objet une fritte de verre dont la composition chimique comprend les constituants suivants, variant dans les limites pondérales ci-après définies :
Bi203 65-85%
B203 5-12%
Si02 6-20%
MgO+ZnO 0-9, 5%
A1203 0-5%
Li20+Na20+K20 0-5%
CaO 0-5%
CaO+MgO >0, 5
BaO 0-20%.
Les caractéristiques préférées en termes de teneurs en oxydes qui sont détaillées ci-après concernent aussi bien la composition chimique du matériau vitreux déposé sur la feuille de verre que celle de la fritte de verre (utilisée pour le dépôt) . Dans l'ensemble du texte, les teneurs indiquées sont des teneurs pondérales. La teneur pondérale en Bi203 est avantageusement d' au moins 62%, notamment 63% et même 64% ou 65% et/ou d'au plus 83%, notamment 82%, voire 81%, même 80%, 79% ou 78%. Elle est de préférence comprise dans un domaine allant de 65 à 80%, notamment de 68 à 75%. Une teneur trop faible en Bi203 ne permet pas d'obtenir les indices de réfraction désirés, tandis qu'une teneur trop élevée conduit à un jaunissement du verre inacceptable.
La teneur pondérale en B2O3 est de préférence d' au moins 6%, notamment 7% ou 7,5% et/ou d'au plus 11%, notamment 10%, voire 9,5% ou 9%. Elle est de préférence comprise dans un domaine allant de 6 à 11%, notamment de 7 à 10%. Une teneur élevée en B2O3 a pour effet d'augmenter la température de transition vitreuse et d'abaisser la résistance chimique du matériau, tandis qu'une teneur trop faible rend le verre plus facilement dévitrifiable .
La teneur pondérale en S1O2 est de préférence d'au moins 7%, notamment 7,5% ou même 8% et/ou d'au plus 18%, 17%, 16%, 15%, 14%, ou 13%, notamment 12% ou 11% et même 10 % ou 9% . Elle est de préférence comprise dans un domaine allant de 7 à 12%, notamment de 7,5 à 10%. Une teneur trop forte en Si02 entraîne une baisse préjudiciable de l'indice de réfraction, tandis qu'une teneur trop faible diminue à la fois la résistance chimique et la stabilité thermique.
La teneur pondérale en ZnO est de préférence d' au plus 9,5%, notamment 9% ou 8%, voire 7% ou encore 6% ou 5%, et même inférieure à 5%. Selon un mode de réalisation, la teneur en ZnO est même d'au plus 1%, notamment 0,5% , ou 0,1%, voire nulle. La teneur pondérale en ZnO est de préférence comprise dans un domaine allant de 2 à 8%, notamment de 3 à 6%. Des teneurs élevées en ZnO vont à 1' encontre d'une bonne résistance chimique, en particulier aux acides, et augmentent le risque de dévitrification.
La teneur pondérale en MgO est de préférence d' au plus 3%, notamment 2,5% et même 2%. Dans certains mode de réalisation, cette teneur est même inférieure à 0,5% et même 0,1%, voire nulle. Dans un autre mode de réalisation, la teneur en MgO est d'au moins 0,5%, notamment 1%, plus particulièrement comprise dans un domaine allant de 0,5 à 3%, notamment de 1 à 2,5%. L'ajout de MgO permet d'améliorer la résistance chimique du matériau vitreux.
La somme des teneurs pondérales en MgO et ZnO (MgO+ZnO) est avantageusement d'au moins 1%, notamment 2% ou 3% et même 4 ou 5% et/ou d'au plus 9%, notamment 8% et même 7%. Elle est de préférence comprise dans un domaine allant de 2 à 9%, notamment de 3 à 8% ou de 2 à 5% . Il est apparu qu'une teneur cumulée en MgO et ZnO trop élevée entraînait un risque de dévitrification lors de la fabrication de la fritte.
La teneur pondérale en CaO est de préférence d' au plus 4% et même 3% ou 2%. Dans certains mode de réalisation, cette teneur est même inférieure à 0,5% et même 0,1%, voire nulle. Dans un autre mode de réalisation, la teneur en CaO est d'au moins 0,5%, notamment 1%, plus particulièrement comprise dans un domaine allant de 1 à 4%, notamment de 1,5 à 3,5%.
La somme des teneurs pondérales en CaO et MgO est de préférence d'au moins 0,5%, notamment 1% ou 1,5%, voire 2% ou 3%. Selon un mode de réalisation elle peut toutefois être inférieure à 0,5% et même 0,1%, voire nulle. La somme des teneurs pondérales en CaO et MgO est de préférence comprise dans un domaine allant de 0,5 à 4%. L'ajout de CaO et/ou de MgO, en complément d'une baisse de la teneur en ZnO améliore la résistance aux acides du matériau vitreux.
La teneur en AI2O3 est de préférence d'au moins 1%, notamment 2%. Elle est de préférence comprise dans un domaine allant de 1 à 6% ou de 1 à 4%, notamment de 2 à 3%. L'ajout d'alumine permet d'améliorer la résistance chimique du matériau. La teneur en BaO est avantageusement d'au plus 10%, notamment 5% et même 3% ou encore 1% ou 0,5%, voire 0,1%. Elle peut même être nulle.
La teneur totale en oxydes alcalins (Li20, Na2<0, K2O) est de préférence d'au plus 3%, notamment 2% et même 1% ou 0,5%. Selon un mode de réalisation préféré, cette teneur est de préférence comprise dans un domaine allant de 0,02 à 1%, notamment de 0,05 à 0,2%. Dans ce cas, le seul oxyde alcalin présent est avantageusement Na2<0. L'ajout d'oxydes alcalins, même à faible teneur, a pour effet de diminuer sensiblement la température de transition vitreuse.
Pour chacun des oxydes ou groupes d'oxydes précités, chacune des bornes inférieures peut être combinée avec chacune des bornes supérieures, l'ensemble des plages possibles n'étant pas rappelé ici dans un souci de concision. De même, chaque plage pour un oxyde donné peut être combinée avec toute autre plage pour les autres oxydes. Ici encore, toutes les combinaisons ne peuvent être indiquées pour ne pas alourdir inutilement le présent texte. Certaines combinaisons préférées sont rappelées dans les tableaux 1 et 2 ci-après.
1 2 3 4 5
Bi203 60-85 65-80 70-78 65-80 65-80
B203 5-12 6-11 7-10 6-11 6-11
Si02 6-20 7-12 7,5-10 7-12 7-12
MgO+ZnO 0-9, 5 2-9 3-8 2-5 2-9
AI2O3 0-5 1-4 2-3 1-4 1-4
Li20+Na20+K20 0-5 0-2 0,05-0,2 0-2 0-2
CaO 0-5 0-3 0-2 0-3 1-4
BaO 0-20 0-5 0-1 0-5 0-5
Tableau 1
Tableau 2 Les tableaux 1 et 2 définissent 10 compositions particulièrement préférées, issues de combinaisons de plages définies précédemment. Il va de soi que chacune de ces plages peut être combinée avec toute autre plage issue des tableaux pour les autres oxydes.
De préférence, la somme des teneurs pondérales en Bi203, B203, Si02, ZnO, MgO, BaO et CaO est d'au moins 95%, notamment 96% ou 97% et même 98% ou 99%. De préférence, la somme des teneurs pondérales en B12O3, B2O3, Si02, ZnO, MgO et CaO est d'au moins 95%, notamment 96% ou 97% et même 98% ou 99%.
La teneur totale en P2O5, b205 et V205 est de préférence d'au plus 1%, notamment 0,5%, et même nulle. La composition est de préférence dépourvue d'oxyde de plomb.
La composition chimique du matériau vitreux ou de la fritte peut avantageusement comprendre les oxydes T1O2 et/ou SnÛ2, qui se sont révélés particulièrement efficaces en termes d'amélioration de la résistance aux acides. La teneur en T1O2 est de préférence d'au moins 0,5% ou 1% et/ou d' au plus 5% / notamment 2%. La teneur en SnÛ2 est de préférence d'au moins 0,2% ou 0,5% et/ou d'au plus 5%, notamment 3% ou 2%.
Selon un autre mode de réalisation, la teneur totale en T1O2 et ZrÛ2 est d'au plus 1%, notamment 0,5% et même 0,1%, voire nulle, ces oxydes pouvant avoir un effet néfaste sur la dévitrification de ce type de verres.
La teneur totale en éléments colorants (Fe2Û3, CuO, CoO, Cr203, Mn02, Se, Ag, Cu, Au, Nd203, Er203) est également de préférence nulle (sauf impuretés inévitables) .
De l'oxyde d'antimoine (Sb2Û3) peut être ajouté à la composition afin de réduire l'absorption lumineuse de la couche, en particulier de la rendre moins jaune. Sa teneur est de préférence d'au moins 1, notamment 2% et/ou d'au plus 5%, notamment 4 ou 3%. L'indice de réfraction pour une longueur d'onde de 550 nm du verre constituant le matériau vitreux ou la fritte de verre est de préférence compris dans un domaine allant de 1,8 à 2,2, notamment de 1,85 à 2,1, et même de 1,88 à 2,0, voire de 1,89 à 1,98.
La température de transition vitreuse Tg du verre constituant le matériau vitreux ou la fritte de verre est de préférence comprise dans un domaine allant de 440 à 500°C, notamment de 450 à 480°C. La température de transition vitreuse est mesurée par calorimétrie différentielle à balayage (aussi appelée DSC - pour Differential Scanning Calorimetry) , sous azote, avec une vitesse de montée en température de 10°C/minute. On considère ici le début de la courbe (« onset température ») pour la détermination de la Tg.
La différence entre la température de cristallisation Tx et la température de transition vitreuse Tg est de préférence d'au moins 100°C afin d'éviter toute dévitrification du matériau vitreux durant sa mise en forme. La température de cristallisation est déterminée en prenant en considération le début de la courbe (« onset température ») de cristallisation, obtenue par calorimétrie différentielle à balayage.
Le coefficient de dilatation thermique linéaire entre 20 et 300°C du verre constituant le matériau vitreux ou la fritte de verre est de préférence compris dans un domaine allant de 70 à 100.10~7/°C, notamment 75 à 95.10"7°C, et même 80 à 90.10"7°C
La feuille de verre présente de préférence un indice de réfraction pour une longueur d'onde de 550 nm comprise dans un domaine allant de 1,4 à 1,6. Il s'agit de préférence d'un verre du type silico-sodo-calcique, obtenu par le procédé de flottage (dit procédé « float ») , consistant à déverser le verre fondu sur un bain d' étain en fusion. La feuille de verre est de préférence incolore, et présente un facteur de transmission lumineuse d'au moins 80%, voire 90% au sens de la norme EN 410 :1998. L'épaisseur de la feuille de verre est de préférence comprise dans un domaine allant de 0,1 à 6 mm, notamment de 0 , 3 à 3 mm .
La feuille de verre est revêtue sur une de ses faces d'une couche comprenant un matériau vitreux. De préférence, cette couche est déposée en contact avec la feuille de verre. Avantageusement, la couche revêt au moins 80%, notamment 90% et même 95% de la surface de la feuille de verre .
Selon un mode de réalisation de l'invention, la couche est avantageusement constituée du matériau vitreux. Dans ce cas, et afin d'obtenir un substrat diffusant, il est préférable que la feuille de verre diffuse la lumière (il peut s'agir notamment d'un verre satiné, par exemple par un traitement acide), ou qu'une couche diffusante soit disposée sous la couche comprenant un matériau vitreux, notamment en contact avec à la fois la feuille de verre et la couche constituée du matériau vitreux. L'aspect diffusant n'est donc pas obtenu par la couche elle-même.
Selon un autre mode de réalisation de l'invention, la couche comprenant un matériau vitreux comprend en outre des éléments diffusants. La couche est même avantageusement constituée du matériau vitreux et des éléments diffusants. Dans ce mode de réalisation, la couche est elle-même diffusante, et on la qualifiera de couche diffusante. De préférence, les éléments diffusants sont choisis parmi les particules et les cavités. La couche diffusante peut contenir à la fois des particules et des cavités. Les particules sont de préférence choisies parmi les particules d'alumine, de zircone, de silice, de dioxyde de titane, de carbonate de calcium, de sulfate de baryum. La couche diffusante peut comprendre un seul type de particules, ou plusieurs types de particules différentes.
Les cavités sont de préférence formées lors de la cuisson par élimination de composés organiques, par exemple du médium. Elles sont de préférence fermées et non connectées . Les éléments diffusants présentent de préférence une dimension caractéristique permettant une diffusion de la lumière visible, notamment comprise entre 200 nm et 5 ym. Une dimension caractéristique peut être un diamètre médian.
La concentration massique de particules dans la couche diffusante est de préférence comprise dans un domaine allant de 0,2 à 10%, notamment de 0,5 à 8%, et même de 0,8 à 5%.
Les éléments diffusants peuvent être répartis de manière homogène dans le matériau vitreux. Ils peuvent alternativement être répartis de manière hétérogène, en ménageant par exemple des gradients. La couche diffusante peut également être constituée de plusieurs couches élémentaires se différenciant l'une de l'autre par une nature, une taille ou une proportion différente d'éléments diffusants.
L'épaisseur physique de la couche comprenant un matériau vitreux est de préférence comprise dans un domaine allant de 0,5 à 100 ym, notamment de 1 à 80 ym et plus particulièrement de 2 à 60 ym, voire de 2 à 30 ym. D' autres couches peuvent être déposées sur la couche comprenant un matériau vitreux, et notamment en contact avec elle. Il peut par exemple s'agir d'une couche de planarisation, destinée à recouvrir d'éventuelles particules situées en surface de la couche comprenant un matériau vitreux, notamment de la couche diffusante, de manière à réduire la rugosité de cette dernière. La couche de planarisation peut par exemple être constituée du matériau vitreux défini précédemment, ou d'un autre matériau vitreux.
Une couche barrière, par exemple en silice ou nitrure de silicium, dont l'épaisseur est notamment comprise dans un domaine allant de 5 à 30 nm, peut être déposée sur la couche comprenant un matériau vitreux ou la couche de planarisation, en contact avec elle.
Par l'emploi de l'adjectif « diffusant » pour qualifier le substrat et le cas échéant la feuille de verre ou la couche comprenant un matériau vitreux, on entend de préférence que le flou est d'au moins 40%, notamment 50%, et même 60% ou 70%, voire 80%. Le flou, parfois appelé « voile » est mesuré par un haze-meter selon la norme ASTM D1003.
La couche comprenant un matériau vitreux est avantageusement revêtue d'une couche électro-conductrice. Cette dernière est de préférence en contact direct avec la couche comprenant un matériau vitreux, ou le cas échéant avec la couche de planarisation ou la couche barrière. La couche électro-conductrice est de préférence à base d'un oxyde conducteur transparent (TCO) , tel que par exemple l'oxyde d' indium et d' étain (ITO). D'autres matériaux conducteurs sont possibles, par exemple des couches d'argent ou encore des polymères conducteurs.
Le substrat diffusant peut ainsi comprendre (ou être constituée de), à titre d'exemples : Une feuille de verre non-diffusante, puis une couche diffusante constituée du matériau vitreux et d'éléments diffusants, puis (optionnellement ) une couche de planarisation, puis (optionnellement) une couche barrière, et enfin une couche électro-conductrice, chaque couche citée étant en contact direct avec la couche qui la précède et la couche qui la suit,
Une feuille de verre non-diffusante, puis une couche diffusante, puis une couche constituée du matériau vitreux, puis (optionnellement) une couche barrière, et enfin une couche électro-conductrice, chaque couche citée étant en contact direct avec la couche qui la précède et la couche qui la suit,
Une feuille de verre diffusante, puis une couche constituée du matériau vitreux, puis (optionnellement) une couche barrière, et enfin une couche électro-conductrice, chaque couche citée étant en contact direct avec la couche qui la précède et la couche qui la suit.
Dans le dispositif à diode électroluminescente organique selon l'invention, la feuille de verre revêtue de la couche comprenant un matériau vitreux et de la couche électro-conductrice (faisant office de première électrode) est associée à un système électroluminescent organique sous forme d'au moins une couche de matériau organique, lui-même revêtu d'une couche électro-conductrice faisant office de seconde électrode. Le système électroluminescent organique est donc situé entre le substrat et la seconde électrode, en contact direct avec la première et la seconde électrode.
Le système électroluminescent est de préférence composé de plusieurs couches : couche d'injection de trous (par exemple en polyéthylène dioxythiophene dopé avec de l'acide polystyrène sulfonique ou en phtalocyanine de cuivre) , couche de transport de trous (par exemple en dérivés de triphénylamine) , couche d'émission (par exemple en complexes métalliques de dérivés de la quinoline) , couche de transport d'électrons (par exemple en dérivés d' oxadiazole, de triazole, de bathophenanthroline...) , couche d'injection d'électrons (par exemple en lithium ou césium) etc..
Le dispositif OLED selon l'invention est de préférence employé comme source d'éclairage polychromatique, notamment de lumière blanche. Il est de préférence un dispositif à émission par l'arrière, au sens où la lumière est émise à travers la feuille de verre. Dans ce cas, la seconde électrode est constituée d'un matériau réfléchissant, par exemple un film métallique, notamment d'aluminium, d'argent, de magnésium etc.. De préférence, le dispositif OLED comprend donc successivement une feuille de verre, une couche comprenant un matériau vitreux, éventuellement une couche barrière ou de planarisation, une couche électro-conductrice (typiquement en ITO) , un système électroluminescent composé de plusieurs couches et une électrode réfléchissante.
La fritte de verre selon l'invention est de préférence obtenue par fusion de matières premières puis mise en forme de fritte. Les matières premières (oxydes, carbonates...) peuvent être fondues à des températures de l'ordre de 950 à 1100°C, puis le verre obtenu peut être coulé, par exemple laminé entre deux rouleaux. Le verre obtenu peut ensuite être broyé, par exemple dans un broyeur à boulets, un broyeur à jet, un broyeur à billes, ou un broyeur par attrition. La fritte de verre se présente de préférence sous forme de particules dont le dgo est d'au plus 10 ym, notamment 5 ym, voire même 4 ym. La distribution de diamètres de particules peut être déterminée à l'aide d'un granulomètre laser.
La couche comprenant un matériau vitreux est de préférence obtenue par un procédé dans lequel :
- on mélange la fritte de verre selon l'invention à un médium organique de manière à former une pâte,
- on dépose ladite pâte sur la feuille de verre,
- on cuit l'ensemble.
Le médium organique est typiquement choisi parmi des alcools, des glycols, des esters de terpinéol. La proportion massique de médium est de préférence comprise dans un domaine allant de 10 à 50%.
Le dépôt de la pâte peut être réalisé notamment par sérigraphie, par dépôt au rouleau, par trempage, par application au couteau, par pulvérisation, par tournette, par nappage vertical ou encore à l'aide d'une filière en forme de fente (slot die coating) .
Dans le cas de la sérigraphie, on utilise de préférence un écran en maille textile ou métallique, des outils de nappage et un racle, la maîtrise de l'épaisseur étant assurée par le choix de la maille de l'écran et sa tension, par le choix de la distance entre la feuille de verre et l'écran, par les pressions et vitesses de déplacement de la racle. Les dépôts sont typiquement séchés à une température de 100 à 150 °C par rayonnement infrarouge ou ultraviolet selon la nature du médium.
La cuisson est de préférence réalisée dans un four à une température comprise dans un domaine allant de 500 à 600°C, notamment de 510 à 580°C. La couche électro-conductrice peut être déposée par diverses technique de dépôt de couches minces, telles que par exemple les technique de pulvérisation cathodique, notamment assistée par champ magnétique (procédé magnétron) , de dépôt chimique en phase vapeur (CVD) , notamment assistée par plasma (PECVD, APPECVD) , ou encore de dépôt par voie liquide.
Les exemples qui suivent illustrent l'invention de manière non-limitative.
Première série d'exemples
Différentes frittes de verre ont été obtenues par fusion de matières premières. Pour ce faire, on a porté les matières premières suffisantes pour obtenir 300 g de verre pendant lh30 à une température de 1000°C dans des creusets chauffés par effet Joule de 400 cm3.
Les tableaux 3, 4 et 5 récapitulent les résultats obtenus. Dans ces tableaux sont indiqués :
- la composition chimique de la fritte (en pourcentage pondéral d'oxyde),
- la température de transition vitreuse, notée « Tg » et exprimée en °C, - la température de cristallisation, notée Tx et exprimée en °C.
- le coefficient de dilatation thermique linéaire, noté a et exprimé en 10~7/K,
- l'indice de réfraction pour une longueur d'onde de 550 nm, noté n, mesuré par ellipsométrie,
- l'absorption lumineuse pour une épaisseur de 3 mm, notée AL, mesurée par spectrophotométrie,
- la lixiviation du bismuth en milieu acide, notée L et exprimée en mg/L. Comme la Tg, la Tx est mesurée par calorimétrie différentielle à balayage.
La lixiviation du bismuth a été mesurée en plongeant des substrats de verre revêtus d'une couche du matériau vitreux étudié dans une solution acide. Pour ce faire, des couches de 10 ym d'épaisseur ont été déposées par sérigraphie sur des substrats de verre silico-sodo- calcique, à partir de frittes ayant un d90 de 3,4 ym et un d50 de 1,7 ym. La solution acide est une solution à base d'acide acétique commercialisée sous la référence Neutrax par la société Franklab, diluée à 1,3% en volume dans de l'eau déionisée afin d'atteindre un pH de 3. Les échantillons ont été immergés dans cette solution à une température de 50 °C pendant une heure, et une petite quantité de solution a été prélevée toutes les 10 minutes puis analysée afin d'en déduire la quantité de B12O3 passé en solution. Le chiffre indiqué dans les tableaux correspond à la concentration en B12O3 dans la solution d'attaque après 10 minutes. Les exemples 1 à 10 (tableaux 3 et 4) sont des exemples selon l'invention, tandis que les exemples Cl à C6 sont des exemples comparatifs.
1 2 3 4 5
Bi203 73, 1 74,5 73,7 72, 3 72,4
ZnO 5, 54 5,31 5,39 9, 34 7, 9
Si02 7, 9 7,7 7, 9 7, 6 9, 4
B203 7,71 7,8 7,74 6, 31 6,86
AI2O3 2,5 2,5 2,4 2,4 2,5
Na20 0,1 0,11 0,11 0,1 0,08
CaO 3,1 0 1,7 1, 9 0,04
MgO 0 2 1 0 0
MgO+ZnO 5, 54 7,31 6,39 9, 34 7, 9
MgO+CaO 3,1 2 2,7 1, 9 0,04
Tg(°C) 460 468 464 456 455
Tx (°C) 693 678 668 a (10"7/K) 88,7 82, 2 84,2 84, 9 77,5 n 1, 91 1, 93 1, 93 1, 92 1, 90
AL (%) 9, 4 7,3 10,3 11, 1 7,4
L (mg/L) 1, 6 1,5 1,56 1, 62 1,72
Tableau 3
6 7 8 9 10
Bi2o3 72 74,8 75, 9 77,2 77
ZnO 4,87 2, 68 0,08 4,51 2,51
Si02 11,4 9,2 8,4 7,8 7, 6
B203 8, 37 8,36 10,4 6, 18 9,46
AI2O3 2,7 2,7 2, 6 2,3 2,4
Na20 0,09 0,08 0,09 0,09 0,09
CaO 0 0 0 0 0
MgO 0 2,1 2,1 1, 9 1
MgO+ZnO 4,87 4,78 2,18 6,41 3,51
MgO+CaO 0 2,1 2,1 1, 9 1
Tg(°C) 457 475 478 475 458
Tx (°C) 682 678 683 677 668 a (10"7/K) 76, 9 77, 1 86, 4 77,2 82, 9
AL (%) 8,3 10,5 8,5 7,3 8,1 n 1,89 1, 91 1,89 1, 96 1, 92
L (mg/L) 1,48 1, 52 1,42 1,76 1,7
Tab] Leau 4 Cl C2 C3 C4 C5 C6
Bi203 71, 9 72,7 72, 5 72,2 72, 3 70
ZnO 10,7 10,7 10,4 9, 87 9, 23 10
Si02 7,8 7, 6 7, 6 7, 6 7,8 7
B203 5, 62 5,7 5, 8 6, 58 6,29 9
AI2O3 2,5 2,4 2,4 2,5 2, 6 3
Na20 0,1 0,09 0,11 0,1 0,1 1
CaO 1,4 0 0,7 0 1 0
MgO 0 0, 9 0,4 1,2 0, 6 0
MgO+ZnO 10,7 11, 6 10,8 11, 07 9, 83 10
MgO+CaO 1,4 0, 9 1,1 1,2 1, 6 0
AL (%) 24,5 28, 6 22,4 22, 9 15, 8 -
L (mg/L) - - - - - 1, 9
Tableau 5
Les exemples comparatifs Cl à C5 dévitrifient trop facilement pour pouvoir être mis en forme de matériau vitreux, d'où leur absorption lumineuse très élevée. Les exemples selon l'invention présentent tous une résistance aux acides significativement meilleure que celle de l'exemple comparatif C6.
Deuxième série d'exemples
D'autres verres selon l'invention ont été obtenus par fusion, comme dans le cas de la première série d'exemples. Leur composition chimique est indiquée au tableau 6 ci-après.
La résistance aux acides de ces verres a été évaluée sur les échantillons de verre massifs. Les échantillons, tous de même surface, ont été immergés dans la même solution d'attaque que celle décrite précédemment pendant une durée de 18 heures. La perte de masse de l'échantillon, exprimée en mg/cm2 est appelée « Ma » dans le tableau 6. La perte de masse dans le cas du verre comparatif C6 est de 15 mg/cm2.
La résistance aux bases a également été évaluée en mesurant la perte de masse (notée « Mb ») obtenue après avoir immergé les échantillons dans une solution à pHll (solution diluée à 1% du concentré commercialisé par la société Borer sous la marque deconex® PV 110) pendant 18 h à 50°C.
Tableau 6

Claims

REVENDICATIONS
1. Substrat diffusant pour dispositif à diode électroluminescente organique comprenant une feuille de verre revêtue sur une de ses faces d'une couche comprenant un matériau vitreux, telle que ledit matériau vitreux possède une composition chimique comprenant les constituants suivants, variant dans les limites pondérales ci-après définies :
Bi203 60-85%
B203 5-12%
Si02 6-20%
MgO+ZnO 0-9,5% A1203 0-7, notamment 0-5%%
Li20+Na20+K20 0-5%
CaO 0-5%
BaO 0-20%.
2. Substrat diffusant selon la revendication précédente, tel que la teneur pondérale en Bi203 est comprise dans un domaine allant de 65 à 80%, notamment de 68 à 75%.
3. Substrat diffusant selon l'une des revendications précédentes, tel que la teneur pondérale en ZnO est d'au plus 8%, notamment est inférieure a 5%.
4. Substrat diffusant selon l'une des revendications précédentes, tel que la teneur pondérale en Si02 est comprise dans un domaine allant de 7 à 12%.
5. Substrat diffusant selon l'une des revendications précédentes, tel que la somme des teneurs pondérales en MgO et ZnO est comprise dans un domaine allant de 2 à 9%.
6. Substrat diffusant selon l'une des revendications précédentes, tel que la somme des teneurs pondérales en CaO et MgO est comprise dans un domaine allant de 0,5 à 4%.
7. Substrat diffusant selon l'une des revendications précédentes, tel que la composition chimique du matériau vitreux comprend les oxydes T 1O2 et/ou Sn02 -
8. Substrat diffusant selon la revendication précédente, tel que la teneur en T 1O2 est d'au moins 0,5% ou 1% et d'au plus 5%, notamment 2%.
9. Substrat diffusant selon la revendication 7 ou 8, tel que la teneur en Sn02 est d'au moins 0,2% ou 0,5% et d'au plus 5%, notamment 3% ou 2%.
10. Substrat diffusant selon l'une des revendications précédentes, tel que la couche comprenant un matériau vitreux comprend en outre des éléments diffusants choisis parmi les particules et les cavités.
11. Substrat selon la revendication précédente, tel que les particules sont choisies parmi les particules d'alumine, de zircone, de silice, de dioxyde de titane, de carbonate de calcium, de sulfate de baryum.
12. Substrat selon l'une des revendications 1 à 9, tel que la couche comprenant un matériau vitreux est constituée dudit matériau vitreux, et tel que la feuille de verre diffuse la lumière ou qu'une couche diffusante est disposée sous la couche comprenant un matériau vitreux.
13. Substrat diffusant selon l'une des revendications précédentes, tel qu'une couche électro-conductrice est disposée sur la couche comprenant un matériau vitreux .
14. Dispositif à diode électroluminescente organique comprenant un substrat diffusant selon la revendication précédente .
15. Fritte de verre dont la composition chimique comprend les constituants suivants, variant dans les limites pondérales ci-après définies :
Bi203 65-85%
B203 5-12%
Si02 6-20%
MgO+ZnO 0-9, 5%
A1203 0-5%
Li20+Na20+K20 0-5%
CaO 0-5%
CaO+MgO >0, 5
BaO 0-20%.
EP14713170.0A 2013-02-25 2014-02-24 Substrat pour dispositif a diode electroluminescente organique Withdrawn EP2958867A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1351619A FR3002533A1 (fr) 2013-02-25 2013-02-25 Substrat pour dispositif a diode electroluminescente organique
FR1360522 2013-10-29
PCT/FR2014/050370 WO2014128421A1 (fr) 2013-02-25 2014-02-24 Substrat pour dispositif a diode electroluminescente organique

Publications (1)

Publication Number Publication Date
EP2958867A1 true EP2958867A1 (fr) 2015-12-30

Family

ID=51390556

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14713170.0A Withdrawn EP2958867A1 (fr) 2013-02-25 2014-02-24 Substrat pour dispositif a diode electroluminescente organique

Country Status (7)

Country Link
US (1) US10084144B2 (fr)
EP (1) EP2958867A1 (fr)
JP (1) JP6449788B2 (fr)
CN (1) CN105073666B (fr)
MY (1) MY174696A (fr)
RU (1) RU2683454C2 (fr)
WO (1) WO2014128421A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101614048B1 (ko) * 2013-09-30 2016-04-20 엘지디스플레이 주식회사 유기전자장치
FR3020179B1 (fr) 2014-04-22 2017-10-06 Saint Gobain Electrode supportee transparente pour oled
ES2637715T3 (es) * 2014-12-01 2017-10-16 Saint-Gobain Glass France Sustrato OLED difusor transparente y método para producir dicho sustrato
US20170254930A1 (en) * 2016-03-03 2017-09-07 Corning Incorporated Structured light-transmitting articles and methods for making the same
WO2018071076A2 (fr) * 2016-07-07 2018-04-19 Northwestern University Conductivité, adhérence et stabilité environnementale améliorées d'encres de graphène imprimées à nitrocellulose
JP2019020723A (ja) 2017-07-12 2019-02-07 Hoya Candeo Optronics株式会社 導光板、画像表示装置
KR102642282B1 (ko) * 2017-07-12 2024-02-28 호야 가부시키가이샤 도광판 및 화상 표시 장치

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6255239B1 (en) * 1998-12-04 2001-07-03 Cerdec Corporation Lead-free alkali metal-free glass compositions
US7407902B2 (en) * 2002-03-29 2008-08-05 Matsushita Electric Industrial Co., Ltd. Bismuth glass composition, and magnetic head and plasma display panel including the same as sealing member
US7494607B2 (en) * 2005-04-14 2009-02-24 E.I. Du Pont De Nemours And Company Electroconductive thick film composition(s), electrode(s), and semiconductor device(s) formed therefrom
JP4959188B2 (ja) 2005-12-27 2012-06-20 日本山村硝子株式会社 ビスマス系無鉛ガラス
WO2007080904A1 (fr) 2006-01-12 2007-07-19 Toray Industries, Inc. Composition photosensible, element d’ecran et son procede de production
US7678457B2 (en) 2006-03-23 2010-03-16 E.I. Du Pont De Nemours And Company Dielectric and display device having a dielectric and dielectric manufacturing method
JP4598008B2 (ja) * 2007-02-06 2010-12-15 株式会社ノリタケカンパニーリミテド 耐酸性を有する無鉛ガラス組成物およびガラスペースト
WO2009014029A1 (fr) * 2007-07-20 2009-01-29 Nippon Electric Glass Co., Ltd. Matériau d'étanchéité, comprimé d'étanchéité et composition de verre pour un scellement étanche
JP5309629B2 (ja) * 2008-03-13 2013-10-09 セントラル硝子株式会社 耐酸性を有する無鉛ガラス組成物
EP2383235B1 (fr) * 2009-01-26 2017-09-13 Asahi Glass Company, Limited Verre pour une couche de diffusion d'un dispositif de del organique, et dispositif de del organique
KR20110116142A (ko) * 2009-01-26 2011-10-25 아사히 가라스 가부시키가이샤 전자 디바이스용 기판 및 이것을 사용한 전자 디바이스
CA2777658A1 (fr) * 2009-10-15 2011-04-21 Naoya Wada Verre pour une couche de diffusion dans un element de diode electroluminescente organique, et element de diode electroluminescente organique l'utilisant
CN101891390B (zh) * 2009-12-31 2012-09-05 四川虹欧显示器件有限公司 一种无铅介质浆料及其制造方法
FR2955575B1 (fr) * 2010-01-22 2012-02-24 Saint Gobain Substrat verrier revetu d'une couche haut indice sous un revetement electrode et dispositif electroluminescent organique comportant un tel substrat.
FR2963705B1 (fr) * 2010-08-06 2012-08-17 Saint Gobain Support a couche diffusante pour dispositif a diode electroluminescente organique, dispositif electroluminescent organique comportant un tel support
US8927445B2 (en) * 2010-09-16 2015-01-06 Daunia Solar Cell S.R.L. Sealing agent with low softening temperature useful in the preparation of electronic devices
US9224983B2 (en) * 2010-12-20 2015-12-29 Samsung Electronics Co., Ltd. Substrate for surface light emitting device and method of manufacturing the substrate, surface light emitting device, lighting apparatus, and backlight including the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2014128421A1 *

Also Published As

Publication number Publication date
US20160013432A1 (en) 2016-01-14
RU2015140758A (ru) 2017-03-30
JP2016508952A (ja) 2016-03-24
JP6449788B2 (ja) 2019-01-09
RU2683454C2 (ru) 2019-03-28
CN105073666B (zh) 2020-02-14
US10084144B2 (en) 2018-09-25
CN105073666A (zh) 2015-11-18
WO2014128421A1 (fr) 2014-08-28
MY174696A (en) 2020-05-08

Similar Documents

Publication Publication Date Title
EP2958867A1 (fr) Substrat pour dispositif a diode electroluminescente organique
EP2438024B1 (fr) Procede de depot de couche mince
FR3010074B1 (fr) Procede de fabrication d&#39;un materiau comprenant un substrat muni d&#39;une couche fonctionnelle a base d&#39;oxyde d&#39;etain et d&#39;indium
EP2683665B1 (fr) Substrat pour cellule photovoltaïque
EP0857700B1 (fr) Substrat transparent muni d&#39;au moins une couche mince à base de nitrure ou d&#39;oxynitrure de silicium et son procédé d&#39;obtention
WO2015197969A1 (fr) Vitrage anticondensation
EP2798682A1 (fr) Anode transparente pour oled
FR2999807A1 (fr) Support conducteur pour dispositif oled, ainsi que dispositif oled l&#39;incorporant
CN105359291A (zh) 用于发光装置的层板及其制备方法
EP3303242A1 (fr) Substrat muni d&#39;un empilement a proprietes thermiques a couche terminale metallique et a couche preterminale oxydee.
WO2012123677A1 (fr) Substrat pour cellule photovoltaïque
WO2005080278A2 (fr) Plaque de verre destinee a recevoir un depot metallique et resistant a la coloration susceptible d&#39;etre provoquee par un tel depot.
EP3201150B1 (fr) Substrat muni d&#39;un empilement a proprietes thermiques et a couche intermediaire sous stoechiometrique
FR3002533A1 (fr) Substrat pour dispositif a diode electroluminescente organique
EP2803646B1 (fr) Procédé de depot de revêtements sur un substrat et de production d&#39;un vitrage
FR3111631A1 (fr) Vitrage de controle solaire comprenant une couche a base de nitrure de titane et une couche a base d’ito
FR2962852A1 (fr) Electrode transparente pour cellule photovoltaique a haut rendement
WO2013064774A1 (fr) Substrat pour cellule photovoltaïque
FR2803843A1 (fr) Article en verre et substrat en verre pour un ecran
WO2013068698A1 (fr) Feuille de verre

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150925

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170228

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAINT-GOBAIN GLASS FRANCE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210208

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210619