EP2936532B1 - Procédé de fonctionnement et dispositif électromagnétique d'entraînement d'un appareil de commutation électrique - Google Patents

Procédé de fonctionnement et dispositif électromagnétique d'entraînement d'un appareil de commutation électrique Download PDF

Info

Publication number
EP2936532B1
EP2936532B1 EP13814148.6A EP13814148A EP2936532B1 EP 2936532 B1 EP2936532 B1 EP 2936532B1 EP 13814148 A EP13814148 A EP 13814148A EP 2936532 B1 EP2936532 B1 EP 2936532B1
Authority
EP
European Patent Office
Prior art keywords
pull
signal
coil
measurement
values
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13814148.6A
Other languages
German (de)
English (en)
Other versions
EP2936532A2 (fr
Inventor
Ingo Schaar
Witali Steinnagel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eaton Intelligent Power Ltd
Original Assignee
Eaton Intelligent Power Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eaton Intelligent Power Ltd filed Critical Eaton Intelligent Power Ltd
Publication of EP2936532A2 publication Critical patent/EP2936532A2/fr
Application granted granted Critical
Publication of EP2936532B1 publication Critical patent/EP2936532B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • H01H47/32Energising current supplied by semiconductor device
    • H01H47/325Energising current supplied by semiconductor device by switching regulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • H01F2007/1866Monitoring or fail-safe circuits with regulation loop

Definitions

  • the invention relates to a device for operating an electromagnetic switching device drive with a pull-in coil, having a measuring transducer for generating a signal variable that corresponds to a magnetic flux of the pull-in coil, and a controller for setting a signal for controlling the pull-in coil during the pull-in process, and a switching device, in particular Contactor, with an electromagnetic switchgear drive that has a pull-in coil, and also a method for operating an electromagnetic switchgear drive with a pull-in coil, a transducer generating a signal variable corresponding to the magnetic flux of the pull-in coil, and a controller providing a signal to control the The tightening coil is set during the tightening process.
  • a magnetic field is built up during a switching process in the drive, which on the one hand is strong enough to drive the drive mechanism, but on the other hand is not excessively strong in order to avoid damage to the drive mechanism. Damage can occur, for example, if the magnetic field built up by a pull-in coil during the pull-in process is so strong that what is known as contact bouncing occurs.
  • a contact with high kinetic energy hits its counter-contact and bounces back again. Depending on the kinetic energy, the contact bounce can be repeated several times before permanent contact is finally established. This can damage the contacts mechanically.
  • undesired arcs can occur when contact bouncing, which can lead to contact erosion.
  • the current armature position can be based on the measurement of the magnetic flux of the Pull-in coil can be estimated by a processor using a sensor coil. The ratio of the measured pull-in coil current to the magnetic flux can be evaluated for estimation.
  • a control system that only regulates the magnetic flux in the drive is not able to react to different power requirements of the drive through different strokes or installation positions.
  • the speeds of the mechanics in contactors fluctuate considerably if the stroke is changed within the tolerance range.
  • the installation position also influences the speed.
  • EP 1 300 862 A1 discloses a known device for operating an electromagnetic switchgear drive.
  • One object of the present invention is to propose a device and / or a method for improved and / or less complex operation of an electromagnetic drive, as a result of which the speed fluctuations are reduced.
  • the device according to the invention for operating an electromagnetic switching device drive with a pull-in coil has a transducer for generating a signal variable that corresponds to a magnetic flux of the pull-in coil, and a controller for setting a signal for controlling the pull-in coil during the pull-in process as a function of a control difference from a reference variable and the signal size.
  • the reference variable specifies a determined setpoint curve for the magnetic flux of the pull-in coil during the pull-in process.
  • the advantage of the regulation is thus combined with the advantages of a control.
  • the speed fluctuations are reduced, which are caused by stroke tolerances and changed installation position and cannot be compensated by the setpoint-based regulation. This increases the service life of the main contacts.
  • the transducer is preferably provided for generating the signal variable on the basis of an induction voltage generated in a measuring coil coupled to the pull-in coil by the magnetic flux of the pull-in coil when the drive is pulled in.
  • a holding coil present in the switching device drive can advantageously be used as a measuring coil.
  • the terms holding coil and measuring coil are therefore used synonymously.
  • a magnetic field sensor can be provided to measure the magnetic flux of the pull-in coil.
  • the device according to the invention can advantageously be used in any switching device that is driven with the aid of electromagnets.
  • the signal for controlling the pull-in coil is basically any suitable signal for controlling pull-in coils.
  • the signal is preferably a pulse width modulated signal, the controller then being provided for continuously setting a pulse width of the pulse width modulated signal. Provision is particularly preferably made for the controller to have a P controller, the pulse width of the pulse-width-modulated signal being adjustable in proportion to the control difference.
  • the transducer and / or the controller are preferably implemented by a processor and a memory in which a program for calculating the signal variable based on the measured induction voltage, for forming the control difference from the reference variable and the signal variable fed to the processor and for regulating the signal is dependent of the control difference is saved.
  • a program for monitoring the regulation is also preferably stored, which program adapts the reference variable as a function of a change in the signal for controlling the pull-in coil.
  • Another object of the invention is a switching device, in particular a contactor, with an electromagnetic switching device drive which has a pull-in coil, wherein a The device according to the invention is provided for operating the electromagnetic switching device drive.
  • Another object of the invention is a method for operating an electromagnetic switching device drive with a pull-in coil, with a transducer generating a signal quantity corresponding to the magnetic flux of the pull-in coil, and with a controller providing a signal for controlling the pull-in coil during the pull-in process as a function of a Control difference is set from a reference variable and the signal variable.
  • the regulation is monitored by a controller, the reference variable being adapted as a function of a change in the signal for controlling the pull-in coil.
  • a previously determined setpoint profile of the magnetic flux of the pull-in coil during the pull-in process is used as the initial control variable for the control.
  • the setpoint curve is determined in particular as a function of the supply voltage of the drive and / or the temperature of the pull-in coil.
  • the transducer preferably measures an induction voltage generated in a measuring coil coupled to the pull-in coil by the magnetic flux of the pull-in coil when the drive is pulled in, and the signal size is set on the basis of the measured induction voltage.
  • the signal for controlling the pull-in coil is preferably a pulse-width-modulated signal, a pulse width of the pulse-width-modulated signal being continuously set by the controller.
  • the controller has, in particular, a P controller, the pulse width of the pulse width modulated signal being set proportionally to the control difference.
  • a first measurement of the signal is carried out at the beginning of a tightening process to monitor the regulation by the controller, whereby at the first point in time the drive is not independent of influencing variables, i.e.
  • a second measurement of the signal is made at a point in time after the first measurement, the second point in time so it is chosen that it depends on the influencing variables whether the drive is either not yet in motion or is already in motion.
  • the values of the signal in the first measurement and in the second measurement are also preferably averaged over a period of time.
  • the measured value of the signal of the first measurement is set in relation to the measured value of the signal of the second measurement and the ratio is used as a correction factor for adapting the reference variable.
  • the measured value of the signal of the first measurement is related to the measured value of the signal of the second measurement and that the ratio is used to adapt the reference variable by selecting the ratio and reference variable from a stored assignment table.
  • the Figure 1 shows a block diagram of the device according to the invention, in particular for an electromagnetic drive of a high-performance contactor.
  • the contactor drive has a pull-in coil 28 and a holding coil 26, which form a controlled system 12.
  • the holding coil 26 is coupled to the pull-in coil 28 in such a way that the same magnetic flux ⁇ acts in both coils.
  • a voltage UHalt -N • d ⁇ / dt is established across the holding coil 26 when a magnetic flux ⁇ is generated by the pull-in coil during the pull-in process.
  • the voltage UHalt corresponds to an induced voltage UInd, which in Fig. 1 is designated as size x.
  • a measuring transducer 14 calculates the time-dependent magnetic flux ⁇ (t) from the voltage variable x and outputs the calculated flux as a signal variable wx.
  • a subtracter 18 subtracts the signal variable wx from a reference variable w, which specifies a desired value curve for the magnetic flux in the pull-in coil during the pull-in process.
  • the setpoint curve was determined depending on various influences on the drive. For this purpose, measurements of the magnetic flux curve in the pull-in coil are carried out during various different influences on the contactor drive. Measurements can be carried out for different installation positions of the contactor, with different supply voltages of the drive and / or at different temperatures.
  • a setpoint curve is then determined from the flux curves determined by the various measurements, which is adapted to an optimal function of the drive under different operating conditions, in particular ensures the best possible function for different installation positions, supply voltage and temperature ranges.
  • the control difference xd generated by the subtracter 18 is fed to a controller 16 with a microprocessor 20 and an adjusting device 21 for the pulse width of a pulse-width modulated signal (PWM signal), the controller 16 depending on the control difference xd and an input voltage Uein, the pulse width of a pulse-width modulated signal y for controlling the pull-in coil 28 is set.
  • the PWM signal y has a period T. During each period T, the signal y is switched on for the specific time, the switch-on time or on-time.
  • the on time corresponds to Pulse width of the signal y during each period T and determines the magnetic flux ⁇ (t) generated in the pull-in coil 28, since the pull-in coil 28 is energized when the signal y is switched on.
  • the on time is determined by the controller 16 as a function of the control difference xd. Typically, a minimum and a maximum value are specified, which can have the values 0 and T in extreme cases.
  • the on time can be set proportionally to xd, for example, between the minimum and the maximum value. In this case, the controller 16 implements a P-controller which proportionally converts the control difference xd into the on time. This regulation allows the magnetic flux of the pull-in coil 28 to be set very precisely and finely.
  • a reference variable w specifies the behavior of the control.
  • This reference variable w is optimized for a contactor which has the largest possible stroke.
  • the controller is able to regulate different coil temperatures or different supply voltages Uein. However, he is not able to regulate the influences from the mechanics in order to always use the optimal force. Mechanical influences can be manufacturing tolerances, for example. This means that a contactor can also have smaller strokes. With a smaller stroke, a higher speed is measured during the contact closure or the armature-core impact. The installation position also plays a role when it comes to the force required to be applied by the contactor drive. The higher speeds result from higher accelerations and are directly related to the forces acting on the mechanics.
  • the required force requirement is determined in the first phases of the tightening process and the reference variable function w is adapted on the basis of the determined values.
  • the stored reference variable w is determined by applying a direct voltage, the so-called trip voltage.
  • the magnetic flux is absorbed during the tightening process.
  • the time course of the magnetic flux from the application of the voltage to the armature-core impact is used as the reference variable w. This process preferably takes place at the largest possible stroke.
  • the reference variable w is always used unchanged in the methods according to the prior art, the same magnetic forces are always built up, although these are not always required. This is the case, for example, when the contactor is not mounted on the wall but on a table. Then, in addition to the magnetic forces, the acceleration due to gravity also acts on the drive.
  • the task of the controller 16 is to ensure during the pull-in phase that the predetermined magnetic flux is generated in the pull-in coil 28.
  • the on time must therefore be set by the controller 16 in such a way that the magnetic flux can be built up in the pull-in coil 28 with its ohmic resistance.
  • This process depends on the inductance of the pull-in coil 28 and the resistance of the copper of the coil.
  • the inductance L pull of the pull-in coil is inversely proportional to the air gap and thus to the path s.
  • the coil resistance Rcu depends on the temperature. If the temperature influence can be factored out or is minimal, the behavior of the control 16 is only dependent on the air gap.
  • the regulation 16 is monitored by a controller 4, the reference variable w being adapted as a function of a change in the signal y for controlling the pull-in coil 28.
  • a measurement of the y-values is carried out at the beginning of the tightening process by the controller 4 with a monitor 40.
  • the mean value of the y values is formed over a period of time. This value is proportional to the voltage Uequi.
  • This determined value is a deviation due to influences such as temperature, etc., contained by the control 16.
  • the deviation can be described mathematically by a factor. It is assumed that the deviations are constant during a tightening process. If the mean value of the values y of the signal is determined again at a later point in time during the tightening process, this mean value also contains the same deviation.
  • a second measurement of the y values by the monitoring device 40 is carried out at a point in time after the first measurement at which the drive is either not yet in motion or has already started moving.
  • the point in time of the second measurement is chosen so that if the drive requires a high amount of power, it is not yet in motion, while if the drive requires less power, it will already have started moving.
  • the measured values of the first measurement of the y values and the second measurement of the y values will be essentially the same.
  • the power requirement of the drive is lower and the drive has already started moving, then at the time of the second measurement the air gap sAir has already been reduced compared to its initial value.
  • the control 16 specifies the magnetic flux Regelung. If the inductance LAnz of the pull-in coil 28 increases, the flow rate ⁇ must be reduced. As shown above, the flow rate ⁇ is coupled to the exciting current IAnz and the voltage Uequi via the number of turns NAnz of the pull-in coil 28.
  • the method can also be started with the smallest guide curve w.
  • the second measurement then has to take place at a point in time at which the drive with the smallest stroke must already be in motion, while the drive with the larger stroke has not yet moved or has only moved very slightly.
  • FIG. 11 shows a schematic simplified circuit diagram of a high-performance contactor with an implementation of the device according to the invention according to FIG Figure 1 by the control 16 with the microcontroller 20 (see Figure 1 ).
  • the contactor is usually connected to an alternating voltage via the two supply connections A1 and A2.
  • the contactor can be designed to be fed with an alternating voltage in a range from a few volts to several hundred volts.
  • the voltage present at the inputs A1 and A2 is fed to a direct current (DC) voltage supply 30, which usually contains a rectifier circuit.
  • a first DC voltage generated by the DC voltage supply 30 is fed directly to a pull-in coil 28 of the switching drive of the contactor.
  • a second DC voltage generated by the DC voltage supply 30 is fed directly to a holding coil 26 of the switching drive.
  • the pull-in coil 28 and the holding coil 26 can each be connected to a reference potential via an FET (field effect transistor) Z 34 or 32, so that when the FET is connected, the respective coil is energized and a magnetic flux is generated.
  • FET field effect transistor
  • both are coupled in such a way that one of the the same magnetic flux ⁇ flows in both coils.
  • the voltage UInd is therefore induced in the holding coil 26 due to the magnetic flux generated by the pull-in coil 28.
  • This voltage UInd is converted via a resistor network 24, in particular a voltage divider, into a voltage which is fed to an input of a microprocessor or controller of the control 16 for further processing.
  • the microprocessor or controller of the regulation 16 executes an operating program of the contactor which is stored in a memory (not shown) and which in principle is the same as in the Figure 1 Control 16 shown implemented.
  • the reference variable w for the control is stored as the setpoint curve 22 of the magnetic flux ⁇ (t) during the tightening process and is read out for the purpose of the control 16.
  • the microprocessor or controller 20 By means of the regulation 16 implemented by the operating program, the microprocessor or controller 20 generates the signal y for controlling the pull-in coil FET 34.
  • the controller 4 in turn monitors the signal y in the above with reference to FIG Figure 1 described manner and if necessary changes the setpoint curve 22 of the magnetic flux ⁇ (t) during the tightening process, so the reference variable w for the control 16.
  • a corresponding operating program of the controller 4 can be executed by the same microprocessor as the control program 16.
  • a magnetic sensor (not shown), such as a Hall sensor or GMR (Giant Magneto Resistance) can alternatively be provided instead of the measuring coil 26.
  • the regulation 16 of the electromagnetic drive of a switching device can be generated by setting a defined magnetic flux ⁇ of the pull-in coil 28 of the electromagnetic drive, which means that the drive can behave almost independently of the input voltage and temperature of the pull-in coil.
  • the control 16 which only regulates the magnetic flux in the drive, is not able to respond to different power requirements of the drive with different strokes or installation positions.
  • the advantage of control 16, namely independence from voltage and temperature of the system, is therefore combined with the advantages of control 4 in that control 4 provides for monitoring of control 16 and adjustment of reference variable function w during the tightening process.
  • the invention can be used in any switching device that is driven with the aid of electromagnets.
  • the use is particularly advantageous for high performance shooters.
  • the speed of the mechanics of shooters can fluctuate considerably if the stroke is changed within the tolerance range.
  • the installation position also influences the speed.
  • the controller 4 according to the invention reduces the speed fluctuations. Bouncing is minimized by lower speeds when the contact is closed. As a result, the contacts are less stressed and the life expectancy of the contacts increases. Expensive silver materials can possibly be saved.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Relay Circuits (AREA)
  • Keying Circuit Devices (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Claims (11)

  1. Dispositif qui est adapté pour faire fonctionner un entraînement d'appareil de commutation électromagnétique (12) avec une bobine d'attraction (28), présentant
    un transformateur de mesure (14; 24) qui est adapté pour produire une grandeur de signal (wx) qui correspond à un flux magnétique de la bobine d'attraction, et
    un dispositif de régulation (16) qui est adapté pour régler un signal (y) afin de commander la bobine d'attraction pendant le processus d'attraction en fonction d'une différence de réglage (xd) entre une grandeur de référence (w) et la grandeur de signal (wx),
    selon lequel une commande (4), qui est adaptée pour surveiller le dispositif de régulation (16) et pour adapter la grandeur de référence (w) en fonction d'une modification du signal (y), est prévue pour commander la bobine d'attraction pendant le processus d'attraction, caractérisé en ce que la grandeur de référence (w) spécifie une évolution de valeur de consigne établie (22) du flux magnétique de la bobine d'attraction (28) pendant le processus d'attraction ; et
    en ce que la commande (4) est organisée de façon à déterminer un besoin d'énergie nécessaire dans des premières phases du processus d'attraction et à adapter la grandeur de référence (w) sur la base des valeurs déterminées.
  2. Dispositif selon la revendication 1, caractérisé en ce que la commande (4) comprend une surveillance (40), une évaluation (41) et une adaptation (42),
    selon lequel la surveillance (40) est organisée de façon à effectuer une mesure des valeurs du signal (y) à un moment où l'entraînement d'appareil de commutation (12) soit n'est pas encore en mouvement, soit s'est déjà mis en mouvement, selon lequel le moment de la mesure est choisi de façon que, lors d'un besoin d'énergie élevé de l'entraînement d'appareil de commutation (12), celui-ci n'est pas encore en mouvement, tandis que, lors d'un besoin d'énergie faible de l'entraînement d'appareil de commutation (12), celui-ci se sera déjà mis en mouvement,
    selon lequel l'évaluation (41) est organisée de façon à déduire le besoin d'énergie nécessaire au moyen d'une évaluation des valeurs du signal (y), et à mettre la grandeur de référence adaptée (w) à la disposition du dispositif de régulation (16) au moyen de l'adaptation (42).
  3. Dispositif selon l'une des revendications 1 ou 2, caractérisé en ce que le signal (y) pour commander la bobine d'attraction est un signal modulé en largeur d'impulsion, selon lequel le dispositif de régulation (16) est prévu pour régler continuellement une largeur d'impulsion du signal modulé en largeur d'impulsion.
  4. Appareil de commutation, en particulier contacteur électromagnétique, avec un entraînement d'appareil de commutation électromagnétique (12) qui présente une bobine d'attraction (28), caractérisé en ce qu'un dispositif est prévu pour faire fonctionner un entraînement d'appareil de commutation électromagnétique (12) selon l'une des revendications précédentes.
  5. Procédé pour faire fonctionner un entraînement d'appareil de commutation électromagnétique (12) avec une bobine d'attraction (28),
    selon lequel une grandeur de signal (wx) correspondant au flux magnétique de la bobine d'attraction est produite au moyen d'un transformateur de mesure (14; 24), et
    selon lequel un signal (y) est réglé au moyen d'un dispositif de régulation (16) pour commander la bobine d'attraction pendant le processus d'attraction en fonction d'une différence de réglage (xd) entre une grandeur de référence (w) et la grandeur de signal (wx),
    selon lequel le dispositif de régulation (16) est surveillé au moyen d'une commande (4) et selon lequel la grandeur de référence (w) est adaptée en fonction d'une modification du signal (y) pour commander la bobine d'attraction,
    caractérisé en ce que la grandeur de référence (w) spécifie une évolution de valeur de consigne établie (22) du flux magnétique de la bobine d'attraction (28) pendant le processus d'attraction ;
    et en ce qu'un besoin d'énergie nécessaire dans des premières phases du processus d'attraction est déterminé au moyen de la commande (4), et la grandeur de référence (w) est adaptée sur la base des valeurs déterminées.
  6. Procédé selon la revendication 5, caractérisé en ce que la commande (4) comprend une surveillance (40), une évaluation (41) et une adaptation (42),
    selon lequel une mesure des valeurs du signal (y) est effectuée au moyen de la surveillance (40) à un moment où l'entraînement d'appareil de commutation (12) soit n'est pas encore en mouvement, soit s'est déjà mis en mouvement, selon lequel le moment de la mesure est choisi de façon que, lors d'un besoin d'énergie élevé de l'entraînement d'appareil de commutation (12), celui-ci n'est pas encore en mouvement, tandis que, lors d'un besoin d'énergie faible de l'entraînement d'appareil de commutation (12), celui-ci se sera déjà mis en mouvement,
    selon lequel le besoin d'énergie nécessaire est déduit au moyen de l'évaluation (41) au moyen d'une évaluation des valeurs du signal (y), et la grandeur de référence adaptée (w) est mise à la disposition du dispositif de régulation (16) au moyen de l'adaptation (42).
  7. Procédé selon l'une des revendications 5 ou 6, caractérisé en ce qu'une tension d'induction (x), produite dans une bobine de mesure (26) couplée à la bobine d'attraction (28) au moyen du flux magnétique de la bobine d'attraction (28) lors d'un processus d'attraction de l'entraînement d'appareil de commutation (12), est mesurée au moyen d'un transformateur de mesure (14 ; 24) et la grandeur de signal (wx) est réglée au moyen de la tension d'induction (x) mesurée.
  8. Procédé selon la revendication 6, caractérisé en ce qu'une première mesure du signal (y) est effectuée au moyen de la surveillance (40) à un premier moment (t1) au début du processus d'attraction, selon lequel, au premier moment, l'entraînement d'appareil de commutation (12), indépendamment de grandeurs d'influence, n'est pas en mouvement, et en ce qu'une seconde mesure du signal (y) est effectuée à un second moment (t2) après la première mesure, selon lequel le second moment est choisi de façon qu'au second moment (t2), l'entraînement d'appareil de commutation (12), en fonction du besoin en énergie de l'entraînement d'appareil de commutation (12), soit n'est pas encore en mouvement, soit est déjà en mouvement.
  9. Procédé selon la revendication 8, caractérisé en ce que les valeurs du signal (y) de la première mesure sont mises en rapport au moyen de l'évaluation (41) avec les valeurs du signal (y) de la seconde mesure, selon lequel le rapport (β) est utilisé comme facteur de correction pour adapter la grandeur de référence (w).
  10. Procédé selon la revendication 8, caractérisé en ce que les valeurs du signal (y) de la première mesure sont mises en rapport au moyen de l'évaluation (41) avec les valeurs du signal (y) de la seconde mesure, selon lequel le rapport (β) est utilisé pour adapter la grandeur de référence (w) au moyen d'une sélection dans une table de correspondance entre le rapport (β) et la grandeur de référence (w).
  11. Procédé selon la revendication 8, caractérisé en ce que la moyenne des valeurs du signal (y) lors de la première mesure et lors de la seconde mesure est calculée sur une période au moyen de l'évaluation (41).
EP13814148.6A 2012-12-20 2013-12-20 Procédé de fonctionnement et dispositif électromagnétique d'entraînement d'un appareil de commutation électrique Active EP2936532B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012112692.5A DE102012112692A1 (de) 2012-12-20 2012-12-20 Vorrichtung und Verfahren zum Betrieb eines elektromagnetischen Schaltgeräteantriebs
PCT/EP2013/077811 WO2014096410A2 (fr) 2012-12-20 2013-12-20 Dispositif et procédé permettant de faire fonctionner un entraînement d'un appareil de commutation électromagnétique

Publications (2)

Publication Number Publication Date
EP2936532A2 EP2936532A2 (fr) 2015-10-28
EP2936532B1 true EP2936532B1 (fr) 2020-08-26

Family

ID=49883104

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13814148.6A Active EP2936532B1 (fr) 2012-12-20 2013-12-20 Procédé de fonctionnement et dispositif électromagnétique d'entraînement d'un appareil de commutation électrique

Country Status (3)

Country Link
EP (1) EP2936532B1 (fr)
DE (1) DE102012112692A1 (fr)
WO (1) WO2014096410A2 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019101074B4 (de) * 2019-01-16 2021-08-12 Phoenix Contact Gmbh & Co. Kg Relais, Anordnung und Verfahren zum Bestimmen einer Ankerstellung eines Relais

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3047488A1 (de) * 1980-12-17 1982-07-22 Brown, Boveri & Cie Ag, 6800 Mannheim Elektronische schaltungsanordnung fuer ein elektromagnetisches schaltgeraet
GB2112213B (en) * 1981-12-21 1985-12-11 Gen Electric Electromagnetic contactor with flux sensor
DE19535211C2 (de) * 1995-09-22 2001-04-26 Univ Dresden Tech Verfahren zur Regelung der Ankerbewegung für ein Schaltgerät
JP2000501550A (ja) * 1995-12-05 2000-02-08 シーメンス アクチエンゲゼルシヤフト 開閉機器のための制御器
DE19605974A1 (de) * 1996-02-06 1997-08-07 Kloeckner Moeller Gmbh Elektronische Schaltmagnetansteuerung zum Einschalten und Halten eines Schützes
US6942469B2 (en) 1997-06-26 2005-09-13 Crystal Investments, Inc. Solenoid cassette pump with servo controlled volume detection
DE19807875A1 (de) * 1998-02-25 1999-08-26 Fev Motorentech Gmbh Verfahren zur Regelung der Ankerauftreffgeschwindigkeit an einem elektromagnetischen Aktuator durch extrapolierende Abschätzung der Energieeinspeisung
WO2001039228A1 (fr) * 1999-11-25 2001-05-31 Siemens Aktiengesellschaft Dispositif de commutation electromagnetique
DE10141847A1 (de) * 2001-08-27 2003-04-03 Ruediger Kress Regler
EP1300862A1 (fr) * 2001-10-04 2003-04-09 Moeller GmbH Appareil électronique pour la commande d'un contacteur
JP4345416B2 (ja) * 2003-06-03 2009-10-14 トヨタ自動車株式会社 車輌の制動力制御装置
DE10360799B4 (de) * 2003-12-23 2008-06-12 Bayerische Motoren Werke Ag Verfahren zur Regelung eines elektromagnetischen Aktuators

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2014096410A3 (fr) 2014-11-20
DE102012112692A1 (de) 2014-06-26
WO2014096410A2 (fr) 2014-06-26
EP2936532A2 (fr) 2015-10-28

Similar Documents

Publication Publication Date Title
EP3111454B1 (fr) Dispositif comprenant un interrupteur électrique et un actionneur électromagnétique
EP0067185B1 (fr) Dispositif electronique pour l'excitation d'un element electromagnetique
WO2014019973A1 (fr) Dispositif de réglage de l'entraînement électromagnétique d'un appareil de commutation, en particulier d'un contacteur
DE102016103766B4 (de) Bedienelement mit elektrischer Auswertung des haptischen Feedbacks, sowie ein Testverfahren und Ansteuerverfahren
DE4433209A1 (de) Verfahren zur Bestimmung des Ankeraufprallzeitpunktes bei Entstromung eines Magnetventils
EP1234316A1 (fr) Appareil de commutation electromagnetique a commande asservie et procede et circuit correspondants
WO2018082949A1 (fr) Dispositif pour faire fonctionner un actionneur électromagnétique et en déterminer l'état de fonctionnement, ainsi que dispositif d'embrayage et chaîne cinématique de véhicule automobile
EP1480862B1 (fr) Procede et ensemble circuit permettant de calibrer des ecarts de tension et de temperature de l'intensite efficace de soupapes hydrauliques dans une commande a modulation de largeur d'impulsion
EP3053171B1 (fr) Actionneur électromagnétique
EP1880096B1 (fr) Procede et dispositif de commande electrique d'une soupape au moyen d'un element de fermeture mecanique
DE10314390B4 (de) Verfahren und Vorrichtung zum Überwachen einer elektromagnetisch betätigbaren Bremse
EP0574604B1 (fr) Dispositif électro-hydraulique de positionnement, notamment pour la direction des roues arrières d'un véhicule automobile
EP2936532B1 (fr) Procédé de fonctionnement et dispositif électromagnétique d'entraînement d'un appareil de commutation électrique
EP1647040B1 (fr) Dispositif et procede de commande d'appareils de commutation electriques
EP0477413A1 (fr) Procédé pour réduire l'hystérésis et convertisseur électromécanique avec réduction d'hystérésis
EP3308236B1 (fr) Dispositif de régulation de pression
EP0865660B1 (fr) Dispositif de commande pour appareils de commutation
DE102019206166A1 (de) Vorrichtung zum betreiben und zur ermittlung eines betriebszustands eines elektromagnetischen aktors sowie kupplungsanordnung und kraftfahrzeugantriebsstrang
EP3632759B1 (fr) Surveillance d'état de fonctionnement d'un frein à pression par ressort électromagnétique
DE10062107C5 (de) Aktorregelung
DE102019217405A1 (de) Verbesserte Steuerung eines elektromagnetischen Aktuators mittels einer Hystereselöschung und eines Zweipunktreglers
DE102014202106B3 (de) Verfahren zum Betrieb eines Einspritzventils sowie Verfahren zum Betrieb mehrerer Einspritzventile
DE102013207498B4 (de) Verfahren zur Implementierung einer Regelung
DE895619C (de) Vibrations-Schnellregler hoher Genauigkeit fuer elektrische Generatoren mit Stosserregermaschine, insbesondere Amplidyne
DE677340C (de) Selbsttaetige elektrische Regeleinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150612

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: STEINNAGEL, WITALI

Inventor name: SCHAAR, INGO

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180301

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EATON INTELLIGENT POWER LIMITED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200331

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1307173

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013015071

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201126

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201228

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201126

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201127

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201226

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013015071

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20210527

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201220

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201220

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1307173

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201226

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20221122

Year of fee payment: 10

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230521

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231121

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231127

Year of fee payment: 11