EP2886668A1 - Textilwerkzeug und Herstellungsverfahren für dieses - Google Patents

Textilwerkzeug und Herstellungsverfahren für dieses Download PDF

Info

Publication number
EP2886668A1
EP2886668A1 EP13198583.0A EP13198583A EP2886668A1 EP 2886668 A1 EP2886668 A1 EP 2886668A1 EP 13198583 A EP13198583 A EP 13198583A EP 2886668 A1 EP2886668 A1 EP 2886668A1
Authority
EP
European Patent Office
Prior art keywords
textile
tool
deformation
textile tool
areas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13198583.0A
Other languages
English (en)
French (fr)
Other versions
EP2886668B1 (de
Inventor
Simone Schwarz
Frank-Martin Durst
Richard Zeller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Groz Beckert KG
Original Assignee
Groz Beckert KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP13198583.0A priority Critical patent/EP2886668B1/de
Application filed by Groz Beckert KG filed Critical Groz Beckert KG
Priority to SI201331309T priority patent/SI2886668T1/sl
Priority to ES13198583T priority patent/ES2707585T3/es
Priority to PT13198583T priority patent/PT2886668T/pt
Priority to MX2016008153A priority patent/MX369012B/es
Priority to PT14809042T priority patent/PT3084017T/pt
Priority to EP14809042.6A priority patent/EP3084017B1/de
Priority to HUE14809042A priority patent/HUE041641T2/hu
Priority to BR112016013426-5A priority patent/BR112016013426B1/pt
Priority to TR2019/02562T priority patent/TR201902562T4/tr
Priority to CN201480069077.2A priority patent/CN106062218B/zh
Priority to PL14809042T priority patent/PL3084017T3/pl
Priority to US15/106,006 priority patent/US10487429B2/en
Priority to SI201431092T priority patent/SI3084017T1/sl
Priority to ES14809042T priority patent/ES2713375T3/es
Priority to JP2016541565A priority patent/JP6556141B2/ja
Priority to RU2016129123A priority patent/RU2682264C1/ru
Priority to KR1020167018464A priority patent/KR102414280B1/ko
Priority to PCT/EP2014/077022 priority patent/WO2015091103A1/de
Priority to TW103143991A priority patent/TWI544087B/zh
Publication of EP2886668A1 publication Critical patent/EP2886668A1/de
Application granted granted Critical
Publication of EP2886668B1 publication Critical patent/EP2886668B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/26Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for needles; for teeth for card-clothing
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H18/00Needling machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21GMAKING NEEDLES, PINS OR NAILS OF METAL
    • B21G1/00Making needles used for performing operations
    • B21G1/003Needles for special purposes, e.g. knitting, crochet, hat-pins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21GMAKING NEEDLES, PINS OR NAILS OF METAL
    • B21G1/00Making needles used for performing operations
    • B21G1/006Special treatments of pins or needles, e.g. annealing, straightening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21GMAKING NEEDLES, PINS OR NAILS OF METAL
    • B21G1/00Making needles used for performing operations
    • B21G1/10Making needles used for performing operations equipped with locking means for the material to be drawn through, e.g. for repairing tubeless tyres
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • C21D2221/10Differential treatment of inner with respect to outer regions, e.g. core and periphery, respectively
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/10Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars

Definitions

  • the invention relates to a textile tool, in particular a needle, such as a felting needle, a sewing needle, a tufting needle, a knitting needle, a knitting needle, a tufting needle, a loop taker, or the like.
  • a textile tool in particular a needle, such as a felting needle, a sewing needle, a tufting needle, a knitting needle, a knitting needle, a tufting needle, a loop taker, or the like.
  • a textile tool in particular a needle, such as a felting needle, a sewing needle, a tufting needle, a knitting needle, a knitting needle, a tufting needle, a loop taker, or the like.
  • Such textile tools are used for the mechanical production or processing of textiles.
  • Textile tools are typically made of carbon steel and cured as needed.
  • the DE 199 36 082 A1 a sewing needle and a knitting needle, each made of carbon steel.
  • the blank for the production of the needle is subjected to a heat treatment and a shot peening treatment. This results in a surface hardening of the textile tool.
  • the DE PS 21 14 734 describes a method for tempering hardened needles, resulting in longitudinal sections of different hardness. This is effected by supplying different amounts of heat at the individual longitudinal sections of the needles. In this method, the size of the hardened zones is largely determined by the size of the zones heated by the needles during the hardening process.
  • Textile tools typically have relatively fine structures that are subject to different conditions during operation.
  • the so-called working part for example, in felt needles by a front provided with one or more hooks or barbs elongated tip, in a sewing needle through the eye and other coming into contact with textile and thread lots and a hook needle through the hook and the immediately adjacent part formed of the shaft.
  • These workpieces must be highly wear-resistant and as hard as possible, but it must be made break-proof.
  • the rest of the shaft of the textile tool should often meet other conditions. This not only results in the desire for a zone-wise hardening, but also the desire for different hardening depths or hardness gradients in the textile tool.
  • the textile tool is subject to a wide range of storage and operating conditions. It must be able to be stored for a long time at various temperatures and humidities without losing its properties or corroding it. Compensation treatments, as of the DE 199 36 082 A1 proposed, are provided to increase the corrosion resistance. Such tempering treatments may be, for example, galvanic chrome plating.
  • the textile tool according to the invention comprises a tool body, i. a basic body, which consists of a chrome steel. This naturally brings a high corrosion resistance with it. Its chromium content is in the range of 11 to 30 weight percent. Preferably, it is an iron-based alloy. The total carbon content of more than 0.8 percent in at least one surface section enables hardening by martensite formation. This makes it possible to provide corrosion-resistant textile tools with high hardness and thus high wear resistance.
  • the invention has particular advantages in not cutting textile tools. These are often non-cutting needles. Such needles can also be designed to pierce textile materials, which is the case with sewing, felt and tufting needles.
  • the total carbon content includes the carbon bonded in the carbides and the metal space lattice, i. the total carbon present.
  • the total carbon content can be determined inter alia by vaporizing the metal (plasma formation) and feeding the alloy components to a spectrometer and examining them.
  • the at least one surface section, in which total carbon concentrations of at least 0.8% by weight are established, is preferably located in the working part and / or has a high degree of deformation, as described in greater detail below.
  • the hardening can be limited to specific sections (working part, shaft part) or designed differently in different sections.
  • This can produce different material properties in the shaft part and in the working part. Due to the different carbon contents and / or distributions in the shaft and working part, these can be subject to the same heat treatment and yet different Train properties.
  • the material on which the formation of the body was based is preferably X10Cr13, X20Cr13, X46Cr13, X65Cr13, X6Cr17, X6CrNi18-8 or X10CrNi18-8. It is advantageous if material which still contains the element carbon in its initial concentration is still present in the main body. In general, the concentration of carbon in the main body is between 0.1 and 0.8%, but preferably between 0.2 and 0.6% in the low-carbon regions of the body, between 0.8 and 1.2%, but preferably between 0, 9 and 1.1% in the carbon-rich areas of the same.
  • the main body preferably contains inclusions of chromium carbide. These may have been generated in a carburizing process. Thus, more chromium carbides are contained in the base material of the finished fabric tool than in the chrome steel used as the starting material.
  • the chromium carbide produced by the carburizing process may be at least partially concentrated at the surface of the textile tool. Preferably, it forms a layer of roundish crystals protruding from the surface, which are separated from one another by small distances. Preferably, adjacent crystals are not or only rarely connected by melt bridges.
  • the existing chromium carbide brings a considerable hardness with it and therefore counteracts a wear of the surface. The moreover in the body carbon present allows hardening of the body.
  • the base body preferably has at least one partial section, which near the surface has a higher total carbon content owns as surface distant (deeper).
  • sections which still have the total carbon concentration of the starting material of preferably at most 0.3% by weight can be located in the center of the textile tool.
  • the diffusion depth of the carbon may be different in zones. In this way, through-hardened areas and only surface-hardened areas can be formed on one and the same workpiece. This is, as mentioned, also possible by exposing the entire textile tool to a uniform temperature treatment during curing rather than just a zone-wise temperature treatment. In this way, the zone-wise curing can be obtained safely and reproducibly.
  • the main body may consist wholly or partly of martensite full hardness.
  • full hardness is meant the maximum achievable hardness of martensite, which is about 67 HRC and is also referred to as “glass hardness”.
  • glass hardness is achieved by stressing the martensite crystal lattice by incorporation of carbon, but the total carbon content may decrease from the surface to the core, it is possible that full hardness martensite is present only in selected zones of the textile tool.
  • martensite full hardness by thermal aftertreatment (tempering) relaxed and thus its hardness (locally) be reduced.
  • the main body can be through hardened entirely of martensite full hardness subsets and others Subsections contain only partially, for example, in a near-surface area martensite full hardness or consist of such. It is preferably free of oxides, especially on its surface.
  • the basic body preferably contains partial sections with different degrees of deformation. Typically, high degrees of deformation are encountered in particular in the working part of the textile tool. These sections are preferably through hardened.
  • the carbon which is not bound in chromium carbide, can be fairly uniformly distributed over the entire cross section of the material.
  • portions of lower degree of deformation preferably have a distinct carbon gradient, i. a decrease in carbon from the surface into the body.
  • the body has its greatest hardness in sections with the highest degrees of deformation. Subsections that are to receive the highest hardness and the largest hardness depth are usually provided with high and highest degree of deformation. Thus, before hardening, a plastic deformation of the tool blank took place, which plastically deformed the entire material cross-section. The participation of the entire cross section in the flow of the material has resulted in a high number of dislocations, which provide additional diffusion paths for the carbon and thus a high penetration depth.
  • the method according to the invention comprises the step of providing a tool blank made of a chromium steel having a chromium content of at least 11 percent, preferably 12 percent or more.
  • a next step different sections of the blank will be different strongly deformed, so that at least one working part and at least one shaft part are formed. The working part is much more deformed than the shaft part.
  • the carburizing of the tool blank is done by chromium carbide formation.
  • the carburized tool blank is brought to a temperature suitable for curing. For hardening, cooling or heating of the tool blank may be necessary. During exposure to high temperature, excess carbons not bound in carbides may diffuse from near-surface regions to deeper regions further away from the surface.
  • the tool blank For hardening the tool blank, it is exposed to a hardening temperature and then quenched to form martensite.
  • the tool blank is brought to a uniform temperature during both carburizing and curing.
  • the working part and the shaft part are exposed to substantially the same temperature.
  • This opens up the possibility of running the diffusion process on the carburized blank for a long time (several minutes).
  • a temperature difference does not have to be maintained at the blank.
  • inaccuracies in the size of the hardened areas, distortion or other undesirable effects when quenching the tool blank are suppressed.
  • the forming of the tool blank preferably captures the material of the whole, at least in the working part Tool cross-section, but in any case the degree of deformation is higher than in the shaft part. This increases the hardness during subsequent carburizing and quenching in these more highly deformed areas.
  • the carburizing is preferably carried out at a temperature between 900 ° and 1050 °, whereby not only carbon diffuses into the tool body, but also carbides, in particular chromium carbides, e.g. Cr23C6 but also mixed carbides ME23C6 and others form.
  • the carburizing is carried out at low pressure (a few millibar) and the presence of a carbon bearing gas, for example a hydrocarbon, preferably ethane, ethene or ethane.
  • a carbon bearing gas for example a hydrocarbon, preferably ethane, ethene or ethane.
  • the gas can be supplied to the textile tool in a reaction vessel permanently or in cycles (batchwise).
  • the process can be carried out as a low pressure carburizing process, as for example in the EP882811B1 is disclosed.
  • a suitable hardening temperature is set, which may be the same as the carburizing temperature.
  • the hardening temperature can also up to 100 ° above or below this temperature. All these measures have specific advantages.
  • Quenching may include one or more cooling steps and may be performed uniformly on parts of the textile tool or on the entire textile tool.
  • quenching involves freezing. This can be done with liquid nitrogen.
  • the concentration limits given here can be measured as follows.
  • the concentration of Cr in the steel can be determined with a spark spectrometer or an optical emission spectrometer.
  • the carbon concentration in the steel can be determined with a carbon-sulfur analyzer (CSA).
  • CSA carbon-sulfur analyzer
  • a material sample is melted at high temperature (about 2000 ° C), rinsed with pure oxygen and the escaping CO 2 gas is measured with an infrared measuring cell.
  • measurements with wavelength dispersive spectroscopy in which the sample is excited with an electron beam and the X-ray spectrum is measured spectroscopically, are also possible.
  • the presence of martensite or carbides can be detected by evaluating the texture in the cut.
  • FIG. 1 shows the textile tool 10 as a felting needle 11th
  • FIG. 2 shows the textile tool 10 as a sewing needle 12th
  • the textile tool 10 may also be a knitting needle, a tufting needle, a crochet hook, a loop taker, a board, or the like.
  • a textile tool typically, has a working part 14 which can come into contact with the threads, yarns or fibers.
  • the textile tool 10 also has a shaft portion 15, which serves to store the textile tool in a receptacle and to guide the working part 14 and hold.
  • the textile tool 10 is preferably made of an elongate material blank, for example a wire section, a metal strip or the like. After provision of such a blank, it is plastically deformed in a forming process in order to form the desired structures on the working part 14 and the shank part 15. In the working part 14, these are typically far further from the prototype than in the shank part 15.
  • the example of the felting needle 11 shows that the working part 14 has been reduced substantially more in diameter than the shank part 15 Diverge from circular shape. The change in shape is generated in areas that are to have a high hardness later, mainly by plastic deformation. Forming techniques are used that generate a large number of dislocations. In particular, the process is conducted so that those zones undergo a strong plastic deformation, which should later have a high hardness.
  • the existing material has been deformed much more plastically than in the shaft portion 15. This concerns both the diameter reduction and not further illustrated, arranged on the working part 15 hooks and / or barbs.
  • the example of the sewing needle It can be seen that, in particular, the region of its eye 16 as well as a subsequent yarn channel 17 and at the tip 18 has been subjected to a strong plastic deformation in order to produce the desired structures.
  • the knitting needle 13 of the working part 14 has also been deformed much more than the shank portion 15.
  • her hook 19 which has been produced by plastic deformation, characterized by a much greater flow of the material during manufacture, as it is on the shaft part 15th to be recorded.
  • FIG. 4 the example of the sewing needle 12 closer.
  • the cross section In the area of the round shaft, the cross section is essentially round. If the needle 12 was made of a wire, the cross section 20 is only slightly changed. The material is slightly compressed and flowed here. In the area of the thread groove 17, however, the cross section 21 is deformed much more strongly. In the plastic deformation of the entire cross-section 21 was transformed. The degree of deformation in the region of the eye 16 is even greater.
  • the cross section 22 is separated and, overall, very strongly deformed. The degree of deformation is slightly lower again towards the tip 18, as the cross section 23 shows.
  • the sewing needle 12 has in its shaft part 15 and its working part 14 different hardnesses. These are produced in a uniform hardening treatment.
  • the needle 12, as well as any other textile tool 10, in the inventive method when it is exposed to high temperatures and / or when it is exposed to low temperatures, both on the working part 14 and on Shaft part 15 be exposed to the same heating and cooling media. Nevertheless, despite the filigree structure of the textile tools and the consequent about the same cooling rate of shaft portion 15 and working part 14 different hardness profiles can be formed.
  • the cross section 20 in an outer near-surface zone 24 may have a relatively high carbon content and a high hardness, while a core zone 25 remote from the surface may have a lower carbon content and thus a lower hardness.
  • a near-surface zone 24 and a core zone 25 may also be present.
  • the near-surface zone 24 is thicker here.
  • the surface remote core zone 25 is much smaller. It can disappear completely.
  • the carbon content in the near-surface zone 24 of the shaft portion 15 may be as large or less than the carbon content of the near-surface zone 24 of the working part 14, for example, at the eye 16. While the carbon content in the shaft portion 15 decreases from the surface to the core, the Carbon content in the working part 14 show a slight decrease from the surface towards the core. In addition, the carbon content in the working part 14 may be higher overall than in the shaft part 15. It is also possible that the carbon content in the entire cross section 22 (21 or 23) of the working part 14 is constant.
  • the textile tool 10 is made of chromium steel prior to the heat treatment, for example, X10Cr13, X20Cr13, X46Cr13, X65Cr13, X6Cr17, X6CrNi18-8 or X10CrNi18-8. These may contain additional carbon and chromium carbides after the heat treatment.
  • FIG. 6 is a greatly enlarged section of the working part 124 of the felting needle 11 after FIG. 1 represented in the region of a notch 26.
  • the surface has, for example, 4000x magnification in the area of the notch 26 after the appearance FIG. 7 ,
  • the appearance of the surface is characterized by a number of roundish or even elongated carbide crystals, in particular chromium carbide crystals 27, which are approximately bean or pea shaped and protrude from the otherwise defined from the surface level 28. However, they preferably do not form a coherent layer and are hardly or not fused together.
  • the individual roundish carbide crystals have a diameter, preferably 0.2 to 1 .mu.m. If they are elongated, they can have a longitudinal diameter of between 2 and 3 microns and a transverse knife between 0.5 and 2 microns.
  • the surface is preferably approximately as if from FIG. 8 formed visible.
  • the carbide crystals 27 are stochastically distributed over the surface 28 and predominantly roundish bean or pea shaped. Again, this results in an overall spotty surface with a layer of carbide crystals that are embedded in the surface and partially protrude from this.
  • the individual carbide crystals 27 are spaced apart and only rarely or not fused together. Melt bridges 29 are found only in a vanishing minority of individual carbide crystals, ie, preferably at less than 20 percent of the same.
  • the size of the individual carbide crystals 27 varies between 0.3 ⁇ m and 1.5 ⁇ m. The majority of the carbide crystals have approximately roundish shapes with a diameter between 0.3 and 1.5 microns. Elongated types have a transverse blade of up to 1.5 ⁇ m and a longitudinal blade of up to 4 ⁇ m.
  • FIG. 9 another less desirable surface configuration, in which the individual carbide crystals 27 are often interconnected by melt bridges 29.
  • irregularly shaped contiguous carbide crystals are formed whose length and width exceed 1 ⁇ m, with some contiguous carbide crystal areas also larger than 2 ⁇ m.
  • the working part 14 is characterized by low sensitivity to breakage, high hardness and low thread sliding resistance.
  • FIGS. 7 and 8 A comparison of FIGS. 7 and 8 with the FIG. 9 shows how the surfaces, which have proved to be advantageous qualitatively from the in FIG. 9 different surface shown:
  • the carbides in the FIGS. 7 and 8 have a predominantly convex shape and are largely free of concave areas, while the carbides in FIG. 9 are predominantly concave shaped.
  • the carbides in the FIGS. 7 and 8 are largely free of fusion bridges.
  • the carburizing of the tool can be done as follows be made:
  • a tool blank which consists for example of a metal strip, a wire section or the like of a steel having a chromium content of at least 11 weight percent.
  • steel is meant here an iron-based alloy.
  • the tool blank preferably consists of X10Cr13, X20Cr13, X46Cr13, X65Cr13, X6Cr17, X6CrNi18-8 or X10CrNi18-8.
  • This tool blank is now subjected to forming processes. These forming processes include at least in the working part 14 plastic forming processes. In the plastic forming processes, the material in the working part 14 flows much more strongly than in the shaft part 15.
  • the forming processes may include embossing, rolling, kneading, and the like plastic forming processes.
  • the plastic deformation covers the entire material cross-section. The more deformed material has more dislocations than the less deformed material.
  • the tool blank is brought to a carbonization temperature T C.
  • T C a carbonization temperature
  • the carbonization is carried out in a vacuum oven. This is fed with low pressure of a few millibars a carbon carrier gas such as acetylene. This can be done in continuous gas flow or batchwise (pulsed).
  • a carbon carrier gas such as acetylene. This can be done in continuous gas flow or batchwise (pulsed).
  • carbon accumulates in the surface layer. Part of the carbon reacts with chrome contained in chromium steel to chromium carbide.
  • the entire textile tool 10 is brought to a hardening temperature.
  • the textile tool 10 is quenched starting from the hardening temperature T H. It is worked in one or more cooling stages. For example, the textile tool 10 may first be cooled to a quenching temperature T Q that is, for example, at or slightly above room temperature. After a time of a few seconds to minutes, the textile tool 10 can then be cooled to a freezing temperature T K in order to stay there for a longer time (one minute to several hours). The manufacturing process then ends with the reheating of the textile tool 10 to room temperature T Z.
  • T Q quenching temperature
  • T K freezing temperature
  • textile tools having hardness gradients both in the longitudinal and in the transverse direction from the outside to the inside and from the working part 14 to the shaft part 15 can be achieved. It is a high wear resistance and despite high carbon content, a high rust resistance achieved. This results in an increased life.
  • the process does not require surface activation. Due to the carbonization at high temperature, passive layers on the surface of the textile tool do not disturb the carbon input.
  • the textile tool 10 consists of chromium steel, in which carbon has been incorporated into a carbonization process to a different extent locally.
  • a heat treatment is a formation of martensite full hardness in particular achieved in those zones in which larger amounts of carbon have been registered. It can thus produce a textile tool with zones of different hardness without having to expose the individual different hard zones different process conditions in the manufacturing process.
  • the hardness control is based on the degree of deformation of the textile tool.

Abstract

Das erfindungsgemäße Textilwerkzeug (10) besteht aus Chromstahl, in den in einem Karbonisierungsprozess in lokal unterschiedlichem Maße Kohlenstoff eingelagert worden ist. In einer Wärmebehandlung wird eine Bildung von Martensit voller Härte insbesondere in solchen Zonen erreicht, in die größere Kohlenstoffanteile eingetragen worden sind. Es lässt sich so ein Textilwerkzeug mit zonenweise unterschiedlichen Härten erzeugen, ohne im Herstellungsprozess die einzelnen verschieden harten Zonen unterschiedlichen Prozessbedingungen aussetzen zu müssen. Die Härtesteuerung erfolgt anhand des Umformgrades des Textilwerkzeugs.

Description

  • Die Erfindung betrifft ein Textilwerkzeug, insbesondere eine Nadel, wie zum Beispiel eine Filznadel, eine Nähnadel, eine Tuftingnadel, eine Wirknadel, eine Stricknadel, eine Tuftingnadel, einen Schlingengreifer, oder dergleichen. Solche Textilwerkzeuge werden zum maschinellen Herstellen oder Verarbeiten von Textilien eingesetzt.
  • Textilwerkzeuge, insbesondere Nadeln, werden typischerweise aus Kohlenstoffstahl hergestellt und bedarfsweise gehärtet. Zum Beispiel offenbart die DE 199 36 082 A1 eine Nähnadel und eine Stricknadel, jeweils bestehend aus Kohlenstoffstahl. Zur oberflächlichen Erhöhung der Härte wird der Rohling zur Herstellung der Nadel einer Wärmebehandlung und einer Kugelstrahlbehandlung unterzogen. Es ergibt sich somit eine oberflächliche Härtung des Textilwerkzeugs.
  • Die DE PS 21 14 734 beschreibt ein Verfahren zum Anlassen gehärteter Nadeln, wobei sich Längsabschnitte unterschiedlicher Härte ergeben. Dies wird durch Zuführung unterschiedlicher Wärmemengen an den einzelnen Längsabschnitten der Nadeln bewirkt. Bei diesem Verfahren wird die Größe der gehärteten Zonen maßgeblich durch die Größe der an den Nadeln während des Härtevorgangs beheizten Zonen bestimmt.
  • Prinzipiell ist es auch bekannt, chromhaltige Stähle zu härten. Dazu sehen zum Beispiel die WO 2011/ 017495 A1 wie auch die US PS 6,093,303 vor, dass der zu härtende Gegenstand aus rostfreiem Stahl zunächst von einer den Kohlenstoffeintritt hindernden Passivschicht aus Chromoxid befreit und dann bei vergleichsweise niedrigen Temperaturen von weniger als 540°C einer kohlenstoffspendenden Niederdruckatmosphäre ausgesetzt wird. Die WO 2011/017495 A1 sieht als kohlenstoffspendendes Gas Acetylen vor. Beide Druckschriften streben die Vermeidung einer Karbidbildung im Stahl an.
  • Textilwerkzeuge weisen typischerweise relativ feine Strukturen auf, die im Betrieb unterschiedlichen Bedingungen unterworfen sind. Der sogenannte Arbeitsteil wird beispielsweise bei Filznadeln durch eine vordere mit ein oder mehreren Haken oder Widerhaken versehene längliche Spitze, bei einer Nähnadel durch das Öhr und sonstige mit Textil und Faden in Berührung kommende Partien und bei einer Hakennadel durch den Haken und den sich unmittelbar anschließenden Teil des Schafts gebildet. Diese Arbeitsteile müssen hoch verschleißfest und möglichst hart, dabei aber bruchfest ausgebildet sein. Der übrige Schaft des Textilwerkzeugs soll hingegen häufig anderen Bedingungen genügen. Daraus ergibt sich nicht nur der Wunsch nach einer lediglich zonenweisen Härtung, sondern auch der Wunsch nach unterschiedlichen Härtungstiefen bzw. Härtegradienten im Textilwerkzeug. Beispielsweise kann es bei einer Nähnadel angestrebt werden, den Öhrbereich durch und durch zu härten, während der sich anschließende, nicht mit dem Faden in Berührung kommende Schaftteil lediglich oberflächengehärtet sein soll. Es können somit an verschiedenen Stellen der Oberfläche des Textilwerkzeugs verschiedene Härtetiefen gewünscht sein. Darüber hinaus können an verschiedenen Stellen dieser Oberfläche verschiedene Härteverläufe in der Tiefenrichtung des Textilwerkzeugs gewünscht sein.
  • Außerdem unterliegt das Textilwerkzeug einer großen Bandbreite von Lager- und Einsatzbedingungen. Es muss bei verschiedenen Temperaturen und Feuchtigkeiten langfristig lagerbar sein, ohne seine Eigenschaften zu verlieren oder zu korrodieren. Vergütungsbehandlungen, wie von der DE 199 36 082 A1 vorgeschlagen, sind zur Erhöhung der Korrosionsfestigkeit vorgesehen. Solche Vergütungsbehandlungen können beispielsweise die galvanische Chromplattierung sein.
  • Es ist Aufgabe der Erfindung, ein Konzept anzugeben, das diesen Anforderungen genügt.
  • Diese Aufgabe wird mit dem Textilwerkzeug nach Anspruch 1 und auch mit dem Verfahren nach Anspruch 10 gelöst:
  • Das erfindungsgemäße Textilwerkzeug weist einen Werkzeugkörper d.h. einen Grundkörper auf, der aus einem Chromstahl besteht. Dieser bringt naturgemäß eine hohe Korrosionsfestigkeit mit sich. Sein Chromgehalt liegt im Bereich von 11 bis 30 Gewichtsprozent. Vorzugsweise handelt es sich um eine Eisenbasislegierung. Der Gesamtkohlenstoffgehalt von mehr als 0,8 Prozent in zumindest einem Oberflächenabschnitt ermöglicht eine Härtung durch Martensitbildung. Damit lassen sich korrosionsträge Textilwerkzeuge mit hoher Härte und somit großer Verschleißfestigkeit bereitstellen.
  • Die Erfindung hat besondere Vorteile bei nicht schneidenden Textilwerkzeugen. Dies sind oft nicht schneidende Nadeln. Solche Nadeln können auch dazu ausgebildet sein textile Materialien zu durchstechen, was bei Näh-, Filz und Tuftingnadeln der Fall ist.
  • Der Gesamtkohlenstoffgehalt umfasst den in den Karbiden und den in dem Metallraumgitter gebundenen Kohlenstoff, d.h. den insgesamt vorhandenen Kohlenstoff. Der Gesamtkohlenstoffgehalt kann unter anderem ermittelt werden, indem das Metall verdampft wird (Plasmabildung) und die Legierungsbestandteile einem Spektrometer zugeführt und dort untersucht werden. Der zumindest eine Oberflächenabschnitt, in dem sich Kohlenstoffgesamtkonzentrationen von mindestens 0,8 Gew.% einstellen, befindet sich bevorzugt im Arbeitsteil und/oder weist einen hohen Umformgrad auf, wie weiter unten detaillierter beschrieben ist.
  • Die Härtung lässt sich auf bestimmte Teilabschnitte (Arbeitsteil, Schaftteil) beschränken oder in verschiedenen Teilabschnitten unterschiedlich gestalten. Insbesondere ist es möglich, in unterschiedlichen Teilabschnitten des Textilwerkzeugs unterschiedliche Kohlenstoffgehalte oder unterschiedliche Kohlenstoffverteilungen zu erzeugen. Z.B. ist es möglich, Kohlenstoff im Schaftteil im Wesentlichen in oberflächennahen Bereichen zu konzentrieren, während der Arbeitsteil einen höheren Kohlenstoffgehalt auch in oberflächenfernen, kernnahen Bereichen aufweist. Damit lassen sich unterschiedliche Materialeigenschaften im Schaftteil und im Arbeitsteil erzeugen. Durch die unterschiedlichen Kohlenstoffgehalte und/oder -Verteilungen in Schaft- und Arbeitsteil können diese der gleichen Wärmebehandlung unterliegen und dennoch unterschiedliche Eigenschaften ausbilden.
  • Das Material, das der Bildung des Grundkörpers zugrunde lag, ist vorzugsweise X10Cr13, X20Cr13, X46Cr13, X65Cr13, X6Cr17, X6CrNi18-8 oder X10CrNi18-8. Es ist von Vorteil, wenn Material, welches das Element Kohlenstoff noch in seiner Ausgangskonzentration enthält, noch im Grundkörper vorhanden ist. Allgemein liegt die Konzentration von Kohlenstoff im Grundkörper zwischen 0,1 und 0,8%, bevorzugt jedoch zwischen 0,2 und 0,6% in den kohlenstoffärmsten Bereichen des Grundkörpers, zwischen 0,8 und 1,2% bevorzugt jedoch zwischen 0,9 und 1,1% in den kohlenstoffreichsten Bereichen desselben.
  • Vorzugsweise enthält der Grundkörper Einlagerungen von Chromkarbid. Diese können in einem Aufkohl-Prozess erzeugt worden sein. Damit sind in dem Grundmaterial des fertig hergestellten Textilwerkzeugs mehr Chromkarbide enthalten, als in dem Chromstahl, der als Ausgangsmaterial verwendet wurde. Das durch den Aufkohlprozess erzeugte Chromkarbid kann zumindest teilweise an der Oberfläche des Textilwerkzeugs konzentriert sein. Vorzugsweise bildet es dort eine Lage rundlicher aus der Oberfläche ragender Kristalle, die voneinander durch geringe Abstände getrennt sind. Vorzugsweise sind benachbarte Kristalle miteinander nicht oder nur selten durch Schmelzbrücken verbunden. Das vorhandene Chromkarbid bringt eine erhebliche Härte mit sich und wirkt deshalb einem Verschleiß der Oberfläche entgegen. Der darüber hinaus in dem Grundkörper vorhandene Kohlenstoff ermöglicht ein Härten des Grundkörpers. Insbesondere weist der Grundkörper vorzugsweise zumindest einen Teilabschnitt auf, der oberflächennah einen höheren Gesamtkohlenstoffanteil besitzt als oberflächenfern (tiefer). Hierbei können sich im Zentrum des Textilwerkzeugs Abschnitte befinden, die nach wie vor die Gesamtkohlenstoffkonzentration des Ausgangsmaterials von vorzugsweise höchstens 0,3 Gew.% besitzen.
  • Allgemein kann die Diffusionstiefe des Kohlenstoffs zonenweise unterschiedlich sein. Auf diese Weise können durchgehärtete Bereiche und nur oberflächlich gehärtete Bereiche an ein und demselben Werkstück ausgebildet werden. Dies ist, wie erwähnt, auch möglich, indem das gesamte Textilwerkzeug bei dem Härten einer einheitlichen Temperaturbehandlung und nicht lediglich einer zonenweisen Temperaturbehandlung ausgesetzt wird. Auf diese Weise kann die zonenweise Härtung sicher und reproduzierbar erhalten werden. Der Grundkörper kann ganz oder teilweise aus Martensit voller Härte bestehen.
  • Unter "voller Härte" wird dabei die maximal von Martensit erzielbare Härte verstanden, die bei etwa 67 HRC liegt und auch als "Glashärte" bezeichnet wird. Weil die Glashärte durch Verspannung des Martensitkristallgitters durch Einlagerung von Kohlenstoff erreicht wird, der Gesamtkohlenstoffgehalt jedoch von der Oberfläche zum Kern hin abnehmen kann, ist es möglich, dass Martensit voller Härte nur in ausgewählten Zonen des Textilwerkzeugs vorhanden ist. Außerdem kann Martensit voller Härte durch thermische Nachbehandlung (Anlassen) entspannt und somit dessen Härte (lokal) gemindert werden.
  • Der Grundkörper kann durchgehärtete ganz aus Martensit voller Härte bestehende Teilabschnitte und andere Teilabschnitte enthalten, die nur bereichsweise zum Beispiel in einem oberflächennahen Bereich Martensit voller Härte enthalten oder aus solchem bestehen. Er ist vorzugsweise insbesondere an seiner Oberfläche oxidfrei.
  • Vorzugsweise enthält der Grundkörper Teilabschnitte mit verschiedenen Umformgraden. Typischerweise sind insbesondere im Arbeitsteil des Textilwerkzeugs hohe Umformgrade anzutreffen. Diese Teilabschnitte sind vorzugsweise durchgehärtet. Der nicht in Chromkarbid gebundene Kohlenstoff kann sich hier einigermaßen gleichmäßig auf den gesamten Materialquerschnitt verteilen. Teilabschnitte mit niedrigerem Umformgrad weisen hingegen vorzugsweise einen deutlichen Kohlenstoffgradienten, d.h. eine Kohlenstoffabnahme von der Oberfläche in den Körper hinein auf. Vorzugsweise hat der Grundkörper seine größte Härte in Teilabschnitten mit den höchsten Umformgraden. Teilabschnitte, die die größte Härte und die größte Härtetiefe erhalten sollen, werden in der Regel mit hohem und höchstem Umformgrad bereitgestellt. So hat dann vor dem Härten eine plastische Verformung des Werkzeugrohlings stattgefunden, die den gesamten Materialquerschnitt plastisch verformt hat. Die Teilnahme des gesamten Querschnitts am Fließen des Materials hat zu einer hohen Anzahl von Versetzungen geführt, die zusätzliche Diffusionswege für den Kohlenstoff und somit eine hohe Eindringtiefe schaffen.
  • Das erfindungsgemäße Verfahren umfasst den Schritt des Bereitstellens eines Werkzeugrohlings aus einem Chromstahl mit einem Chromgehalt von mindestens 11 Prozent, vorzugsweise 12 Prozent oder mehr. In einem nächsten Schritt werden verschiedene Teilabschnitte des Rohlings unterschiedlich stark verformt, so dass mindestens ein Arbeitsteil und mindestens ein Schaftteil geformt werden. Der Arbeitsteil ist dabei wesentlich stärker verformt als der Schaftteil. Nach diesem Schritt erfolgt das Aufkohlen des Werkzeugrohlings unter Chromkarbidbildung. In einem weiteren Bearbeitungsschritt wird der aufgekohlte Werkzeugrohling auf eine zum Härten geeignete Temperatur, gebracht. Zur Härtung kann ein Abkühlen oder ein Erhitzen des Werkzeugsrohlings nötig sein. Während der Beaufschlagung mit hoher Temperatur kann nicht in Karbiden gebundener überschüssiger Kohlenstoff von oberflächennahen Bereichen in tiefere oberflächenfernere Bereiche diffundieren.
  • Zum Härten des Werkzeugrohlings wird dieser einer Härtetemperatur ausgesetzt und danach abgeschreckt, wobei sich Martensit bildet.
  • Bei den vorliegenden Verfahren wird der Werkzeugrohling sowohl beim Aufkohlen als auch beim Härten auf jeweils eine einheitliche Temperatur gebracht. Insbesondere werden der Arbeitsteil und der Schaftteil im Wesentlichen der gleichen Temperatur ausgesetzt. Dies eröffnet die Möglichkeit, den Diffusionsprozess an dem aufgekohlten Rohling längere Zeit (mehrere Minuten) ablaufen zu lassen. Eine Temperaturdifferenz muss am Rohling nicht aufrechterhalten werden. Dadurch werden Ungenauigkeiten hinsichtlich der Größe der gehärteten Bereiche, Verzug oder sonstige unerwünschte Effekte beim Abschrecken des Werkzeugrohlings unterdrückt.
  • Das Umformen des Werkzeugrohlings erfasst zumindest im Arbeitsteil vorzugsweise das Material des gesamten Werkzeugquerschnitts, jedenfalls aber ist der Umformgrad höher als im Schaftteil. Dadurch wird die Härte beim nachfolgenden Aufkohlen und Abschrecken in diesen stärker umgeformten Bereichen größer.
  • Ein Aktivierungsschritt zur Entfernung von Passivschichten ist nicht unbedingt erforderlich. Das Aufkohlen erfolgt vorzugsweise bei einer Temperatur zwischen 900° und 1050°, wobei nicht nur Kohlenstoff in den Werkzeugkörper eindiffundiert, sondern sich auch Karbide, insbesondere Chromkarbide, z.B. Cr23C6 aber auch Mischkarbide ME23C6 und andere bilden.
  • Vorzugsweise wird das Aufkohlen bei geringem Druck (wenige Millibar) und der Anwesenheit eines kohlenstofftragenden Gases, zum Beispiel eines Kohlenwasserstoffs, vorzugsweise Äthan, Äthen oder Äthin vorgenommen. Das Gas kann dem Textilwerkzeug in einem Reaktionsgefäß permanent oder in Zyklen (schubweise) zugeführt werden. Im Großen und Ganzen kann das Verfahren als ein Niederdruck Aufkohlverfahren durchgeführt werden, wie es zum Beispiel in der EP882811B1 offenbart ist. Diese Verfahren ermöglichen die Herstellung randoxidationsfreier Werkzeuge.
  • Kostengünstiger sind jedoch atmosphärische Verfahren zum Aufkohlen des Werkzeugs. Bekannt ist hier unter anderem das Aufkohlen im Salzbad, wie es unter anderem in der DE 10 2006 026 883 B3 beschrieben ist.
  • Beim nachfolgenden Härten wird eine geeignete Härtetemperatur eingestellt, die gleich sein kann wie die Temperatur beim Aufkohlen. Die Härtetemperatur kann jedoch auch bis zu 100° über oder unter dieser Temperatur liegen. Alle diese Maßnahmen bringen spezifische Vorteile mit sich.
  • Das Abschrecken kann eine oder mehrere Kühlschritte umfassen und an Teilen des Textilwerkzeugs oder an dem gesamten Textilwerkzeug einheitlich durchgeführt werden. Vorzugsweise gehört zum Abschrecken ein Tiefkühlen. Dieses kann mit flüssigem Stickstoff durchgeführt werden.
  • Die hier angegebenen Konzentrationsgrenzen können folgendermaßen gemessen werden. Die Konzentration von Cr im Stahl kann mit einem Funkenspektrometer bzw. einem optischen Emissionsspektrometer bestimmt werden. Die Kohlenstoffkonzentration im Stahl kann mit einem Kohlenstoff-Schwefel Analysator (CSA) bestimmt werden. Zur Messung wird eine Materialprobe bei hoher Temperatur (ca. 2000° C) geschmolzen, mit reinem Sauerstoff gespült und das entweichende CO2-Gas wird mit einer Infrarotmesszelle gemessen. Alternativ aber weniger vorteilhaft sind auch Messungen mit Wavelength Dispersiv Spectroscopy, bei denen die Probe mit einem Elektronenstrahl angeregt wird und das Röntgenspektrum spektroskopisch gemessen wird, möglich.
  • Das Vorhandensein von Martensit bzw. von Karbiden kann durch Bewertung des Gefüges im Schliff nachgewiesen werden.
  • Weitere Einzelheiten vorteilhafter Ausführungsformen der Erfindung ergeben sich aus der Zeichnung, der Beschreibung oder Ansprüchen. Es zeigen:
    • Figur 1 bis 3 verschiedene Ausführungsformen von Textilwerkzeugen, in schematisierten Darstellungen.
    • Figur 4 eine Nähnadel nach Figur 2, in schematisierter ausschnittsweiser Seitenansicht mit Querschnitten,
    • Figur 5 ein Temperaturzeitdiagramm für das Härten des Textilwerkzeugs,
    • Figur 6 ein stark vergrößerter Ausschnitt aus dem Arbeitsteil eines Textilwerkzeugs nach Figur 1,
    • Figur 7 eine stark vergrößerte Oberflächenansicht des Arbeitsteils nach Figur 6 im Bereich seiner Kerbe,
    • Figur 8 eine stark vergrößerte Oberflächenansicht des Arbeitsteils nach Figur 6 im Bereich seiner Spitze und
    • Figur 9 eine stark vergrößerte Oberflächenansicht eines Arbeitsteils nach Figur 6 im Bereich seiner Spitze bei unzulänglicher Oberflächenqualität.
  • In Figur 1 bis 3 wird ein Textilwerkzeug 10 in verschiedenen Ausgestaltungen veranschaulicht. Figur 1 zeigt das Textilwerkzeug 10 als Filznadel 11. Figur 2 zeigt das Textilwerkzeug 10 als Nähnadel 12. Figur 3 zeigt das Textilwerkzeug 10 als Stricknadel 13. Das Textilwerkzeug 10 kann außerdem eine Wirknadel, eine Tuftingnadel, eine Häkelnadel, ein Schlingengreifer, eine Platine, oder dergleichen mehr sein.
  • Typischerweise weist ein Textilwerkzeug, gleich welcher Bauart, einen Arbeitsteil 14 auf, der mit den Fäden, den Garnen oder den Fasern in Berührung kommen kann. Das Textilwerkzeug 10 weist außerdem einen Schaftteil 15 auf, der dazu dient, das Textilwerkzeug in einer Aufnahme zu lagern und den Arbeitsteil 14 zu führen und zu halten.
  • Das Textilwerkzeug 10 wird vorzugsweise aus einem länglichen Materialzuschnitt, beispielsweise einem Drahtabschnitt, einem Blechstreifen oder dergleichen, hergestellt. Nach Bereitstellung eines solchen Rohlings wird dieser in einem Umformvorgang plastisch verformt, um an dem Arbeitsteil 14 und dem Schaftteil 15 die gewünschten Strukturen auszubilden. Diese sind in dem Arbeitsteil 14 typischerweise wesentlich weiter von der Urform entfernt als in dem Schaftteil 15. Am Beispiel der Filznadel 11 ist erkennbar, dass der Arbeitsteil 14 im Durchmesser wesentlich stärker reduziert worden ist als der Schaftteil 15. Auch kann der Querschnitt deutlich von der Kreisform abweichen. Die Formänderung wird in Bereichen, die später eine große Härte aufweisen sollen, vorwiegend durch plastisches Umformen erzeugt. Es werden Umformtechniken genutzt, die eine große Anzahl von Versetzungen generieren. Insbesondere wird der Prozess so geführt, dass diejenigen Zonen einer starken plastischen Verformung unterliegen, die später eine große Härte aufweisen sollen.
  • In dem Arbeitsteil 14 ist das vorhandene Material wesentlich stärker plastisch verformt worden als im Schaftteil 15. Dies betrifft sowohl die Durchmesserreduktion als auch nicht weiter veranschaulichte, am Arbeitsteil 15 angeordnete Haken und/oder Widerhaken. Am Beispiel der Nähnadel 12 ist erkennbar, dass insbesondere der Bereich ihres Öhrs 16 sowie einer sich anschließenden Fadenrinne 17 sowie an der Spitze 18 einer starken plastischen Verformung unterworfen worden ist, um die gewünschten Strukturen zu erzeugen. Bei der Stricknadel 13 ist der Arbeitsteil 14 ebenfalls wesentlich stärker verformt worden als der Schaftteil 15. Insbesondere ihr Haken 19, der durch plastische Verformung hergestellt worden ist, zeichnet sich durch ein wesentlich stärkeres Fließen des Materials während der Herstellung aus, als es am Schaftteil 15 zu verzeichnen ist.
  • Diesen Umstand veranschaulicht Figur 4 am Beispiel der Nähnadel 12 näher. Im Bereich des runden Schafts ist der Querschnitt im Wesentlichen rund. Wurde die Nadel 12 aus einem Draht hergestellt, ist der Querschnitt 20 nur geringfügig verändert. Das Material ist hier wenig gestaucht und geflossen. Im Bereich der Fadenrinne 17 ist der Querschnitt 21 hingegen wesentlich stärker verformt. Bei der plastischen Deformation wurde der gesamte Querschnitt 21 umgeformt. Noch stärker ist der Umformgrad im Bereich des Öhrs 16. Hier ist der Querschnitt 22 aufgetrennt und insgesamt sehr stark verformt. Etwas geringer ist der Verformungsgrad wieder zu der Spitze 18 hin, wie der Querschnitt 23 zeigt.
  • Die Nähnadel 12 weist in ihrem Schaftteil 15 und ihrem Arbeitsteil 14 unterschiedliche Härten auf. Diese werden in einer einheitlichen Härtungsbehandlung erzeugt. Dabei kann die Nadel 12, wie auch jedes andere Textilwerkzeug 10, bei dem erfindungsgemäßen Verfahren, wenn es hohen Temperaturen und/oder wenn es niedrigen Temperaturen ausgesetzt wird, jeweils sowohl am Arbeitsteil 14 als auch am Schaftteil 15 gleichen Heiz- und Kühlmedien ausgesetzt sein. Dennoch können sich trotz der filigranen Struktur der Textilwerkzeuge und der daraus folgenden etwa gleichen Abkühlgeschwindigkeit von Schaftteil 15 und Arbeitsteil 14 unterschiedliche Härteprofile ausbilden. Beispielsweise kann in dem Schaftteil 15 der Querschnitt 20 in einer äußeren oberflächennahen Zone 24 einen relativ hohen Kohlenstoffanteil und eine große Härte aufweisen, während eine oberflächenferne Kernzone 25 einen geringeren Kohlenstoffgehalt und somit eine geringere Härte aufweist. In dem Querschnitt 22 können ebenfalls eine oberflächennahe Zone 24 und eine Kernzone 25 vorhanden sein. Vorzugsweise ist hier jedoch die oberflächennahe Zone 24 dicker. Die oberflächenferne Kernzone 25 ist wesentlich kleiner. Sie kann auch ganz verschwinden. Der Kohlenstoffanteil in der oberflächennahen Zone 24 des Schaftteils 15 kann so groß oder auch geringer sein als der Kohlenstoffgehalt der oberflächennahen Zone 24 des Arbeitsteils 14, beispielsweise am Öhr 16. Während der Kohlenstoffgehalt im Schaftteil 15 von der Oberfläche zu dem Kern hin abnimmt, kann der Kohlenstoffgehalt im Arbeitsteil 14 eine geringe Abnahme von der Oberfläche zum Kern hin zeigen. Zusätzlich kann der Kohlenstoffgehalt in dem Arbeitsteil 14 insgesamt höher als in dem Schaftteil 15 sein. Es ist auch möglich, dass der Kohlenstoffgehalt im gesamten Querschnitt 22 (21 oder 23) des Arbeitsteils 14 konstant ist.
  • Vorzugsweise besteht das Textilwerkzeug 10 vor der Wärmebehandlung aus einem Chromstahl, zum Beispiel X10Cr13, X20Cr13, X46Cr13, X65Cr13, X6Cr17, X6CrNi18-8 oder X10CrNi18-8. Diese können nach der Wärmebehandlung zusätzlichen Kohlenstoff und Chromkarbide enthalten.
  • In Figur 6 ist ein stark vergrößerter Ausschnitt aus dem Arbeitsteil 124 der Filznadel 11 nach Figur 1 im Bereich einer Kerbe 26 dargestellt. Die Oberfläche hat bei beispielsweise 4000facher Vergrößerung im Bereich der Kerbe 26 das Aussehen nach Figur 7. Wie ersichtlich, wird das Aussehen der Oberfläche von einer Anzahl rundlicher oder auch länglicher Karbid-Kristalle, insbesondere Chromkarbid-Kristalle 27, geprägt, die ungefähr bohnen- oder erbsenförmig sind und aus der sonst von der Oberfläche definierten Ebene 28 herausragen. Sie bilden jedoch vorzugsweise keine zusammenhängende Schicht und sind miteinander kaum oder gar nicht verschmolzen. Die einzelnen rundlichen Karbid-Kristalle weisen einen Durchmesser, vorzugsweise 0,2 bis 1 µm auf. Sind sie länglich, können sie einen Längsmesser von zwischen 2 und 3 µm und einem Quermesser zwischen 0,5 und 2 µm aufweisen.
  • Außerhalb der Kerbe 26, insbesondere im Bereich der Spitze des Arbeitsteils, ist die Oberfläche vorzugsweise etwa wie aus Figur 8 ersichtlich ausgebildet. Die Karbid-Kristalle 27 sind stochastisch über die Oberfläche 28 verteilt und vorwiegend rundlich bohnen- oder erbsenförmig. Wiederum ergibt sich eine insgesamt pickelig erscheinende Oberfläche mit einer Lage aus Karbid-Kristallen, die in die Oberfläche eingebettet sind und teilweise aus dieser heraus ragen. Die einzelnen Karbidkristalle 27 sind voneinander beabstandet und nur selten oder nicht miteinander verschmolzen. Schmelzbrücken 29 sind nur bei einer verschwindenden Minderheit von einzelnen Karbidkristallen anzutreffen, d.h. vorzugsweise bei weniger als 20 Prozent derselben. Die Größe der einzelnen Karbid-Kristalle 27 schwankt zwischen 0,3 µm und 1,5 µm. Die Mehrzahl der Karbid-Kristalle hat etwa rundliche Formen mit einem Durchmesser zwischen 0,3 und 1,5 µm. Längliche Typen haben einen Quermesser von bis zu 1,5 µm und einen Längsmesser von bis zu 4 µm.
  • Zur besseren Verdeutlichung veranschaulicht Figur 9 noch eine weniger wünschenswerte Oberflächenkonfiguration, bei der die einzelnen Karbid-Kristalle 27 häufig durch Schmelzbrücken 29 untereinander verbunden sind. Es bilden sich dadurch unregelmäßig geformte zusammenhängende Karbid-Kristalle, deren Länge und Breite 1 µm überschreiten, wobei manche zusammenhängende Karbid-Kristallbereiche auch größer als 2 µm sind.
  • Die Filznadel 11 und allgemein ein Textilwerkzeug 10 mit einer gehärteten Oberflächenstruktur nach Figur 7 und 8 am Arbeitsteil 14 zeichnet sich durch geringe Bruchempfindlichkeit, hohe Härte und geringe Fadengleitwiderstände aus.
  • Ein Vergleich der Figuren 7 und 8 mit der Figur 9 zeigt wie sich die Oberflächen, die sich als vorteilhaft erwiesen haben, qualitativ von der in Figur 9 gezeigten Oberfläche unterscheiden:
  • Die Karbide in den Figuren 7 und 8 haben eine überwiegend konvexe Form und sind weitgehend frei von konkaven Bereichen, während die Karbide in Figur 9 überwiegend konkav geformt sind. Die Karbide in den Figuren 7 und 8 sind weitgehend schmelzbrückenfrei.
  • Die Aufkohlung des Werkzeugs kann folgendermaßen vorgenommen werden:
  • In einem ersten Schritt wird ein Werkzeugrohling bereitgestellt, der beispielsweise aus einem Blechstreifen, einem Drahtabschnitt oder dergleichen aus einem Stahl mit einem Chromgehalt von mindestens 11 Gewichtsprozent besteht. Unter Stahl wird hier eine Eisenbasislegierung verstanden. Bevorzugt besteht der Werkzeugrohling aus X10Cr13, X20Cr13, X46Cr13, X65Cr13, X6Cr17, X6CrNi18-8 oder X10CrNi18-8. Dieser Werkzeugrohling wird nun Umformprozessen unterzogen. Diese Umformprozesse umfassen mindestens im Arbeitsteil 14 plastische Umformprozesse. Bei den plastischen Umformprozessen fließt das Material im Arbeitsteil 14 wesentlich stärker als im Schaftteil 15. Die Umformprozesse können Prägen, Walzen, Kneten, und dergleichen plastische Umformverfahren umfassen. An durchzuhärtenden Stellen des Arbeitsteils 14 erfasst die plastische Umformung den gesamten Materialquerschnitt. Das stärker verformte Material hat dabei mehr Versetzungen als das schwächer verformte Material.
  • In einem nächsten Arbeitsschritt wird der Werkzeugrohling auf eine Karbonisierungstemperatur TC gebracht. Diese liegt vorzugsweise zwischen 900° C und 1050° C. Das Karbonisieren wird in einem Vakuumofen durchgeführt. Diesem wird mit geringem Druck von einigen Millibar ein Kohlenstoffträgergas beispielsweise Acetylen zugeführt. Dieses kann in kontinuierlichem Gasstrom oder auch schubweise (gepulst) geschehen. Hierbei reichert sich Kohlenstoff in der Oberflächenschicht an. Ein Teil des Kohlenstoffs reagiert mit im Chromstahl enthaltenen Chrom zu Chromkarbid.
  • In einem nachfolgenden Härteprozess wird vorzugsweise das gesamte Textilwerkzeug 10 auf eine Härtetemperatur gebracht.
  • In einem nachfolgenden Schritt wird das Textilwerkzeug 10 von der Härtetemperatur TH ausgehend abgeschreckt. Es wird dabei in einer oder mehreren Kühlstufen gearbeitet. Zum Beispiel kann das Textilwerkzeug 10 zunächst auf eine Abschrecktemperatur TQ abgekühlt werden, die zum Beispiel bei oder wenig oberhalb der Zimmertemperatur liegt. Nach einer Zeit von wenigen Sekunden bis Minuten kann das Textilwerkzeug 10 dann auf eine Tiefkühltemperatur TK abgekühlt werden, um dort längere Zeit (eine Minute bis mehreren Stunden) zu verweilen. Der Herstellungsprozess endet dann mit der Rückerwärmung des Textilwerkzeugs 10 auf Zimmertemperatur TZ.
  • Mit dem erfindungsgemäßen Konzept lassen sich Textilwerkzeuge mit Härtegradienten sowohl in Längs- als auch Querrichtung von außen nach innen sowie von dem Arbeitsteil 14 zu dem Schaftteil 15 hin erzielen. Es wird ein hoher Verschleißwiderstand und trotz hohen Kohlenstoffgehalts eine hohe Rostbeständigkeit erreicht. Es ergibt sich eine erhöhte Lebensdauer. Das Verfahren kommt ohne Oberflächenaktivierung aus. Infolge der Karbonisierung bei hoher Temperatur stören Passivschichten auf der Oberfläche des Textilwerkzeugs den Kohlenstoffeintrag nicht.
  • Das erfindungsgemäße Textilwerkzeug 10 besteht aus Chromstahl, in den in einem Karbonisierungsprozess in lokal unterschiedlichem Maße Kohlenstoff eingelagert worden ist. In einer Wärmebehandlung wird eine Bildung von Martensit voller Härte insbesondere in solchen Zonen erreicht, in die größere Kohlenstoffanteile eingetragen worden sind. Es lässt sich so ein Textilwerkzeug mit zonenweise unterschiedlichen Härten erzeugen, ohne im Herstellungsprozess die einzelnen verschieden harten Zonen unterschiedlichen Prozessbedingungen aussetzen zu müssen. Die Härtesteuerung erfolgt anhand des Umformgrades des Textilwerkzeugs.
  • Bezugszeichenliste:
  • 10
    Textilwerkzeug
    11
    Filznadel
    12
    Nähnadel
    13
    Stricknadel
    14
    Arbeitsteil
    15
    Schaftteil
    16
    Öhr
    17
    Fadenbereich
    18
    Spitze
    19
    Haken
    20 - 23
    Querschnitt
    24
    oberflächennahe Zone des Schaftteils 15
    25
    oberflächenferne Kernzone des Schaftteils 15
    26
    Kerbe
    27
    Karbidkristalle
    28
    Ebene
    29
    Schmelzbrücken

Claims (15)

  1. Textilwerkzeug (10), insbesondere Nadel,
    das einen Grundkörper aufweist, der aus einem Chromstahl besteht,
    der einen Chromgehalt von 11% bis 30%
    und einen Gesamtkohlenstoffgehalt von mehr als 0,8% in zumindest einem Oberflächenabschnitt besitzt.
  2. Textilwerkzeug nach Anspruch 1, dadurch gekennzeichnet, dass der Grundkörper aus einem aufgekohlten Chromstahl - mit einem Ausgangskohlenstoffgehalt von nicht mehr als 0,7% oder 0,5% - vorzugsweise jedoch nicht mehr als 0,3% besteht.
  3. Textilwerkzeug nach einem der vorigen Ansprüche,
    dadurch gekennzeichnet, dass der Grundkörper Chromkarbide enthält.
  4. Textilwerkzeug nach einem der vorigen Ansprüche,
    dadurch gekennzeichnet, dass der Grundkörper in oberflächennahen Bereichen einen höheren Kohlenstoffgehalt hat als in oberflächenferneren Bereichen.
  5. Textilwerkzeug nach einem der vorigen Ansprüche,
    dadurch gekennzeichnet, dass der Grundkörper ganz oder anteilig aus Martensit voller Härte besteht.
  6. Textilwerkzeug nach einem der vorigen Ansprüche,
    dadurch gekennzeichnet, dass der Grundkörper Bereiche (14, 15) aufweist, deren Material unterschiedliche Umformgrade hat.
  7. Textilwerkzeug nach einem der vorigen Ansprüche,
    dadurch gekennzeichnet, dass der Grundkörper länglich ausgebildet ist und entlang seiner Länge Bereiche (14, 15) mit unterschiedlichem Umformgrad aufweist.
  8. Textilwerkzeug nach einem der vorigen Ansprüche,
    dadurch gekennzeichnet, dass der Grundkörper in Bereichen mit größeren Umformgraden eine höhere Härte aufweist als in Bereichen mit niedrigeren Umformgraden.
  9. Textilwerkzeug nach einem der vorigen Ansprüche,
    dadurch gekennzeichnet, dass der Grundkörper in Bereichen mit kleineren Umformgraden weniger tief gehärtet ist als in Bereichen mit größeren Umformgraden.
  10. Verfahren zur Bereitstellung von Textilwerkzeugen (10), insbesondere Nadeln, mit folgenden Schritten:
    Bereitstellen eines Werkzeugrohlings aus einem Chromstahl mit einem Chromgehalt von mindestens 11 %,
    Umformen verschiedener Bereiche des Rohlings mit unterschiedlichen Umformgraden zur Erzeugung mindestens eines Arbeitsteils (14) und eines Schaftteils (15), Aufkohlen des Werkzeugrohlings unter Chromkarbidbildung,
    Beaufschlagen des aufgekohlten Werkzeugrohlings mit einer Härtetemperatur,
    Abschrecken des Werkzeugrohlings zur Ausbildung von Martensit.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass das Umformen des Werkzeugrohlings im Arbeitsteil (14) ein Fließen des Materials im gesamten Werkzeugquerschnitt beinhaltet.
  12. Verfahren der vorigen Ansprüche, dadurch gekennzeichnet, dass das Aufkohlen bei einer Temperatur zwischen 900°C und 1050°C erfolgt.
  13. Verfahren der vorigen Ansprüche, dadurch gekennzeichnet, dass das Aufkohlen mittels eines kohlenstoffhaltigen Trägergases, vorzugsweise eines Kohlenwasserstoffs, vorzugsweise Äthan, Äthen oder Äthin vorgenommen wird.
  14. Verfahren der vorigen Ansprüche, dadurch gekennzeichnet, dass das Härten bei einer Temperatur vorgenommen wird, die größer, gleich oder kleiner ist als die Temperatur beim Aufkohlen.
  15. Verfahren der vorigen Ansprüche, dadurch gekennzeichnet, dass das Abschrecken ein Tiefkühlen des Werkzeugrohlings umfasst.
EP13198583.0A 2013-12-19 2013-12-19 Textilwerkzeug und dessen Herstellungsverfahren Active EP2886668B1 (de)

Priority Applications (20)

Application Number Priority Date Filing Date Title
SI201331309T SI2886668T1 (sl) 2013-12-19 2013-12-19 Tekstilno orodje in postopek njegove izdelave
ES13198583T ES2707585T3 (es) 2013-12-19 2013-12-19 Herramienta textil y su procedimiento de fabricación
PT13198583T PT2886668T (pt) 2013-12-19 2013-12-19 Ferramenta têxtil e método de fabricação do mesmo
EP13198583.0A EP2886668B1 (de) 2013-12-19 2013-12-19 Textilwerkzeug und dessen Herstellungsverfahren
JP2016541565A JP6556141B2 (ja) 2013-12-19 2014-12-09 織物用器具およびその製造方法
EP14809042.6A EP3084017B1 (de) 2013-12-19 2014-12-09 Textilwerkzeug und dessen herstellungsverfahren
HUE14809042A HUE041641T2 (hu) 2013-12-19 2014-12-09 Textilszerszám és eljárás annak elõállítására
BR112016013426-5A BR112016013426B1 (pt) 2013-12-19 2014-12-09 ferramenta para produtos têxteis e método de fabricação para essa ferramenta
TR2019/02562T TR201902562T4 (tr) 2013-12-19 2014-12-09 Tekstil aleti ve bunun üretim yöntemi.
CN201480069077.2A CN106062218B (zh) 2013-12-19 2014-12-09 纺织工具和用于所述纺织工具的制造方法
MX2016008153A MX369012B (es) 2013-12-19 2014-12-09 Herramienta para textiles y método de producción para la misma.
US15/106,006 US10487429B2 (en) 2013-12-19 2014-12-09 Tool for textiles and production method for same
SI201431092T SI3084017T1 (sl) 2013-12-19 2014-12-09 Tekstilno orodje in postopek za njegovo izdelavo
ES14809042T ES2713375T3 (es) 2013-12-19 2014-12-09 Herramienta textil y su procedimiento de fabricación
PT14809042T PT3084017T (pt) 2013-12-19 2014-12-09 Ferramenta têxtil e procedimento para o fabrico da mesma
RU2016129123A RU2682264C1 (ru) 2013-12-19 2014-12-09 Инструмент для текстиля и способ его изготовления
KR1020167018464A KR102414280B1 (ko) 2013-12-19 2014-12-09 직물용 도구 및 그 제조 방법
PCT/EP2014/077022 WO2015091103A1 (de) 2013-12-19 2014-12-09 Textilwerkzeug und herstellungsverfahren für dieses
PL14809042T PL3084017T3 (pl) 2013-12-19 2014-12-09 Narządzie tekstylne i sposób jego wytwarzania
TW103143991A TWI544087B (zh) 2013-12-19 2014-12-17 紡織工具及其製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13198583.0A EP2886668B1 (de) 2013-12-19 2013-12-19 Textilwerkzeug und dessen Herstellungsverfahren

Publications (2)

Publication Number Publication Date
EP2886668A1 true EP2886668A1 (de) 2015-06-24
EP2886668B1 EP2886668B1 (de) 2018-12-12

Family

ID=49880481

Family Applications (2)

Application Number Title Priority Date Filing Date
EP13198583.0A Active EP2886668B1 (de) 2013-12-19 2013-12-19 Textilwerkzeug und dessen Herstellungsverfahren
EP14809042.6A Active EP3084017B1 (de) 2013-12-19 2014-12-09 Textilwerkzeug und dessen herstellungsverfahren

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP14809042.6A Active EP3084017B1 (de) 2013-12-19 2014-12-09 Textilwerkzeug und dessen herstellungsverfahren

Country Status (16)

Country Link
US (1) US10487429B2 (de)
EP (2) EP2886668B1 (de)
JP (1) JP6556141B2 (de)
KR (1) KR102414280B1 (de)
CN (1) CN106062218B (de)
BR (1) BR112016013426B1 (de)
ES (2) ES2707585T3 (de)
HU (1) HUE041641T2 (de)
MX (1) MX369012B (de)
PL (1) PL3084017T3 (de)
PT (2) PT2886668T (de)
RU (1) RU2682264C1 (de)
SI (2) SI2886668T1 (de)
TR (1) TR201902562T4 (de)
TW (1) TWI544087B (de)
WO (1) WO2015091103A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3483319B1 (de) 2017-11-09 2021-12-22 Groz-Beckert KG Textilwerkzeug mit indikatorschicht

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2114734A1 (de) 1970-06-09 1971-12-16 Torrington Co Gehartete und selektiv angelassene Nadel
US3753412A (en) * 1971-12-02 1973-08-21 Torrington Co Selectively hardened needles
US4049430A (en) * 1976-08-18 1977-09-20 Carpenter Technology Corporation Precipitation hardenable stainless steel
DE2838135A1 (de) * 1978-09-01 1980-03-13 Singer Spezialnadelfab Arbeitswerkzeug insbesondere fuer textilmaschinen und verfahren zur herstellung dieser arbeitswerkzeuge
CH641840A5 (en) * 1977-06-16 1984-03-15 Standardgraph Filler & Fiebig Process for increasing the abrasion resistance of workpieces of stainless steel or nickel metal alloys
US6093303A (en) 1998-08-12 2000-07-25 Swagelok Company Low temperature case hardening processes
DE19936082A1 (de) 1998-02-04 2001-02-01 Organ Needle Nadeln und Verfahren zu deren Herstellung
EP0882811B1 (de) 1997-06-03 2001-07-25 Ipsen International GmbH Verfahren zur Aufkohlung metallischer Werkstücke in einem Vakuum-Ofen
DE102006026883B3 (de) 2006-06-09 2007-08-16 Durferrit Gmbh Verfahren zum Härten von Edelstahl und Salzschmelze zur Durchführung des Verfahrens
WO2011017495A1 (en) 2009-08-07 2011-02-10 Swagelok Company Low temperature carburization under soft vacuum

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2201425A (en) * 1937-05-03 1940-05-21 Sandvikens Jernverks Ab Alloy steel
US2662462A (en) * 1951-01-18 1953-12-15 E A Maddux Cultivator
FR2180193A5 (de) 1972-04-12 1973-11-23 Ugine Aciers
JPH0638146Y2 (ja) 1989-11-30 1994-10-05 金井 宏之 フェルティング針
JPH03199433A (ja) * 1989-12-26 1991-08-30 Kanai Hiroyuki 紡機用リング
JPH0488149A (ja) 1990-07-30 1992-03-23 Kanai Hiroyuki 繊維機械用針
SU1765250A1 (ru) 1990-08-06 1992-09-30 Сумское Машиностроительное Научно-Производственное Объединение Им.М.В.Фрунзе Способ обработки деталей из нержавеющих хромистых сталей
JPH04107212A (ja) 1990-08-24 1992-04-08 Kobe Steel Ltd 高硬度、耐銹性非磁性ピンの製法
CN1068054A (zh) 1991-06-28 1993-01-20 大连制钉厂 用低碳钢生产水泥钉和射钉的工艺方法
JPH05171355A (ja) 1991-12-19 1993-07-09 Kanai Hiroyuki 繊維用針
CN1048526C (zh) 1994-06-09 2000-01-19 田义德 低碳合金钢水泥钉或射钉的制造方法
JP4078467B2 (ja) 1998-05-01 2008-04-23 マニー株式会社 外科用針
CN1236878C (zh) 1999-08-03 2006-01-18 风琴针株式会社 针及其制造方法
JP4604140B2 (ja) 2004-09-13 2010-12-22 マニー株式会社 医療用針又は刃物
CN1772939A (zh) 2005-11-17 2006-05-17 上海隆兴特钢有限公司 高纯净钢纺织针用钢带及其生产方法
RU2294970C1 (ru) 2005-11-28 2007-03-10 Открытое акционерное общество "Московский завод координатно-расточных станков" (ОАО "МЗКРС") Способ обработки хирургических игл
JP2008264523A (ja) 2007-03-29 2008-11-06 Manii Kk アイド針及びアイド針の製造方法
JP5417229B2 (ja) 2010-03-16 2014-02-12 三和ニードルベアリング株式会社 摺動部品の製造方法
CN102560266A (zh) 2010-12-10 2012-07-11 浪莎针织有限公司 一种高耐磨性织针用钢及其制造方法
CN102383052B (zh) 2011-10-13 2013-07-10 浪莎针织有限公司 一种高耐磨性织针用钢的制造方法
EP2662462A1 (de) * 2012-05-07 2013-11-13 Valls Besitz GmbH Niedertemperatur-härtbare Stahle mit ausgezeichneter Bearbeitbarkeit
CN103014524A (zh) 2012-12-05 2013-04-03 南京钢铁股份有限公司 一种针用钢的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2114734A1 (de) 1970-06-09 1971-12-16 Torrington Co Gehartete und selektiv angelassene Nadel
US3753412A (en) * 1971-12-02 1973-08-21 Torrington Co Selectively hardened needles
US4049430A (en) * 1976-08-18 1977-09-20 Carpenter Technology Corporation Precipitation hardenable stainless steel
CH641840A5 (en) * 1977-06-16 1984-03-15 Standardgraph Filler & Fiebig Process for increasing the abrasion resistance of workpieces of stainless steel or nickel metal alloys
DE2838135A1 (de) * 1978-09-01 1980-03-13 Singer Spezialnadelfab Arbeitswerkzeug insbesondere fuer textilmaschinen und verfahren zur herstellung dieser arbeitswerkzeuge
EP0882811B1 (de) 1997-06-03 2001-07-25 Ipsen International GmbH Verfahren zur Aufkohlung metallischer Werkstücke in einem Vakuum-Ofen
DE19936082A1 (de) 1998-02-04 2001-02-01 Organ Needle Nadeln und Verfahren zu deren Herstellung
US6093303A (en) 1998-08-12 2000-07-25 Swagelok Company Low temperature case hardening processes
DE102006026883B3 (de) 2006-06-09 2007-08-16 Durferrit Gmbh Verfahren zum Härten von Edelstahl und Salzschmelze zur Durchführung des Verfahrens
WO2011017495A1 (en) 2009-08-07 2011-02-10 Swagelok Company Low temperature carburization under soft vacuum

Also Published As

Publication number Publication date
TR201902562T4 (tr) 2019-03-21
PT3084017T (pt) 2019-03-14
EP3084017B1 (de) 2019-01-30
SI2886668T1 (sl) 2019-03-29
TW201540848A (zh) 2015-11-01
CN106062218A (zh) 2016-10-26
PT2886668T (pt) 2019-02-04
KR20160101015A (ko) 2016-08-24
PL3084017T3 (pl) 2019-06-28
EP3084017A1 (de) 2016-10-26
RU2016129123A (ru) 2018-01-24
US20160319472A1 (en) 2016-11-03
US10487429B2 (en) 2019-11-26
KR102414280B1 (ko) 2022-06-29
CN106062218B (zh) 2021-08-17
RU2682264C1 (ru) 2019-03-18
JP6556141B2 (ja) 2019-08-07
EP2886668B1 (de) 2018-12-12
MX369012B (es) 2019-10-24
BR112016013426B1 (pt) 2021-03-09
JP2017512248A (ja) 2017-05-18
ES2713375T3 (es) 2019-05-21
TWI544087B (zh) 2016-08-01
MX2016008153A (es) 2017-02-27
WO2015091103A1 (de) 2015-06-25
ES2707585T3 (es) 2019-04-04
HUE041641T2 (hu) 2019-05-28
SI3084017T1 (sl) 2019-04-30

Similar Documents

Publication Publication Date Title
DE60030364T2 (de) Herstellungsverfahren eines hochdruckfesten Bauteiles
DE3923999A1 (de) Verfahren zum aufkohlen und vergueten von stahlteilen
DE3800838C1 (de)
DE10209264B4 (de) Verfahren zum Herstellen eines Bauteils aus Metall
DE112012000408B4 (de) Stahlzahnrad und Herstellungsverfahren dafür
DE102004053935B4 (de) Verfahren zur Wärmebehandlung eines Bauteils aus einem durchhärtenden warmfesten Stahl und Bauteil aus einem durchhärtenden warmfesten Stahl
CH637162A5 (de) Verfahren zur festigkeitsverguetung von kohlenstoffstahl und niedrig legiertem stahl.
EP1812609B1 (de) Verfahren und vorrichtung zur endmassnahen verformung von draht- und stabförmigem vormaterial
DE112012000484B4 (de) Stahlzahnrad und Herstellungsverfahren dafür
EP2886668B1 (de) Textilwerkzeug und dessen Herstellungsverfahren
WO2006013055A1 (de) Verfahren zur wärmebehandlung von werkstücken aus stahl
DE2157823A1 (de) Verfahren zur Behandlung von Gegenständen aus Stahl zur Steigerung ihrer Beständigkeit gegen Abnutzung und Abrieb
DE102017101907B4 (de) Herstellungsverfahren für eine gleitende Nockenwelle
DE102017108716A1 (de) Wälzkontakt-Wellenteil
DE4218099C2 (de)
WO2004018715A2 (de) Verfahren und vorrichtung zur durchlaufvergütung von bandstahl sowie entsprechend hergestellter bandstahl
WO2018188686A1 (de) Carbonitrieren von spanlos hergestellten wälzlagern
DE3029339A1 (de) Verfahren und vorrichtung zur behandlung elektrisch leitenden materials durch glimmentladung
DE2251894A1 (de) Waelzlagerstahl
WO2023104385A1 (de) Verfahren und einrichtung zum örtlich begrenzten nitrieren oder nitrocarburieren der oberfläche eines bauteils
DE7729569U1 (de) Bauteil, insbesondere werkzeug, fuer textilmaschinen
Mallow et al. Investigations on Case Hardening of an Additive Manufactured Steel 20MnCr5 (via PBF-LB/M)
EP3597779A1 (de) Hochfestes lenkritzel
DE2838135A1 (de) Arbeitswerkzeug insbesondere fuer textilmaschinen und verfahren zur herstellung dieser arbeitswerkzeuge
DE102017005321A1 (de) Verfahren zum Bearbeiten eines Stahlbauteils für einen Kraftwagen und Stahlbauteil für einen Kraftwagen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131219

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150724

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170828

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/18 20060101ALI20180613BHEP

Ipc: C21D 1/06 20060101ALI20180613BHEP

Ipc: C21D 9/26 20060101AFI20180613BHEP

Ipc: C23C 8/22 20060101ALI20180613BHEP

Ipc: C21D 7/10 20060101ALI20180613BHEP

Ipc: B21G 1/00 20060101ALI20180613BHEP

Ipc: C21D 8/00 20060101ALI20180613BHEP

Ipc: C21D 1/18 20060101ALI20180613BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180802

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1076047

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013011797

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 2886668

Country of ref document: PT

Date of ref document: 20190204

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20190128

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2707585

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190404

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181212

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190312

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190312

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190412

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181219

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013011797

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181219

26N No opposition filed

Effective date: 20190913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1076047

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131219

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181212

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20221118

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20221219

Year of fee payment: 10

Ref country code: ES

Payment date: 20230112

Year of fee payment: 10

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231026

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20231025

Year of fee payment: 11

Ref country code: RO

Payment date: 20231127

Year of fee payment: 11

Ref country code: PT

Payment date: 20231219

Year of fee payment: 11

Ref country code: IT

Payment date: 20231110

Year of fee payment: 11

Ref country code: FR

Payment date: 20231009

Year of fee payment: 11

Ref country code: DE

Payment date: 20231231

Year of fee payment: 11

Ref country code: CZ

Payment date: 20231129

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231121

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240117

Year of fee payment: 11