EP2872664A1 - Austenitische stahllegierung mit ausgezeichneter zeitstandfestigkeit sowie oxidations- und korrosionsbeständigkeit bei erhöhten einsatztemperaturen - Google Patents

Austenitische stahllegierung mit ausgezeichneter zeitstandfestigkeit sowie oxidations- und korrosionsbeständigkeit bei erhöhten einsatztemperaturen

Info

Publication number
EP2872664A1
EP2872664A1 EP13753262.8A EP13753262A EP2872664A1 EP 2872664 A1 EP2872664 A1 EP 2872664A1 EP 13753262 A EP13753262 A EP 13753262A EP 2872664 A1 EP2872664 A1 EP 2872664A1
Authority
EP
European Patent Office
Prior art keywords
steel
steel alloy
oxidation
weight
alloy according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13753262.8A
Other languages
English (en)
French (fr)
Inventor
Juliane Mentz
Michael Spiegel
Joachim Konrad
Patrick SCHRAVEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Salzgitter Mannesmann Stainless Tubes GmbH
Original Assignee
Salzgitter Mannesmann Stainless Tubes GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Salzgitter Mannesmann Stainless Tubes GmbH filed Critical Salzgitter Mannesmann Stainless Tubes GmbH
Publication of EP2872664A1 publication Critical patent/EP2872664A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12292Workpiece with longitudinal passageway or stopweld material [e.g., for tubular stock, etc.]

Definitions

  • Austenitic steel alloy with excellent creep rupture strength and oxidation and corrosion resistance at elevated service temperatures
  • the invention relates to an austenitic steel alloy with excellent
  • the invention relates to a heat-resistant austenitic material for the production of pipes, sheets or as a forging material z.
  • a heat-resistant austenitic material for the production of pipes, sheets or as a forging material z.
  • a heat-resistant austenitic material for the production of pipes, sheets or as a forging material z.
  • for seamless superheater pipes in highly efficient new-generation power plants suitable for steam temperatures up to 750 ° C.
  • steam temperatures up to 750 ° C.
  • Power generation in power plants is therefore increasingly the requirement to increase the steam temperature up to 700 ° C and above and also the vapor pressure in the boiler.
  • Heat exchanger tubes at these high operating temperatures are sufficient creep strength, especially in combination with high oxidation resistance in water vapor and corrosion resistance in the presence of flue gas and ashes.
  • power plants are generally based either on ferritic, ferritic / martensitic or austenitic iron-based alloys or nickel-base alloys.
  • Chromium-rich ferritic steel is significantly less expensive compared to austenitic steel and, moreover, has a higher coefficient of thermal conductivity and a lower thermal expansion coefficient. Also owns
  • chromium-rich ferritic steel also has a high oxidation resistance, which is advantageous for hot steam use z. B. in heaters or boilers.
  • creep strengths of 10 5 hours at 700 ° C for a load of 100 MPa must be achieved without breakage.
  • the known materials which are available up to about 620 ° C or 650 ° C application temperature are ferritic / martensitic steels with Cr contents of z. B. 8 to 15%. These materials usually have other expensive alloying additions or are also not suitable for use in temperature ranges above 620 ° C.
  • Austenitic steels for use in steam boilers with steam temperatures up to 700 ° C and above are z. B. from DE 60 2004 002 492 T2.
  • the creep resistance is achieved in particular by an addition of titanium and oxygen within the specified limits.
  • a disadvantage of this steel is the still insufficient oxidation resistance in water vapor and lack of resistance to flue gas corrosion at these high levels
  • the object of the invention is to provide an alloy for an austenitic steel, which satisfies the stated requirements with respect to creep rupture strength and oxidation and corrosion resistance even at operating temperatures up to about 750 ° C and above. Another object is, from this steel alloy workpieces such.
  • Remaining iron with impurities due to melting as well as optional addition of rare earths and reactive elements such as Ce, Hf, La, Re, Sc and / or Y up to a total of 1%.
  • the austenitic high temperature alloy according to the present invention has excellent creep properties as well as good oxidation resistance in water vapor and corrosion resistance in flue gas.
  • the alloy concept differs fundamentally from the known ones
  • the reinforcement of the austenitic matrix against dislocation creep occurs in known austenitic materials up to temperatures of 650 ° C sufficiently by M23C6 on the grain boundaries and finely divided carbides and nitrides
  • the coarsening of sigma phase excreted in the grain causes rapid after initially good creep behavior
  • Creep strength and the oxidation and corrosion resistance at elevated temperatures can only be achieved by avoiding the above-described effects of grain boundary weakening and coarsening of the excreted in the grain sigma phase.
  • the present alloy therefore makes essential use of the finely divided sigma phase precipitated in the grain as reinforcing component in combination with the components M 2 3C 6 and further finely divided carbides, carbonitrides and nitrides, especially of niobium, which have precipitated in the grain and on the grain boundaries, in order to increase the creep rupture strength.
  • Austenitic matrix microstructure with primary niobium carbonitrides (Nb (C, N)) is formed. After heat treatment at 700 ° C or 740 ° C for 4000 h or im
  • FIG. 1 schematically shows the microstructure of the alloy according to the invention after annealing or creep rupture test.
  • Table 1 Composition of the investigated alloys (% by weight)
  • the sum amount of molybdenum, chromium and silicon should be at least 29% by weight.
  • the upper limit of the chromium content is lowered to 30% for the limitation of the sigma phase content.
  • the adjustment of the nickel content is carried out to stabilize the austenitic structure.
  • the upper limit can be lowered here to 35%, which results in a further improvement of the corrosion properties in sulfur-containing flue gases and under sulphate-containing deposits.
  • Optimal properties with regard to creep rupture strength and corrosion are to be set with further limited element limits.
  • the contents of molybdenum are limited to 2 - 5% and silicon to 0, 1 - 1% with regard to an optimal amount and distribution of the sigma phase.
  • the limitation of Nb (0.4-1%), N (0.05-0.12%) and C (0.05-0.12%) has a positive effect on the amount of niobium carbonitride at high temperature ( Grain boundary pinning) on the one hand and the amount and distribution of M23C6 and other carbides, carbonitrides and nitrides at operating temperature on the other.
  • the limitation of the upper limits also has a positive effect on reducing the tendency to segregation and on the processability of the steel.
  • Carbon The carbon content is an integral part of the
  • the upper limit is set at 0.15% by weight and the lower limit is set at 0.02% by weight.
  • Silicon Silicon is needed to increase corrosion resistance and kinetically accelerate sigma phase excretion. A content of at least 0.1% by weight has proved to be advantageous. The weldability is adversely affected by silicon, in addition, silicon stabilizes the Laves phase, which sets by precipitation chromium, so that an upper limit of 2 wt.% Should not be exceeded.
  • Manganese Manganese is a cheap element that is the austenitic matrix of the
  • Chromium oxides in water vapor due to the formation of ternary Mn-Cr oxides Chromium oxides in water vapor due to the formation of ternary Mn-Cr oxides.
  • Manganese content is kept low to avoid accelerated oxidation in water vapor and flue gas. In addition, increased manganese content degrades creep resistance. A content of max. 2.0% by weight is not considered harmful.
  • Chromium The oxidation resistance in water vapor but especially the
  • Chromium is also necessary for the formation of carbides M 2 3C 6 and for the separation of finely divided sigma phase. Since chromium is set by the precipitates, a content of at least 25% by weight is required in order to maintain the matrix concentration necessary for corrosion resistance. In conjunction with molybdenum within the specified limits, the dissolution of reinforcing M 2 3C 6 carbides at the grain boundary in favor of brittle sigma phase is additionally prevented. At high chromium contents, however, the occurrence of ⁇ -ferrite and, consequently, coarse-grained sigma phase is to be expected more frequently. The maximum chromium content is therefore limited to 33% by weight.
  • Nickel is a necessary element for maintaining the austenitic structure and the associated strength benefits, such as creep resistance. In combination with chromium, nickel has a clearly positive effect on the resistance to steam oxidation.
  • Resistance in sulfur-containing flue gases is rather negatively influenced by high contents of nickel, so that at most 38% by weight of nickel should be added.
  • the lower limit should not be less than 22% by weight, since due to the high chromium and molybdenum content, the austenitic matrix should be stabilized against ⁇ -ferrite.
  • Molybdenum The alloying of molybdenum is done to increase the creep strength by solid solution hardening. In addition, a not too high content of molybdenum promotes resistance to chloride-containing gases and ashes. Molybdenum stabilizes the sigma phase in addition to M 23 C 6 and should therefore not fall below a minimum content of 1% by weight. According to the invention, a molybdenum content of up to 6% by weight in combination with chromium and boron hinders the dissolution of reinforcing M 2 3C 6 carbides at the grain boundary in favor of a brittle sigma phase. At the same time molybdenum promotes the excretion of finely divided sigma phase in the grain to increase the
  • Creep resistance Higher contents of molybdenum than 6% by weight cause the formation of too high a content of sigma phase and are furthermore to be avoided because of the tendency of molybdenum to segregate.
  • Tungsten can be alloyed as an optional element and causes accelerated oxidation in water vapor and corrosion under ash covers. Therefore, the proportion should not exceed 2% by weight. At the same time tungsten causes an increase in the creep rupture strength by solid solution hardening and
  • Niobium The precipitation of hardening niobium carbides, niobium carbonitrides and
  • Niobium nitrides in the grain leads to a significant increase in creep rupture strength at application temperatures.
  • niobium acts through the use of
  • Hot forming and weldability The upper limit of 1.5% by weight should therefore not be exceeded. At least about 0.4 weight percent is required to effectively precipitate carbides and nitrides. For an effective precipitate size, the Nb, N and C content must be exactly matched as described above.
  • Titanium, tantalum, vanadium Even precipitates involving titanium, tantalum and / or vanadium can lead to a significant increase in zeistandfestmaschine. To avoid accelerated oxidation or sulfur corrosion, however, the upper limit is set to 0.5% by weight.
  • Nitrogen increases the creep rupture strength by precipitation of nitrides and must therefore be as described above depending on the carbon and
  • Niobium content be alloyed; Nitrogen also stabilizes the austenitic matrix.
  • the lower limit for nitrogen is therefore set at 0.01% by weight.
  • a high nitrogen content causes reduced toughness and ductility and reduces hot workability. Therefore, an upper limit of 0.2% by weight is set.
  • Cobalt Optional addition of Cobalt will increase the
  • Microstructure remain, so an upper limit of 5 wt.% Is set.
  • Copper can optionally be alloyed and used as a further hardening mechanism for the creep rupture strength (precipitation of a Cu phase). Higher levels of copper reduce processability to give an upper limit of 5 wt%.
  • Rare Earths and Reactive Elements The optional addition of rare earths and reactive elements such as Ce, Hf, La, Re, Sc and / or Y can be used to adjust specific properties such as. B. increased thermal shock resistance in levels of up to 1 wt.% Take place.
  • Figures 3 and 4 represent the time-stretching behavior on the basis of strain rates at 740 and 700 ° C.
  • Heat exchanger tubes can be used in the power plant area, but their use is not limited thereto. In addition to the production of pipes that can be seamlessly extruded, hot and cold rolled or welded, this is
  • Tool steels can be used, with their field of application via pressure vessels, Boilers, turbines, nuclear power plants or the chemical apparatus construction, that extends to all areas with corresponding requirements at elevated temperature.
  • the steel alloy according to the invention is particularly advantageous because of the excellent creep strength, corrosion and oxidation properties up to temperatures of 750 ° C or above, the use of this steel, for example, even at temperatures above 600 ° C advantageous if it is more on the Strength of the material arrives.

Abstract

Die Erfindung betrifft eine austenitische Stahllegierung mit ausgezeichneter Zeitstandfestigkeit sowie Oxidations- und Korrosionsbeständigkeit bei erhöhten Einsatztemperaturen bis etwa 750 °C mit einer bestimmten chemischen Zusammensetzung, sowie ein nahtloses oder geschweißtes Stahlrohr, Stahlblech oder durch Schmieden oder Gießen hergestelltes Werkstück oder Werkzeugstahl mit ausgezeichneter Zeitstandfestigkeit sowie Oxidations- und Korrosionsbeständigkeit insbesondere bei Einsatztemperaturen oberhalb 620 °C, hergestellt aus einer derartigen Stahllegierung.

Description

Austenitische Stahllegierung mit ausgezeichneter Zeitstandfestigkeit sowie Oxidations- und Korrosionsbeständigkeit bei erhöhten Einsatztemperaturen
Beschreibung
Die Erfindung betrifft eine austenitische Stahllegierung mit ausgezeichneter
Zeitstandfestigkeit sowie Oxidations- und Korrosionsbeständigkeit bei erhöhten Einsatztemperaturen gemäß Patentanspruch 1 sowie aus der Stahllegierung hergestellte Werkstücke nach Anspruch 8.
Insbesondere betrifft die Erfindung einen warmfesten austenitischen Werkstoff für die Herstellung von Rohren, Blechen oder als Schmiedewerkstoff z. B. für nahtlose Überhitzerrohre in hocheffizienten Kraftwerken der neuen Generation geeignet für Dampftemperaturen bis ca. 750°C. Die Werkstoffanforderungen bei diesen
Bedingungen sind eine ausreichende Zeitstandfestigkeit in Kombination mit einer guten Oxidationsbeständigkeit in Wasserdampf und Korrosionsbeständigkeit beim
Vorhandensein von Rauchgasen und Aschen.
Zur Verminderung der C02-Emissionen bei Kraftwerken und zur Steigerung der Effizienz werden die Dampfkessel mit immer höheren Dampftemperaturen und Drücken beaufschlagt. Zur Verbesserung des Wirkungsgrades bei der
Energieerzeugung in Kraftwerksanlagen besteht deshalb zunehmend die Anforderung, die Dampftemperatur auf bis zu 700°C und darüber und auch den Dampfdruck im Kessel zu erhöhen.
Insbesondere wurden in den letzten Jahren Versuche unternommen, die
Dampftemperatur, die bislang etwa 600°C betrug, auf 650°C oder mehr und weiter auf 700°C oder mehr zu erhöhen.
Die spezifischen Anforderungen in den oberen Temperaturstufen an die
Wärmetauscherrohre bei diesen hohen Betriebstemperaturen sind eine ausreichende Zeitstandfestigkeit insbesondere in Kombination mit hoher Oxidationsbeständigkeit in Wasserdampf und Korrosionsbeständigkeit bei Vorhandensein von Rauchgas und Aschen.
Hochtemperaturwerkstoffe mit hoher Zeitstandfestigkeit und Korrosionsbeständigkeit für die Anwendung z. B. in Kraftwerken basieren im Allgemeinen entweder auf ferritischen, ferritisch/martensitischen oder austenitischen Eisenbasislegierungen oder auf Nickelbasislegierungen.
Chromreicher ferritischer Stahl ist im Vergleich zu austenitischem Stahl deutlich preisgünstiger und weist dazu noch einen höheren Wärmeleitungskoeffizienten und einen niedrigeren Wärmeausdehnungskoeffizienten auf. Außerdem besitzt
chromreicher ferritischer Stahl auch noch eine hohe Oxidationsbeständigkeit, die vorteilhaft für einen Heißdampfeinsatz z. B. in Erhitzern oder Kesseln ist.
Wenn jedoch eine hohe Hochtemperaturfestigkeit, d. h. Zeitstandfestigkeit, bei gleichzeitig hoher Oxidations- und Korrosionsbeständigkeit gefordert ist, kommen nur noch austenitische Stähle oder Nickelbasislegierungen in Frage.
Da Nickelbasislegierungen im Vergleich zu austenitischen Stählen sehr teuer sind, verlangt der Markt nach Werkstoffen aus austenitischen Eisenbasislegierungen insbesondere für Rohre bzw. Rohrleitungen, die auch bei hohen Einsatztemperaturen bis etwa- 750°C die benötigten Zeitstand- und Korrosionseigenschaften bieten.
Beispielsweise müssen Zeitstandfestigkeiten von 105 Stunden bei 700°C für eine Last von 100 MPa ohne Bruch erreicht werden.
Die bekannten Werkstoffe, die bis etwa 620°C bzw. 650°C Anwendungstemperatur zur Verfügung stehen, sind ferritisch/martensitische Stähle mit Cr-Gehalten von z. B. 8 bis 15%. Diese Werkstoffe weisen zumeist weitere teure Legierungszusätze auf oder sind zudem für den Einsatz in Temperaturbereichen oberhalb 620°C nicht geeignet.
Austenitische Stähle für den Einsatz in Dampfkesseln mit Dampftemperaturen bis 700°C und darüber sind z. B. aus der DE 60 2004 002 492 T2 bekannt. Bei diesem Stahl wird die Kriech beständigkeit insbesondere durch eine Zugabe von Titan und Sauerstoff in den angegebenen Grenzen erreicht. Nachteilig bei diesem Stahl ist jedoch die noch nicht ausreichende Oxidationsbeständigkeit in Wasserdampf sowie mangelnde Beständigkeit gegenüber Rauchgaskorrosion bei diesen hohen
Einsatztemperaturen.
Aufgabe der Erfindung ist es, eine Legierung für einen austenitischen Stahl anzugeben, der auch bei Einsatztemperaturen bis etwa 750°C und darüber die genannten Anforderungen hinsichtlich Zeitstandfestigkeit sowie Oxidations- und Korrosionsbeständigkeit sicher erfüllt. Eine weitere Aufgabe besteht darin, aus dieser Stahllegierung Werkstücke, wie z. B. nahtlose oder geschweißte Rohre, Bleche, Schmiede- und Gussteile oder
Werkzeugstähle, bereitzustellen.
Die erste Aufgabe wird mit den Merkmalen des Anspruches 1 gelöst. Vorteilhafte Weiterbildungen sind Gegenstand von Unteransprüchen. Erfindungsgemäße
Werkstücke werden durch Anspruch 8 bereitgestellt.
Nach der Lehre der Erfindung wird eine Stahllegierung mit folgender chemischer Zusammensetzung (in Gew.%) vorgeschlagen:
0,02 < C < 0, 15 %
0, 1 < Si < 2,0 %
25 < Cr <> 33 %
22 < Ni < 38 %
1 s. Mo < 6 %
0,4 < Nb < 1 ,5%
B < 0,0120%
0,01 < N < 0,2 %
Mn < 2 %
Co < 5%
W < 2%
AI < 0,05%
Cu < 5%
Ti < 0,5%
Ta < 0,5%
V £ 0,5%
P < 0,05 %
S <, 0,05 %
Rest Eisen mit erschmelzungsbedingten Verunreinigungen sowie optionaler Zugabe von seltenen Erden und reaktiven Elementen wie Ce, Hf, La, Re, Sc und/oder Y von insgesamt bis zu 1 %.
Die erfindungsgemäße austenitische hochwarmfeste Legierung besitzt hervorragende Kriecheigenschaften, sowie gute Oxidationsbeständigkeit in Wasserdampf und Korrosionsbeständigkeit in Rauchgas. Das Legierungskonzept unterscheidet sich grundsätzlich von den bekannten
Legierungskonzepten.
Die Verstärkung der austenitischen Matrix gegenüber Versetzungskriechen erfolgt bei bekannten austenitischen Werkstoffen bis zu Temperaturen von 650°C hinreichend durch M23C6 auf den Korngrenzen und feinteiligen Karbiden und Nitriden auf
Korngrenzen und im Korninneren. Bei höheren Temperaturen sind keine hinreichenden Kriecheigenschaften gewährleistet.
Bei Versuchen wurde erkannt, dass für das Festigkeitsversagen unter
Zeitstandbedingungen bekannter austenitischer Werkstoffe bei erhöhten Temperaturen bis etwa 750°C eine Schwächung der Korngrenzen durch die dortige Ausscheidung einer Sigma-Phase und damit verknüpft eine Auflösung der stabilisierenden Karbide wesentlich ist. Zusätzlich bewirkt die Vergröberung von im Korn ausgeschiedener Sigma-Phase nach anfänglich gutem Zeitstandverhalten einen raschen
Festigkeitsabfall.
Als erfindungswesentlich wurde erkannt, dass eine Verbesserung der
Zeitstandfestigkeit sowie der Oxidations- und Korrosionsbeständigkeit bei erhöhten Temperaturen nur durch eine Vermeidung der oben beschriebenen Effekte der Korngrenzenschwächung und Vergröberung der im Korn ausgeschiedenen Sigma- Phase erreicht werden kann.
Die vorliegende Legierung nutzt deshalb erfindungswesentlich die feinteilige im Korn ausgeschiedene Sigma-Phase als verstärkende Komponente in Kombination mit den Komponenten M23C6 sowie weiteren feinteiligen im Korn und auf den Korngrenzen ausgeschiedenen Karbiden, Karbonitriden und Nitriden insbesondere von Niob zur Erhöhung der Zeitstandfestigkeit.
Die zusätzliche Ausscheidung der Sigma-Phase im Inneren der Körner bei gleichzeitiger Unterdrückung dieser Ausscheidungen auf den Korngrenzen sowie eine Stabilisierung gegen Vergröberung aller Ausscheidungstypen führt zu einer hervorragenden Kriechfestigkeit bis zu 750°C.
Experimentelle Untersuchungen zeigten, dass entsprechend der o. g. Analyse nach dem Lösungsglühen z. B. bei 1200°C/15 min. mit Wasserabschreckung eine
Mikrostruktur aus austenitischer Matrix mit primären Niobkarbonitriden (Nb(C,N)) entsteht. Nach Wärmebehandlung bei 700°C bzw. 740°C für 4000 h oder im
Zeitstandversuch bildeten sich im Korn feinverteilte Sigma-Phasen-Ausscheidungen, sowie kleine Karbonitridausscheidungen des Typs MX wobei M im wesentlichen Niob ist. Eine Vergröberung der Sigma-Phase war bis zu Prüfzeiten von nahezu 20.000 h nicht zu beobachten. In Figur 1 ist die Mikrostruktur der erfindungsgemäßen Legierung nach Glühung oder Zeitstandprüfung schematisch dargestellt.
Diese Eigenschaftskombination wird erfindungsgemäß durch ein gezielt aufeinander abgestimmtes Zulegieren von Chrom, Molybdän und Silizium sowie Kohlenstoff, Niob und Stickstoff in den beschriebenen Grenzen erreicht. In Tabelle 1 sind die
untersuchten Werkstoffe zusammengestellt. Die zu Vergleichszwecken untersuchten, nicht erfindungsgemäßen Stähle sind mit einem„X" gekennzeichnet.
Tabelle 1 : Zusammensetzung der untersuchten Legierungen (Gew.%)
Um die festigkeitssteigernde Wirkung und die Stabilität der im Korn feinteilig ausgeschiedenen Sigma-Phase zu gewährleisten, muss sich eine ausreichende Menge an feinteiliger Sigma-Phase schnell genug bei Betriebstemperatur ausscheiden können. Erfindungsgemäß ist deshalb vorgesehen, dass der Summengehalt von Molybdän, Chrom und Silizium mindestens 29 Gew.% betragen sollte.
Zur Sicherstellung einer ausreichenden Stabilität und Wirksamkeit der anderen ausgeschiedenen Phasen Nb(C,N) und M23C6 wurde herausgefunden, dass das Verhältnis in Gew.% Nb/(N+C) eine maßgebliche Rolle spielt. Versuche ergaben, dass eine ausreichende Stabilität bei erhöhten Einsatztemperaturen vorliegt, wenn das Verhältnis zwischen 1 ,5 und 10 liegt. Eine vorteilhafte Weiterbildung der Erfindung sieht für eine weiter verbesserte
Korrosionsbeständigkeit bei hohen Temperaturen vor, den Mindestchromgehalt auf 26% und den Mindestnickelgehalt auf 25% festzulegen. Durch die Erhöhung der Untergrenze des Chromgehaltes wird ein höherer Chromgehalt in der austenitischen Matrix erreicht, der die Oxidations- und Korrosionseigenschaften wesentlich beeinflusst. Die Obergrenze des Chromgehaltes ist für die Begrenzung des Gehaltes an Sigma-Phase auf 30% abgesenkt. Die Anpassung des Nickelgehaltes erfolgt zur Stabilisierung der austenitischen Struktur. Die Obergrenze kann hier auf 35% abgesenkt werden, was eine weitere Verbesserung der Korrosionseigenschaften in schwefelhaltigen Rauchgasen und unter sulfathaltigen Belägen zur Folge hat.
Optimale Eigenschaften hinsichtlich Zeitstandfestigkeit und Korrosion sind mit weiter eingeschränkten Elementgrenzen einzustellen. Dabei sind die Gehalte an Molybdän auf 2 - 5% und Silizium auf 0, 1 - 1 % begrenzt im Hinblick auf eine optimale Menge und Verteilung der Sigma-Phase. Außerdem wirkt die Einschränkung von Nb (0,4 - 1%), N (0,05 - 0,12%) und C (0,05 - 0, 12%) positiv auf die Menge von Niob-Karbonitrid bei hoher Temperatur (Korngrenzenpinning) einerseits und die Menge und Verteilung von M23C6 sowie weiterer Karbide, Karbonitride und Nitride bei Betriebstemperatur andererseits. Die Einschränkung der Obergrenzen wirkt sich zudem positiv auf eine Verminderung der Neigung zu Seigerungen sowie auf die Verarbeitbarkeit des Stahls aus.
Detaillierte Beschreibungen des Legierungskonzeptes
Kohlenstoff: Der Kohlenstoffgehalt ist ein wesentlicher Bestandteil des
Legierungskonzeptes und dient zur Erhöhung der Kriechfestigkeit und Streckgrenze durch Ausscheidung von Karbiden. Ein höherer Kohlenstoffanteil vermindert allerdings die Schweißbarkeit. Aus diesem Grunde wird die obere Grenze bei 0, 15 Gew.% und die untere Grenze auf 0,02 Gew.% festgelegt.
Silizium: Silizium ist notwendig, um die Korrosionsbeständigkeit zu erhöhen und die Ausscheidung an Sigma-Phase kinetisch zu beschleunigen. Ein Gehalt von mind. 0, 1 Gew.% hat sich dabei als vorteilhaft erwiesen. Die Schweißbarkeit wird durch Silizium negativ beeinflusst, außerdem stabilisiert Silizium die Laves-Phase, welche durch Ausscheidung Chrom abbindet, so dass eine obere Grenze von 2 Gew.% nicht überschritten werden sollte. Mangan: Mangan ist ein preiswertes Element, das die austenitische Matrix der
Legierung stabilisiert. Außerdem verlangsamt Mangan bei der Oxidation in
Wasserdampf den Chromverlust der Legierung durch Abdampfen flüchtiger
Chromoxide in Wasserdampf aufgrund der Bildung ternärer Mn-Cr-Oxide. Der
Mangangehalt ist andererseits aber zur Vermeidung beschleunigter Oxidation in Wasserdampf und Rauchgas niedrig zu halten. Zusätzlich verschlechtert ein erhöhter Mangangehalt die Kriechfestigkeit. Ein Gehalt von max. 2,0 Gew.% wird nicht als schädlich angesehen.
Chrom: Die Oxidationsbeständigkeit in Wasserdampf aber insbesondere die
Beständigkeit gegenüber Rauchgaskorrosion wird durch einen Chromgehalt größer 25 Gew.% erzielt. Chrom ist außerdem notwendig zur Bildung von Karbiden M23C6 sowie zur Ausscheidung feinteiliger Sigma-Phase. Da durch die Ausscheidungen Chrom abgebunden wird, ist ein Gehalt von mindestens 25 Gew.% erforderlich, um die zur Korrosionsbeständigkeit notwendige Matrixkonzentration aufrecht zu erhalten. Im Zusammenspiel mit Molybdän in den angegebenen Grenzen wird zusätzlich die Auflösung von verstärkenden M23C6 Karbiden an der Korngrenze zugunsten von spröder Sigma-Phase verhindert. Bei hohen Chromgehalten ist allerdings vermehrt mit dem Auftreten von δ-Ferrit und damit in Folge grobkörniger Sigma-Phase zu rechnen. Der maximale Chromgehalt ist deshalb auf 33 Gew.% begrenzt.
Nickel: Nickel ist ein notwendiges Element zum Erhalt der austenitischen Struktur und den damit verbundenen Festigkeitsvorzügen, wie Kriechfestigkeit. In Kombination mit Chrom wirkt Nickel deutlich positiv auf die Dampfoxidationsbeständigkeit. Die
Beständigkeit in schwefelhaltigen Rauchgasen wird durch hohe Gehalte an Nickel eher negativ beeinflusst, so dass höchstens 38 Gew.% an Nickel zugegeben werden sollten. Die untere Grenze sollte 22 Gew.%» nicht unterschreiten, da aufgrund des hohen Chrom- und Molybdängehaltes die austenitische Matrix gegenüber δ-Ferrit stabilisiert werden soll.
Molybdän: Das Zulegieren von Molybdän geschieht zur Erhöhung der Kriechfestigkeit durch Mischkristallhärtung. Zudem fördert ein nicht zu hoher Anteil an Molybdän die Beständigkeit gegenüber chloridhaltigen Gasen und Aschen. Molybdän stabilisiert neben M23C6 die Sigma-Phase und sollte daher einen Mindestgehalt von 1 Gew.%» nicht unterschreiten. Ein Molybdängehalt von bis zu 6 Gew.% behindert erfindungsgemäß in Kombination mit Chrom und Bor die Auflösung von verstärkenden M23C6-Karbiden an der Korngrenze zugunsten von spröder Sigma-Phase. Gleichzeitig fördert Molybdän die Ausscheidung von feinverteilter Sigma-Phase im Korn zur Erhöhung der
Kriechfestigkeit. Höhere Gehalte an Molybdän als 6 Gew.% bewirken die Bildung eines zu hohen Gehaltes an Sigma-Phase und sind weiterhin wegen der Seigerungsneigung von Molybdän zu vermeiden.
Wolfram: Wolfram kann als optionales Element zulegiert werden und bewirkt eine beschleunigte Oxidation in Wasserdampf und Korrosion unter Aschebelägen. Daher sollte der Anteil 2 Gew.% nicht überschreiten. Gleichzeitig bewirkt Wolfram eine Erhöhung der Zeitstandfestigkeit durch Mischkristallhärtung und
Ausscheidungsbildung, so dass je nach Anforderungen eine entsprechende
Zulegierung von Wolfram erfolgen kann.
Niob: Die Ausscheidung von härtenden Niobkarbiden, Niobkarbonitriden und
Niobnitriden im Korn führt zu einer deutlichen Erhöhung der Zeitstandfestigkeit bei Anwendungstemperaturen. Zusätzlich wirkt Niob durch die Nutzung des
Korngrenzenpinnings durch auf den Korngrenzen ausgeschiedenen Nb(C,N) positiv auf die Ausbildung einer homogenen Mikrostruktur unter Produktionsbedingungen. Höhere Gehalte an Niob . führen allerdings zu Seigerungen und verminderter
Warmumform- und Schweißbarkeit. Die obere Grenze von 1 ,5 Gew.% sollte deshalb nicht überschritten werden. Zur wirksamen Ausscheidung von Karbiden und Nitriden sind mindestens etwa 0,4 Gew.% erforderlich. Für eine effektive Ausscheidungsgröße müssen der Nb-, N- und C-Gehalt wie oben beschrieben, genau aufeinander abgestimmt sein.
Titan, Tantal, Vanadium: Auch Ausscheidungen unter Beteiligung von Titan, Tantal und/oder Vanadium können zu einer deutlichen Erhöhung der Zeistandfestigkeit führen. Zur Vermeidung von beschleunigter Oxidation bzw. Schwefelkorrosion wird die Obergrenze aber auf jeweils 0,5 Gew.% festgelegt.
Bor: Die optionale Zugabe von Bor erhöht die Zeitstandfestigkeit durch eine
Verminderung der Vergröberungsneigung und zusätzliche chemische Stabilisierung von M23C6-Teilchen. Zudem erhöht es die Stabilität von Korngrenzen gegenüber Kriechschädigung und erhöht die Duktilität. Bor verhindert die Vergröberung der Sigma-Phase durch Grenzflächensegregation und deren Ausscheidung an den Korngrenzen. Die untere Grenze für die Wirksamkeit von Bor liegt bei etwa 0,0010 Gew.%. Hohe Borgehalte erschweren das Schweißen, weshalb als obere Grenze 0,0120 Gew.% festgelegt wird. Stickstoff: Stickstoff steigert die Zeitstandfestigkeit durch Ausscheidung von Nitriden und muss deshalb wie oben beschrieben in Abhängigkeit vom Kohlenstoff- und
Niobgehalt zulegiert werden; Stickstoff stabilisiert außerdem die austenitische Matrix. Die untere Grenze für Stickstoff wird deshalb auf 0,01 Gew.% festgelegt. Ein hoher Stickstoffanteil bewirkt eine verminderte Zähigkeit und Duktilität und mindert die Warmumformbarkeit. Daher wird eine Obergrenze von 0,2 Gew.% festgelegt.
Cobalt: Durch optionale Zusätze von Cobalt wird eine Erhöhung der
Mischkristallhärtung und damit der Zeitstandfestigkeit erzielt. Ein Austausch des Nickels zugunsten des Cobalts ist für eine ausreichende Stabilisierung der
austenitischen Matrix ebenfalls denkbar. Gleichzeitig muss die gewünschte
Mikrostruktur erhalten bleiben, weshalb eine Obergrenze von 5 Gew.% festgelegt wird.
Kupfer: Kupfer kann optional zulegiert und als weiterer Härtungsmechanismus für die Zeitstandfestigkeit genutzt werden (Ausscheidung einer Cu-Phase). Höhere Gehalte an Kupfer reduzieren die Verarbeitbarkeit, so dass eine Obergrenze von 5 Gew.% angegeben wird.
Seltene Erden und reaktive Elemente: Die optionale Zugabe von seltenen Erden und reaktiven Elementen wie Ce, Hf, La, Re, Sc und/oder Y kann zur Einstellung spezifischer Eigenschaften wie z. B. erhöhter Temperaturwechselbeständigkeit in Gehalten von insgesamt bis zu 1 Gew.% erfolgen.
Figur 2 zeigt das hervorragende Kriechverhalten bei unterschiedlichen
Einsatztemperaturen von erfindungsgemäßen Stählen im Vergleich zu bekannten Stählen, während die Figuren 3 und 4 das Zeit-Dehnverhalten anhand von Dehnraten bei 740 und 700°C darstellen.
Wenngleich die erfindungsgemäße Stahllegierung vorteilhaft z. B. für
Wärmetauscherrohre im Kraftwerksbereich verwendet werden kann, ist ihr Einsatz jedoch nicht darauf beschränkt. Neben der Herstellung von Rohren, die nahtlos stranggepresst, warm- und kaltgewalzt oder geschweißt sein können, ist diese
Stahllegierung auch für die Herstellung von Blechen, Guss-, Schmiede-,
Schleudergussteilen oder für Werkzeuge für die mechanische Bearbeitung
(Werkzeugstähle) einsetzbar, wobei sich deren Anwendungsgebiet über Druckbehälter, Kessel, Turbinen, Kernkraftwerke oder den chemischen Apparatebau, d. h. auf alle Bereiche mit entsprechenden Anforderungen bei erhöhter Temperatur, erstreckt.
Auch wenn die erfindungsgemäße Stahllegierung wegen der hervorragenden Zeitstandfestigkeit, Korrosions- und Oxidationseigenschaften besonders vorteilhaft bis zu Temperaturen von 750°C oder darüber einsetzbar ist, so ist der Einsatz dieses Stahls beispielsweise auch schon bei Temperaturen oberhalb 600°C vorteilhaft, wenn es mehr auf die Festigkeit des Werkstoffs ankommt.

Claims

Patentansprüche
1. Austenitische Stahllegierung mit ausgezeichneter Zeitstandfestigkeit sowie Oxidations- und Korrosionsbeständigkeit bei erhöhten Einsatztemperaturen bis etwa 750°C mit folgender chemischer Zusammensetzung (in Gew.%):
C 0,02-0,15%
Si 0,1 -2,0%
Cr 25 - 33%
Ni 22-38%
Mo 1 - 6%
Nb 0,4-1,5%
B < 0,0120%
N 0,01 - 0,2%
Mn <2%
Co <5%
W < 2%
AI <0,05%
Cu <5%
Ti <0,5%
Ta < 0,5%
V < 0,5%
P < 0,05%
S < 0,05%
Rest Eisen mit erschmelzungsbedingten Verunreinigungen sowie optionaler Zugabe von seltenen Erden und reaktiven Elementen wie Ce, Hf, La, Re, Sc und/oder Y von insgesamt bis zu 1 %.
2. Stahllegierung nach Anspruch 1
dadurch gekennzeichnet,
dass der Stahl folgende Zusammensetzung aufweist (in Gew.%):
Cr 26 - 30%
Ni 25-35%
B < 0,010%
3. Stahllegierung nach Anspruch 1
dadurch gekennzeichnet,
dass der Stahl folgende Zusammensetzung aufweist (in Gew.%):
C 0,05 - 0, 12%
Si 0,1 - 1 %
Cr 27 - 30%
. Ni 25 - 35%
Mo 2 - 5%
Nb 0,4 - 1 ,0%
B max. 0,0090%
N 0,05 - 0, 12%
4. Stahllegierung nach einem der Ansprüche 1 bis 3
dadurch gekennzeichnet,
dass der Mindestgehalt an Bor 0,0010 Gew.% beträgt.
5. Stahllegierung nach einem der Ansprüche 1 bis 4
dadurch gekennzeichnet,
dass zur Stabilisierung der Sigma-Phase folgende Legierungsgehalte eingehalten werden:
Gew.% Mo + Gew.% Cr + Gew.% Si > 29
6. Stahllegierung nach einem der Ansprüche 1 bis 5
dadurch gekennzeichnet,
dass zur Bildung einer ausreichenden Menge von Nb(C,N) bei gleichzeitiger Stabilität von M23C6 folgende Legierungsgehalte eingehalten werden:
1 ,5 < Gew.% Nb / (Gew.% N+ Gew.% C) < 10
7. Stahllegierung nach einem der Ansprüche 1 bis 6
dadurch gekennzeichnet,
dass das Gefüge des Stahls unter Einsatzbedingungen bei Betriebstemperatur ausgeschiedene Phasen von M23C6 und weitere Karbide, Karbonitride und Nitride auf den Korngrenzen und ausgeschiedene Sigma-Phase und Karbide,
Karbonitride und Nitride im Korn aufweist.
8. Nahtloses oder geschweißtes Stahlrohr, Stahlblech oder durch Schmieden oder Gießen hergestelltes Werkstück oder Werkzeugstahl mit ausgezeichneter Zeitstandfestigkeit sowie Oxidations-und Korrosionsbeständigkeit insbesondere bei Einsatztemperaturen oberhalb 620°C, hergestellt aus einer Stahllegierung nach mindestens einem der Ansprüche 1 bis 7.
EP13753262.8A 2012-07-13 2013-06-27 Austenitische stahllegierung mit ausgezeichneter zeitstandfestigkeit sowie oxidations- und korrosionsbeständigkeit bei erhöhten einsatztemperaturen Withdrawn EP2872664A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012014068.1A DE102012014068B3 (de) 2012-07-13 2012-07-13 Austenitische Stahllegierung mit ausgezeichneter Zeitstandfestigkeit sowie Oxidations- und Korrosionsbeständigkeit bei erhöhten Einsatztemperaturen
PCT/DE2013/000369 WO2014008881A1 (de) 2012-07-13 2013-06-27 Austenitische stahllegierung mit ausgezeichneter zeitstandfestigkeit sowie oxidations- und korrosionsbeständigkeit bei erhöhten einsatztemperaturen

Publications (1)

Publication Number Publication Date
EP2872664A1 true EP2872664A1 (de) 2015-05-20

Family

ID=49036396

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13753262.8A Withdrawn EP2872664A1 (de) 2012-07-13 2013-06-27 Austenitische stahllegierung mit ausgezeichneter zeitstandfestigkeit sowie oxidations- und korrosionsbeständigkeit bei erhöhten einsatztemperaturen

Country Status (9)

Country Link
US (1) US20150203944A1 (de)
EP (1) EP2872664A1 (de)
JP (1) JP2015528057A (de)
KR (1) KR20150023935A (de)
CN (1) CN104718306A (de)
BR (1) BR112015000274A2 (de)
DE (1) DE102012014068B3 (de)
UA (1) UA113659C2 (de)
WO (1) WO2014008881A1 (de)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104264031B (zh) * 2014-09-15 2017-01-11 奉化市金燕钢球有限公司 一种不锈轴承钢制备方法
CN104862572B (zh) * 2015-04-30 2017-10-31 宝山钢铁股份有限公司 一种高强度高延伸率的高合金钢及其制造方法
JP6369632B2 (ja) * 2015-06-15 2018-08-08 新日鐵住金株式会社 高Cr系オーステナイトステンレス鋼
EP3333277B1 (de) 2015-08-05 2019-04-24 Sidenor Investigación y Desarrollo, S.A. Hochfester niederlegierter stahl mit hoher beständigkeit bei hochtemperatur-oxidation
CN105296890A (zh) * 2015-10-13 2016-02-03 广东华鳌合金新材料有限公司 一种抗硫腐蚀的耐热合金及其棒材生产方法
JP6688598B2 (ja) * 2015-11-11 2020-04-28 三菱日立パワーシステムズ株式会社 オーステナイト鋼およびそれを用いたオーステナイト鋼鋳造品
DE102017108543B4 (de) 2016-04-23 2022-04-28 Oleg Tchebunin Senkrechtstartendes Flugzeug, dessen Antrieb Drehkolbenkraftmaschinen mit kontinuierlichem Brennprozess und Schubrichtungsschwenkanlagen aufweist
CN106381452B (zh) * 2016-09-07 2018-01-16 大连理工大学 一种700℃下高组织稳定性的耐热奥氏体不锈钢
JP6795038B2 (ja) * 2016-10-03 2020-12-02 日本製鉄株式会社 オーステナイト系耐熱合金およびそれを用いた溶接継手
CN106929739A (zh) * 2017-04-20 2017-07-07 天津达祥精密工业有限公司 一种微合金化铬镍系奥氏体耐热钢及其制备方法和应用
CN106893949B (zh) * 2017-04-20 2019-01-25 华能国际电力股份有限公司 一种奥氏体耐热钢及其制备方法
CN107574352A (zh) * 2017-09-12 2018-01-12 江苏金利化工机械有限公司 一种可硬化的奥氏体合金
CN109778048B (zh) * 2019-01-30 2021-02-05 江苏飞跃机泵集团有限公司 一种高硬度、耐蚀的Ni-Cr-Fe合金及其制备方法
CN111500940B (zh) * 2020-06-08 2020-10-16 南京工程学院 具有抑制摩擦火花特性的合金钢锻造制动盘及其制造方法
CN114086078A (zh) * 2020-08-25 2022-02-25 华为技术有限公司 Fe-Mn-Al-C系轻质钢及其制备方法、终端、钢结构件和电子设备
CN112575248A (zh) * 2020-10-29 2021-03-30 江苏新核合金科技有限公司 一种核电堆内构件导向结构用合金材料及其制备方法
CN113151747A (zh) * 2021-04-27 2021-07-23 中国核动力研究设计院 一种耐高温腐蚀的含铝奥氏体不锈钢及制备方法
SE545185C2 (en) * 2021-09-07 2023-05-09 Alleima Emea Ab An austenitic alloy object
CN114000027B (zh) * 2021-09-30 2022-09-16 江西宝顺昌特种合金制造有限公司 Uns n08120锻环及其制造方法
CN116121667A (zh) * 2021-11-14 2023-05-16 重庆三爱海陵实业有限责任公司 气门及其耐高温合金

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59173249A (ja) * 1983-03-19 1984-10-01 Nippon Steel Corp オ−ステナイト系耐熱合金
JP2510206B2 (ja) * 1987-07-03 1996-06-26 新日本製鐵株式会社 Si含有量の少ない高強度オ−ステナイト系耐熱鋼
JPH07216511A (ja) * 1994-01-31 1995-08-15 Sumitomo Metal Ind Ltd 高温強度に優れた高クロムオーステナイト耐熱合金
JPH1088293A (ja) * 1996-04-16 1998-04-07 Nippon Steel Corp 粗悪燃料および廃棄物を燃焼する環境において耐食性を有する合金、該合金を用いた鋼管およびその製造方法
JP4424471B2 (ja) * 2003-01-29 2010-03-03 住友金属工業株式会社 オーステナイト系ステンレス鋼およびその製造方法
JP3838216B2 (ja) * 2003-04-25 2006-10-25 住友金属工業株式会社 オーステナイト系ステンレス鋼

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2014008881A1 *

Also Published As

Publication number Publication date
US20150203944A1 (en) 2015-07-23
DE102012014068B3 (de) 2014-01-02
WO2014008881A1 (de) 2014-01-16
KR20150023935A (ko) 2015-03-05
JP2015528057A (ja) 2015-09-24
BR112015000274A2 (pt) 2017-06-27
UA113659C2 (uk) 2017-02-27
CN104718306A (zh) 2015-06-17

Similar Documents

Publication Publication Date Title
DE102012014068B3 (de) Austenitische Stahllegierung mit ausgezeichneter Zeitstandfestigkeit sowie Oxidations- und Korrosionsbeständigkeit bei erhöhten Einsatztemperaturen
DE60023699T2 (de) Warmfester rostfreier austenitischer stahl
US8293169B2 (en) Ni-base heat resistant alloy
DE60015728T2 (de) Wärmebeständiger legierungsdraht
EP2855724B1 (de) Nickel-chrom-legierung mit guter verarbeitbarkeit, kriechfestigkeit und korrosionsbeständigkeit
EP2855723B1 (de) Nickel-chrom-aluminium-legierung mit guter verarbeitbarkeit, kriechfestigkeit und korrosionsbeständigkeit
JP4946758B2 (ja) 長期使用後の加工性に優れた高温用オーステナイト系ステンレス鋼
EP2547804B1 (de) Nickel-chrom-kobalt-molybdän-legierung
WO2010009700A1 (de) Stahllegierung für einen ferritischen stahl mit ausgezeichneter zeitstandfestigkeit und oxidationsbeständigkeit bei erhöhten einsatztemperaturen
DE69821493T2 (de) Verwendung eines hitzebeständigen Gussstahles für Bauteile von Turbinengehäuse n
EP2432905B1 (de) Ferritisch martensitische eisenbasislegierung, ein bauteil und ein verfahren
EP3899064A1 (de) Superaustenitischer werkstoff
EP2240619B1 (de) Kriechfester stahl
DE69525621T3 (de) Dampfturbinenkraftanlage und Dampfturbine
EP1327006A1 (de) Austenitische nickel-chrom-cobalt-molybdän-wolfram-legierung und deren verwendung
DE69928696T2 (de) Martensitischer, rostfreier stahl
JP6756147B2 (ja) オーステナイト系耐熱鋼用溶接材料
EP2116626B1 (de) Kriechfester Stahl
WO2009103259A2 (de) Stahllegierung für einen niedrig legierten stahl zur herstellung hochfester nahtloser stahlrohre
JPWO2018066573A1 (ja) オーステナイト系耐熱合金およびそれを用いた溶接継手
EP4069874A1 (de) Nickel-chrom-eisen-aluminium-legierung mit guter verarbeitbarkeit, kriechfestigkeit und korrosionsbeständigkeit sowie deren verwendung
EP4022105A1 (de) Austenitische stahllegierung mit verbesserter korrosionsbeständigkeit bei hochtemperaturbeanspruchung und verfahren zur herstellung eines rohrkörpers hieraus
AT408350B (de) Hitzebeständiger stahl
WO2013113718A1 (de) Duplexstahl mit verbesserter kerbschlagzähigkeit und zerspanbarkeit
EP1529853A2 (de) Stahl für Chemie-Anlagen-Komponenten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141212

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20170315