EP2859053B1 - Revêtements autonettoyants et leurs procédés de fabrication - Google Patents

Revêtements autonettoyants et leurs procédés de fabrication Download PDF

Info

Publication number
EP2859053B1
EP2859053B1 EP13834452.8A EP13834452A EP2859053B1 EP 2859053 B1 EP2859053 B1 EP 2859053B1 EP 13834452 A EP13834452 A EP 13834452A EP 2859053 B1 EP2859053 B1 EP 2859053B1
Authority
EP
European Patent Office
Prior art keywords
substrate
silane
chemical agent
coating
trichloro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13834452.8A
Other languages
German (de)
English (en)
Other versions
EP2859053A2 (fr
EP2859053A4 (fr
Inventor
Seamus Curran
Kang-Shyang Liao
Killian Barton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Houston
Original Assignee
University of Houston
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Houston filed Critical University of Houston
Publication of EP2859053A2 publication Critical patent/EP2859053A2/fr
Publication of EP2859053A4 publication Critical patent/EP2859053A4/fr
Application granted granted Critical
Publication of EP2859053B1 publication Critical patent/EP2859053B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • B05D5/083Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface involving the use of fluoropolymers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/30Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1606Antifouling paints; Underwater paints characterised by the anti-fouling agent
    • C09D5/1612Non-macromolecular compounds
    • C09D5/1625Non-macromolecular compounds organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1681Antifouling coatings characterised by surface structure, e.g. for roughness effect giving superhydrophobic coatings or Lotus effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/10Cleaning arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2203/00Other substrates
    • B05D2203/30Other inorganic substrates, e.g. ceramics, silicon
    • B05D2203/35Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/12Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/14Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by electrical means
    • B05D3/141Plasma treatment
    • B05D3/142Pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/02Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a matt or rough surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/76Hydrophobic and oleophobic coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/31Pre-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Definitions

  • This invention relates to methods and instrumentations for making self-cleaning substrates.
  • Self-cleaning surfaces are desired for paints, construction materials, glass and windows, textiles, and more.
  • Such self-cleaning coatings provide protection from dirt and wear and improve in certain circumstances the aesthetic qualities and lifetime of industrial and consumer articles thereby reducing the need for chemical detergents, labor and energy expenditure.
  • varieties of materials and processes for artificial hydrophobic or superhydrophobic coatings using methods such as chemical vapor deposition, layer-by-layer assembly and micro-patterning, have been reported, all of these methods and coatings require complicated application processes which are difficult to apply to large substrates.
  • US 2012/040179 A1 discloses coatings and their uses. More particularly, the US 2012/040179 A1 is directed to coating compositions that include silane-based precursors that are used to form coatings through a sol-gel process.
  • the coatings so formed are characterized by anti-reflective, abrasion resistant, and anti-soiling properties.
  • the coatings also have extended weatherability to heat, humidity, and protection against ambient corrosives.
  • the coatings formed from the compositions described herein have wide application, including, for example, use as coatings on the outer glass of solar cells.
  • An aspect of the present invention relates to a method of forming a self-cleaning coating on a substrate comprising the steps of selecting a substrate; cleaning the substrate; roughening the substrate with an abrasive to create microscopic tortuous grooves, wherein the abrasive is moved down to contact the substrate and the substrate is moved back-and-forth along an X-axis with a first actuator to roughen the substrate, and the microscopic tortuous grooves created on the substrate range in depth from 1 ⁇ m to 1 mm; washing the substrate with de-ionized water; and coating the roughened surface with at least one hydrophobic chemical agent.
  • the chemical agent is selected from the group consisting of trichloro(3,3,3-trifluoropropyl)silane, dichloro-methyl(3,3,3-trifluoropropyl)silane, chlorodimethyl(3,3,3-trifluoropropyl)silane, trichloro( 1H,1H,2H,2H -perfluorooctyl)silane, dichloro-methyl( 1H,1H,2H,2H- perfluorooctyl)silane, chlorodimethyl( 1H,1H,2H,2H -perfluorooctyl)silane, trichloro(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)silane, dichloro-methyl(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)silane, dichloro
  • the coating step is performed by evaporating the at least one hydrophobic chemical agent in a controlled humidity environment, the hydrophobic chemical agent binds to the roughened surface to create nanoscopic grooves on the substrate ranging from 10 nm to 1 ⁇ m.
  • a second aspect of the invention relates to an apparatus for depositing a self-cleaning coating on a substrate
  • a station for forming microscopic grooves on the substrate wherein microscopic grooves are formed in the substrate with an abrasive that is moved down to contact the substrate and the substrate is moved back-and-forth along an X-axis to roughen the substrate, and the microscopic tortuous grooves created on the substrate range in depth from about 1 ⁇ m to about 1 mm; and a chamber for coating the substrate with at least one hydrophobic chemical agent, wherein_the hydrophobic chemical agent is selected from the group consisting of trichloro(3,3,3-trifluoropropyl)silane, dichloromethyl(3,3,3-trifluoropropyl)silane, chlorodimethyl(3,3,3-trifluoropropyl)silane, trichloro( 1H,1H,2H,2H -perfluorooctyl)silane, dich
  • the chamber for coating comprising a dehumidifier that allows the at least one hydrophobic chemical agent to be evaporated in a controlled humidity environment, and the coating creates nanoscopic grooves on the substrate ranging from 10 nm to 1 ⁇ m.
  • the apparatus further comprises a drying chamber connected to the coating chamber, wherein the station is operatively connected to transport the substrate to the coating chamber, and wherein the coating chamber is operatively connected to transport the substrate to the drying chamber.
  • a third aspect of the present invention relates to a self-cleaning coating on a substrate comprising a hydrophobic chemical agent covalently bonded to at least one roughened surface of the substrate.
  • the hydrophobic chemical agent is selected from the group consisting of trichloro(3,3,3-trifluoropropyl)silane, dichloromethyl(3,3,3-trifluoropropyl)silane, chlorodimethyl(3,3,3-trifluoropropyl)silane, trichloro( 1H,1H,2H,2H -perfluorooctyl)silane, dichloromethyl( 1H,1H,2H,2H- perfluorooctyl)silane, chlorodimethyl( 1H,1H,2H,2H -perfluorooctyl)silane, trichloro(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooc
  • the coating is applied by evaporating the at least one hydrophobic chemical agent in a controlled humidity environment, the substrate is roughened with an abrasive to create microscopic grooves, wherein the abrasive is moved down to contact the substrate and the substrate is moved back-and-forth along an X-axis to roughen the substrate, and the microscopic tortuous grooves created on the substrate range in depth from 1 ⁇ m to 1 mm, wherein the bonding creates nanoscopic grooves on the roughened surface of the substrate ranging from 10 nm to 1 ⁇ m, and wherein the coating renders the substrate self-cleaning when tilted above a critical angle ⁇ where a water droplet starts to move down the substrate surface.
  • An embodiment of the present disclosure relates to a method of forming a self-cleaning coating on a substrate.
  • Such a method comprises the step of selecting a substrate.
  • the substrate may be a flat or a non-flat substrate.
  • the substrate may comprise of metals, metal oxides, plastic with silicon dioxide, or a metal oxide layers.
  • the method comprises the step of cleaning the substrate.
  • the method comprises the step of roughening the substrate. Roughening of the substrate creates microscopic tortuous grooves on the substrate.
  • the method comprises the step of coating the roughened surface with at least one hydrophobic chemical agent.
  • the hydrophobic chemical agent covalently binds with the substrate creating nanoscopic grooves on the roughened surface coated with the hydrophobic chemical agent.
  • the hydrophobic chemical agent is a Fluoroalkylsilane.
  • the coated substrate has a light transmission or reflection similar to or higher than that of the uncoated substrate.
  • an apparatus for depositing a self-cleaning coating on a substrate Such an apparatus comprises a station for forming microscopic grooves on the substrate, where an abrasive roughens the substrate.
  • the station for creating microscopic grooves additionally comprises a dehumidifier.
  • the station may also comprise an outlet for reaction byproducts and gas, optionally fitted with chemical filters.
  • the apparatus comprises a coating chamber for coating the substrate with at least one hydrophobic chemical agent. The coating of the hydrophobic chemical agent creates nanoscopic grooves on the roughened substrate.
  • the hydrophobic chemical agent is a Fluoroalkylsilane.
  • the coating chamber may also comprise an outlet for reaction byproducts and gas, optionally fitted with chemical filters.
  • the apparatus comprises a drying chamber. The station is operatively connected to transport the substrate to the coating chamber and the coating chamber is operatively connected to transport the substrate to the drying chamber.
  • a further embodiment of the present disclosure pertains to a self-cleaning coating on a substrate comprising a hydrophobic chemical agent covalently bonded to at least one roughened surface of the substrate.
  • the covalent bonding of the hydrophobic chemical agent creates nanoscopic grooves on the roughened surface of the substrate.
  • the coating renders the substrate self-cleaning when tilted above a critical angle ⁇ .
  • the present disclosure relates to methods of forming self-cleaning coatings on substrates and apparatuses for the application of self-cleaning coatings on different substrates.
  • Self-cleaning or superhydrophobic surface finishes inspired by the self-cleaning mechanism of lotus plants and other organisms (e.g., many large-winged insects) are desirable in numerous applications across various industries.
  • self-cleaning surfaces have attracted significant interest not only because of their potential applications in the industry but also because of a renewed interest in the fundamental understanding of wetting behavior that has been inspired by superhydrophobic properties exhibited by living organisms observed in nature.
  • Lotus plants Nelumbo nucifera ) stay dirt-free, an obvious advantage for an aquatic plant living in typically muddy habitats, and they do so without using detergent or expending energy.
  • the plant's cuticle like that of other plants, is made up of soluble lipids embedded in a polyester matrix - wax - but the degree of its water repellency is extreme (superhydrophobic). This is accomplished through the micro-topography of their leaf surfaces, which while showing a variety of structures, all share a similar mathematical set of proportions associated with superhydrophobicity.
  • superhydrophobic and self-cleaning may be defined in various manners.
  • a superhydrophobic surface may be defined to have a minimum static contact angle of 150° and a maximum sliding angle of 5°.
  • superhydrophobic and self-cleaning are sometimes used interchangeably.
  • Figure 1 describes a general phenomenon where a water droplet slides down a tilted substrate surface of common materials such as glass (that has no coating). Due to the strong surface tension between the substrate surface and water, the water droplet tends to break into small droplets and leaves a trail of smaller water droplets. The adhesion between the dust particles and the substrate surface also prevents the particles being washed away (depicted in black) by the movement of a water droplet.
  • Figure 2 describes a phenomenon where a water droplet slides down a tilted substrate surface that has been previously treated with a "self-cleaning" coating. Due to the greatly reduced surface tension between water and the coated substrate surface, the water droplet slides down without any remnant of the droplet adhering to the surface. The adhesion between the dust particles and the coated substrate surface is also reduced so the particles are washed away (depicted in black) by the movement of a water droplet.
  • Figure 3 describes yet another phenomenon where a water droplet rolls down a tilted substrate surface that has been previously treated with a "self-cleaning" coating. Due to the greatly reduced surface tension and contact area between water and the coated substrate surface, the water droplet rolls down leaving no trail. The adhesion between the dust particles and the coated substrate surface is also reduced so the particles are washed away (depicted in black) when they are in contact with the water droplet.
  • the critical angle for a given water droplet starts to moving down the substrate surface
  • m the mass of the water droplet
  • g the acceleration due to gravity
  • w the width horizontal to the direction of drop movement
  • ⁇ R and ⁇ A are the receding contact angle and the advancing contact angle of the water droplet on a substrate surface, respectively.
  • the difference between advancing and receding contact angles is termed hysteresis.
  • ⁇ LV is the surface tension between the liquid (water) and the vapor (air) interface.
  • a "self-cleaning" event is best described when water drops with a set volume (thus, a set mass) can move by sliding, rolling or some combination of the two when the "self-cleaning" substrate is tilted above the critical angle ⁇ . Due to the greatly reduced surface tension between water and the "self-cleaning" surface, the water droplet slides down leaving no trail. Dirt/dust particles may be washed away by sliding or rolling water droplets due to the reduced adhesion of dirt to the "self-cleaning" surface once the particles are sufficiently small enough to be gathered up by the liquid.
  • a method for the measurement of the critical water sliding (rolling) angle is shown in Figure 5 .
  • a sessile drop of water with a set volume is placed on the substrate surface tilted at a lower angle than ⁇ .
  • a force pushes at the bottom end of the substrate slowly raising it up until the water droplet starts to slide (roll).
  • a right triangle is formed by the incline plane (hypotenuse) and the horizontal surface as shown ( Figure 5 ).
  • Man-made (artificial) self-cleaning surfaces are most commonly fabricated in one of two general ways. They can either be produced by creating hierarchical micro/nanostructures on hydrophobic substrates or by chemically modifying a micro/nanostructured surface with molecules of low surface free energy.
  • compositions and methods for making self-cleaning coatings which comprises the following steps: Step 1) Choosing any substrate of interest.
  • the substrates can be but not limited to silicon dioxide, metals/metal oxides, organic/inorganic composites containing metals/metal oxides and plastic with silicon dioxide or metal oxides layer by sol-gel formation or other methods.
  • Step 2) Cleaning the substrate.
  • Step 3) Roughening the substrate surface using abrasives to generate microscopic tortuous grooves of depth of about 1 ⁇ m to 1 mm as illustrated in Figure 6 , which is achieved using a mechanical grinder/polisher, and if necessary, in coupling with grinding disc/abrasive paper and polishing suspensions.
  • the abrasive is selected from the group consisting of diamond, carbonado, boron, boron nitride, corundum, silicon carbide, tungsten carbide, titanium carbide, chromium, silicon nitride, topaz, zirconia, tungsten, quartz and glass.
  • Step 4) washing the substrate with deionized water, and Step 5) Coating the roughened substrate with a hydrophobic chemical agent as defined in the claims under a controlled environment if necessary (as illustrated in Figure 7 ), to create a hydrophobic surface with nanoscopic grooves of about 10 nm to 1 ⁇ m.
  • Roughened surfaces tend to reduce adhesive force on water droplets, as trapped air in the interstitial spaces of the roughened surface result in a reduced liquid-to-solid contact area. This allows the self-attraction of the polar molecule of water to express more fully, causing it to form spheres. Dirt particles on the surface of the substrate stick to these droplets, both due to natural adhesion between water and solids and because contact with the substrate's surface is reduced by over 95% from the substrate's micro-topography. The slightest angle in the surface of the substrate then causes the balls of water to roll off due to gravity, taking the attached dirt particles with them and cleaning the substrate.
  • the self-cleaning surface on a substrate is produced by first polishing the substrate with a first abrasive (abrasive I) to generate microscopic tortuous grooves.
  • abrasive I abrasive
  • the resulting substrate may be polished with a second abrasive (abrasive II) to generate a secondary microscopic feature.
  • a mechanical polisher is used in couple with polishing paper and diamond suspension.
  • the self-cleaning coating system described herein includes two microscopic tortuous surface grooves generated by roughing the glass with two diamond abrasives having different grain sizes (1 ⁇ m and 0.1 ⁇ m) in a liquid suspension consecutively to generate a self-cleaning coating with a critical angle inferior to 30°.
  • the preferred choice of abrasives is such that the hardness of abrasives is greater than that of the chosen substrate.
  • abrasives may include but are not limited to diamond dust, silicon carbide, ceramic, metal oxide and glass powder.
  • the abrasive material may exist as either a solid form in combination with other binding materials (such as grinding disc and abrasive paper) or as a liquid suspension. Typical abrasive grain sizes may range from 10 nm to 10 mm.
  • the resulting surface is then treated with hydrophobic chemical agents, which renders the surface hydrophobic and also generates nanoscopic topography.
  • hydrophobic chemical agents used as coating in Step 4 includes at least one agent covalently bonded to the resulting surface, which renders the surface hydrophobic and also generates nanoscopic topography.
  • the preferred hydrophobic chemical agent may include trichloro(3,3,3-trifluoropropyl)silane, dichloro-methyl(3,3,3-trifluoropropyl)silane, chloro-dimethyl(3,3,3-trifluoropropyl)silane, trichloro(1 H, 1 H, 2 H, 2 H -perfluorooctyl)silane, dichloromethyl(1 H, 1 H, 2 H, 2 H -perfluorooctyl)silane, chloro-dimethyl(1 H, 1 H, 2 H, 2 H- perfluorooctyl)silane, trichloro(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)silane, dichloromethyl(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)silane, chloromethyl(3,
  • the preferred chemical species may include chlorosilane, dichlorosilane, trichlorosilane, chlorotrimethylsilane, dichlorodimethylsilane, trichloromethylsilane, chlorophenylsilane, dichlorophenylsilane, trichlorophenylsilane, chloro methylphenylsilane, chlorodimethylphenylsilane, dichloromethylphenylsilane, chlorodimethylphenethylsilane, dichloromethylphenethylsilane, trichlorophenethylsilane, chlorodimethyldodecylsilane, dichloromethyldodecylsilane, trichlorododecylsilane, chlorodecyldimethylsilane, dichlorodecylmethylsilane
  • FIG. 7 it describes the enclosure for conducting the hydrophobic treatment on a substrate such as a solar panel.
  • the solution of hydrophobic chemicals in anhydrous toluene is injected through several re-sealable rubber septa.
  • extra water molecules may be needed to promote polymerization of the hydrophobic chemicals.
  • the humidity level is controlled through the dehumidifier to be about 20% of related humidity.
  • An extra opening on top is used for ventilation.
  • the self-cleaning coating system described here uses trichloro(1 H, 1 H, 2 H, 2 H- perfluorooctyl)silane to render the surface hydrophobic and generates nanoscopic topography.
  • the resulting self-cleaning coatings show no apparent loss of transmission of the visible light to the substrate.
  • Such self-cleaning coatings are therefore well suited for a range of applications including the self-cleaning of solar panels.
  • Other applications include but are not limited to products that require regular cleaning of their surface in order to maintain their proper functions, such as for example automobile windshields, windows, and sunroofs.
  • the self-cleaning coatings may also have the desired properties for corrosion protection and anti-fouling of metallic structures.
  • the resulting self-cleaning coating exhibit self-cleaning properties.
  • a pre-cleaned plain glass slide (Coming) is polished for 3 minutes with a 0.1 ⁇ m polycrystalline diamond suspension (MetaDi, Buehler) using a polishing cloth (MasterTex, Buehler) attached to a mechanical polisher.
  • the polished glass is cleaned with soap water and washed with de-ionized water thoroughly. After drying, the glass is transferred into a controlled environment with relative humidity level of 16% and submerged into a solution of trichloro(1 H, 1 H, 2 H, 2 H -perfluorooctyl)silane in anhydrous toluene.
  • a pre-cleaned smooth aluminum plate is polished with 1.0 and 0.1 ⁇ m polycrystalline diamond suspension (MetaDi, Buehler) consecutively using a polishing cloth (MasterTex, Buehler) attached to a mechanical polisher.
  • the polished aluminum is cleaned with soap water and washed with de-ionized water thoroughly. After drying, the aluminum plate with mirror-like surface is placed in an ozone plasma environment for 1 hour.
  • the aluminum is transferred into a controlled environment with relative humidity level of 16% and submerged into a solution of trichloro(1 H, 1 H, 2 H, 2 H -perfluorooctyl)silane in anhydrous toluene.
  • the glass is removed from the solution and washed with anhydrous toluene.
  • the treated aluminum is cleaned with soap water and washed with de-ionized water thoroughly.
  • the transmission of the resulting coating at the visible light range remains the same as the pristine aluminum surface (the difference in reflection is undetectable by common human eyes).
  • the critical angle for a 0.05 mL sessile drop of de-ionized water to sliding down the coated surface is less than 30°.
  • the invention is exemplified in a preferred embodiment wherein a roughed substrate is produced on the large substrate (1) such as the glass surface of a solar panel using abrasives.
  • the substrate is loaded onto the station composed of a flat plate, a stage and two actuators.
  • a flat plate (2) with an abrasive pad attached below is controlled by the Z-actuator (3) along the Z-axis to contact with the substrate surface.
  • the substrate is locked into a stage (4) that is controlled by the X -actuator (5) along the X-axis.
  • the process starts with the injection of abrasive solutions (6) onto the substrate surface.
  • the flat plate with an abrasive pad is moved down to contact with the substrate and to spread the abrasive solutions over the whole surface.
  • the back-and-forth motion of the stage along the X-axis with reference to the stationary flat plate therefore moves the abrasives to rough the substrate surface. If necessary, the same motion along the Y -axis can be added with a Y -actuator (not shown here).
  • the invention is exemplified in a preferred embodiment wherein the self-cleaning surface on a roughed substrate is produced, for example, a large flat substrate (7) such as the glass surface of a solar panel.
  • the hydrophobic treatment solution (8) such as fluoroalkylsilanes in anhydrous solvent is injected by a dispenser onto the polished glass surface of the solar panel.
  • a flat plate (9) measured the same size as the glass is pushed closer to the glass surface by an actuator (10) to allow the spreading of the solution evenly throughout the whole glass surface.
  • the actuator lifts the plate and the substrate is moved to the next station by a conveyor belt (11).
  • the humidity level is controlled by the dehumidifier (12) to the optimized level of related humidity.
  • An extra opening on top is used for ventilation (13) of reaction byproduct and solvent vapor.
  • the opening may be coupled with chemical filters.
  • the self-cleaning surface on a roughed substrate is produced without solvents.
  • Figure 11 describes the process for conducting the hydrophobic treatment (in absence of solvent) on a large flat substrate (14) such as a solar panel. This process is especially suitable for substrates which may be damaged by the solvent.
  • the substrate is suspended on a conveyor belt (15) located at the top of the enclosure.
  • the hydrophobic chemicals (16) such as fluoroalkylsilanes are injected on the top of heating elements (17).
  • the evaporation of the chemicals is controlled by the heating temperature adjusted by the heating elements as well as the pressure between 0.1 KPa to 100 KPa adjusted by the vacuum pump (18).
  • the vacuum pump may be coupled with chemical filters.
  • the humidity level is controlled by the dehumidifier (19) to the optimized level of related humidity.
  • the resulting self-cleaning coating exhibit self-cleaning properties.
  • This embodiment is exemplified as following: A pre-cleaned solar panel (having the surface area of ⁇ 2 m 2 ) was polished with 1.0 ⁇ m polycrystalline diamond suspension (MetaDi, Buehler) using a polishing cloth (MasterTex, Buehler) attached to a mechanical polisher. The polished glass surface of the solar panel was cleaned with soap water and washed with de-ionized water thoroughly.
  • the panel was transferred into a controlled enclosure with relative humidity level of about 20% and subjected to a vapor of trichloro(1 H, 1 H, 2 H, 2 H -perfluorooctyl)silane generated by heating the chemical with a hotplate at 120 °C. After 30 minutes, the panel was removed from the enclosure and cleaned with soap water and washed with de-ionized water thoroughly. The transmission of the resulting coating at the visible light range remains the same as the pristine glass surface of the solar panel (the difference in reflection is undetectable by common human eyes). The critical angle for a 0.05 mL sessile drop of de-ionized water to sliding down the coated surface is less than 30°.
  • Figure 12 describes the process for conducting the ozone plasma treatment on non-flat substrates (20) such as an extruded aluminum frame.
  • the substrate is suspended on a trail (21) operating by a rotational motor (22) once inside the enclosure.
  • a set of UV lamps (23) are used to convert the oxygen from the atmosphere to active ozone plasma.
  • An extra oxygen supply (24) may be needed to improve the efficiency of the treatment and thus reduces the treatment time.
  • An extra opening on top is used for ventilation (25) of ozone and byproducts if workers need to enter the area. The opening may be coupled with chemical filters.
  • Figure 13 describes the process for conducting the hydrophobic treatment on non-flat substrates bearing intricate 3-D structures (26) such as aluminum frames.
  • the substrate is suspended on a trail (27) operating by a rotational motor (28) once inside the enclosure.
  • the hydrophobic chemicals (29) such as fluoroalkylsilanes are transported by a liquid pump (30) into the dispenser/controller (31) and an inert gas such as N 2 from the gas supply (32) is used as the deliver media to distribute the chemicals onto the substrate surface while the substrates are rotating.
  • the spreading of the chemicals is controlled by adjusting the pressure ratio of the chemical pump and the gas.
  • the humidity level is controlled though the dehumidifier (33) to the optimized level of related humidity.
  • An extra opening on top is used for ventilation (34) of reaction byproduct and gas if workers need to enter the area.
  • the opening may be coupled with chemical filters.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Surface Treatment Of Glass (AREA)
  • Laminated Bodies (AREA)
  • Detergent Compositions (AREA)
  • Paints Or Removers (AREA)

Claims (19)

  1. Procédé de formation d'un revêtement auto-nettoyant sur un substrat comprenant les étapes de : choix d'un substrat ; nettoyage du substrat ;
    le fait de rendre rugueux le substrat avec un agent abrasif afin de créer des rainures sinueuses microscopiques, dans lequel l'agent abrasif se déplace vers le bas pour rentrer en contact avec le substrat et le substrat se déplace d'avant en arrière le long d'un axe X avec un premier actionneur afin de rendre le substrat rugueux, et les rainures sinueuses microscopiques créées sur le substrat ont une profondeur qui va de 1 µm à 1 mm ;
    lavage du substrat avec de l'eau désionisée ; et
    revêtement de la surface rendue rugueuse avec au moins un agent chimique hydrophobe, dans lequel l'au moins un agent chimique hydrophobe est sélectionné dans le groupe composé de trichloro(3,3,3-trifluoropropyl)silane, dichlorométhyl(3,3,3-trifluoropropyl)silane, chlorodiméthyl(3,3,3-trifluoropropyl)silane, trichloro(1H,1H,2H,2H-perfluorooctyl)silane, dichloro-méthyl(1H,1H,2H,2H-perfluorooctyl)silane, chlorodiméthyl (1H,1H,2H,2H-perfluorooctyl)silane, trichloro(3,3,4,4,5,5,6,6,7,7,8,8,8-tridécafluorooctyl)silane, dichloro-méthyl(3,3,4,4,5,5,6,6,7,7,8,8,8-tridécafluorooctyl)silane, chlorodiméthyl(3,3,4,4,5,5,6,6,7,7,8,8,8-tridécafluorooctyl)silane, trichloro(1H,1H,2H,2H-perfluorodécyl)silane, dichlorométhyl(1H,1H,2H,2H-perfluorodécyl)silane, chlorodiméthyl(1H,1H,2H,2H-perfluorodécyl)silane, trichloro(1H,1H,2H,2H-perfluorododécyl)silane, dichlorométhyl(1H,1H,2H,2H-perfluorododécyl)silane, chlorodiméthyl(1H,1H,2H,2H-perfluorododécyl)silane, chlorosilane, dichlorosilane, trichlorosilane, chlorotriméthylsilane, dichlorodiméthylsilane, trichlorométhylsilane, chlorophénylsilane, dichlorophénylsilane, trichlorophénylsilane, chlorométhylphénylsilane, chlorodiméthylphénylsilane, dichlorométhylphénylsilane, chlorodiméthylphénéthylsilane, dichlorométhylphénéthylsilane, trichlorophénéthylsilane, chlorodiméthyldodécylsilane, dichlorométhyldodécylsilane, trichlorododécylsilane, chlorodécyldiméthylsilane, dichlorodécylméthylsilane, trichlorodécylsilane, chlorodiméthyloctadécylsilane, dichlorométhyloctadécylsilane, trichlorooctadécylsilane, chlorodiméthyloctylsilane, dichlorométhyloctylsilane, trichlorooctylsilane, chlorodiméthylhexylsilane, dichlorométhylhexylsilane, trichlorohexylsilane, chlorodiméthylthexylsilane, dichlorométhylthexylsilane, trichlorothexylsilane, allyldichlorométhylsilane, allylchlorodiméthylsilane, allyltrichlorosilane, (cyclohexylméthyl)chlorodiméthylsilane, (cyclohexylméthyl)dichlorométhylsilane et (cyclohexylméthyl)trichlorosilane ;
    l'étape de revêtement est réalisée par évaporation de l'au moins un agent chimique hydrophobe dans un environnement à humidité contrôlée, l'agent chimique hydrophobe se lie à la surface rendue rugueuse afin de créer des rainures nanoscopiques sur le substrat allant de 10 nm à 1µm.
  2. Procédé selon la revendication 1, dans lequel l'au moins un agent chimique hydrophobe est exempt de solvant.
  3. Procédé selon la revendication 1, comprenant en outre l'étape permettant de rendre le substrat rugueux avec l'agent abrasif afin de créer des rainures microscopiques secondaires, dans lequel le substrat est rendu rugueux par déplacement du substrat d'avant en arrière le long d'un axe Y avec un second actionneur.
  4. Procédé selon la revendication 1, dans lequel le substrat est un substrat plat ou un substrat non plat ; ou dans lequel le substrat comprend des métaux, des oxydes métalliques, des composites organiques/inorganiques contenant des métaux/des oxydes métalliques et du plastique avec du dioxyde de silicium ou des couches d'oxydes métalliques par formation sol-gel ou d'autres procédés.
  5. Procédé selon la revendication 1, dans lequel l'étape permettant de rendre le substrat rugueux afin de créer les rainures sinueuses microscopiques comprend l'utilisation d'un broyeur mécanique ou un polisseur ; éventuellement
    (A) dans lequel le broyeur mécanique est utilisé avec un disque de broyage ou un papier abrasif ; ou éventuellement
    (B) dans lequel le polisseur est utilisé avec une suspension de polissage ; ou éventuellement
    (C) comprenant en outre l'utilisation d'au moins un agent abrasif, dans lequel la dureté de l'au moins un agent abrasif est supérieure à celle du substrat ; dans lequel l'agent abrasif est éventuellement sélectionné dans le groupe composé de diamant, carbonado, bore, nitrure de bore, corindon, carbure de silicium, carbure de tungstène, carbure de titane, chrome, nitrure de silicium, topaze, zircone, tungstène, quartz et verre.
  6. Procédé selon la revendication 1, dans lequel l'humidité est contrôlée à environ 20 % d'humidité relative.
  7. Procédé selon la revendication 1, dans lequel l'étape de revêtement du substrat rendu rugueux avec l'agent chimique hydrophobe se fait selon le processus de dépôt physique en phase vapeur ; dans lequel le dépôt physique en phase vapeur de l'agent chimique hydrophobe est éventuellement réalisé en contrôlant l'évaporation de l'agent chimique hydrophobe ; et en outre le contrôle de l'évaporation de l'agent chimique hydrophobe comprend éventuellement le contrôle de la pression d'injection et de la température de chauffage de l'agent chimique hydrophobe.
  8. Appareil permettant de déposer un revêtement auto-nettoyant sur un substrat comprenant :
    une station permettant de former des rainures microscopiques sur le substrat, dans lequel des rainures microscopiques sont formées dans le substrat avec un agent abrasif qui se déplace vers le bas pour rentrer en contact avec le substrat et le substrat se déplace d'avant en arrière le long d'un axe X afin de rendre le substrat rugueux, et les rainures sinueuses microscopiques créées sur le substrat ont une profondeur qui va de 1 µm à 1 mm ;
    une chambre destinée au revêtement du substrat avec au moins un agent chimique hydrophobe, dans lequel l'agent chimique hydrophobe est sélectionné dans le groupe composé de trichloro(3,3,3-trifluoropropyl)silane, dichlorométhyl(3,3,3-trifluoropropyl)silane, chlorodiméthyl(3,3,3-trifluoropropyl)silane, trichloro(1H,1H,2H,2H-perfluorooctyl)silane, dichlorométhyl(1H,1H,2H,2H-perfluorooctyl)silane, chlorodiméthyl(1H,1H,2H,2H-perfluorooctyl)silane, trichloro(3,3,4,4,5,5,6,6,7,7,8,8,8-tridécafluorooctyl)silane, dichlorométhyl(3,3,4,4,5,5,6,6,7,7,8,8,8-tridécafluorooctyl)silane, chlorodiméthyl(3,3,4,4,5,5,6,6,7,7,8,8,8-tridécafluorooctyl)silane, trichloro(1H,1H,2H,2H-perfluorodécyl)silane, dichlorométhyl(1H,1H,2H,2H-perfluorodécyl)silane, chlorodiméthyl(1H,1H,2H,2H-perfluorodécyl)silane, trichloro(1H,1H,2H,2H-perfluorododécyl)silane, dichlorométhyl(1H,1H,2H,2H-perfluorododecyl)silane, chlorodiméthyl(1H,1H,2H,2H-perfluorododccyl)silane, chlorosilane, dichlorosilane, trichlorosilane, chlorotriméthylsilane, dichlorodiméthylsilane, trichlorométhylsilane, chlorophénylsilane, dichlorophénylsilane, trichlorophénylsilane, chlorométhylphénylsilane, chlorodiméthylphénylsilane, dichlorométhylphénylsilane, chlorodiméthylphénéthylsilane, dichlorométhylphénéthylsilane, trichlorophénéthylsilane, chlorodiméthyldodécylsilane, dichlorométhyldodécylsilane, trichlorododécylsilane, chlorodécyldiméthylsilane, dichlorodécylméthylsilane, trichlorodécylsilane, chlorodiméthyloctadécylsilane, dichlorométhyloctadécylsilane, trichlorooctadécylsilane, chlorodiméthyloctylsilane, dichlorométhyloctylsilane, trichlorooctylsilane, chlorodiméthylhexylsilane, dichlorométhylhexylsilane, trichlorohexylsilane, chlorodiméthylthexylsilane, dichlorométhylthexylsilane, trichlorothexylsilane, allyldichlorométhylsilane, allylchlorodiméthylsilane, allyltrichlorosilane,(cyclohexylméthyl)chlorodiméthylsilane, (cyclohexylméthyl)dichlorométhylsilane et (cyclohexylméthyl)trichlorosilane ;
    la chambre destinée au revêtement comprenant un déshumidificateur qui permet à l'au moins un agent chimique hydrophobe d'être évaporé dans un environnement à humidité contrôlée, et le revêtement crée des rainures nanoscopiques sur le substrat allant de 10 nm à 1 µm ; et
    une chambre de séchage reliée à la chambre de revêtement, dans lequel la station est reliée de manière fonctionnelle afin de transporter le substrat à la chambre de revêtement, et dans lequel la chambre de revêtement est reliée de manière fonctionnelle afin de transporter le substrat vers la chambre de séchage.
  9. Appareil selon la revendication 8, dans lequel la station permettant la formation des rainures microscopiques sur le substrat comprend :
    au moins une plaque plane avec un tampon abrasif ;
    au moins un distributeur permettant de distribuer une solution abrasive ;
    au moins une scène permettant de charger le substrat ; et
    au moins deux actionneurs, dans lequel un parmi l'au moins deux actionneurs se situe le long de l'axe Z en référence à la plaque plane et après son activation vient en contact avec le tampon abrasif avec la surface de substrat, et dans lequel un des au moins deux actionneurs se trouve le long de l'axe X en référence à la plaque plane et après son activation de la scène d'avant en arrière le long de l'axe X.
  10. Appareil selon la revendication 9, comprenant en outre au moins un actionneur le long de l'axe Y en référence à la plaque plane de sorte qu'après son activation l'actionneur déplace la scène d'avant en arrière le long de l'axe Y.
  11. Appareil selon la revendication 9, dans lequel la solution d'agent abrasif comprend du diamant, du carbonado, du bore, du nitrure de bore, du corindon, du carbure de silicium, du carbure de tungstène, du carbure de titane, du chrome, du nitrure de silicium, du topaze, de la zircone, du tungstène, du quartz et du verre.
  12. Appareil selon la revendication 8, dans lequel la chambre permettant le revêtement du substrat avec au moins un agent chimique hydrophobe comprend :
    une scène permettant de charger le substrat ;
    au moins un distributeur relié à un injecteur, dans lequel le distributeur contient l'au moins un agent chimique hydrophobe ;
    un applicateur permettant d'appliquer l'au moins un agent hydrophobe sur le substrat ; un actionneur relié à l'applicateur, dans lequel l'applicateur est poussé à proximité du substrat rendu rugueux après activation de l'actionneur et après injection de l'agent chimique hydrophobe provenant du distributeur afin de propager l'agent chimique hydrophobe sur le substrat ;
    une sortie destinée à des produits de réaction secondaires ; et un déshumidificateur.
  13. Appareil selon la revendication 12, dans lequel l'agent chimique hydrophobe est dissous dans un solvant organique ; dans lequel le solvant organique est éventuellement le toluène anhydre.
  14. Appareil selon la revendication 8, dans lequel la chambre de revêtement comprend un élément de chauffage et une pompe à vide.
  15. Appareil selon la revendication 8, dans lequel la station permettant de créer des rainures microscopiques sur le substrat comprend une chambre à humidité contrôlée comprenant :
    une piste rotative permettant de suspendre le substrat ;
    une pluralité de lampes ultraviolettes ; une alimentation en oxygène ; et
    une sortie destinée pour des produits de réaction secondaires éventuellement munie de filtres chimiques.
  16. Appareil selon la revendication 8, dans lequel la chambre de revêtement comprend : une piste rotative permettant de suspendre le substrat ;
    une pompe à liquide reliée à un distributeur, dans lequel la pompe à liquide contient au moins un agent chimique hydrophobe ;
    un système d'alimentation en gaz inerte, dans lequel le système d'alimentation en gaz inerte distribue l'au moins un agent chimique hydrophobe sur le substrat ;
    un dispositif permettant de commander le rapport de la pression de pulvérisation de la pompe à liquide à la pression de gaz inerte ; un déshumidificateur ; et
    une sortie pour un produit de réaction secondaire et un gaz éventuellement muni de filtres chimiques ; dans lequel le rapport de la pression de pulvérisation de la pompe à liquide et la pression de gaz est éventuellement contrôlée à une plage comprise entre environ 1:10 et environ 1:100 000.
  17. Revêtement auto-nettoyant sur un substrat comprenant :
    un agent chimique hydrophobe lié de manière covalente à au moins une surface rendue rugueuse du substrat, dans lequel l'agent chimique hydrophobe est sélectionné dans le groupe composé de trichloro(3,3,3-trifluoropropyl)silane, dichlorométhyl(3,3,3-trifluoropropyl)silane, chlorodiméthyl(3,3,3-trifluoropropyl)silane, trichloro(1H,1H,2H,2H-perfluorooctyl)silane, dichlorométhyl(1H,1H,2H,2H-perfluorooctyl)silane, chlorodiméthyl(1H,1H,2H,2H-perfluorooctyl)silane, trichloro(3,3,4,4,5,5,6,6,7,7,8,8,8-tridécafluorooctyl)silane, dichlorométhyl(3,3,4,4,5,5,6,6,7,7,8,8,8-tridécafluorooctyl)silane, chlorodiméthyl(3,3,4,4,5,5,6,6,7,7,8,8,8-tridécafluorooctyl)silane, trichloro(1H,1H,2H,2H-perfluorodécyl)silane, dichlorométhyl(1H,1H,2H,2H-perfluorodécyl)silane, chlorodiméthyl(1H,1H,2H,2H-perfluorodécyl)silane, trichloro(1H,1H,2H,2H-perfluorododécyl)silane, dichlorométhyl(1H,1H,2H,2H-perfluorododécyl)silane, chlorodiméthyl(1H,1H,2H,2H-perfluorododécyl)silane, chlorosilane, dichlorosilane, trichlorosilane, chlorotriméthylsilane, dichlorodiméthylsilane, trichlorométhylsilane, chlorophénylsilane, dichlorophénylsilane, trichlorophénylsilane, chlorométhylphénylsilane, chlorodiméthylphénylsilane, dichlorométhylphénylsilane, chlorodiméthylphénéthylsilane, dichlorométhylphénéthylsilane, trichlorophénéthylsilane, chlorodiméthyldodécylsilane, dichlorométhyldodécylsilane, trichlorododécylsilane, chlorodécyldiméthylsilane, dichlorodécylméthylsilane, trichlorodécylsilane, chlorodiméthyloctadécylsilane, dichlorométhyloctadécylsilane, trichlorooctadécylsilane, chlorodiméthyloctylsilane, dichlorométhyloctylsilane, trichlorooctylsilane, chlorodiméthylhexylsilane, dichlorométhylhexylsilane, trichlorohexylsilane, chlorodiméthylthexylsilane, dichlorométhylthexylsilane, trichlorothexylsilane, allyldichlorométhylsilane, allylchlorodiméthylsilane, allyltrichlorosilane, (cyclohexylméthyl)chlorodiméthylsilane, (cyclohexylméthyl)dichlorométhylsilane et (cyclohexylméthyl)trichlorosilane ;
    le revêtement est appliqué par évaporation de l'au moins un agent chimique hydrophobe dans un environnement à humidité contrôlée, le substrat est rendu rugueux avec un agent abrasif afin de créer des rainures microscopiques, dans lequel l'agent abrasif se déplace vers le bas pour rentrer en contact avec le substrat et le substrat se déplace d'avant en arrière le long d'un axe X afin de rendre le substrat rugueux, et les rainures sinueuses microscopiques créées sur le substrat ont une profondeur qui va de 1 µm à 1 mm, dans lequel la liaison crée des rainures nanoscopiques sur la surface rendue rugueuse du substrat allant de 10 nm à 1 µm, et dans lequel le revêtement rend le substrat auto-nettoyant lorsqu'il est incliné au-dessus d'un angle critique α où une goutte d'eau commence à se déplacer vers le bas de la surface de substrat.
  18. Revêtement auto-nettoyant selon la revendication 17, dans lequel le substrat est poli avec l'agent abrasif afin de créer des rainures microscopiques secondaires.
  19. Revêtement auto-nettoyant selon la revendication 17, dans lequel l'angle critique α est défini par tan-1 (y/x), lorsque la surface de substrat est inclinée sur un plan incliné et un triangle rectangle est formé par le plan incliné (hypoténuse) et par une surface horizontale, dans lequel y = longueur du côté opposé du triangle rectangle et x = longueur du côté adjacent du triangle rectangle.
EP13834452.8A 2012-06-08 2013-06-10 Revêtements autonettoyants et leurs procédés de fabrication Active EP2859053B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261657152P 2012-06-08 2012-06-08
US201261667203P 2012-07-02 2012-07-02
PCT/US2013/044913 WO2014039130A2 (fr) 2012-06-08 2013-06-10 Revêtements autonettoyants et leurs procédés de fabrication

Publications (3)

Publication Number Publication Date
EP2859053A2 EP2859053A2 (fr) 2015-04-15
EP2859053A4 EP2859053A4 (fr) 2016-03-02
EP2859053B1 true EP2859053B1 (fr) 2019-12-25

Family

ID=49756171

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13834452.8A Active EP2859053B1 (fr) 2012-06-08 2013-06-10 Revêtements autonettoyants et leurs procédés de fabrication

Country Status (6)

Country Link
US (1) US10266702B2 (fr)
EP (1) EP2859053B1 (fr)
CA (1) CA2876151C (fr)
MX (1) MX349646B (fr)
SG (2) SG10201610218WA (fr)
WO (1) WO2014039130A2 (fr)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2856196C (fr) 2011-12-06 2020-09-01 Masco Corporation Of Indiana Distribution d'ozone dans un robinet
WO2014186454A1 (fr) 2013-05-14 2014-11-20 University Of Houston Revêtement imperméable à caractéristiques nanoscopiques/microscopiques
US20150328663A1 (en) * 2014-05-13 2015-11-19 Michael Lawrence Abbot Methods and systems for moisture revealed indicia on glass and other surfaces
US10704191B2 (en) 2014-11-12 2020-07-07 University Of Houston System Soil-resistant, stain-resistant coatings and methods of applying on textile or other flexible materials
EP3218540A4 (fr) 2014-11-12 2018-07-11 The University Of Houston System Revêtements résistant à la salissure, résistant aux taches sans fluor et procédés d'application sur des matériaux
WO2016077573A1 (fr) 2014-11-12 2016-05-19 University Of Houston System Revêtements résistant aux intempéries, aux champignons et aux taches et procédés d'application sur bois, maçonnerie ou autres matériaux poreux
WO2016197013A1 (fr) 2015-06-05 2016-12-08 Iyer Jagadish Système de nettoyage de panneau collecteur d'énergie solaire
US10450469B2 (en) * 2015-06-09 2019-10-22 Nbd Nanotechnologies, Inc. Transparent self-healing oleophobic and hydrophobic coatings
SE540714C2 (en) * 2015-06-18 2018-10-16 Stora Enso Oyj Container with oleophilic pattern on a sealing surface
CN108463437B (zh) 2015-12-21 2022-07-08 德尔塔阀门公司 包括消毒装置的流体输送系统
TWI583011B (zh) * 2016-04-01 2017-05-11 國立中央大學 大面積鈣鈦礦膜及鈣鈦礦太陽能電池模組及其製作方法
KR102415046B1 (ko) * 2016-08-08 2022-06-29 쉬르픽스 베붸 고체 표면의 개질 방법
US20190054571A1 (en) * 2017-08-21 2019-02-21 University Of Iowa Research Foundation Nanosecond laser-based high-throughput surface nano-structuring (nhsn) process
US11709155B2 (en) 2017-09-18 2023-07-25 Waters Technologies Corporation Use of vapor deposition coated flow paths for improved chromatography of metal interacting analytes
US11709156B2 (en) 2017-09-18 2023-07-25 Waters Technologies Corporation Use of vapor deposition coated flow paths for improved analytical analysis
CN109292730B (zh) * 2018-09-03 2020-07-24 山东科技大学 一种超滑表面的制备方法
CN109347414B (zh) * 2018-10-18 2020-10-16 国网山东省电力公司潍坊供电公司 一种光伏板用集摆动与清洗于一体的固定架
US11844172B2 (en) * 2019-10-16 2023-12-12 Kla Corporation System and method for vacuum ultraviolet lamp assisted ignition of oxygen-containing laser sustained plasma sources
CN110982434B (zh) * 2019-11-28 2021-04-13 德米特(苏州)电子环保材料有限公司 一种用于抛光砷化镓的抛光粉体及抛光液的制备方法
US11918936B2 (en) 2020-01-17 2024-03-05 Waters Technologies Corporation Performance and dynamic range for oligonucleotide bioanalysis through reduction of non specific binding
US11484987B2 (en) * 2020-03-09 2022-11-01 Applied Materials, Inc. Maintenance methods for polishing systems and articles related thereto
CN111802951A (zh) * 2020-07-30 2020-10-23 湖南人文科技学院 一种定向超疏液的无水自清洁小便器及其制作方法
CN114751654B (zh) * 2022-05-16 2023-08-01 常州大学 一种高透明度疏水自清洁MOFs涂层及其制备方法
CN115057629A (zh) * 2022-07-15 2022-09-16 佛山市恒洁凯乐德卫浴有限公司 一种具有表面易洁功能的玻璃及其制备方法

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3354022A (en) 1964-03-31 1967-11-21 Du Pont Water-repellant surface
US5523161A (en) 1990-04-03 1996-06-04 Ppg Industries, Inc. Water repellent surface treatment with integrated primer
US5328768A (en) 1990-04-03 1994-07-12 Ppg Industries, Inc. Durable water repellant glass surface
US5424130A (en) 1991-05-13 1995-06-13 Toyota Jidosha Kabushiki Kaisha Water repellent glass and process for producing the same
JPH09268281A (ja) 1996-03-29 1997-10-14 Toray Dow Corning Silicone Co Ltd 車両ガラス用撥水剤組成物および車両用撥水性ガラス
US20060113231A1 (en) 2000-10-23 2006-06-01 Abdul Malik Sample pre-concentration tubes with sol-gel surface coatings and/or sol-gel monolithic beds
DE10118352A1 (de) 2001-04-12 2002-10-17 Creavis Tech & Innovation Gmbh Selbstreinigende Oberflächen durch hydrophobe Strukturen und Verfahren zu deren Herstellung
WO2003015891A1 (fr) 2001-08-13 2003-02-27 The Board Of Trustees Of The Leland Stanford Junior University Colonne sol-gel photopolymerisee a phase greffee et procedes correspondants
CN1226448C (zh) * 2002-07-19 2005-11-09 Lg电子株式会社 有机场致发光膜蒸镀用蒸镀源
US20040018301A1 (en) 2002-07-26 2004-01-29 Ackerman John F. Process for improved inorganic polymerization
US6811467B1 (en) * 2002-09-09 2004-11-02 Seagate Technology Llc Methods and apparatus for polishing glass substrates
DE10253839A1 (de) 2002-11-14 2004-05-27 Hansgrohe Ag Beschichtungsverfahren
EP1599552B1 (fr) 2003-02-28 2017-05-17 Koninklijke Philips N.V. Revetement sol-gel renfermant un fluoropolymere
US7828889B2 (en) 2003-12-18 2010-11-09 The Clorox Company Treatments and kits for creating transparent renewable surface protective coatings
US7138186B2 (en) * 2004-02-05 2006-11-21 Guardian Industries Corp. Hydrophobic coatings and methods
US7622191B2 (en) 2004-07-19 2009-11-24 University Of South Florida Titania-based coating for capillary microextraction
DE102004037045A1 (de) 2004-07-29 2006-04-27 Degussa Ag Wässrige Silan-Nanokomposite
US20060029808A1 (en) 2004-08-06 2006-02-09 Lei Zhai Superhydrophobic coatings
FR2886309B1 (fr) 2005-05-31 2007-08-17 Airbus France Sas Sol pour le revetement par voie sol-gel d'une surface et procede de revetement par voie sol-gel le mettant en oeuvre
US20060292345A1 (en) 2005-06-14 2006-12-28 Dave Bakul C Micropatterned superhydrophobic silica based sol-gel surfaces
US20090011222A1 (en) 2006-03-27 2009-01-08 Georgia Tech Research Corporation Superhydrophobic surface and method for forming same
US7700184B2 (en) 2006-08-14 2010-04-20 University Of Houston System Pd nanopore and palladium encapsulated membranes
US20080113188A1 (en) 2006-11-09 2008-05-15 Shah Pratik B Hydrophobic organic-inorganic hybrid silane coatings
PL1935929T3 (pl) 2006-12-19 2012-04-30 Evonik Degussa Gmbh Proces zol-żel w produkcji ochronnych filmów podłoży polimerowych
WO2009020633A2 (fr) 2007-08-07 2009-02-12 President And Fellows Of Harvard College Revêtement d'oxyde métallique sur des surfaces
GB2452552A (en) 2007-09-08 2009-03-11 Univ Sheffield Hallam Corrosion-inhibiting sol-gel coating
US20110159289A1 (en) 2009-12-24 2011-06-30 Blizzard John D Method of encapsulating particulate materials
CN101544476A (zh) 2008-03-28 2009-09-30 皮尔金顿集团有限公司 超疏水性透明涂层及其制备方法
US9535215B2 (en) 2008-09-15 2017-01-03 Brphotonics Productos Optoelectronicos Ltda. Fluorinated sol-gel low refractive index hybrid optical cladding and electro-optic devices made therefrom
US20100203287A1 (en) 2009-02-10 2010-08-12 Ngimat Co. Hypertransparent Nanostructured Superhydrophobic and Surface Modification Coatings
US20100249445A1 (en) 2009-03-24 2010-09-30 The Regents Of The University Of California Post-spin-on silylation method for hydrophobic and hydrofluoric acid-resistant porous silica films
WO2010114632A2 (fr) 2009-04-03 2010-10-07 University Of Houston Nanoparticules métalliques fonctionnalisées avec des revêtements conçus de manière rationnelle et leurs utilisations
US8864897B2 (en) 2009-04-30 2014-10-21 Enki Technology, Inc. Anti-reflective and anti-soiling coatings with self-cleaning properties
FR2949471B1 (fr) 2009-08-27 2011-10-28 Commissariat Energie Atomique Procede de preparation de particules de silice contenant un derive de phtalocyanine, lesdites particules et leurs utilisations.
US20110250428A1 (en) 2010-02-07 2011-10-13 Aerogel Technologies, Llc Preparation of cross-linked aerogels and derivatives thereof
US9896549B2 (en) * 2010-04-13 2018-02-20 Aaron Kessman Hydrophobic and oleophobic coatings
WO2011142130A1 (fr) 2010-05-14 2011-11-17 株式会社Kri Sol d'oxyde métallique modifié
JP2014521809A (ja) 2011-08-02 2014-08-28 エイビーエス マテリアルズ インコーポレイテッド ゾル−ゲル誘導組成物
US9109121B2 (en) 2011-10-13 2015-08-18 Intermolecular, Inc. Sol-gel based antireflective coatings using alkyltrialkoxysilane binders having low refractive index and high durability
WO2014186454A1 (fr) 2013-05-14 2014-11-20 University Of Houston Revêtement imperméable à caractéristiques nanoscopiques/microscopiques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2014039130A3 (fr) 2014-05-15
EP2859053A2 (fr) 2015-04-15
SG11201408177VA (en) 2015-01-29
WO2014039130A2 (fr) 2014-03-13
SG10201610218WA (en) 2017-02-27
MX2014015040A (es) 2015-07-17
US10266702B2 (en) 2019-04-23
US20130337226A1 (en) 2013-12-19
CA2876151C (fr) 2021-05-25
MX349646B (es) 2017-08-04
EP2859053A4 (fr) 2016-03-02
CA2876151A1 (fr) 2014-03-13

Similar Documents

Publication Publication Date Title
EP2859053B1 (fr) Revêtements autonettoyants et leurs procédés de fabrication
JP6728067B2 (ja) 超疎水性または超親水性表面の新規製造方法
EP2950940B1 (fr) Composition super hydrophobe et antistatique
Maharjan et al. Self-cleaning hydrophobic nanocoating on glass: A scalable manufacturing process
JP2011526835A5 (fr)
CN102084027A (zh) 用于处理基材的高疏水表面的方法
Abu Jarad et al. Fabrication of superamphiphobic surfaces via spray coating; a review
CN105164221B (zh) 形成对附着污物的自清洁能力优异的皮膜的水系亲水性涂料组合物、以及形成有对附着污物的自清洁能力优异的皮膜的表面处理材料
US10253190B2 (en) Transparent durable superhydrophobic ceramic coating
CN116018383A (zh) 抗微生物涂层
Wang et al. Feasible fabrication of durable superhydrophobic SiO2 coatings with translucency and self-cleaning performance
US20230381811A1 (en) Coating process
Sadiku et al. Nanotechnology in paints and coatings
JP6664227B2 (ja) 積層体、及び積層体の形成方法
JP2000321412A (ja) 浴室用防曇性鏡
Qu et al. Fabrication of mechanical durable polysiloxane superhydrophobic materials
EP4317098A1 (fr) Systèmes de nano-revêtement durables faciles à nettoyer
NZ788239A (en) Coating process
Gener et al. Surface characterization of new silane-based pretreatments applied on aluminium
JPH04328188A (ja) 建築・建装用物品
JP2010275543A (ja) 親水性膜形成用カゴ型シルセスキオキサン−ペルオキソチタン複合体塗工液及び塗膜

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141209

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20160128

RIC1 Information provided on ipc code assigned before grant

Ipc: B05D 3/08 20060101ALI20160122BHEP

Ipc: C09D 7/12 20060101AFI20160122BHEP

Ipc: C09D 183/00 20060101ALI20160122BHEP

Ipc: C09D 5/16 20060101ALI20160122BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180306

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602013064436

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C09D0005000000

Ipc: C09D0183000000

RIC1 Information provided on ipc code assigned before grant

Ipc: B05D 3/02 20060101ALI20190226BHEP

Ipc: C03C 17/30 20060101ALI20190226BHEP

Ipc: B05D 3/14 20060101ALI20190226BHEP

Ipc: B05D 3/08 20060101ALI20190226BHEP

Ipc: C09D 5/16 20060101ALI20190226BHEP

Ipc: H02S 40/10 20140101ALI20190226BHEP

Ipc: B05D 5/02 20060101ALI20190226BHEP

Ipc: C09D 183/00 20060101AFI20190226BHEP

Ipc: B05D 3/12 20060101ALI20190226BHEP

Ipc: B05D 5/08 20060101ALI20190226BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190410

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20190807

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1217100

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013064436

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200326

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200425

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013064436

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1217100

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

26N No opposition filed

Effective date: 20200928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200610

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200610

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200610

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230626

Year of fee payment: 11