EP2773785B1 - Duplexedelstahl - Google Patents

Duplexedelstahl Download PDF

Info

Publication number
EP2773785B1
EP2773785B1 EP12846399.9A EP12846399A EP2773785B1 EP 2773785 B1 EP2773785 B1 EP 2773785B1 EP 12846399 A EP12846399 A EP 12846399A EP 2773785 B1 EP2773785 B1 EP 2773785B1
Authority
EP
European Patent Office
Prior art keywords
weight
less
stainless steel
content
austenitic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12846399.9A
Other languages
English (en)
French (fr)
Other versions
EP2773785A1 (de
EP2773785A4 (de
Inventor
Alexander Thulin
Jan Y. JONSSON
Rachel PETTERSSON
Jan-Olof Andersson
Staffan Hertzman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Outokumpu Oyj
Original Assignee
Outokumpu Oyj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Outokumpu Oyj filed Critical Outokumpu Oyj
Publication of EP2773785A1 publication Critical patent/EP2773785A1/de
Publication of EP2773785A4 publication Critical patent/EP2773785A4/de
Application granted granted Critical
Publication of EP2773785B1 publication Critical patent/EP2773785B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • This invention relates to a duplex ferritic austenitic stainless steel, which chemical composition and microstructure are favorable for use in chemical industries wherein good uniform corrosion resistance and high strength are required.
  • One target of use for the steel is in urea manufacturing.
  • intermetallic precipitates such as sigma phase
  • the sigma phase forms in a temperature range of 600 - 1000 °C and has particular importance, because already a small amount, even less than 1 volume %, of the sigma phase causes a considerable reduction in plasticity, in impact toughness and impairment in corrosion resistance.
  • the fastest kinetics of sigma phase formation occurs at 800-900 °C.
  • the sigma phase can only be dissolved by annealing above 1050 °C. In the presence of large quantities of chromium and molybdenum, the tendency for sigma phase precipitation increases.
  • the US patent 5,582,656 relates to a duplex ferritic austenitic stainless steel which contains max 0,05 weight % C, max 0,8 weight % Si, 0,3-4 weight % Mn, 28-35 weight % Cr, 3-10 weight % Ni, 1,0-4,0 weight % Mo, 0,2-0,6 weight % N, max 1,0 weight % Cu, max 2,0 weight % W, max 0,01 weight % S and 0-0,2 weight % Ce, balance being iron.
  • Mo, W, Si and Mn chromium increases the risk of precipitation of intermetallic phases.
  • copper improves the general corrosion resistance in acid environments, such as sulphuric acid, but high contents of copper decrease the pitting and crevice corrosion resistance.
  • the ferrite content in the microstructure is 30-70 volume %, the balance being austenite.
  • the steel is very suitable in the environments that exist in urea production.
  • the US patent 7,347,903 describes a duplex stainless steel for urea manufacturing plants.
  • the steel contains less than 0,03 weight % C, less than 0,5 weight % S, less than 2 weight % Mn, 26-28 weight % Cr, 6-10 weight % Ni, 0,2-1,7 weight % Mo, 2-3 weight % W, 0,3-0,4 weight % N, with the balance being iron and impurities, in which the copper content as an impurity is not more than 0,3 weight %.
  • a greater content of copper accelerates corrosion in the corrosive environment of a urea manufacturing.
  • the sensitivity to sigma phase precipitation during welding is extremely low compared with general duplex stainless steels.
  • the tensile strength is high which allows the use in urea plants.
  • the US patent 3,567,434 relates to stainless steels which contain in weight % 0,01-0,1 C, 0,2-2,0 Si, 0,2-4,0 Mn, 23-30 Cr, 4-7 Ni, 1-5 Mo, 1-4 Cu, 0,06-0,4 N, the rest being Fe and inevitable impurities in such conditions that the ratio Cr/Ni in weight % shall be at the range of 3,8-6,25 and the ratio (Ni+200xN)/Cr in weight % shall be at the range of 0,74-3,72.
  • the corrosion resistance especially in sulphuric acid environments, is improved by the addition of molybdenum and copper.
  • Other properties, such as ductility, elongation, are improved and cracking during welding is eliminated by the addition of nitrogen.
  • the US patent 4,612,069 describes a pitting resistant duplex stainless steel which contains in weight % ⁇ 0,08 C, ⁇ 2,0 Si, ⁇ 2,0 Mn, 23-29 Cr, 5-9 Ni, ⁇ 1,0 Mo, 0,5-3,5 Cu, ⁇ 0,2 N, the rest being Fe and inevitable impurities.
  • the copper addition improves the pitting resistance of the austenite, particularly in acidic chloride-thiosulfate solutions.
  • the stainless steel of this US patent can be furnace cooled from a high temperature to have low levels of residual stress and the sigma and other embrittlement phases are minimized during this slow furnace cooling.
  • Intermetallic phases are also problems for the stainless steels which are applied in chloride environments, such as sea water.
  • the EP publication 545753 relates to a duplex stainless steel to be used in chloride-containing environments.
  • the steel has a chemical composition consisting essentially, on a weight %, of: C: 0.03% or less, Si: 1.0% or less, Mn: 1.5% or less, P: 0.040% or less, S: 0.008% or less, sol.Al: 0.040% or less, Ni: 5.0 - 9.0%, Cr: 23.0 - 27.0%, Mo: 2.0 - 4.0%, N: 0.24 - 0.32%, W: greater than 1.5% and at most 5.0%, optionally at least one element selected from the group consisting of Cu: 0.2 - 2.0% and V: 0.05 - 1.5% and/or the group consisting of Ca: 0.02% or less, Mg: 0.02% or less, B: 0.02% or less, and one or more rate earth metals: 0.2% or less in total.
  • the pitting resistance equivalent PREW with the formula PREW %Cr+3.3(%Mo+0.5%W)+16%N has a value of at least 40 using the element contents being in weight %.
  • the EP publication 2050832 provides a duplex stainless steel to be used chloride environment as a material in seawater desalination plants, facilities and equipment.
  • the steel contains, weight %, C: 0.06% or less, Si: 0.05 to 3.0%, Mn: 0.1 to 6.0%, P: 0.05% or less, S: 0.010% or less, Ni: 1.0 to 10.0%, Cr: 18 to 30%, Mo: 5.0% or less, Cu: 3.0% or less, N: 0.10 to 0.40%, Al: 0.001 to 0.08% or less, Ti: 0.003 to 0.05%, Mg: 0.0001 to 0.0030%, and O: 0.010% or less, having a product of an activity coefficient f N of N, Ti content, and N content f N TiN of 0.00004% 2 or more, and having a product of Ti content and N content TixN of 0.008% 2 or less.
  • the WO publication 96/39543 describes a duplex stainless steel applied to marine facility.
  • the steel is composed of in weight %: less than 0.03 % of C, less than 1.0 % of Si, less than 2.0 % of Mn, less than 0.04 % of P, less than 0.004 % of S, less than 2.0 % of Cu, 5.0 - 8.0 % of Ni, 22 - 27 % of Cr, 1.0 - 2.0 % of Mo, 2.0 - 5.0 % of W, and 0.13 - 0.30 % of N.
  • one or two elements selected from a group consisting of: less than 0.03 % of Ca, less than 0.1 % of Ce, less than 0.005 % of B and 0.5 % of Ti.
  • the WO publication 03/080886 describes a high-grade duplex stainless steel with suppressed formation of intermediate phases, such as sigma and vic phases.
  • the amount of intermetallic phases are reduced by delaying diffusion and precipitation of intermetallic phases adding appropriate amounts of Ba, Y, Ce, La, Nd, Pr, Ta, Zr, and Ti as well as additionally blocking of Cr, Mo, Si and W using minute REM compounds or Ba oxides with much larger atomic diameter.
  • the chemical composition consists essentially, on a weight basis, of Cr 21.0% - 38.0%, Ni 3.0% - 12.0%, Mo 1.5% -.6.5%, W 6.5% or less, Si 3.0% or less, Mn 8.0% or less, N 0.2% - 0.7%, C 0.1% or less, at least one element selected from the group consisting of Ba 0.0001 - 0.6% and one or more elements of Mischmetal (MM) and Y 0.0001 - 1.0% in total..
  • the object of the present invention is to eliminate some drawbacks of the prior art and to achieve a new duplex ferritic austenitic stainless steel which chemical composition is optimized with the focus on the production and the manufacturing of the duplex stainless steel itself.
  • the introduction of a formula to predict the sensitivity to sigma phase formation significantly helps to select the alloys best suited for industrial production, while the corrosion properties are maintained to be favorable for chemical industry applications, where good uniform corrosion resistance and high strength are required.
  • the microstructure of the duplex ferritic austenitic stainless steel consists of 35-65 volume % of ferrite, with a preferred content in the range 45-55 volume % of ferrite, the balance being austenite.
  • the chemical composition of the invention consists of less than 0,03 weight % carbon, less than 1 weight % silicon, 3 weight % or less manganese, 26-29,5 weight % chromium, 5-8,5 weight % nickel, 1-3 weight % molybdenum, 0,25-0,35 weight % nitrogen, 1-3 weight % copper and the rest of the chemical composition being iron and inevitable impurities occurring in stainless steels.
  • Sulphur should be limited to less than 0,010 weight % and preferably less than 0,005 weight %.
  • the phosphorus content should be less than 0,040 weight % and the sum of sulphur and phosphorus (S+P) less than 0,04 weight %.
  • the aluminium content should be maximized to less than 0,04 weight % and preferably maximum less than 0,03 weight %, and the total oxygen level below 100 ppm and preferably below 50 ppm.
  • up to 1 weight % tungsten and up to 1 weight % of cobalt can be added in the duplex stainless steel of the invention.
  • one or more of the group containing niobium, titanium and vanadium can be optionally added in the duplex stainless steel of the invention, the contents of niobium and titanium being limited up to 0,1 weight % and the vanadium content being limited to less than 0,2 weight %.
  • Boron, calcium and/or cerium can also be optionally added in small quantities in duplex stainless steels of the invention. The levels are for boron and calcium, less than 0,003 weight % and for cerium less than 0,1 weight %.
  • titanium (Ti), vanadium (V) and niobium (Nb) belong to a group of additions so named because they significantly change the steels properties at low concentrations, often beneficial effects in carbon steel but in the case of duplex stainless steels they also contribute to undesired property changes, such as reduced impact properties, higher surface defects levels and reduced ductility during casting and hot rolling and removal of nitrogen from solid solution. Many of these effects depend on their strong affinity for carbon and nitrogen, in particular nitrogen in the case of modern duplex stainless steels.
  • niobium and titanium should be limited to maximum level of 0,1% whereas vanadium is less detrimental and should be less than 0,2%.
  • the chemical compositions for the duplex stainless steels of the invention used in the following tests are given in the Table 1.
  • the Table 1 also contains the chemical compositions for the known duplex stainless steels LDX 2101®, LDX 2404®, 2304, 2205 and 2507 (alloys 22-26) used in the tests as the reference materials.
  • the duplex ferritic austenitic stainless steels according to the invention were tested by the Huey test for the corrosion resistance in nitric acid. This also provides an assessment of the susceptibility for intergranular corrosion and an indicative measure of the performance of the steel in urea production at elevated temperatures and pressures.
  • Huey test ASTM A262, practice C
  • the corrosion testing of the steel is made in a boiling solution of nitric acid so that the samples are boiled for 5 consecutive periods of 48 hours each in 65% nitric acid, each period starting with fresh acid.
  • the corrosion rate is calculated for each period from weight losses. The weight of metal lost is converted into loss in mm/year (millimeter per year).
  • the formula for the HRE value indicates that chromium and more so nickel have a large positive influence on the Huey test, while manganese is negative in this respect. Molybdenum and nitrogen are shown to have less effect. The effect of copper is so small as to be excluded from the equation.
  • the pitting resistance equivalent (PRE) for the duplex stainless steels of the Table 1 is calculated using the formula (2), the values of each element being in weight %:
  • PRE Cr + 3,3 ⁇ Mo + 30 ⁇ N ⁇ Mn Table 2 Steel Corrosion rate mm/y HRE PRE 1 0,135 42 39 2 0,115 37 43 3 0,114 39 44 4 0,122 39 39 5 0,090 40 42 6 0,119 42 39 7 0,122 41 42 22 (LDX 2101) 0,443 17 23 23 (2304) 0,222 27 26 24 (LDX 2404) 0,255 26 34 27 0,134 36 42 28 0,102 37 43 29 0,131 36 41 30 0,118 37 42 31 0,131 37 42 32 0,138 36 40 33 0,157 38 41 34 0,116 37 41
  • the corrosion rates presented in the Table 2 are illustrated in Figure 1 as a function of the HRE value.
  • the results presented in Figure 1 show the combined effect of the alloying elements as described above in the HRE and further show that the greater the Huey equivalent is, the smaller the corrosion rate.
  • the HRE value is advantageously limited to a minimum values of 35 which in the Huey test corresponds to a corrosion rate of 0,14 mm/year.
  • the pitting resistance equivalent value (PRE) in the duplex stainless steel of the invention is at the range of more than 41.
  • SRE sulphuric acid resistance equivalent
  • the sulphuric acid corrosion resistance SRE according to the formula (3) for the duplex stainless steel of the invention is above 8 at the boiling temperature (BT, 104 °C) of sulphuric acid, above 11 at the temperature 95°C and above 20 at the temperature 65°C.
  • the structural stability for the duplex ferritic austenitic stainless steel of the invention was tested by determining the sigma phase content. All the tested alloys were heat treated at the temperature of 850 °C for 10 min because of fastest kinetics in sigma phase formation at this temperature. After the heat treatment and cooling of the alloy the sigma phase content was metallographically determined.
  • the sigma equivalent shows a general formula for the structural stability for high alloyed duplex ferritic austenitic stainless steels.
  • the SGR value is advantageously limited to less than 18.
  • the results concerning the sigma phase content and the sigma equivalent (SGR) in the tested alloys are presented in the Table 4 and are illustrated in the Figure 3 showing the measured sigma phase content as a function of the sigma equivalent (SGR).
  • the selected alloys of the invention show a significantly lower tendency of SGR values for sigma phase formation than the alloy 25 (2507) which is well known for production difficulties and for sigma phase brittle behavior in processing lines.
  • duplex ferritic austenitic stainless steel according to the invention with a composition of 1,2%Mn, 2,1%Cu, 2,0%Mo and 0,3%N, is illustrated by the chemical composition window of Cr and Ni, i.e. the dependence between the contents of Cr and Ni in weight %, which lies within the frame of the area 5a', 5b', 5c', 5d' and 5e' in Figure 4 , and is defined with the following labelled positions of the coordinates in weight % in the Table 5.
  • the labelled positions in the Table 5 for the duplex stainless steel of the invention are determined with the desired values for ferrite content in the microstructure, PRE, SRE, HRE and SGR as shown in Figure 4 .
  • duplex ferritic austenitic stainless steel according to the invention with a composition of 1%Mn, 6,5% Ni, 1,8%Mo and 0,3%N, is illustrated by the chemical composition window of Cr and Cu in weight %, i.e. the dependence between the contents of Cr and Cu, which lies within the frame of the area 6a', 6b', 6c', 6d', 6e' and 6f' in Figure 5 , and is defined with the following labelled positions of the coordination in weight % in the Table 6.
  • the labelled positions in the Table 6 for the duplex stainless steel of the invention are determined with the desired values of ferrite content in the microstructure, PRE, SRE, SGR and the Cu content as shown in Figure 5 .
  • duplex ferritic austenitic stainless steel according to the invention with a composition of 1%Mn, 27,5% Cr, 1,8%Mo and 0,3%N, is illustrated by the chemical composition window of Ni and Cu, i.e. the dependence between the contents Ni and Cu in weight %, which lies within the frame of the area 7a', 7b', 7c', 7d' and 7e' in Figure 6 , is defined with the following labelled positions of the coordination in weight % in the Table 7.
  • the labelled positions in the Table 7 for the duplex stainless steel of the invention are determined with the desired values of ferrite content in the microstructure, SRE, SGR and the Cu content as shown in Figure 6 .
  • the sigma equivalent (SGR) according to the formula (4) in the alloys 27 - 34 is below 19.
  • This condition means that the formation of the sigma phase in the microstructure of the duplex stainless steel according to the invention is essentially prevented.
  • duplex stainless steels of the invention An important property of duplex stainless steels of the invention is the ease of the manufacture of these steels.
  • the hot workability and sensitivity to precipitation of intermetallic phases during hot working will be key elements to a successful high volume production of such grade.
  • the properties of the precipitated phases will not be the limiting factor during the actual hot working but during the following cold operations involving such simple tasks as lifting and transporting and more elaborate operations such as levelling of plates and uncoiling coils etc., a duplex steel with excessive amounts of sigma phase will be as brittle as glass and cannot be handled in a normal steel mill operation.
  • the hot workability issues have in the present invention been addressed by controlling the key minor elements such as boron (B), calcium (Ca) and cerium (Ce) sulphur (S) and aluminium (Al).
  • the sensibility to intermetallic phase precipitation is controlled by the major alloying elements Cr, Ni, Mo, Mn, Si, Cu and optionally W and Co as described in the section above regarding sigma equivalent in combination with hot rolling parameters.
  • duplex ferritic austenitic steel of the invention can be produced as castings, ingots, slabs, blooms, billets and flat products such as plates, sheets, strips, coils, and long products such as bars, rods, wires, profiles and shapes, seamless and welded tubes and/or pipes. Further, additional products such as metallic powder, formed shapes and profiles can be produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Lubricants (AREA)

Claims (11)

  1. Ferritisch-austenitischer rostfreier Duplexstahl zur Benutzung in der Chemieindustrie für Salpetersäureumgebungen, wobei gute einheitliche Korrosionsbeständigkeit und hohe Festigkeit erforderlich sind, dadurch gekennzeichnet, dass das Gefüge des rostfreien Stahl aus 35 bis 65 Volumen-% Ferrit besteht, der Rest Austenit ist und die chemische Zusammensetzung besteht aus weniger als 0,03 Gewichts-% Kohlenstoff, weniger als 1 Gewichts-% Silicium, 3 Gewichts-% oder weniger Mangan, 26 bis 29,5 Gewichts-% Chrom, 5 bis 8,5 Gewichts-% Nickel, 1 bis 3 Gewichts-% Molybdän, 0,25 bis 0,35 Gewichts-% Stickstoff, 1 bis 3 Gewichts-% Kupfer, wahlweise einem oder mehreren zugesetzten Elementen: weniger als 0,04 Gewichts-% AI, bevorzugt weniger als 0,03 Gewichts-% AI, weniger als 0,003 Gewichts-% B, weniger als 0,003 Gewichts-% Ca, weniger als 0,1 Gewichts-% Ce, bis zu 1 Gewichts-% Co, bis zu 1 Gewichts-% W, bis zu 0,1 Gewichts-% Nb, bis zu 0,1 Gewichts-% Ti, weniger als 0,2 Gewichts-% V, weniger als 0,010 Gewichts-% S, bevorzugt weniger als 0,005 Gewichts-% S, weniger als 0,040 Gewichts-% P, sodass die Summe aus S + P weniger als 0,04 Gewichts-% beträgt und der gesamte Sauerstoffgehalt unter 100 ppm, bevorzugt unter 50 ppm, beträgt, außer im Falle von Metallpulver, wobei der gesamte Sauerstoffgehalt bis zu 250 ppm beträgt, der Rest Eisen und unvermeidbare Verunreinigungen sind, die in rostfreien Stählen vorkommen, und dass das Sigmaäquivalent SGR, berechnet unter Benutzen der Formel Cr + 2 x Mo - 40 x N + 0,5 x Mn - 2 x Cu, weniger als 18 beträgt, das Huey-Äquivalent HRE, berechnet unter Benutzen der Formel Cr + 1,5 x Ni - 1,4 x Mn + 0,6 x Mo + 0,1 x N, in dem Bereich von 35 bis 39,5 ist und dass der Äquivalenzwert der Lochfraßbeständigkeit PRE, berechnet unter Benutzen der Formel Cr + 3,3 x Mo + 30 x N - Mn, in dem Bereich von mehr als 41 ist.
  2. Ferritisch-austenitischer rostfreier Duplexstahl nach Anspruch 1, dadurch gekennzeichnet, dass das Gefüge des rostfreien Stahls aus 45 bis 55 Volumen-% Ferrit besteht, wobei der Rest Austenit ist.
  3. Ferritisch-austenitischer rostfreier Duplexstahl nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Korrosionsbeständigkeit gegen Schwefelsäure SRE, berechnet unter Benutzen der Formel Cr + 0,4 x Ni - 1,1 x Mn + 0,75 x Mo + 2,2 x Cu + 24 x N - 0,3 x T, wobei T die Prüftemperatur in °C ist, bei der Siedetemperatur von Schwefelsäure von 104 °C über 8, bei der Temperatur von 95 °C über 11 und bei der Temperatur von 65 °C über 20 beträgt.
  4. Ferritisch-austenitischer rostfreier Duplexstahl nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Chromgehalt bevorzugt 26,5 bis 29 Gewichts-%, bevorzugter 27 bis 28,5 Gewichts-%, beträgt.
  5. Ferritisch-austenitischer rostfreier Duplexstahl nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Nickelgehalt bevorzugt 5,5 bis 7,5 Gewichts-%, bevorzugter 5,8 bis 7,5 Gewichts-%, beträgt.
  6. Ferritisch-austenitischer rostfreier Duplexstahl nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Mangangehalt bevorzugt 0,5 bis 1,5 Gewichts-% beträgt.
  7. Ferritisch-austenitischer rostfreier Duplexstahl nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Kupfergehalt bevorzugt 1,3 bis 2,5 Gewichts-% beträgt.
  8. Ferritisch-austenitischer rostfreier Duplexstahl nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Molybdängehalt bevorzugt 1,5 bis 2,5 Gewichts-% beträgt.
  9. Ferritisch-austenitischer rostfreier Duplexstahl nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Stickstoffgehalt bevorzugt 0,25 bis 0,33 Gewichts-% beträgt.
  10. Ferritisch-austenitischer rostfreier Duplexstahl nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Siliciumgehalt bevorzugt weniger als 0,6 Gewichts-% beträgt.
  11. Ferritisch-austenitischer rostfreier Duplexstahl nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Stahl als Gusserzeugnisse, Barren, Brammen, Luppen, Knüppel, Platten, Bleche, Bänder, Bandringe, Stäbe, Stangen, Drähte, Profile und Gebilde, nahtlose und geschweißte Schläuche und/oder Rohre, Metallpulver, geformte Gebilde und Profile hergestellt ist.
EP12846399.9A 2011-11-04 2012-11-01 Duplexedelstahl Active EP2773785B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI20110384A FI125854B (fi) 2011-11-04 2011-11-04 Dupleksi ruostumaton teräs
PCT/FI2012/051065 WO2013064746A1 (en) 2011-11-04 2012-11-01 Duplex stainless steel

Publications (3)

Publication Number Publication Date
EP2773785A1 EP2773785A1 (de) 2014-09-10
EP2773785A4 EP2773785A4 (de) 2015-07-08
EP2773785B1 true EP2773785B1 (de) 2021-04-07

Family

ID=48191429

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12846399.9A Active EP2773785B1 (de) 2011-11-04 2012-11-01 Duplexedelstahl

Country Status (8)

Country Link
US (1) US9637813B2 (de)
EP (1) EP2773785B1 (de)
JP (1) JP5870201B2 (de)
CN (1) CN103975088B (de)
FI (1) FI125854B (de)
IN (1) IN2014MN00821A (de)
TW (1) TWI546391B (de)
WO (1) WO2013064746A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114952191A (zh) * 2022-06-01 2022-08-30 昆明理工大学 一种高镍含氮双相不锈钢的高性能焊接热影响区热加工方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3087212B1 (de) * 2013-12-27 2018-10-10 Stamicarbon B.V. Verwendung einer korrosionsbeständigen duplexstahllegierung zur herstellung eines bauteils für eine ureaherstellungsanlage
US20160319405A1 (en) * 2013-12-27 2016-11-03 Sandvik Intellectual Property Ab Corrosion resistant duplex steel alloy, objects made thereof, and method of making the alloy
WO2015109553A1 (zh) * 2014-01-25 2015-07-30 吴津宁 一种双相不锈钢无缝钢管
GB2545768B (en) * 2015-12-23 2018-04-25 Goodwin Plc A steel, a cast, forged or wrought product and a welded product
CN110088305B (zh) * 2016-12-21 2021-05-14 山特维克知识产权股份有限公司 双相不锈钢制品的用途
KR101867734B1 (ko) * 2016-12-23 2018-06-14 주식회사 포스코 내식성이 우수한 듀플렉스 스테인리스 강 및 그 제조방법
RU2693718C2 (ru) * 2017-06-16 2019-07-04 Акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" АО "НПО "ЦНИИТМАШ" Дуплексная нержавеющая сталь для производства запорной и регулирующей арматуры
EP3502293B1 (de) * 2017-12-22 2020-05-13 Saipem S.p.A. Verwendungen von duplex edelstählen
EP3502294A1 (de) * 2017-12-22 2019-06-26 Tubacex Innovación A.I.E. Korrosionsbeständiger rostfreier duplexstahl
US11306378B2 (en) 2018-02-15 2022-04-19 Sandvik Intellectual Property Ab Duplex stainless steel
EP3987074A1 (de) * 2019-06-24 2022-04-27 AB Sandvik Materials Technology Verlegekopfrohr
SE1950909A1 (en) * 2019-07-31 2021-02-01 Ferritico Ab Duplex steel with improved embrittlement properties and method of producing such
KR20210028382A (ko) 2019-09-04 2021-03-12 주식회사 포스코 충격인성 및 열간가공성이 우수한 고내식 오스테나이트계 스테인리스강
CN112195418B (zh) * 2020-09-29 2022-03-18 中国科学院金属研究所 一种微纳米晶马氏体时效不锈钢及其制备方法
KR102522863B1 (ko) 2020-11-18 2023-04-17 주식회사 포스코 스테인리스강 및 그 제조 방법
CN112553533B (zh) * 2020-12-25 2022-05-10 宝钢德盛不锈钢有限公司 一种经济性高强度奥氏体不锈钢
CN114410938B (zh) * 2022-01-19 2023-04-28 山西太钢不锈钢股份有限公司 一种提高s32205系双相不锈钢强度的方法
CN115652189B (zh) * 2022-08-23 2023-10-24 云南化铸科技有限责任公司 一种耐高温浓硫酸双相合金及其分酸器

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3567434A (en) 1967-03-17 1971-03-02 Langley Alloys Ltd Stainless steels
JPS5961590A (ja) * 1982-09-29 1984-04-07 Daido Steel Co Ltd 溶接方法
CA1242095A (en) 1984-02-07 1988-09-20 Akira Yoshitake Ferritic-austenitic duplex stainless steel
US4612069A (en) 1984-08-06 1986-09-16 Sandusky Foundry & Machine Company Pitting resistant duplex stainless steel alloy
JPH0717987B2 (ja) * 1989-03-29 1995-03-01 住友金属工業株式会社 熱間加工性に優れた高耐食二相ステンレス鋼
JPH05230600A (ja) * 1991-07-18 1993-09-07 Kubota Corp 高強度二相ステンレス鋼
JP2500162B2 (ja) 1991-11-11 1996-05-29 住友金属工業株式会社 耐食性に優れた高強度二相ステンレス鋼
SE501321C2 (sv) 1993-06-21 1995-01-16 Sandvik Ab Ferrit-austenitiskt rostfritt stål samt användning av stålet
JP3041050B2 (ja) 1995-06-05 2000-05-15 ポハング アイアン アンド スチール カンパニー リミテッド 二相ステンレス鋼およびその製造法
US6033497A (en) * 1997-09-05 2000-03-07 Sandusky International, Inc. Pitting resistant duplex stainless steel alloy with improved machinability and method of making thereof
SE519589C2 (sv) * 1998-02-18 2003-03-18 Sandvik Ab Användning av höghållfast rostfritt stål i apparatur för framställning av kaustiksoda
SE9902472L (sv) * 1999-06-29 2000-08-07 Sandvik Ab Ferrit-austenitisk stållegering
CN1545565A (zh) * 2001-08-31 2004-11-10 Dsm Ip财产有限公司 使金属耐腐蚀的方法
SE524952C2 (sv) * 2001-09-02 2004-10-26 Sandvik Ab Duplex rostfri stållegering
SE524951C2 (sv) * 2001-09-02 2004-10-26 Sandvik Ab Användning av en duplex rostfri stållegering
AR038192A1 (es) 2002-02-05 2005-01-05 Toyo Engineering Corp Acero inoxidable duplex para plantas de produccion de urea, planta de produccion de urea y material de soldadura fabricado con dicho acero inoxidable duplex.
KR100460346B1 (ko) * 2002-03-25 2004-12-08 이인성 금속간상의 형성이 억제된 내식성, 내취화성, 주조성 및열간가공성이 우수한 슈퍼 듀플렉스 스테인리스강
SE527178C2 (sv) * 2003-03-02 2006-01-17 Sandvik Intellectual Property Användning av en duplex rostfri stållegering
SE528782C2 (sv) * 2004-11-04 2007-02-13 Sandvik Intellectual Property Duplext rostfritt stål med hög sträckgräns, artiklar och användning av stålet
JP4635954B2 (ja) * 2006-05-11 2011-02-23 住友金属工業株式会社 Cr含有鋼の鋳造方法
JP5072285B2 (ja) 2006-08-08 2012-11-14 新日鐵住金ステンレス株式会社 二相ステンレス鋼
BR112013020444B1 (pt) * 2011-02-14 2022-09-20 Nippon Steel Corporation Junta soldada de aço inoxidável dúplex

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114952191A (zh) * 2022-06-01 2022-08-30 昆明理工大学 一种高镍含氮双相不锈钢的高性能焊接热影响区热加工方法
CN114952191B (zh) * 2022-06-01 2023-08-04 昆明理工大学 一种高镍含氮双相不锈钢的高性能焊接热影响区热加工方法

Also Published As

Publication number Publication date
US20150050180A1 (en) 2015-02-19
US9637813B2 (en) 2017-05-02
TWI546391B (zh) 2016-08-21
CN103975088B (zh) 2016-08-24
FI20110384A (fi) 2013-05-05
EP2773785A1 (de) 2014-09-10
CN103975088A (zh) 2014-08-06
JP2014532811A (ja) 2014-12-08
IN2014MN00821A (de) 2015-07-03
JP5870201B2 (ja) 2016-02-24
TW201323629A (zh) 2013-06-16
WO2013064746A1 (en) 2013-05-10
EP2773785A4 (de) 2015-07-08
FI125854B (fi) 2016-03-15

Similar Documents

Publication Publication Date Title
EP2773785B1 (de) Duplexedelstahl
EP2753724B1 (de) Duplexedelstahl
US20190226068A1 (en) Process for manufacturing hot-rolled plate, strip or coil made of duplex stainless steel
US8119063B2 (en) Austenitic iron and an iron product
US7081173B2 (en) Super-austenitic stainless steel
RU2519201C1 (ru) Высокопрочная нержавеющая сталь для нефтяных скважин и труба из высокопрочной нержавеющей стали для нефтяных скважин
US9109268B2 (en) Stainless steel for oil well, stainless steel pipe for oil well, and method of manufacturing stainless steel for oil well
EP2358918B1 (de) Ferritisch-austenitischer edelstahl
EP2770076B1 (de) Rostfreier duplexstahl, platte aus dem rostfreien duplexstahl und material aus dem rostfreien duplexstahl
KR101479826B1 (ko) 용접부의 특성이 우수한 마르텐사이트 스테인리스 강 및 마르텐사이트 스테인리스 강재
EP2412841B1 (de) Austenitischer edelstahl
EP3102714B1 (de) Duplexedelstahl
JP6018364B2 (ja) 線状加熱性に優れたケミカルタンカー用二相ステンレス鋼
JP6842257B2 (ja) Fe−Ni−Cr−Mo合金とその製造方法
CN115349024A (zh) 不锈钢无缝钢管和不锈钢无缝钢管的制造方法
EP3158101B1 (de) Duplexedelstahl
CN114450430A (zh) 不锈钢无缝钢管及其制造方法
CN114450428A (zh) 不锈钢无缝钢管及其制造方法
CN114514333A (zh) 具有优异的冲击韧性和热加工性的高耐腐蚀性奥氏体不锈钢

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140509

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20150608

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/58 20060101ALI20150601BHEP

Ipc: C22C 38/44 20060101ALI20150601BHEP

Ipc: C22C 38/42 20060101ALI20150601BHEP

Ipc: C22C 38/02 20060101ALI20150601BHEP

Ipc: C22C 38/00 20060101AFI20150601BHEP

Ipc: C21D 6/00 20060101ALI20150601BHEP

Ipc: C22C 38/04 20060101ALI20150601BHEP

17Q First examination report despatched

Effective date: 20150724

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OUTOKUMPU OYJ

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602012075151

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C22C0038440000

Ipc: C22C0038000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/04 20060101ALI20191111BHEP

Ipc: C21D 6/00 20060101ALI20191111BHEP

Ipc: C22C 38/44 20060101ALI20191111BHEP

Ipc: C22C 38/58 20060101ALI20191111BHEP

Ipc: C22C 38/42 20060101ALI20191111BHEP

Ipc: C22C 38/00 20060101AFI20191111BHEP

Ipc: C22C 38/02 20060101ALI20191111BHEP

INTG Intention to grant announced

Effective date: 20191216

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1379768

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210415

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012075151

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210407

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1379768

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210807

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210708

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210809

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012075151

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210807

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602012075151

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211101

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211101

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211101

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121101

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407