EP2753653A1 - Verfahren zur herstellung von zinkdicarboxylat - Google Patents

Verfahren zur herstellung von zinkdicarboxylat

Info

Publication number
EP2753653A1
EP2753653A1 EP12751534.4A EP12751534A EP2753653A1 EP 2753653 A1 EP2753653 A1 EP 2753653A1 EP 12751534 A EP12751534 A EP 12751534A EP 2753653 A1 EP2753653 A1 EP 2753653A1
Authority
EP
European Patent Office
Prior art keywords
zinc
oxide
dicarboxylic acid
dicarboxylate
zinc dicarboxylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12751534.4A
Other languages
English (en)
French (fr)
Inventor
Anna Katharina Brym
Jürgen ZUBILLER
Gerrit Luinstra
Revaz KORASHVILI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP12751534.4A priority Critical patent/EP2753653A1/de
Publication of EP2753653A1 publication Critical patent/EP2753653A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/06Zinc compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/32General preparatory processes using carbon dioxide
    • C08G64/34General preparatory processes using carbon dioxide and cyclic ethers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • C07C51/412Preparation of salts of carboxylic acids by conversion of the acids, their salts, esters or anhydrides with the same carboxylic acid part

Definitions

  • the invention relates to a process for the preparation of a zinc dicarboxylate from a zinc compound and a C 4 -C 10 -dicarboxylic acid in the presence of a cationic emulsifier and a solvent.
  • the invention also relates to zinc dicarboxylates obtainable by the above-mentioned process and having a BET surface area of from 50 to 750 m 2 / g.
  • the invention further relates to a process for the preparation of polyalkylene carbonates by polymerization of carbon dioxide with at least one epoxide selected from ethylene oxide, propylene oxide, butene oxide, cyclopentene oxide and cyclohexene oxide, in the presence of a zinc salt of a C4-Cio-dicarboxylic acid (zinc dicarboxylate), characterized in that the zinc dicarboxylate is prepared from a zinc compound, a C4-Cio-dicarboxylic acid in the presence of a cationic emulsifier and a solvent.
  • a zinc salt of a C4-Cio-dicarboxylic acid characterized in that the zinc dicarboxylate is prepared from a zinc compound, a C4-Cio-dicarboxylic acid in the presence of a cationic emulsifier and a solvent.
  • Polyalkylene carbonates such as polypropylene carbonate are obtained by alternating copolymerization of carbon dioxide and alkylene oxide such as propylene oxide.
  • alkylene oxide such as propylene oxide.
  • Zinc glutarates are used in particular as heterogeneous catalysts.
  • WO 03/029325 describes processes for preparing aliphatic polycarbonates. Besides multimetal cyanide compounds, it is also possible to use zinc dicarboxylates, in particular zinc glutarate or zinc adipate.
  • the zinc glutarate catalyst is prepared by reacting triturated zinc oxide with glutaric acid in toluene. After the reaction, the reaction water is distilled off azeotropically. Then the solvent toluene is distilled off, and the residue is dried under high vacuum.
  • the catalyst activity depends on the moisture content of the catalyst.
  • Zinc glutarate shows no or only a very low polymerization activity when completely dried. Only by addition of water or absorption of air humidity, the maximum activity is reached.
  • the zinc glutarate catalyst powder tends to clump and can thus be difficult to dose especially after prolonged storage.
  • the object of the present invention is to provide improved polymerization catalysts for the preparation of polyalkylene carbonates which avoid the abovementioned disadvantages of the hitherto known zinc glutarate catalysts and, in particular, show an improved activity.
  • the object is achieved by zinc salts of a C4-Cio-dicarboxylic acid (Zinkdi- carboxylate), which are characterized in that the zinc dicarboxylate is prepared from a zinc compound, a C4-Cio-dicarboxylic acid in the presence of a cationic emulsifier and a solvent.
  • Zinkdi- carboxylate Zinkdi- carboxylate
  • a zinc oxide, zinc nitrate or a zinc acetate is usually used as the zinc source.
  • any other soluble zinc salt is equally suitable.
  • surface-modified zinc oxide particles as described in PCT / EP201 / 053259 and WO 06/092442. There, surface-modified zinc oxide particles are described which are obtainable by treating zinc oxide particles with organosilanes, silazanes and / or polysiloxanes and subsequent heat treatment and / or UV irradiation of the treated zinc oxide particles.
  • C4-Cio-dicarboxylic acids are succinic acid, glutaric acid, adipic acid, pimelic acid, succinic acid, azelaic acid (nonanedioic acid) and sebacic acid. Glutaric acid and adipic acid are particularly preferred.
  • Cationic emulsifiers are generally to be understood as meaning long-chain amines, preferably primary amines and particularly preferably primary C 10 -C 30 -alkylamines. In particular, they can form micelles in polar solvents.
  • the amines can be used directly or in the form of their salts. Preferably, the amines are used directly (in free form). At least a portion of the amine should be used in free form to obtain good yields of zinc dicarboxylates.
  • the active catalysts are isolated after removal of the surfactant, preferably by washing with a liquid or by drying.
  • the drying temperature is essential in the activation of zinc carboxylates.
  • the test series listed in Table 4 shows that the activity of the obtained catalyst can be increased by the proper drying temperature.
  • the removal of the hexadecylamine is carried out in vacuo at a temperature of 100 ° C to 250 ° C, preferably 130 ° C to 170 ° C and a pressure of
  • the cationic emulsifier is usually used in a molar ratio (in mol%) of 100: 1 to 1: 100, preferably 10: 1 to 1: 2 and particularly preferably 4: 1 to 1: 1 with respect to the zinc salt.
  • n-hexadecylamine is particularly preferred. Amines with shorter chains (eg lower Cio) lead to lower catalyst activities. N-octadecylamine also gives zinc glutarates with very high catalyst activities, but octadecylamine is already more difficult to remove. Even when distilled off under vacuum, this amine can already partially decompose and it comes to browning of the catalyst.
  • the zinc dicarboxylates are prepared in the presence of a solvent.
  • a solvent Preference is given to using a polar and especially preferably a polar, protic solvent.
  • a polar, protic solvent In particular water and particularly preferably alcohols such as, for example, ethanol, propanol, butanol, hexanol or octanol or mixtures of water and alcohols have proven to be polar, protic solvents.
  • the higher alcohols may be primary, secondary or tertiary alcohols.
  • Ethanol is particularly suitable as a solvent because the cationic emulsifier can be easily recycled and re-isolated.
  • the synthesis can also be carried out without a solvent.
  • the zinc carboxylate prepared with cationic surfactants may have different morphologies, as a crystallite or as a nearly amorphous phase.
  • it may be formed as thin platelets, much like zinc carboxylates which are crystallized in water or toluene [Zheng, Y.-Q .; Lin, J.-L .; Zhang, H.-L. Journal of Crystallography - New Crystal Structures (2000), 215 (4), 535-536], but with a multiple (3-1 Ox) of the surface.
  • one of the dimensions of the crystallites is considerably smaller and the surface appears possibly curved or straight.
  • the zinc carboxylate can crystallize as a rod.
  • These rods may be nanoscale, ie the longest dimension is in the range of 30 to 1000 nm, the smallest in the range of 5 to 100 nm. Preferably, these rods are less than 500 nm long and 50 nm wide.
  • These rods are catalytically highly active and are still present in the polypropylene propylene carbonate (PPC) after a catalytic copolymerization of propylene oxide and carbon dioxide. Due to the nanoscale dimensions of the catalyst, the catalyst-containing polypropylene carbonate appears transparent. Further morphologies or mixed phases of platelets or rods of the catalyst can be obtained by the method.
  • the zinc dicaroxylates and in particular zinc glutarates prepared by the abovementioned process generally have a BET surface area of 50 to 750 m 2 / g and preferably 100 m 2 / g to 500, measured by the method described under the examples (analysis).
  • the zinc dicaroxylates and, in particular, zinc glutarates prepared by the abovementioned process have a residual nitrogen content of from 0.4 to 5% by weight, preferably from 1 to 2% by weight, based on the zinc salt, after working up and, in particular, drying. Examples 1. catalyst Preparation
  • Residual hexadecylamine was removed at 170 ° C in an oil pump vacuum (6 X 10-2 bar) (about 4 to 6 hours).
  • the resulting catalyst (100% yield) was ground again before use and heated at 200 ° C under vacuum (0.1 mbar) for at least 3 hours.
  • Example 3 30 g of zinc nitrate hexahydrate and 12.6 g of glutaric acid were dissolved in 1500 ml of ethanol in a 3 l HWS stirred vessel. With stirring, 50 g of hexadecylamine was added to the zinc nitrate solution. The mixture was stirred at room temperature for 12 h and the viscous mass was filtered through a glass frit D3. The precipitate was then washed three times with 500 ml_ ethanol and dried at 70-100 ° C in a drying oven. Furthermore, the product was dried in vacuo for 5-10 hours under protective gas flow (argon or nitrogen).
  • protective gas flow argon or nitrogen
  • Pressure of about 0.5 mbar and a temperature of 160 ° C were in a 10 L steel reactor with stirring (near the wall) from this after about 50 hours about 1, 95 kg hexadecylamine separated and 1, 18 kg of zinc glutarate as a nanoscopic catalyst receive.
  • Example 5 (Use of Other Dicarboxylic Acids) The method of synthesis of Example 1 was changed only to the extent that other dicarboxylic acids were used instead of glutaric acid (succinic acid, adipic acid, pimelic acid and azelaic acid (nonanedioic acid)). In general, the zinc dicarboxylates of Example 5 were less active in the synthesis of polypropylene carbonate than zinc glutarate. Table 1
  • Emulsifiers used Activities Temperature ° C Pressure (bar) PO
  • Example 7 BET surface area of various zinc glutarates
  • Example 7 was carried out as Example 1 only with different molar ratio (molar ratio) of zinc salt / amine (emulsifier). These experiments show that zinc glutarates with higher surface areas and more active sites are obtained by the process according to the invention. Table 3
  • Example 7 (Drying Temperature and Catalytic Action) Example 7 was carried out as Example 1 except that it was dried at different temperatures: In Table 4, the drying temperatures and nitrogen content of zinc glutarates with the respective activity and productivity of the catalyst are PPC synthesis in 4 hours specified. The highest activity was at the lowest temperature of 140 ° C be achieved. To determine the activities, polymerizations were carried out for 4 hours at 60 ° C under 20 bar CO2 pressure with 0.20 g of catalyst and 30 ml_ of propylene oxide. These examples show how drying can influence the catalytic effect.
  • polypropylene carbonate was prepared analogously to WO 03/029325.
  • the nitrogen physisorption measurements were carried out on a Quadrasorb S1 instrument from Quantachrome Instruments. The samples were previously activated a Degasser station of the company Quantachrome. The measurements were carried out at 77.35 K. The measured data were evaluated with the program Quadra Win Version 3.0.
  • Zinc glutarate PO cat. PO conversion g polymer / M n [g / mol],% carbonate,
  • the molecular weights were determined by GPC, with THF as solvent and polystyrene as standard;
  • cPC cyclic propylene carbonate
  • carbonate portions the remainder being 100 units of ether
  • 1 H-NMR spectra solvent CDC, 400 MHz, here the average carbonate methylene group at 1.35 ppm with the cPC methylene group at 1, 48-1, 50 ppm and ether carbonate and carbonate ether methylene group at 1, 1 - 1, 3 ppm related.
  • Example 1 94 4 25 60 ° C 0.2 30 380 5% 90% 1 18000
  • the results of Tables 3 and 4 show that the zinc glutarate prepared by the process according to the invention is about twice to three times as active as the zinc glutarate prepared according to WO03 / 029325 or WO06 / 092442. As a result, fewer wash cycles are needed to achieve a residual level of 10 ppm zinc. Furthermore, when working up the polymer solutions, about 50% less acid, e.g. Citric acid. In addition, less by-product is formed, such as cyclic carbonate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung eines Zinkdicarboxylat aus einer Zinkverbindung und einer C4-C10-Dicarbonsäure in Gegenwart eines kationischen Emulgators und eines Lösungsmittels. Die Erfindung betrifft auch Zinkdicarboxylate, die mit dem obengenannten Verfahren zugänglich sind und eine BET-Oberfläche von 50 bis 750 m2/g aufweisen.

Description

Verfahren zur Herstellung von Zinkdicarboxylat Beschreibung Die Erfindung betrifft ein Verfahren zur Herstellung eines Zinkdicarboxylat aus einer Zinkverbindung und einer C4-Cio-Dicarbonsäure in Gegenwart eines kationischen Emulgators und eines Lösungsmittels.
Die Erfindung betrifft auch Zinkdicarboxylate, die mit dem obengenannten Verfahren zugänglich sind und eine BET-Oberfläche von 50 bis 750 m2/g aufweisen.
Die Erfindung betrifft weiterhin ein Verfahren zur Herstellung von Polyalkylencarbonaten durch Polymerisation von Kohlendioxid mit mindestens einem Epoxid ausgewählt aus Ethylenoxid, Propylenoxid, Butenoxid, Cyclopentenoxid und Cyclohexenoxid, in Gegenwart eines Zinksalzes einer C4-Cio-Dicarbonsäure (Zinkdicarboxylats), dadurch gekennzeichnet, dass das Zinkdicarboxylat aus einer Zinkverbindung, einer C4-Cio-Dicarbonsäure in Gegenwart eines kationischen Emulgators und eines Lösungsmittels hergestellt wird.
Polyalkylencarbonate wie Polypropylencarbonat werden durch alternierende Copolymerisation von Kohlendioxid und Alkylenoxid wie Propylenoxid erhalten. Hierfür werden verschiedenste homogene wie auch heterogene Katalysatoren eingesetzt. Als heterogene Katalysatoren werden vor allem Zinkglutarate verwendet.
Die WO 03/029325 beschreibt Verfahren zur Herstellung aliphatischer Polycarbonate. Dabei können neben Multimetallcyanid-Verbindungen auch Zinkdicarboxylate, insbesondere Zink- glutarat oder Zinkadipat eingesetzt werden. Die Herstellung des Zinkglutarat-Katalysators erfolgt durch Umsetzung von zerriebenem Zinkoxid mit Glutarsäure in Toluol. Nach der Umsetzung wird das Reaktionswasser azeotrop abdestilliert. Sodann wird das Lösungsmittel Toluol abdestilliert, und der Rückstand wird im Hochvakuum getrocknet.
Für den Zinkglutarat-Katalysator hängt die Katalysatoraktivität vom Feuchtigkeitsgehalt des Katalysators ab. Zinkglutarat zeigt im vollständig getrockneten Zustand keine oder nur eine sehr geringe Polymerisationsaktivität. Erst durch Zusatz von Wasser bzw. Aufnahme von Luftfeuchtigkeit wird das Aktivitätsmaximum erreicht. Zudem neigt das Zinkglutarat-Katalysatorpulver zum Verklumpen und lässt sich damit insbesondere nach längerer Lagerzeit nur noch schwer dosieren.
Jong-Seong Kim et al. beschreiben in Journal of polymer science, Part A, polymer chemistry 2005, Vol. 43, S. 4079-4088 ein Verfahren zur Herstellung von Zinkglutaraten in Gegenwart von polaren Lösungsmitteln und nichtionischen Emulgatoren wie Polyethylen-co-propylen-glykol. Die so hergestellten Zinkglutarate weisen in der Polyalkencarbonatsynthese eine höhere Aktivität als die gemäß WO 03/029325 hergestellten Zinkglutarate auf. Doch auch diese Zinkglutarate können hinsichtlich ihres TOF (Turn over frequency) noch nicht voll überzeugen. Aufgabe der vorliegenden Erfindung ist die Bereitstellung verbesserter Polymerisationskatalysatoren zur Herstellung von Polyalkylencarbonaten, die die vorstehend genannten Nachteile der bisher bekannten Zinkglutarat-Katalysatoren vermeiden und insbesondere eine verbesserte Aktivität zeigen.
Die Aufgabe wird erfindungsgemäß gelöst durch Zinksalze einer C4-Cio-Dicarbonsäure (Zinkdi- carboxylate), die dadurch gekennzeichnet sind, dass das Zinkdicarboxylat aus einer Zinkverbindung, einer C4-Cio-Dicarbonsäure in Gegenwart eines kationischen Emulgators und eines Lösungsmittels hergestellt wird.
Die Herstellung der erfindungsgemäßen Katalysatoren (Zinkdicarboxylate) erfolgt im Übrigen analog oder ähnlich den aus dem Stand der Technik bekannten Verfahren. Beispielsweise kann auf die Verfahrensweise gemäß WO 03/029325 hingewiesen werden, dort insbesondere Beispiel 1 auf Seite 22 oder auf Journal of polymer science, Part A, polymer chemistry 2005, Vol. 43, S. 4080-4081 - Synthese der Katalysatoren.
Dabei wird als Zinkquelle in der Regel ein Zinkoxid, Zinknitrat oder ein Zinkacetat eingesetzt. Aber jedes andere lösliche Zinksalz ist gleichermaßen geeignet. Neben unbehandeltem Zinkoxid können auch oberflächenmodifizierte Zinkoxidpartikel, wie sie in der PCT/EP201 1/053259 und WO 06/092442 beschrieben sind, zum Einsatz gelangen. Dort werden oberflächenmodifizierten Zinkoxidpartikel beschrieben, die erhältlich sind durch Behandlung von Zinkoxidpartikeln mit Organosilanen, Silazanen und/oder Polysiloxanen und nachfolgende Wärmebehandlung und/oder UV-Bestrahlung der behandelten Zinkoxidpartikel.
Typische C4-Cio-Dicarbonsäuren sind Bernsteinsäure, Glutarsäure, Adipinsäure, Pimelinsäure Korksäure, Azelainsäure (Nonandisäure) und Sebazinsäure. Glutarsäure und Adipinsäure sind insbesondere bevorzugt. Unter kationischen Emulgatoren sind in der Regel langkettige Amine, vorzugsweise primäre Amine und insbesondere bevorzugt primäre C10-C30 Alkylamine zu verstehen. Sie können insbesondere in polaren Lösungsmitteln Mizellen ausbilden. Die Amine können direkt oder in Form ihrer Salze eingesetzt werden. Vorzugsweise werden die Amine direkt (in freier Form) eingesetzt. Zumindest ein Teil des Amins sollte in freier Form eingesetzt werden, um gute Ausbeuten an Zinkdicarboxylaten zu erhalten.
Die aktiven Katalysatoren werden nach dem Entfernen des Tensids, das bevorzugt durch Waschen mit einem Flüssigkeit oder durch Trocknung erfolgt, isoliert. Die Trocknungstemperatur ist wesentlich bei der Aktivierung von Zinkcarboxylaten. Die in Tabelle 4 aufgeführte Versuchsreihe zeigt, dass sich die Aktivität des erhaltenen Katalysators durch die richtige Trocknungstemperatur erhöht werden kann. Die Entfernung des Hexadecylamins erfolgt im Vakuum bei einer Temperatur von 100 °C bis 250 °C vorzugsweise 130 °C bis 170 °C und einem Druck von
0,001 mbar bis 50 mbar.
Der kationische Emulgator wird in der Regel in einem Stoffmengenverhältnis (in mol%) von 100:1 bis 1 :100, vorzugsweise 10:1 bis 1 :2 und insbesondere bevorzugt 4:1 bis 1 :1 in Bezug auf das Zinksalz eingesetzt. n-Hexadecylamin ist besonders bevorzugt. Amine mit kürzeren Ketten (beispielsweise kleiner Cio) führen zu niedrigeren Katalysator-Aktivitäten. N-Octadecylamin liefert ebenfalls Zinkglutara- te mit sehr hohen Katalysatoraktivitäten, allerdings ist Octadecylamin bereits schwieriger zu entfernen. Selbst beim Abdestillieren unter Vakuum kann sich dieses Amin bereits teilweise zersetzen und es kommt zur Braunfärbung des Katalysators.
Die Zinkdicarboxylate werden in Gegenwart eines Lösungsmittels hergestellt. Bevorzugt wird ein polares und insbesondere bevorzugt ein polares, protisches Lösungsmittel eingesetzt. Als polares, protisches Lösungsmittel haben sich insbesondere Wasser und besonders bevorzugt Alkohole wie beispielsweise Ethanol, Propanol, Butanol, Hexanol oder Octanol oder Mischungen aus Wasser und Alkoholen erwiesen. Die höheren Alkohole können dabei primäre, sekundäre oder tertiäre Alkohole sein. Ethanol ist als Lösungsmittel besonders gut geeignet, weil sich der kationische Emulgator gut rückführen und wieder isolieren lässt. Die Synthese kann aber auch ohne Lösungsmittel durchgeführt werden.
Das mit kationischen Tensiden hergestellten Zinkcarboxylat kann verschiedenen Morphologien, als Kristallit oder als nahezu amorphe Phase haben. Es kann zum Beispiel als dünne Plättchen entstehen, ähnlich wie Zinkcarboxylate, die in Wasser oder Toluol kristallisiert werden [Zheng, Y.-Q.; Lin, J.-L.; Zhang, H.-L. Zeitschrift für Kristallographie - New Crystal Struc- tures (2000), 215(4), 535-536], jedoch mit einem Vielfachen (3-1 Ox) der Oberfläche. Dabei wird insbesondere eine der Dimensionen der Kristallite erheblich kleiner und erscheint die Oberfläche ggf. gekrümmt oder gerade. Ebenso kann das Zinkcarboxylat als Stäbchen kristallisieren. Diese Stäbchen können nanoskalig sein, d.h. die längste Dimension ist im Bereich von 30 bis 1000 nm, die kleinste im Bereich von 5 bis 100 nm. Bevorzugt sind diese Stäbchen weniger als 500 nm lang und 50 nm breit. Diese Stäbchen sind katalytisch hoch aktiv und sind im Polypro- pylencarbonat (PPC) nach einer katalytischen Copolymerisation von Propylenoxid und Kohlendioxid noch vorhanden. Durch die nanoskaligen Dimensionen des Katalysator erscheint das das Katalysator-haltige Polypropylencarbonat klar durchsichtig. Auch weitere Morphologien oder Mischphasen von Plättchen oder Stäbchen des Katalysators können mit der Methode erhalten werden. Die nach dem obengenannten Verfahren hergestellten Zinkdicaroxylate und insbesondere Zinkglutarate weisen in der Regel eine BET-Oberfläche von 50 bis 750 m2/g und vorzugsweise 100 m2/g bis 500 gemessen nach der unter den Beispielen (Analytik) beschriebenen Methode. Die nach dem obengenannten Verfahren hergestellten Zinkdicaroxylate und insbesondere Zinkglutarate weisen nach der Aufarbeitung und insbesondere dem Trocknen einen Reststickstoffgehalt von 0.4 bis 5 Gew.-% vorzugsweise 1 bis 2 Gew.-% bezogen auf das Zinksalz auf. Beispiele 1 . Katalysatorherstellung
Beispiel 1
In einem 300 ml_ Erlenmeyerkolben wurden 3 g Zinknitrat-Hexahydrat (10 mmol) und 1 ,26 g (9,5 mmol) Glutarsäure in 150 ml_ Ethanol gelöst. 10 g Hexadecylamin wurden unter Rühren zur Zinknitratlösung gegeben und über Nacht gerührt. Nach ca. 15-stündigem Rühren wurde die viskose Masse über eine Glasfritte D3 filtriert. Der Niederschlag wurde dreimal mit 50 ml_ Ethanol gewaschen und bei 70°C im Trockenschrank getrocknet. Der erhaltenene weiße Feststoff wurde gemörsert und gewogen (etwa 6,5 g). Restliches Hexadecylamin wurde bei 170°C im Ölpumpenvakuum (6 X 10-2 bar) entfernt (ca. 4 bis 6 Stunden). Der erhaltene Katalysator (100% Ausbeute) wurde vor dem Einsatz noch einmal gemörsert und mindestens 3 Stunden lang bei 200°C unter Vakuum (0,1 mbar) erhitzt.
Beispiel 2
In einem 3 L HWS Rührgefäß wurden 30 g Zinknitrathexahydrat und 12, 6 g Glutarsäure in 1500 ml_ Ethanol gelöst. Unter Rühren wurden 100 g Hexadecylamin zu der Zinknitratlösung hinzugegeben. Es wurde bei Raumtemperatur 12 h gerührt und die viskose Masse über eine Glasfritte D3 filtriert. Der Niederschlag wurde anschließend dreimal mit je 500 ml_ Ethanol ge- waschen und bei 70-100 °C im Trockenschrank getrocknet. Des Weiteren wurde das Produkt 5- 10 h unter Schutzgasstrom (Argon oder Stickstoff) im Vakuum getrocknet.
Beispiel 3 In einem 3 L HWS Rührgefäß wurden 30 g Zinknitrathexahydrat und 12, 6 g Glutarsäure in 1500 ml_ Ethanol gelöst. Unter Rühren wurden 50 g Hexadecylamin zu der Zinknitratlösung hinzugegeben. Es wurde bei Raumtemperatur 12 h gerührt und die viskose Masse über eine Glasfritte D3 filtriert. Der Niederschlag wurde anschließend dreimal mit je 500 ml_ Ethanol gewaschen und bei 70-100 °C im Trockenschrank getrocknet. Des Weiteren wurde das Produkt 5- 10 h unter Schutzgasstrom (Argon oder Stickstoff) im Vakuum getrocknet. Beispiel 4
Es wurden 1 ,63 kg Zinknitrat-Hexahydrat (5,48 mol), 0,685 kg Glutarsäure (5,18 mol) und 5,43 kg Hexadecylamin (22,5 mol) in 81 ,5 L Ethanol gelöst und für 12 Stunden bei Raumtemperatur in einem 220 L Rührkessel gerührt. Die entstandene Suspension wurde über eine Förderpumpe in eine 130 L Filtrationsanalage überführt. Es wurde eine Teflon-Filterplatte mit einem Porendurchmesser von 40 μηη verwendet. Der erhaltene Niederschlag wurde für 80 Stunden bei 60 °C im Vakuum getrocknet. Es wurden 3,13 kg eines Feststoffes erhalten. Bei einem
Druck von etwa 0,5 mbar und einer Temperatur von 160 °C wurden in einem 10 L Stahl- Reaktor unter Rühren (wandnah) aus diesem nach ca. 50 Stunden etwa 1 ,95 kg Hexadecylamin abgetrennt und 1 ,18 kg Zinkglutarat als nanoskopische Katalysator erhalten.
Beispiel 5 (Verwendung anderer Dicarbonsäuren) Die Synthesevorschrift des Beispiels 1 wurde nur soweit geändert, dass anstelle von Glutarsäure andere Dicarbonsäuren eingesetzt wurden (Bernsteinsäure, Adipinsäure, Pimelinsäure und Azelainsäure (Nonandisäure) ). Generell waren die Zinkdicarboxylate des Beispiels 5 weniger aktiv in der Polypropylencarbonat-Synthese als Zinkglutarat. Tabelle 1
Propylenoxid
= cyclisches Propylencarbonat
Beispiele 6a bis 6V-g) (Verwendung anderer Emulgatoren)
Anstelle von Hexadecylamin wurden sowohl längerkettige als auch kürzerkettige Aminen in der Zinkglutarat-Synthese des Beispiels 1 eingesetzt. Im Allgemeinen wiesen die C10-C30- Alkylamine die höchsten Aktivitäten auf. Weiterhin wiesen mit kationischen Emulgatoren hergestellte Zinkglutarate höhere Aktivitäten als mit nichtionischen oder anionischen Emulgatoren hergestellte Vergleichssysteme (siehe Tabelle 2).
Tabelle 2
Verwendete Emulgatoren Aktivitäten* Temperatur °C Druck (bar) PO
Kationisch
a) Hexadecylamin 77 60 8
b) Octadecylamin 80 60 8
c) Dodecylamin 6,7 60 8
d) Tetradecylamin 26 60 8
e) Triethylamin 8,7 60 8
Nichtionisch
V-f) PEG 6000 4 60 8
Anionisch
V-g) Stearinsäure 0 60 8
'Aktivität ist PPC(g)/Zn(g)*Zeit(Std)
Beispiel 7 (BET-Oberfläche verschiedener Zinkglutarate) Beispiel 7 wurde wie Beispiel 1 durchgeführt nur mit unterschiedlichem Stoffmengenverhältnis (mol-Verhältnis) Zinksalz/ Amin (Emulgator). Diese Versuche zeigen, dass nach dem erfindungsgemäßen Verfahren Zinkglutarate mit höheren Oberflächen und mehr aktiven Zentren erhalten werden. Tabelle 3
Katalysatoraktivität und BET Oberflächen
*Polymerisation bei 8 bar PO und 60°C
Beispiel 7 (Trocknungstemperatur und katalytische Wirkung) Beispiel 7 wurde wie Beispiel 1 durchgeführt, nur wurde bei unterschiedlichen Temperaturen getrocknet: In Tabelle 4 sind die Trocknungstemperaturen und der Stickstoffgehalt von Zink- glutaraten mit der jeweiligen Aktivität und Produktivität des Katalysators in 4 Stunden PPC- Synthese angegeben. Die höchste Aktivität konnte bei der niedrigsten Temperatur von 140 °C erreicht werden. Um die Aktivitäten zu bestimmen wurden Polymerisationen über 4 Stunden bei 60 °C unter 20 bar CO2 Druck mit 0,20 g Katalysator und 30 ml_ Propylenoxid durchgeführt. Diese Beispiele zeigen wie durch die Trocknung Einfluss auf die katalytische Wirkung genommen werden kann.
Tabelle 4
2. Polypropylencarbonat-Herstellung (Bestimmung der Aktivität der in den Beispielen herge- stellten Katalysatoren) a. Polymerisation
Das Polypropylencarbonat wurde sofern nicht anders beschrieben analog WO 03/029325 her- gestellt.
2,0 bis 4,0 g Zinkglutarat wurden in den Reaktor vorgelegt. Es wurde ein 3,5 I-Autoklav mit mechanischem Rührer verwendet Nach Verschließen des Reaktors wurde mehrmals mit IS -Gas gespült. Dann wurden 620 g Toluol zugegeben und bei Raumtemperatur (23°C) 6 bar CO2 in den Reaktor gedrückt. Anschließend wurden 310 g Propylenoxid (PO) in den Reaktor gedrückt und auf 80°C aufgeheizt. Danach wurde bei 80°C solange CO2 in den Reaktor gedrückt, bis ein C02-Druck von 40 bar erreicht wurde. Der Reaktor wurde für 4 h bei 80°C gehalten, wobei kein CO2 nachdosiert wurde. Anschließend ließ man auf Raumtemperatur abkühlen. b. Aufarbeitung
Die Aufarbeitung erfolgte gemäß WO 03/029325A1 . Der Reaktor wurde belüftet und der Reaktorinhalt wurde in 1 L Methanol, das mit 5 ml_ konz. Salzsäure (37 Gew-%) angesäuert war, eingegossen. Es fiel ein Polymer aus, das abfiltriert und über Nacht bei 60°C im Vakuum getrocknet wurde. c. Analytik
BET Oberfläche. Die Stickstoff-Physisorptionsmessungen wurden an einem Messgerät Quad- rasorb Sl der Firma Quantachrome Instruments durchgeführt. Die Proben wurden vorher an einer Degasser-Station der Firma Quantachrome aktiviert. Die Messungen erfolgten bei 77.35 K. Die Messdaten wurden mit dem Programm Quadra Win Version 3.0 ausgewertet.
Die Ergebnisse der nach Vorschrift a) hergestellten Polypropylencarbonate sind in nachfolgender Tabelle 5 dargestellt.
Tabelle 5
Zinkglutarat PO:Kat. PO-Umsatz g Polymer/ Mn [g/mol], % Carbonat,
g Zn PDI % cPC
WO03/029325 88 33.2 45.3 35.000, 94.4,
14.6 1 .8
WO06/092442 88 58.6 79.6 49.000, 96.1 ,
1 1.4 1 .0
Bsp 1 88 88 357 47.000, 90.1 ,
6.4 0.8
Die Molmassen wurden durch GPC bestimmt, mit THF als Lösungsmittel und Polystyrol als Standard;
cPC (cyclisches Propylencarbonat) und Karbonatanteile (der auf 100 sich ergebende Rest sind Ether-Anteile) im Polymer wurden aus 1H-NMR Spektren ausgerechnet (Lösungsmittel CDC , 400 MHz; hierbei wurde die mittlere Karbonat-Methylengruppe bei 1 ,35 ppm mit der cPC- Methylengruppe bei 1 ,48-1 ,50 ppm und Ether-Karbonat und Karbonat-Ether Methylengruppe bei 1 ,1 - 1 ,3 ppm in Beziehung gesetzt.
Weitere Polymerisationsergebnisse des erfindungsgemäß hergestellten Zinkglutarats (Beispiel 1 ); diesmal bei 60 °C und unter Variation des Reaktionsdruckes und der Reaktionszeit sind in Tabelle 6 aufgeführt.
Tabelle 6
Aktivität
g PPC/ Zeit Kat PO g PPC/
Kat g Zn*h (h) Druck T °C (g) (mL) g Zn cPC Karbonat Mn (GPC)
Bsp.1 77 4 8 60°C 0,3 50 312 5% 82% 80000
Bsp.1 92 4 21 60°C 0,2 30 370 4% 90% 98000
Bsp.1 94 4 25 60°C 0,2 30 380 5% 90% 1 18000
Bsp.1 86 4 30 60°C 0,2 30 350 5% 91 % 74000
Bsp.1 67 4 40 60°C 0,2 30 270 4% 94% 76000 | Bsp.1 | 25 | 50 | 8 | 60°C | 0,2 | 100 | 1000 | 19% | 81 % | 88000
Die Ergebnisse der Tabelle 3 und 4 zeigen, dass das nach dem erfindungsgemäßen Verfahren hergestellte Zinkglutarat etwa doppelt bis dreimal so aktiv wie das nach WO03/029325 oder WO06/092442 hergestellte Zinkglutarat. Dadurch werden weniger Waschzyklen benötigt, um einen Restgehalt von 10 ppm Zink zu erreichen. Weiterhin benötigt man bei der Aufarbeitung der Polymerlösungen ca. 50% weniger Säure, wie z.B. Zitronensäure. Außerdem entsteht weniger Nebenprodukt wie cyclisches Carbonat. Schließlich entsteht ein Polypropylencarbonat mit engerer Molekulargewichtsverteilung als bei den herkömmlichen Verfahren (PDI 6 im Vergleich zu PDI 14 bzw. 1 1 ) und es wird ein höherer Propylenoxid (PO) Umsatz erreicht als bei den her- kömmlichen Verfahren (88 % PO Umsatz anstelle von 59 bzw. 33%).

Claims

Patentansprüche
1 . Verfahren zur Herstellung eines Zinkdicarboxylats aus einer Zinkverbindung und einer C4- Cio-Dicarbonsäure in Gegenwart eines kationischen Emulgators und eines Lösungsmit- tels.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der kationische Emulgator ein primäres Cio-C3o-Alkylamin ist.
3. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der kationische Emulgator n- Hexadecylamin ist.
4. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass als C4-Cio-Dicarbonsäure Glutarsäure eingesetzt wird.
5. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das Lösungsmittel ein Alkohol ist.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der kationi- sehe Emulgator in Bezug auf das Zinksalz in einem Molverhältnis von 4:1 bis 1 :1 eingesetzt wird.
7. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, das gebildete Zinkdicaboxylat bei 130 bis 170°C getrocknet wird.
8. Zinkdicarboxylat einer C4-Cio-Dicarbonsäure erhältlich nach einem der vorgenannten Verfahren.
9. Zinkdicarboxylat einer C4-Cio-Dicarbonsäure mit einer BET-Oberfläche von 50 bis 750 m2/g.
10. Zinkdicarboxylat einer C4-Cio-Dicarbonsäure mit einem Reststickstoffgehalt nachTrocknung von 1 bis 2 Gew.-% bezogen auf das Zinkdicarboxylat.
1 1 . Verfahren zur Herstellung von Polyalkylencarbonaten durch Polymerisation von Kohlendioxid mit mindestens einem Epoxid ausgewählt aus Ethylenoxid, Propylenoxid, Butenoxid, Cyclopentenoxid und Cyclohexenoxid, in Gegenwart eines Zinksalzes einer C4-Cio- Dicarbonsäure (Zinkdicarboxylat),
dadurch gekennzeichnet, dass das Zinkdicarboxylat in Gegenwart eines kationischen
Emulgators und eines Lösungsmittels hergestellt wird.
12. Verfahren zur Herstellung von Polyalkylencarbonaten durch Polymerisation von Kohlendioxid mit mindestens einem Epoxid ausgewählt aus Ethylenoxid, Propylenoxid, Butenoxid, Cyclopentenoxid und Cyclohexenoxid, in Gegenwart eines Zinksalzes einer C4-C10- Dicarbonsäure (Zinkdicarboxylat) gemäß Anspruch 8 bis 10.
13. Verfahren zur Herstellung eines Polypropylencarbonats nach Anspruch 1 1 oder 12.
EP12751534.4A 2011-09-09 2012-08-31 Verfahren zur herstellung von zinkdicarboxylat Withdrawn EP2753653A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12751534.4A EP2753653A1 (de) 2011-09-09 2012-08-31 Verfahren zur herstellung von zinkdicarboxylat

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11180727 2011-09-09
EP12751534.4A EP2753653A1 (de) 2011-09-09 2012-08-31 Verfahren zur herstellung von zinkdicarboxylat
PCT/EP2012/066930 WO2013034489A1 (de) 2011-09-09 2012-08-31 Verfahren zur herstellung von zinkdicarboxylat

Publications (1)

Publication Number Publication Date
EP2753653A1 true EP2753653A1 (de) 2014-07-16

Family

ID=46755016

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12751534.4A Withdrawn EP2753653A1 (de) 2011-09-09 2012-08-31 Verfahren zur herstellung von zinkdicarboxylat

Country Status (5)

Country Link
US (1) US20140200328A1 (de)
EP (1) EP2753653A1 (de)
KR (1) KR20140062130A (de)
CN (1) CN103781817A (de)
WO (1) WO2013034489A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101729300B1 (ko) * 2014-06-13 2017-04-21 주식회사 엘지화학 유기 아연 촉매, 이의 제조 방법 및 상기 촉매를 이용한 폴리알킬렌 카보네이트 수지의 제조 방법
US10047032B2 (en) 2014-06-13 2018-08-14 Lg Chem, Ltd. Preparation method of organic zinc catalyst and poly(alkylene carbonate) resin
KR101747399B1 (ko) 2014-06-13 2017-06-14 주식회사 엘지화학 유기 아연 촉매의 제조 방법 및 폴리알킬렌 카보네이트 수지의 제조 방법
WO2015190874A1 (ko) * 2014-06-13 2015-12-17 주식회사 엘지화학 유기 아연 촉매, 이의 제조 방법 및 상기 촉매를 이용한 폴리알킬렌 카보네이트 수지의 제조 방법
KR101767310B1 (ko) 2015-07-10 2017-08-10 국민대학교산학협력단 전자끄는기를 포함하는 에폭사이드, 이산화탄소 및 전자끄는기를 포함하지 않는 에폭사이드의 삼원중합체 제조방법
KR102088505B1 (ko) * 2015-07-13 2020-03-12 주식회사 엘지화학 아연계 촉매의 제조방법 및 이를 이용한 폴리알킬렌카보네이트의 제조방법
KR102109788B1 (ko) 2016-03-09 2020-05-12 주식회사 엘지화학 유기 아연 촉매, 이의 제조 방법 및 상기 촉매를 이용한 폴리알킬렌 카보네이트 수지의 제조 방법
KR102000129B1 (ko) * 2016-03-24 2019-07-15 주식회사 엘지화학 유기 아연 담지 촉매, 이의 제조 방법, 및 상기 촉매를 이용한 폴리알킬렌 카보네이트 수지의 제조 방법
CN110382114A (zh) 2017-08-28 2019-10-25 Lg化学株式会社 制备有机锌催化剂的方法,通过该方法制备的有机锌催化剂以及采用该催化剂制备聚碳酸亚烷基酯树脂的方法
WO2019045418A1 (ko) * 2017-08-28 2019-03-07 주식회사 엘지화학 유기 아연 촉매의 제조 방법과 상기 방법으로 제조된 유기 아연 촉매, 및 상기 촉매를 이용한 폴리알킬렌 카보네이트 수지의 제조 방법
CA3099972A1 (en) 2018-12-20 2020-06-25 Lg Chem, Ltd. Method of preparing organic zinc catalyst and method of preparing polyalkylene carbonate resin by using the organic zinc catalyst prepared thereby
JPWO2021140869A1 (de) * 2020-01-08 2021-07-15
IT202000029237A1 (it) * 2020-12-01 2022-06-01 Epox Co2 S R L Processo per la preparazione di zinco dicarbossilato e il suo uso come catalizzatore nella sintesi di polialchilene carbonato a partire da co2 tramite catalisi eterogenea
CN115028845B (zh) * 2022-05-11 2023-05-12 烟台大学 一种锌配位聚合物催化剂及其制备方法和应用
KR102576776B1 (ko) * 2022-10-28 2023-09-07 아주대학교산학협력단 이산화탄소-에폭사이드 반응 촉매, 이의 제조 방법 및 이를 이용한 폴리머 합성 방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3706713A (en) * 1970-08-11 1972-12-19 Shell Oil Co Aliphatic polycarbonates
US4783445A (en) * 1987-12-14 1988-11-08 Arco Chemical Company Soluble epoxide/carbon dioxide copolymerization catalysts
EP0358326B1 (de) * 1988-08-09 1996-12-27 Mitsui Petrochemical Industries, Ltd. Verfahren zur Herstellung eines zinkhaltigen festen Katalysators und Verfahren zur Herstellung von Polyalkylencarbonat
US5026676A (en) * 1989-06-07 1991-06-25 Air Products And Chemicals, Inc. Catalyst for the copolymerization of epoxides with CO2
CN1095403C (zh) * 2000-11-22 2002-12-04 中国科学院广州化学研究所 二元羧酸锌催化剂的制备方法
DE10147712A1 (de) 2001-09-27 2003-04-17 Basf Ag Verfahren zur Herstellung aliphatischer Polycarbonate
KR100722381B1 (ko) * 2002-06-20 2007-05-28 주식회사 포스코 지방족 폴리카보네이트 중합용 촉매의 제조 방법 및 이를사용한 지방족 폴리카보네이트의 중합 방법
DE102005010320B4 (de) 2005-03-03 2007-02-15 Grillo-Werke Ag Oberflächenmodifizierte Zinkoxidpartikel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2013034489A1 *

Also Published As

Publication number Publication date
CN103781817A (zh) 2014-05-07
KR20140062130A (ko) 2014-05-22
WO2013034489A1 (de) 2013-03-14
US20140200328A1 (en) 2014-07-17

Similar Documents

Publication Publication Date Title
EP2753653A1 (de) Verfahren zur herstellung von zinkdicarboxylat
EP3145977B1 (de) Ethoxylatherstellung unter verwendung hoch aktiver doppelmetallcyanid-katalysatoren
EP3145978B1 (de) Hoch aktive doppelmetallcyanid-katalysatoren und verfahren zu deren herstellung
EP2917264B1 (de) Verfahren zur herstellung von polyethercarbonatpolyolen
EP2739667B1 (de) Verfahren zur herstellung von verzweigten polyethercarbonaten und ihre verwendung
DE102013208328A1 (de) Polyoxyalkylene mit seitenständigen langkettigen Acyloxyresten und Verfahren zu ihrer Herstellung mittels DMC-Katalysatoren
DE102011076019A1 (de) Alkoxylierungsprodukte und Verfahren zu ihrer Herstellung mittels DMC-Katalysatoren
EP2652008A1 (de) Verfahren zur herstellung von polyethercarbonatpolyolen mit primären hydroxyl-endgruppen und daraus hergestellte polyurethanpolymere
DE102005011581A1 (de) Verfahren zur Herstellung von DMC-Katalysatoren
DE1206586B (de) Verfahren zur Herstellung von Polyestern durch Polymerisation von Lactonen
EP2245082A1 (de) Hochfunktionelle polyetherole sowie deren herstellung und verwendung
WO2013010987A1 (de) Verfahren zur aktivierung von doppelmetallcyanidkatalysatoren zur herstellung von polyethercarbonatpolyolen
EP3061772B1 (de) Synthesen von chitosan- und chitin-aerogelen, die funktionelle ureidogruppen enthalten
WO2015091471A1 (de) Verfahren zur aufarbeitung von alkalischen polyetherpolyolen
DE602005002950T2 (de) Verfahren zur herstellung von polyetherpolyolen
WO2013092501A1 (de) Hydroxy-aminopolymere und verfahren zu deren herstellung
EP3260483A1 (de) Verfahren zur herstellung von polyethercarbonatpolyolen
DE10205086A1 (de) Verfahren zur Aktivierung von Doppelmetallcyanid-Verbindungen
DE602004010482T2 (de) Doppelmetallcyanidkatalysatoren (DMC) mit Kronenethern, Prozess zu ihrer Herstellung und Verwendungen
EP2542341A2 (de) Modifizierte zinksalze von c4-8-alkandicarbonsäuren und ihre verwendung als polymerisationskatalysator
KR20130096772A (ko) 에테르화 반응용 금속산화물 촉매, 그 촉매의 제조방법, 및 그 촉매를 이용한 선형 폴리글리세린의 제조방법
WO2005026094A1 (de) In alkalien stabile alkoxylate
DE19913725C1 (de) Verfahren zur Herstellung von modifizierten Vinyletherpolymeren
EP3891117B1 (de) Verfahren zur herstellung einer hydroxyverbindung durch decarboxylierung in anwesenheit einer brönsted-base
EP3922659A1 (de) Verfahren zur herstellung von polyethercarbonatpolyolen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140409

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150916

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160127