EP2710421A1 - Einkoppelvorrichtung für einen lichtwellenleiter - Google Patents

Einkoppelvorrichtung für einen lichtwellenleiter

Info

Publication number
EP2710421A1
EP2710421A1 EP12721190.2A EP12721190A EP2710421A1 EP 2710421 A1 EP2710421 A1 EP 2710421A1 EP 12721190 A EP12721190 A EP 12721190A EP 2710421 A1 EP2710421 A1 EP 2710421A1
Authority
EP
European Patent Office
Prior art keywords
light
optical filter
wavelength range
optical waveguide
coupling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12721190.2A
Other languages
English (en)
French (fr)
Inventor
Jan KALLENDRUSCH
Volker SINNHOFF
Christian Wessling
Kai Ulf Markus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vimecon GmbH
Ingeneric GmbH
Original Assignee
Vimecon GmbH
Ingeneric GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vimecon GmbH, Ingeneric GmbH filed Critical Vimecon GmbH
Publication of EP2710421A1 publication Critical patent/EP2710421A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/12Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B18/24Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor with a catheter
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/262Optical details of coupling light into, or out of, or between fibre ends, e.g. special fibre end shapes or associated optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3845Details of mounting fibres in ferrules; Assembly methods; Manufacture ferrules comprising functional elements, e.g. filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00172Connectors and adapters therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B2018/2035Beam shaping or redirecting; Optical components therefor
    • A61B2018/20361Beam shaping or redirecting; Optical components therefor with redirecting based on sensed condition, e.g. tissue analysis or tissue movement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B2018/2247Fibre breakage detection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B2018/2255Optical elements at the distal end of probe tips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/04Protection of tissue around surgical sites against effects of non-mechanical surgery, e.g. laser surgery
    • A61B2090/049Protection of tissue around surgical sites against effects of non-mechanical surgery, e.g. laser surgery against light, e.g. laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/04Protection of tissue around surgical sites against effects of non-mechanical surgery, e.g. laser surgery

Definitions

  • the invention relates to a coupling device for the connection of an optical waveguide to the optical waveguide connection provided for this purpose.
  • the coupling device couples the light generated by a laser light source into the optical waveguide for further use.
  • the optical waveguide can be, for example, a part of a catheter or medical device in order to introduce the laser light into the body of a human or animal being for therapy or diagnostic purposes.
  • the light guide could also be used in material processing or for information transmission in the field of communications or information technology.
  • the laser radiation is absorbed in the sheath surrounding the optical waveguide fibers and / or the break point of the core. This heats the fiber. The heating can lead to melting or even evaporation of the fiber material.
  • the invention has for its object to detect overheating of an optical waveguide within a predetermined period of time.
  • the coupling device according to the invention is defined by the features of claim 1.
  • the coupling-in device has a refractive or diffractive filter arranged in the beam path between the laser light source and the optical waveguide connection, which reflects light of a first wavelength range or of a first polarization direction and transmits light of a second wavelength range or a second polarization direction.
  • the light reflection or transmission takes place on the optical filter wavelength and polarization dependent.
  • the basic idea of the invention thus consists in one Wavelength- and / or polarization-dependent separation of the beam paths of laser light and of heat radiation / white light (referred to below as signal radiation) in order to be able to separately detect the radiation produced during optical fiber overheating and to detect it as an indication of optical fiber overheating.
  • the optical filter is designed as a dielectric mirror and the laser light is applied to the optical waveguide connection, e.g. reflected at a 90 ° angle, while the generated during overheating and reflected back through the optical fiber to the optical filter signal radiation is transmitted through the optical filter and detected on the opposite side of the optical waveguide port of the optical filter.
  • the optical filter may be configured such that the laser light from the laser light source transmits through the optical filter to the opposite optical fiber port, while reflected signal radiation from the optical fiber port on the mirror, e.g. at a 90 ° angle, is reflected.
  • a wavelength or polarization-dependent reflection and transmission is performed by the optical filter to separate the beam path of the light coupled in the optical waveguide in the coupling device of the beam path of the reflected back at overheating of the optical waveguide signal radiation to thrown back signal radiation as an indication to detect separately on a light guide overheating.
  • the optical filter can be embodied as a diffractive reflection or transmission grating or dispersion prism, which diffracts or refracts the radiation reflected back from the light guide in different directions depending on wavelength, polarization and direction of incidence, so that the signal radiation is spectrally resolved by a spatial separation of several detectors can be.
  • a first light measuring device is preferably in a beam path from the optical waveguide connection via the optical Filter arranged to the first light measuring device, so that the resulting from overheating reflected signal radiation from the first light measuring device can be measured.
  • the first measuring device is arranged on the side opposite the optical filter side of the optical waveguide connection, wherein the optical filter transmits the reflected signal radiation back and reflects the laser light from the laser light source onto the optical waveguide connection.
  • a second light measuring device can be arranged in a beam path from the laser light source via the optical filter to the second measuring device in order to be able to detect overheating or a cable break in an optical waveguide between the laser light source and the optical filter.
  • the first measuring device and / or the second measuring device should each be designed to measure the power of light of either the first or the second wavelength range, for example, to measure only the signal radiation in the case of fiber overheating, without detecting interference components of the laser light that the measurement result would falsify.
  • the first and / or the second measuring device preferably each have a photodiode with an optical filter in the beam path between the photodiode and the optical filter, wherein the optical filter transmits only light of the one wavelength range and blocks the light of the other wavelength range.
  • the measuring device may be a detector array with a plurality of juxtaposed optical sensors.
  • the first wavelength range which is reflected by the optical filter, preferably has a wavelength range of at least one laser light source outside the range of visible light, so that only the laser light, but no visible signal radiation is reflected by the optical filter.
  • the first wavelength range can be in the infrared range beyond 800 nm while the second wavelength range is the wavelength range of visible light, in particular below 800 nm.
  • the optical filter transmits only the signal radiation resulting from overheating as a result of fiber breakage in the form of white light, while the laser light of the laser light source is not transmitted.
  • the transmitted signal radiation is detected by one of the measuring devices.
  • an emergency stop function can be activated, which enables the laser light source to be switched off within a period of a few milliseconds in the event of overheating of the optical waveguide in order to avoid health risks for patients.
  • the optical filter can reflect a part of the light output of the first wavelength range, ie the laser light, and transmit a part of this light power.
  • the reflected laser light component can be directed from the laser light source to the optical waveguide connection, while the other component is transmitted in the direction of one of the two measuring devices in order to be able to directly detect damage to the incoming beam path between laser light source and optical filter on the basis of the measured light output.
  • the coupling-in device preferably also has an optical waveguide input, to which a second optical waveguide can be connected, in order to supply the laser light to an external laser light source of the coupling device.
  • a bundling optical system can be provided for bundling laser light or signal radiation between the second optical waveguide and the optical filter, between the optical filter and the first optical waveguide, between the optical filter and the first measuring device and / or between the optical filter and the second measuring device ,
  • FIG. 1 shows a schematic representation of a first embodiment
  • Figure 2 is a diagram with the wavelength components of the first and second
  • FIG. 3 shows a simplified representation of the first exemplary embodiment
  • FIG. 4 shows the illustration according to FIG. 3 of a second exemplary embodiment
  • FIG. 5 shows the illustration according to FIG. 3 of a third exemplary embodiment
  • Figure 7 is a detail view of another embodiment.
  • Fig. 1 shows a laser part 10 of conventional design with a laser light source 11 in the form of a laser diode for generating laser light.
  • the laser light has an operating wavelength of approximately 980 nm, which is outside the wavelength range of visible light of 380-780 nm.
  • the generated laser light is coupled into a second optical waveguide 12 and coupled via the optical waveguide input 14 into the coupling device 16 according to the invention.
  • the coupled-in laser light is passed through a collimating optical system 18 onto the optical filter 20 which is inclined at an angle of approximately 45 ° to the propagation of the laser light in the beam path from the optical fiber input 14 to the optical filter 20.
  • the optical filter 20 reflects light in a first wavelength range 22 of more than 850 nm, while light of the second wavelength range of 24 less than 850 nm is transmitted.
  • the coupled-in laser light with a wavelength of 980 nm is reflected by the optical filter by 90 ° in the direction of the optical waveguide connection 26 and coupled into the first optical waveguide 28 via the optical waveguide connection 26.
  • Fiber optic 28 is a cardiac catheter laser catheter for delivering laser light to the affected areas of the heart muscle at typical performances of approximately 40W for treatment of cardiac insufficiency or myocardial or arrhythmia disorders. In the case of a break in the optical fiber or a breakage of several fibers of the light guide, the energy at the point of breakage is converted into heat.
  • the resulting temperature When used in the patient's blood-filled heart or vascular system, the resulting temperature produces signal radiation in the form of white light up to 1000 ° C. and, moreover, plasma formation.
  • the distinction between laser light and signal radiation (white light) is exclusively wavelength-dependent or possibly polarization-dependent and is therefore independent of power. As a result, it is also possible to detect signal radiation with significantly lower power than the laser light, which is conducted back through the optical waveguide 28 to the optical waveguide connection 26.
  • the white light reflected back through the optical waveguide connection 26 is guided through the bundling optical system 30 between the optical waveguide connection 26 and the optical filter 20 onto the optical filter 20 and is not reflected by this back onto the optical waveguide entrance 14, but in the direction of the first measuring device 32 transmits.
  • the white light is transmitted and not reflected because it is at wavelengths of at most 780 nm in the second wavelength range 24 of below 850 nm, which is transmitted from the mirror 20, but not reflected.
  • the first measuring device 32 is arranged on the side opposite the optical filter 20 side of the optical fiber connector 26 such that a beam path along a straight line from the optical fiber connector 26 through the optical filter 20 passes through a photodiode of the first measuring device 32.
  • the first measuring device 32 is also provided with an optical filter between the optical filter 20 and the photodiode of the measuring device 32.
  • the optical filter is a bandpass filter having a transmission range in the range of visible light, so that possible laser light with a wavelength of more than 900 nm does not reach the photodiode.
  • a second light measuring device 34 is arranged on the side opposite the optical filter 20 side of the optical fiber input 14 such that light from the optical fiber input 14 through the optical filter 20 passes through the photodiode of the second measuring device 34.
  • white light which strikes the light guide input 14 as a result of breakage of the coupling-in second optical waveguide 12 can be transmitted through the optical filter 20 and measured by the photodiode of the second measuring device 34.
  • the optical filter 20 is designed such that about 99.99% of the power is reflected by the laser light of the first wavelength range 22 and about 0.01% of the power is transmitted.
  • the second measuring device 34 detects 0.01% of the laser light power in the normal operating case with undamaged second optical fiber 12.
  • the measurement signal can be an emergency stop Activate function to switch off the laser source.
  • the laser light generated by the laser light source 11 has a normalized value of 1 Maximum in the range of the operating wavelength of the laser of 980 nm.
  • the transmission curve of the optical filter XX shown by the dashed line
  • the laser light of the operating wavelength 980 nm is not transmitted, but reflected.
  • the second wavelength range 24 a further local maximum in the range between 670 nm and 750 nm can be seen.
  • This wavelength component results from the signal radiation in the range of visible light (white light), which results from damage to the optical fiber 28.
  • This wavelength portion of the signal radiation is almost completely transmitted by the optical filter 20, but not reflected, as the dashed line overlay for the transmitted wavelength components in FIG. 2 illustrates.
  • FIG 3 shows, in a simplified representation, the basic principle of the first exemplary embodiment, in which the laser light (shown hatched) is largely reflected by the optical waveguide input 14 onto the optical waveguide port 26 and transmitted to a smaller extent in the direction of the second measuring device 34 ,
  • the optical filter 20 transmits the signal radiation reflected back in the optical waveguide 28 (shown in dotted lines) from the optical waveguide connection 26 completely in the direction of the first measuring device 32.
  • the second exemplary embodiment illustrated in FIG. 4 differs from the first exemplary embodiment according to FIG. 3 in that the optical fiber input 14 and the optical fiber connector 26 are arranged along a straight path on opposite sides of the optical filter 20, wherein a large part of the light of the first wavelength range 22 (laser light) is transmitted through the optical filter 20 toward the optical waveguide port 26, while a smaller proportion of the optical power of the first wavelength range 22 is reflected by the optical filter 20 toward the second measuring device 34.
  • the reflected back in the optical waveguide 28 signal radiation (shown dotted) is at the optical Filter 20 from the optical fiber connector 26 to the first measuring device 32 completely reflected.
  • the third exemplary embodiment illustrated in FIG. 5 differs from the first exemplary embodiment according to FIG. 3 in that the light output of the first wavelength range 22 on the optical filter 20 is completely reflected by the optical waveguide input 14 in the direction of the optical waveguide connection 26 without a share is transmitted.
  • a first light measuring device 32 is not provided.
  • the fourth exemplary embodiment illustrated in FIG. 6 differs from the second exemplary embodiment illustrated in FIG. 4 in that the light output of the first wavelength range 22 (laser light) is completely from the optical fiber input 14 through the optical filter 20 in the direction of the optical waveguide connection 26 is transmitted without a portion of the light power from the first wavelength range 22 is reflected.
  • a second light meter 34 is not provided.
  • FIGS. 1 to 6 show an arrangement with a diffractive optical filter 20, in which the signal light 22 is spectrally split by diffraction into different partial beams 24a, 24b, 24c and distributed to the light measuring devices 32a, 32b, 32c.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Otolaryngology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Laser Surgery Devices (AREA)
  • Insulated Conductors (AREA)

Abstract

Um eine Überhitzung eines Lichtwellenleiters automatisch zu erkennen, weist eine Einkoppelvorrichtung (16) für einen Lichtwellenleiter (12, 8) einen Lichtwellenleiter-Anschluss (26) für einen ersten Lichtwellenleiter (28) auf. Die Einkoppelvorrichtung (16) weist einen in dem Strahlengang zwischen einer Laserlichtquelle (11) und dem Lichtwellenleiter-Anschluss (26) angeordneten optischen Filter (20) auf, der Licht eines ersten Wellenlängenbereichs (22) oder einer ersten Polarisationsrichtung reflektiert und Licht eines zweiten Wellenlängenbereichs (24) oder einer zweiten Polarisationsrichtung transmittiert.

Description

Einkoppelvorrichtung für einen Lichtwellenleiter
Die Erfindung betrifft eine Einkoppelvorrichtung für den Anschluss eines Lichtwellenleiters an den dafür vorgesehenen Lichtwellenleiter-Anschluss.
Die Einkoppelvorrichtung koppelt das von einer Laserlichtquelle generierte Licht in den Lichtwellenleiter zur weiteren Verwendung ein. Der Lichtwellenleiter kann beispielsweise ein Teil eines Katheters oder Medizinprodukts sein, um das Laserlicht zu Therapie- oder Diagnosezwecken in den Körper eines menschlichen oder tierischen Lebewesens einzuleiten. Alternativ könnte der Lichtleiter auch in der Materialbearbeitung oder zur Informationsübertragung im Bereich der Nachrichten- oder Informationstechnik eingesetzt werden. Insbesondere bei einer Anwendung in der Medizintechnik als Katheter liegt eine erhebliche Gefahr in einer Überhitzung des Lichtwellenleiters. Bei einem defekten oder verschmutzten Lichtleiter wird die Laserstrahlung in dem die Lichtleiterfasern umgebenden Mantel und/oder der Bruchstelle des Kerns absorbiert. Dadurch wird die Faser erwärmt. Die Erwärmung kann zum Schmelzen oder sogar zu einer Verdampfung des Fasermaterials führen. Insbesondere in Folge eines Faserbruchs kann aufgrund der erhöhten Laserlichtabsorption, z.B. im Falle eines flüssigkeitsumgebenen Herzkatheters, ein Plasma mit Temperaturen von bis zu 1000°C entstehen. Gerade bei Herzkathetern besteht bei Überhitzung durch das entstehende Plasma die Gefahr einer 50%-igen Todesfolge für den Patienten. Überhitzungen von Lichtwellenleitern können eine typische Folge eines Bruchs lichtleitender Fasern sein.
Der Erfindung liegt die Aufgabe zugrunde, eine Überhitzung eines Lichtwellenleiters innerhalb einer vorgegebenen Zeitspanne zu erkennen.
Die erfindungsgemäße Einkoppelvorrichtung wird definiert durch die Merkmale von Patentanspruch 1.
Demnach weist die Einkoppelvorrichtung einen in dem Strahlengang zwischen der Laserlichtquelle und dem Lichtwellenleiter-Anschluss angeordneten refraktiven oder diffraktiven Filter auf, der Licht eines ersten Wellenlängenbereichs oder einer ersten Polarisationsrichtung reflektiert und Licht eines zweiten Wellenlängenbereichs oder einer zweiten Polarisationsrichtung transmittiert. Die Lichtreflexion bzw. -transmission erfolgt an dem optischen Filter Wellenlängen- und polarisationsabhängig. Dadurch kann in der Einkoppelvorrichtung die bei einer Überhitzung eines Lichtleiters entstehende Wärmestrahlung oder das im Falle eines Plasmas entstehende Weißlicht in dem Wellenlängenbereich sichtbaren Lichts mit dem optischen Filter entlang eines Strahlengangs geführt werden, der von dem Strahlengang des Laserlichts verschieden ist. Der Grundgedanke der Erfindung besteht also in einer Wellenlängen- und/oder polarisationsabhängigen Trennung der Strahlengänge von Laserlicht und von Wärmestrahlung/Weißlicht (im folgenden als Signalstrahlung bezeichnet), um die bei Lichtleiterüberhitzung entstehende Strahlung separat erfassen zu können und als Hinweis auf eine Lichtleiterüberhitzung zu erkennen.
Grundsätzlich ist dabei denkbar, dass der optische Filter als dielektrischer Spiegel ausgeführt ist und das Laserlicht auf den Lichtwellenleiter-Anschluss z.B. in einem 90°-Winkel reflektiert, während die bei Überhitzung entstehende und durch den Lichtleiter auf den optischen Filter zurückgeworfene Signalstrahlung durch den optischen Filter hindurch transmittiert und auf der dem Lichtwellenleiter-Anschluss gegenüberliegenden Seite des optischen Filters erfasst wird. Alternativ kann der optische Filter derart ausgebildet sein, dass das Laserlicht von der Laserlichtquelle durch den optischen Filter hindurch zu dem gegenüberliegenden Lichtwellenleiter-Anschluss transmittiert, während zurückgeworfene Signalstrahlung von dem Lichtwellenleiter-Anschluss an dem Spiegel, z.B. in einem 90°-Winkel, reflektiert wird. Entscheidend ist, dass durch den optischen Filter eine Wellenlängen- bzw. polarisationsabhängige Reflexion und Transmission vorgenommen wird, um den Strahlengang des in den Lichtwellenleiter eingekoppelten Lichts in der Einkoppelvorrichtung von dem Strahlengang der bei Überhitzung des Lichtleiters zurückgeworfenen Signalstrahlung zu trennen, um zurückgeworfene Signalstrahlung als Hinweis auf eine Lichtleiterüberhitzung separat erfassen zu können.
Alternativ kann der optische Filter als diffraktives Reflexions- oder Transmissionsgitter oder Dispersionsprisma ausgeführt sein, der die vom Lichtleiter zurück reflektierte Strahlung abhängig von Wellenlänge, Polarisation und Einfallsrichtung in verschiedene Richtungen beugt bzw. bricht, so dass die Signalstrahlung durch eine räumliche Trennung mehrerer Detektoren spektral aufgelöst werden kann. Hierbei ist vorzugsweise eine erste Lichtmesseinrichtung in einem Strahlengang von dem Lichtwellenleiter-Anschluss über den optischen Filter zu der ersten Lichtmesseinrichtung angeordnet, so dass die bei einer Überhitzung entstehende zurückgeworfene Signalstrahlung von der ersten Lichtmesseinrichtung gemessen werden kann. Vorzugsweise ist die erste Messeinrichtung auf der dem optischen Filter gegenüberliegenden Seite des Lichtwellenleiter-Anschlusses angeordnet, wobei der optische Filter die zurückgeworfene Signalstrahlung transmittiert und das Laserlicht von der Laserlichtquelle auf den Lichtwellenleiter-Anschluss reflektiert.
Alternativ oder ergänzend kann eine zweite Lichtmesseinrichtung in einem Strahlengang von der Laserlichtquelle über den optischen Filter zu der zweiten Messeinrichtung angeordnet sein, um eine Überhitzung bzw. einen Kabelbruch auch in einem Lichtleiter zwischen der Laserlichtquelle und dem optischen Filter erkennen zu können. Hierbei sollten die erste Messeinrichtung und/oder die zweite Messeinrichtung jeweils zum Messen der Leistung von Licht entweder des ersten oder des zweiten Wellenlängenbereichs ausgebildet sein, um beispielsweise nur die Signalstrahlung im Falle einer Faserüberhitzung zu messen, ohne Störanteile des Laserlichts zu detektieren, die das Messergebnis verfälschen würden.
Die erste und/oder die zweite Messeinrichtung weisen vorzugsweise jeweils eine Fotodiode mit einem optischen Filter in dem Strahlengang zwischen der Fotodiode und dem optischen Filter auf, wobei der optische Filter nur Licht des einen Wellenlängenbereichs durchlässt und das Licht des anderen Wellenlängenbereichs sperrt. Alternativ kann die Messeinrichtung eine Detektorzeile mit mehreren aneinander gereihten optischen Sensoren sein.
Der erste Wellenlängenbereich, der von dem optischen Filter reflektiert wird, weist vorzugsweise einen Wellenlängenbereich mindestens einer Laserlichtquelle außerhalb des Bereichs sichtbaren Lichts auf, so dass nur das Laserlicht, jedoch keine sichtbare Signalstrahlung von dem optischen Filter reflektiert wird. Der erste Wellenlängenbereich kann hierbei im Infrarotbereich jenseits von 800 nm liegen, während der zweite Wellenlängenbereich der Wellenlängenbereich sichtbaren Lichts, insbesondere unterhalb von 800 nm, ist. Dadurch transmittiert der optische Filter nur die bei Überhitzung in Folge eines Faserbruchs entstehende Signalstrahlung in Form von Weißlicht, während das Laserlicht der Laserlichtquelle nicht transmittiert wird. Die transmittierte Signalstrahlung wird von einer der Messeinrichtungen detektiert. Bei Detektion von Signalstrahlung durch eine der Messeinrichtungen kann eine Not-Aus-Funktion aktiviert werden, die ein Abschalten der Laserlichtquelle in einem Zeitraum von wenigen Millisekunden bei einer Überhitzung des Lichtleiters ermöglicht, um Gesundheitsrisiken für Patienten zu vermeiden.
Der optische Filter kann einen Teil der Lichtleistung des ersten Wellenlängenbereichs, also des Laserlichts, reflektieren und einen Teil dieser Lichtleistung transmittieren. Beispielsweise kann der reflektierte Laserlichtanteil von der Laserlichtquelle auf den Lichtwellenleiter-Anschluss gelenkt werden, während der andere Anteil in Richtung auf eine der beiden Messeinrichtungen transmittiert wird, um Beschädigungen des zuführenden Strahlenganges zwischen Laserlichtquelle und optischem Filter anhand der gemessenen Lichtleistung unmittelbar erkennen zu können.
Vorzugsweise weist die Einkoppelvorrichtung neben dem Lichtwellenleiter- Anschluss auch einen Lichtleitereingang auf, an den ein zweiter Lichtwellenleiter anschließbar ist, um das Laserlicht einer externen Laserlichtquelle der Einkoppelvorrichtung zuzuführen.
Eine Bündelungsoptik kann zur Bündelung von Laserlicht bzw. von Signalstrahlung zwischen dem zweiten Lichtleiter und dem optischen Filter, zwischen dem optischen Filter und dem ersten Lichtleiter, zwischen dem optischen Filter und der ersten Messeinrichtung und/oder zwischen dem optischen Filter und der zweiten Messeinrichtung vorgesehen sein. Im Folgenden werden anhand der Figuren Ausführungsbeispiele der Erfindung näher erläutert.
Es zeigen;
Figur 1 eine schematische Darstellung eines ersten Ausführungsbeispiels,
Figur 2 ein Diagramm mit den Wellenlängenanteilen des ersten und zweiten
Wellenlängenbereichs,
Figur 3 eine vereinfachte Darstellung des ersten Ausführungsbeispiels,
Figur 4 die Darstellung gemäß Figur 3 eines zweiten Ausführungsbeispiels,
Figur 5 die Darstellung gemäß Figur 3 eines dritten Ausführungsbeispiels,
Figur 6 die Darstellung nach Figur 3 eines vierten Ausführungsbeispiels und
Figur 7 eine Detailansicht eines weiteren Ausführungsbeispiels.
Fig. 1 zeigt ein Laserteil 10 herkömmlicher Bauart mit einer Laserlichtquelle 11 in Form einer Laserdiode zur Erzeugung von Laserlicht. Das Laserlicht hat eine Arbeitswellenlänge von ungefähr 980 nm, die außerhalb des Wellenlängenbereichs sichtbaren Lichts von 380 - 780 nm liegt. Das erzeugte Laserlicht wird in einen zweiten Lichtwellenleiter 12 eingekoppelt und über den Lichtleitereingang 14 in die erfindungsgemäße Einkoppelvorrichtung 16 eingekoppelt. Das eingekoppelte Laserlicht wird durch eine Bündelungsoptik 18 hindurch auf den optischen Filter 20 geleitet, der in einem Winkel von ungefähr 45° gegenüber der Ausbreitung des Laserlichts in dem Strahlengang von dem Lichtleitereingang 14 auf den optischen Filter 20 geneigt angeordnet ist.
Der optische Filter 20 reflektiert Licht in einem ersten Wellenlängenbereich 22 von mehr als 850 nm, während Licht des zweiten Wellenlängenbereichs 24 von weniger als 850 nm transmittiert wird. Dadurch wird also das eingekoppelte Laserlicht mit einer Wellenlänge von 980 nm von dem optischen Filter um 90° in Richtung auf den Lichtwellenleiter-Anschluss 26 reflektiert und über den Lichtwellenleiter-Anschluss 26 in den ersten Lichtwellenleiter 28 eingekoppelt. Der Lichtwellenleiter 28 ist ein Laser-Herzkatheter zur Anwendung in der Kardiologie, um Laserlicht mit typischen Leistungen von ungefähr 40W zur Behandlung von Herzmuskelschwächen oder Herzmuskel- oder Herzrhythmusstörungen auf die betroffenen Bereiche des Herzmuskels zu leiten. Im Falle eines Lichtleiterbruchs oder eines Bruchs mehrerer Fasern des Lichtleiters wird die Energie an der Bruchstelle in Wärme umgewandelt. Bei Anwendung in dem blutgefüllten Herzen oder Gefäßsystem des Patienten entsteht durch die resultierende Temperatur bis zu 1000°C und darüber hinaus durch Plasmabildung eine Signalstrahlung in Form von Weißlicht. Die Unterscheidung zwischen Laserlicht und Signalstrahlung (Weißlicht) erfolgt ausschließlich wellenlängenabhängig oder ggf. auch polarisationsabhängig und ist somit leistungsunabhängig. Dadurch kann auch Signalstrahlung mit gegenüber dem Laserlicht deutlich geringerer Leistung detektiert werden, die durch den Lichtwellenleiter 28 zurück zu dem Lichtwellenleiter-Anschluss 26 geleitet wird.
Das durch den Lichtwellenleiter-Anschluss 26 zurückgeworfene Weißlicht wird durch die Bündelungsoptik 30 zwischen dem Lichtwellenleiter-Anschluss 26 und dem optischen Filter 20 hindurch auf den optischen Filter 20 geleitet und von diesem nicht zurück auf den Lichtleitereingang 14 reflektiert, sondern in Richtung auf die erste Messeinrichtung 32 transmittiert. Das Weißlicht wird transmittiert und nicht reflektiert, weil es mit Wellenlängen von maximal 780 nm in dem zweiten Wellenlängenbereich 24 von unterhalb 850 nm liegt, welcher von dem Spiegel 20 transmittiert, jedoch nicht reflektiert wird. Die erste Messeinrichtung 32 ist auf der dem optischen Filter 20 gegenüberliegenden Seite des Lichtwellenleiter-Anschlusses 26 derart angeordnet, dass ein Strahlengang entlang einer geraden Strecke von dem Lichtwellenleiter-Anschluss 26 durch den optischen Filter 20 hindurch auf eine Fotodiode der ersten Messeinrichtung 32 trifft.
Die erste Messeinrichtung 32 ist zudem mit einem optischen Filter zwischen dem optischen Filter 20 und der Fotodiode der Messeinrichtung 32 versehen. Der optische Filter ist ein Bandpassfilter mit einem Durchlassbereich im Bereich des sichtbaren Lichts, so dass mögliches Laserlicht mit einer Wellenlänge von mehr als 900 nm nicht auf die Fotodiode gelangt.
Eine zweite Lichtmesseinrichtung 34 ist auf der dem optischen Filter 20 gegenüberliegenden Seite des Lichtleitereingangs 14 derart angeordnet, dass Licht aus dem Lichtleitereingang 14 durch den optischen Filter 20 hindurch auf die Fotodiode der zweiten Messeinrichtung 34 trifft. Dadurch kann zum einen Weißlicht, welches in Folge eines Bruchs des einkoppelnden zweiten Lichtwellenleiters 12 auf den Lichtleitereingang 14 trifft, durch den optischen Filter 20 hindurch transmittieren und von der Fotodiode der zweiten Messeinrichtung 34 gemessen werden. Zudem ist der optische Filter 20 derart ausgebildet, dass von dem Laserlicht des ersten Wellenlängenbereichs 22 ca. 99,99% der Leistung reflektiert und ca. 0,01% der Leistung transmittiert werden. Dadurch erfasst die zweite Messeinrichtung 34 im normalen Betriebsfall bei unbeschädigtem zweiten Lichtleiter 12 0,01% der Laserlichtleistung. Falls die gemessene Laserlichtleistung deutlich von den 0,01% abweicht, weil z.B. in Folge eines Lichtleiterbruchs oder Risses oder einer Störung der Laserlichtquelle 11 zu wenig Laserlicht in die Einkoppelvorrichtung 10 gelangt, oder weil aufgrund einer Störung der Laserlichtquelle 11 die eingekoppelte Laserlichtleistung in einem für einen Patienten gefährlichen Maße überschritten wird, kann das Messsignal eine Not-Aus-Funktion zur Abschaltung der Laserquelle aktivieren.
In Fig. 2 sind die beiden Wellenlängenbereiche 22 und 24, die durch den optischen Filter 20 voneinander getrennt werden, dargestellt. Das von der Laserlichtquelle 11 generierte Laserlicht hat ein auf den Wert 1 normiertes Maximum im Bereich der Arbeitswellenlänge des Lasers von 980 nm. Wie die Transmissionskurve des optischen Filters XX (dargestellt durch die gestrichelte Linie) verdeutlicht, wird das Laserlicht der Arbeitswellenlänge 980 nm nicht transmittiert, sondern reflektiert. In dem zweiten Wellenlängenbereich 24 ist ein weiteres lokales Maximum im Bereich zwischen 670 nm und 750 nm zu erkennen. Dieser Wellenlängenanteil resultiert aus der Signalstrahlung im Bereich sichtbaren Lichts (Weißlicht), die von einer Beschädigung des Lichtleiters 28 herrührt. Dieser Wellenlängenanteil der Signalstrahlung wird von dem optischen Filter 20 nahezu vollständig transmittiert, jedoch nicht reflektiert, wie die Überlagerung mit der gestrichelten Linie für die transmittierten Wellenlängenanteile in Fig . 2 veranschaulicht.
Fig. 3 zeigt in vereinfachter Darstellung das Grundprinzip des ersten Ausführungsbeispiels, bei dem das Laserlicht (schraffiert dargestellt) zu einem größten Teil von dem Lichtleitereingang 14 auf den Lichtwellenleiter- Anschluss 26 reflektiert und zu einem geringeren Anteil in Richtung auf die zweite Messeinrichtung 34 transmittiert wird. Der optische Filter 20 transmittiert die in dem Lichtwellenleiter 28 zurückgeworfene Signalstrahlung (gepunktet dargestellt) von dem Lichtwellenleiter-Anschluss 26 vollständig in Richtung auf die erste Messeinrichtung 32.
Das in Fig. 4 dargestellte zweite Ausführungsbeispiel unterscheidet sich von dem ersten Ausführungsbeispiel gemäß Fig. 3 dadurch, dass der Lichtleitereingang 14 und der Lichtwellenleiter-Anschluss 26 entlang einer geraden Strecke auf einander gegenüberliegenden Seiten des optischen Filters 20 angeordnet sind, wobei ein Großteil des Lichts des ersten Wellenlängenbereichs 22 (Laserlicht) durch den optischen Filter 20 hindurch in Richtung auf den Lichtwellenleiter- Anschluss 26 transmittiert wird, während ein geringerer Anteil der Lichtleistung des ersten Wellenlängenbereichs 22 von dem optischen Filter 20 in Richtung auf die zweite Messeinrichtung 34 reflektiert wird. Die in dem Lichtwellenleiter 28 zurückgeworfene Signalstrahlung (gepunktet dargestellt) wird an dem optischen Filter 20 von dem Lichtwellenleiter-Anschluss 26 auf die erste Messeinrichtung 32 vollständig reflektiert.
Das in Fig. 5 dargestellte dritte Ausführungsbeispiel unterscheidet sich von dem ersten Ausführungsbeispiel gemäß Fig. 3 dadurch, dass die Lichtleistung des ersten Wellenlängenbereichs 22 an dem optischen Filter 20 vollständig von dem Lichtleitereingang 14 in Richtung auf den Lichtwellenleiter-Anschluss 26 reflektiert wird, ohne dass ein Anteil transmittiert wird. Eine erste Lichtmesseinrichtung 32 ist nicht vorgesehen.
Das in Fig. 6 dargestellte vierte Ausführungsbeispiel unterscheidet sich von dem in Fig. 4 dargestellten zweiten Ausführungsbeispiel dadurch, dass die Lichtleistung des ersten Wellenlängenbereichs 22 (Laserlicht) vollständig von dem Lichtleitereingang 14 durch den optischen Filter 20 hindurch in Richtung auf den Lichtwellenleiter-Anschluss 26 transmittiert wird, ohne dass ein Anteil der Lichtleistung aus dem ersten Wellenlängenbereich 22 reflektiert wird. Eine zweite Lichtmesseinrichtung 34 ist nicht vorgesehen.
Fig. 7 beschreibt in Ergänzung zu den Fign. 1 bis 6 eine Anordnung mit einem diffraktiven optischen Filter 20, bei dem das Signallicht 22 durch Beugung spektral in verschiedene Teilstrahlen 24a, 24b, 24c zerlegt und auf die Lichtmesseinrichtungen 32a, 32b, 32c verteilt wird.

Claims

Patentansprüche
1. Einkoppelvorrichtung (16) für einen Lichtwellenleiter (28), mit einem Lichtwellenleiter-Anschluss (26) für einen ersten Lichtwellenleiter (28), d a d u r c h g e k e n n z e i c h n e t , d a s s die Einkoppelvorrichtung (16) einen in dem Strahlengang zwischen einer Laserlichtquelle (11) und dem Lichtwellenleiter-Anschluss (26) angeordneten optischen Filter (20) aufweist, der Licht eines ersten Wellenlängenbereichs (22) oder einer ersten Polarisationsrichtung reflektiert und Licht eines zweiten Wellenlängenbereichs (24) oder einer zweiten Polarisationsrichtung transmittiert.
2. Einkoppelvorrichtung (16) nach Anspruch 1, dadurch gekennzeichnet, dass eine erste Lichtmesseinrichtung (32) in einem Strahlengang von dem Lichtwellenleiter-Anschluss (26) über den optischen Filter (20) zu der ersten Lichtmesseinrichtung (32) angeordnet ist.
3. Einkoppelvorrichtung (16) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass eine zweite Lichtmesseinrichtung (34) in einem Strahlengang von der Laserlichtquelle (11) über den optischen Filter (20) zu der zweiten Lichtmesseinrichtung (34) angeordnet ist.
4. Einkoppelvorrichtung (16) nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die erste Messeinrichtung (32) und/oder die zweite Messeinrichtung (34) jeweils zum Messen der Leistung von Licht entweder des ersten oder des zweiten Wellenlängenbereichs (22, 24) ausgebildet sind.
5. Einkoppelvorrichtung (16) nach Anspruch 4, dadurch gekennzeichnet, dass die erste Messeinrichtung (32) und/oder die zweite Messeinrichtung (34) jeweils eine Fotodiode und einen optischen Filter in dem Strahlengang zwischen der Fotodiode und dem optischen Filter (20) aufweisen, wobei der optische Filter nur Licht des einen Wellenlängenbereichs durchlässt.
6. Einkoppelvorrichtung (16) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste Wellenlängenbereich (22) einen Wellenlängenbereich mindestens einer Laserlichtquelle außerhalb des Bereichs sichtbaren Lichts aufweist und vorzugsweise im Infrarotwellenlängenbereich jenseits von 800 nm liegt.
7. Einkoppelvorrichtung (16) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der zweite Wellenlängenbereich (24) der Wellenlängenbereich sichtbaren Lichts insbesondere unterhalb von 800 nm ist.
8. Einkoppelvorrichtung (16) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der optische Filter (20) einen Teil der Lichtleistung des ersten Wellenlängenbereichs (22) reflektiert und einen Teil der Lichtleistung des ersten Wellenlängenbereichs (22) transmittiert.
9. Einkoppelvorrichtung (16) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Lichtbündelungsoptik (18, 30) zwischen dem optischen Filter (20) und dem ersten Lichtleiter (28), zwischen dem optischen Filter (20) und dem zweiten Lichtleiter (12), zwischen dem optischen Filter (20) und der ersten Messeinrichtung (32) und/oder zwischen dem optischen Filter (20) und der zweiten Messeinrichtung (34) vorgesehen ist.
10. Einkoppelvorrichtung (16) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Einkoppelvorrichtung einen Lichtleitereingang (14) für einen zweiten Lichtwellenleiter (12) aufweist, wobei der optische Filter (20) in dem Strahlengang zwischen dem Lichtleitereingang (14) und dem Lichtwellenleiter-Anschluss (26) angeordnet ist.
11. Einkoppelvorrichtung (16) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Einkoppelvorrichtung für das Signallicht einen diffraktiven oder dispersiven Filter aufweist, der das Signallicht spektral auf verschiedene Lichtmesseinrichtungen aufteilt.
EP12721190.2A 2011-05-19 2012-04-12 Einkoppelvorrichtung für einen lichtwellenleiter Withdrawn EP2710421A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011102079A DE102011102079A1 (de) 2011-05-19 2011-05-19 Einkoppelvorrichtung für einen Lichtwellenleiter
PCT/EP2012/056683 WO2012156155A1 (de) 2011-05-19 2012-04-12 Einkoppelvorrichtung für einen lichtwellenleiter

Publications (1)

Publication Number Publication Date
EP2710421A1 true EP2710421A1 (de) 2014-03-26

Family

ID=46085545

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12721190.2A Withdrawn EP2710421A1 (de) 2011-05-19 2012-04-12 Einkoppelvorrichtung für einen lichtwellenleiter

Country Status (10)

Country Link
US (2) US9366577B2 (de)
EP (1) EP2710421A1 (de)
JP (1) JP6068448B2 (de)
KR (1) KR101884705B1 (de)
CN (1) CN103688204B (de)
AU (1) AU2012257972B2 (de)
BR (1) BR112013029795A2 (de)
CA (1) CA2836496A1 (de)
DE (1) DE102011102079A1 (de)
WO (1) WO2012156155A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6266384B2 (ja) * 2014-03-04 2018-01-24 東京エレクトロン株式会社 温度測定装置及び温度測定方法
JP6301214B2 (ja) * 2014-07-29 2018-03-28 東京エレクトロン株式会社 光学式温度センサ及び光学式温度センサの制御方法
AU2016267400A1 (en) * 2015-05-25 2018-01-04 Lazcath Pty Ltd Catheter system and method of ablating a tissue
CN108474960B (zh) 2016-01-07 2021-11-16 奇跃公司 显示系统
US10371896B2 (en) 2016-12-22 2019-08-06 Magic Leap, Inc. Color separation in planar waveguides using dichroic filters
US20200107960A1 (en) * 2018-10-05 2020-04-09 Alcon Inc. Occlusion sensing in ophthalmic laser probes
WO2020236164A1 (en) 2019-05-22 2020-11-26 Vit Tall Llc Multi-clock synchronization in power grids
KR20210000975U (ko) 2019-10-29 2021-05-10 현대중공업 주식회사 세퍼레이터 드레인 라인을 간략화 및 안정화한 연료가스 공급장치
JP2024517244A (ja) * 2021-05-07 2024-04-19 アルコン インコーポレイティド 後方反射の検出を利用するレーザシステムのモニタリング

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4385832A (en) * 1979-09-11 1983-05-31 Yuzuru Doi Laser power transmitting optical fiber damage detecting device
US4543477A (en) * 1982-04-19 1985-09-24 Asahi Kogaku Kogyo Kabushiki Kaisha Safety device for detecting trouble in optical transmission fibers
EP0212786A1 (de) * 1985-08-02 1987-03-04 C.R. Bard, Inc. Sicherheitsvorrichtung und Methode für laser/optische Leiter
US20090062782A1 (en) * 2007-03-13 2009-03-05 Joe Denton Brown Laser Delivery Apparatus With Safety Feedback System

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2258751B1 (de) * 1974-01-18 1978-12-08 Thomson Csf
JPS5929219A (ja) * 1982-08-10 1984-02-16 Nippon Telegr & Teleph Corp <Ntt> 光出力モニタ端子付き光結合器
JPS60156034A (ja) 1984-01-26 1985-08-16 Ushio Inc 光学装置
US4994059A (en) * 1986-05-09 1991-02-19 Gv Medical, Inc. Laser catheter feedback system
US5154707A (en) * 1987-02-27 1992-10-13 Rink Dan L Method and apparatus for external control of surgical lasers
JPH02181708A (ja) * 1989-01-07 1990-07-16 Furukawa Electric Co Ltd:The 2コア型温度検知光ファイバ
US5064271A (en) * 1989-03-14 1991-11-12 Santa Barbara Research Center Fiber optic flame and overheat sensing system with self test
DE3934647C2 (de) * 1989-10-17 1994-05-26 Deutsche Aerospace Chirurgisches Laserinstrument
JP3166038B2 (ja) * 1991-07-27 2001-05-14 能美防災株式会社 機械式駐車場の火災監視システム
JPH0774343A (ja) 1993-08-31 1995-03-17 Fujitsu Ltd 集積化光装置及びその製造方法
CN1125358C (zh) 1995-08-03 2003-10-22 松下电器产业株式会社 光学装置及光纤组件
JPH10294518A (ja) * 1997-04-21 1998-11-04 Nec Corp 光結合器
US6124956A (en) * 1997-12-04 2000-09-26 Nortel Networks Limited Optical transmitter output monitoring tap
JP3767842B2 (ja) * 1998-11-02 2006-04-19 ローム株式会社 双方向の光通信用モジュール
GB9828330D0 (en) * 1998-12-22 1999-02-17 Northern Telecom Ltd Dielectric optical filter network
US6563976B1 (en) * 2000-05-09 2003-05-13 Blaze Network Products, Inc. Cost-effective wavelength division multiplexer and demultiplexer
DE10112455C2 (de) * 2000-07-19 2003-10-23 Fraunhofer Ges Forschung Vorrichtung zur Durchführung von biochemischen Fluoreszenztests
CA2427593C (en) * 2000-11-01 2010-03-09 Intel Corporation System and method for collimating and redirecting beams
US6618516B1 (en) * 2001-02-14 2003-09-09 Sharp Laboratories Of America, Inc. Optical switching devices
US6932809B2 (en) * 2002-05-14 2005-08-23 Cardiofocus, Inc. Safety shut-off device for laser surgical instruments employing blackbody emitters
JP2004233484A (ja) 2003-01-29 2004-08-19 Oki Electric Ind Co Ltd 光モジュール
JP2005202157A (ja) * 2004-01-15 2005-07-28 Tdk Corp 光モジュール
JP4809634B2 (ja) * 2005-06-13 2011-11-09 Nttエレクトロニクス株式会社 発光モジュール及び一芯双方向光通信モジュール
JP4997443B2 (ja) 2006-10-27 2012-08-08 独立行政法人日本原子力研究開発機構 内視鏡装置
DE102008049922A1 (de) * 2008-10-02 2010-04-08 Karl Storz Gmbh & Co. Kg Endoskop

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4385832A (en) * 1979-09-11 1983-05-31 Yuzuru Doi Laser power transmitting optical fiber damage detecting device
US4543477A (en) * 1982-04-19 1985-09-24 Asahi Kogaku Kogyo Kabushiki Kaisha Safety device for detecting trouble in optical transmission fibers
EP0212786A1 (de) * 1985-08-02 1987-03-04 C.R. Bard, Inc. Sicherheitsvorrichtung und Methode für laser/optische Leiter
US20090062782A1 (en) * 2007-03-13 2009-03-05 Joe Denton Brown Laser Delivery Apparatus With Safety Feedback System

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RINGELHAN R ET AL: "LICHTWELLENLEITER FUR DIE MEDIZIN", LASER UND OPTOELEKTRONIK, FACHVERLAG GMBH. STUTTGART, DE, vol. 20, no. 4, 1 August 1988 (1988-08-01), pages 44 - 48, XP000035563, ISSN: 0722-9003 *
See also references of WO2012156155A1 *

Also Published As

Publication number Publication date
DE102011102079A1 (de) 2012-11-22
BR112013029795A2 (pt) 2017-01-17
KR20140035944A (ko) 2014-03-24
AU2012257972B2 (en) 2015-04-23
WO2012156155A1 (de) 2012-11-22
CA2836496A1 (en) 2012-11-22
AU2012257972A1 (en) 2013-12-19
CN103688204A (zh) 2014-03-26
CN103688204B (zh) 2016-09-28
JP6068448B2 (ja) 2017-02-08
AU2012257972A2 (en) 2014-01-16
US9366577B2 (en) 2016-06-14
US9759616B2 (en) 2017-09-12
JP2014517936A (ja) 2014-07-24
KR101884705B1 (ko) 2018-08-30
US20140158872A1 (en) 2014-06-12
US20160334282A1 (en) 2016-11-17

Similar Documents

Publication Publication Date Title
EP2710421A1 (de) Einkoppelvorrichtung für einen lichtwellenleiter
DE3143422C2 (de) Überwachungsvorrichtung für Laserstrahl-Leiteinrichtung
EP1379857B1 (de) Interferometrische anordnung zur ermittlung der laufzeit des lichts in einer probe
DE4225191B4 (de) Augenbehandlungsgerät
DE102015101847B4 (de) Strahlteiler und Anordnung zur Untersuchung einer mittels elektromagnetischer Strahlung anregbaren Probe
DE19639939A1 (de) Optische Spektralmeßvorrichtung
DE112015002537T5 (de) Krümmungssensor und Endoskopvorrichtung
DE102012106779B4 (de) Optik für Strahlvermessung
DE10031414B4 (de) Vorrichtung zur Vereinigung optischer Strahlung
DE102011009996B4 (de) Faserbruchüberwachung für einen Lichtwellenleiter
WO2016131815A1 (de) Vorrichtung und verfahren zur bestimmung mindestens einer mechanischen eigenschaft eines untersuchungsobjekts
DE19508100B4 (de) Vorrichtung zum Einkoppeln von Lichtstrahlen in eine Lichtleitfaser
DE10014644A1 (de) Optisches Modul zur Wellenlängen-Referenzmessung in WDM-Systemen
EP3857165A1 (de) Faseroptischer sensor, datenhandschuh und verfahren zur erfassung einer krümmung
DE19816302C1 (de) Einrichtung zur Strahlentherapie von Gewebeteilen
DE102019123468B3 (de) Vorrichtung für optische Anwendungen
WO2013091851A1 (de) Laser mit überwachter lichtleitfaserstrecke
EP2475971A1 (de) Vorrichtung zum auslesen eines spektral selektiven optischen messaufnehmers und messvorrichtung
DE102010026443B4 (de) Vorrichtung zur Messung der Leistung eines Laserstrahls und Laserbearbeitungskopf mit einer derartigen Vorrichtung
DE102017204034B3 (de) Vorrichtung und Verfahren zum Testen eines zu überprüfenden Lichtwellenleiters
DE102021202194A1 (de) Vorrichtung und Verfahren zum Detektieren elektromagnetischer Strahlung
DE3828107A1 (de) Verfahren und vorrichtung zur ueberwachung von lichtenergie uebertragenden optischen fibern
DE102020123961A1 (de) Laserschutzbrille
DE102010026120B4 (de) Optischer Kraftsensor
DE102012100733A1 (de) Verfahren zum Kompensieren parasitärer Reflexionen und Messvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SINNHOFF, VOLKER

Inventor name: MARKUS, KAI, ULF

Inventor name: KALLENDRUSCH, JAN

Inventor name: WESSLING, CHRISTIAN

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20161121

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20171107