EP2681147B1 - Méthode et dispositif de commande pour le déplacement, avec peu de vibrations, d'un élement de grue d'un ensemble de grue. - Google Patents

Méthode et dispositif de commande pour le déplacement, avec peu de vibrations, d'un élement de grue d'un ensemble de grue. Download PDF

Info

Publication number
EP2681147B1
EP2681147B1 EP20120708121 EP12708121A EP2681147B1 EP 2681147 B1 EP2681147 B1 EP 2681147B1 EP 20120708121 EP20120708121 EP 20120708121 EP 12708121 A EP12708121 A EP 12708121A EP 2681147 B1 EP2681147 B1 EP 2681147B1
Authority
EP
European Patent Office
Prior art keywords
crane
eig
torque
natural frequency
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20120708121
Other languages
German (de)
English (en)
Other versions
EP2681147A1 (fr
Inventor
Michael Vitovsky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schneider Electric Automation GmbH
Original Assignee
Schneider Electric Automation GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schneider Electric Automation GmbH filed Critical Schneider Electric Automation GmbH
Publication of EP2681147A1 publication Critical patent/EP2681147A1/fr
Application granted granted Critical
Publication of EP2681147B1 publication Critical patent/EP2681147B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/06Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
    • B66C13/066Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads for minimising vibration of a boom

Definitions

  • the invention relates to a method for low-vibration control of the movement of a movable crane element such as crane boom of a crane system by means of a motor which is excitable to a vibration with a natural frequency and has a damping rate, wherein the movable crane element is driven by a control signal whose spectrum in Essentially free of natural frequencies of the crane system, the control signal is calculated from an operator signal of an operator taking into account system parameters of the crane system and a control device for low-vibration control of the movement of a movable crane element such as crane jib crane system, which can be excited to a vibration with a natural frequency is and has a damping rate, wherein the movable crane element is drivable with a control signal whose spectrum is substantially free of the natural frequency, wherein the control signal in a setpoint Rechenei beauty is calculated from an operator signal of an operator taking into account system parameters, and wherein the output at the output of the setpoint computing unit control signal is supplied to a motor controller for controlling the
  • a method and a control device of the type mentioned is in the DE-A-10 2004 052 616 described.
  • the method is used to control the movement of a movable crane element of a crane system, wherein at least parts of the crane system can be excited to a pendulum oscillation.
  • the crane system has at least one natural frequency, which is variable by the movement of the movable crane element.
  • a control signal is generated, which drives a drive unit of the crane system for moving the movable crane element, for example in the form of a trolley.
  • the control signal is generated substantially without the natural frequency of the pendulum oscillation of the crane system, so that an excitation of the pendulum oscillation as far as possible is omitted.
  • a tower crane behaves like a spring during the pivoting movement.
  • the energy delivered by the motor results in a torsion of the tower and the cantilever.
  • the energy stored in the mechanical system causes vibrations of the structure, as in Fig. 1b is shown.
  • the DE 41 30 970 A1 discloses a control system for an electric motor which drives a cable drum of a mining winch or conveyor system having a means of transport carried by a cable and forming a vibrating system.
  • the control system includes a load sensor for monitoring the load of the rope, a rope length sensor for monitoring the rope length unwound from the cable drum, a motor control unit responsive to signals from the sensors, calculating target values for the speed, acceleration and pressure of the vibrating system.
  • the control unit generates a control signal which is set in proportion to a self-oscillation characteristic of the oscillating system to prevent the generation of vibrations in the system and controls a motor driving device in accordance with the control signal.
  • a control system for normal operation and for emergency braking operations is to be created, which reduces the vibrations in the longitudinal direction.
  • a control system for a jib crane with a tower and a pivotally mounted on the tower boom comprises a first actuator for generating a rocking movement of the boom, a second actuator for rotating the tower, first means for determining the position and / or the speed of the boom head by measurements, second Means for determining the angle of rotation and / or the rotational speed of the tower by measurement, wherein the control system controls the first and the second actuator.
  • the acceleration of the load in the radial direction due to a rotation of the crane is compensated by a rocking movement of the boom in response to the rotational speed of the tower determined by the second means.
  • It is a control system for a jib crane are provided, which has a better precision and in particular leads to a better control of the damping of the pendulum movement of the load.
  • the DE 10 2009 032 270 A1 refers to a method for controlling a drive of a crane.
  • a target movement of the cantilever tip serves as input, on the basis of which a control variable for controlling the drive is calculated.
  • the vibration dynamics of the system of drive and its crane structure is taken into account to reduce natural oscillations.
  • the calculation of the control quantity is based on a mathematical model of the crane structure. The creation and calculation of the mathematical model is associated with considerable effort.
  • the DD 260 052 refers to a control of the motion processes for elastic, game geared drives of cranes, especially for those in which arise by the game in the drive or by the elasticity of the structure unwanted vibration stresses during startup and braking.
  • Such a controller has the task of automatically controlling the motion process in drives of elastic crane structures or in those with game so that unwanted vibration stresses are kept away from the structure and drive.
  • the WO 2010/045602 A1 refers to a Schwenkarman extract and a method for controlling such.
  • a method is described for calibrating the damping rate as well as the natural frequency of the pivot arm assembly using a flow control valve.
  • the method includes receiving pressure signals from pressure sensors that account for pressure in an actuator. In a first cycle, high and low pressure valves and times associated with the pressure valves are detected. High and low pressure values and times associated with these pressure valves are also detected over a second cycle. Natural frequency and damping rate are based on the pressure values associated with the pressure values and times of the first and second cycles.
  • the method relates to the control of hydraulic valves, which then serve the further hydraulic control of hydraulic receivers or hydraulic motors.
  • the US 4,916,635 A refers to the shaping of a control input signal to minimize unwanted dynamics. This involves determining a sequence of pulses that eliminate unwanted dynamics in a dynamic system. This pulse sequence is convolved with any control input signal to cause the dynamic system to output with a minimum of unwanted dynamics.
  • the object of the present invention is to refine a method and a control device of the type mentioned above in such a way that the vibrations in the structure of a tower crane during the pivoting movement are reduced and the configuration of the control device is simplified.
  • the object is achieved in that the system parameters are automatically calculated in the form of the natural frequency and the damping rate of the crane system during operation and that the control signal as an active speed reference profile in real time from the operator signal of the operator and the calculated natural frequency and the damping rate of the crane system is calculated.
  • the method of the invention uses an automatically generated speed reference profile for the drive motor, such as a swing motor, to suppress vibrations at the natural frequency of the structure of the crane system.
  • the method is executed as an open-loop control method.
  • the modified speed reference profile is calculated in real-time from control commands or operator signals of an operator, the natural frequency of the system and its damping rate.
  • the method is distinguished from the prior art in that a mathematical model of the crane structure is not absolutely necessary.
  • a particularly preferred method used for the automatic calculation of parameters is based on actual engine torque and / or motor current values detected on a variable speed motor controller.
  • the value of the motor torque / motor current fluctuates with the same frequency as the mechanical structure of the crane oscillates. Therefore it is possible parameters derive the crane structure using a sampled torque profile.
  • the natural frequency f EIG and the damping rate ( ⁇ ) of the crane element is calculated from the measured current and / or torque of the motor.
  • the method steps can be repeated regularly with the acceleration ramp determined in the respective preceding cycle.
  • the sampling of the current and / or torque values takes place after completion of the acceleration over at least one period of a current and / or torque oscillation.
  • a preferred method is characterized in that the speed reference profile is calculated by mathematical convolution of the operator signal given by the operator with oscillations at natural frequency of the structure of the crane system suppressing frequency elimination signal, wherein the Frequency elimination signal is derived in real time from the determined natural frequency and the attenuation rate.
  • the desired velocity reference profile is generated by convolution of the arbitrary velocity command originating from the operator with the frequency-cancellation signal canceling vibrations at natural frequency of the crane structure.
  • the result of this convolution operation is the velocity reference signal, which does not excite vibrations at the natural frequency of the system, thus allowing smooth cantilever movement of the cantilever.
  • a rectangular signal or trapezoidal signal is used as the operator signal of the operator.
  • the speed profile for controlling the drive or slewing motor is modified in such a way that it is adapted to the mechanical frequency characteristics of the structure, so that fewer stresses act on the structure, fewer disturbances occur and a stable speed of the crane boom is achieved.
  • the engine controller does not "fight" with the crane structure, but controls the engine in an optimal manner.
  • the motor speed can only be influenced by the torque generated by torsion of the structure to smooth the movement.
  • the system parameters are continuously calculated during the operation of the tower crane and that when the mechanical properties of the structure change, the speed reference profile is adapted.
  • the configuration algorithm may also preferably be in operation during normal operation of the machine and change system parameters of the speed generator when e.g. B. change mechanical properties of the system. This can be done by detecting rising vibrations and measuring the frequency "on-the-fly".
  • the software for performing the method is implemented in SoMachine (registered trademark) software and designed to run on a PC that supports 32-bit floating-point math.
  • the function or procedure must be executed in a periodic task.
  • the control algorithm is executed at discrete times.
  • the execution period is used to calculate the speed reference profile.
  • the method can be used with variable speed drives that can accurately follow the velocity reference profile in vector control modes.
  • the described method allows automatic configuration of velocity profile generators which require natural frequency and attenuation rate as input parameters.
  • the method eliminates the need to configure parameters that could be difficult to find without additional equipment. Thus, the picking / commissioning of the optimal pivoting movement of tower cranes is simplified.
  • a control device is characterized in that the control device comprises a measuring device for detecting an oscillation profile, in particular of a motor current and / or a motor torque implicitly contained in the natural frequency f EIG and the damping rate ⁇ of the crane element, as well as a parameter computing unit connected to it for real-time calculation of the system Parameter in the form of natural frequency as well as damping rate from the acquired measured values, in particular current and / or torque values, that the parameter computing unit is connected to the reference value calculation unit designed as a speed reference profile generator, in which the control signal is represented as active speed Reference profile from the input signal given by the operator is calculated taking into account the determined in real time natural frequency and damping rate of the crane system.
  • the measuring device can be designed as a current / torque device or as a vibration sensor.
  • the parameter computing unit has a computing unit designed as a spectral analyzer such as fast Fourier transformation unit and that an output of the arithmetic unit is connected to a computing unit for calculating the system parameters natural frequency and attenuation rate.
  • the acquired measured values are analyzed by means of fast Fourier transformation, wherein a dominant frequency in the spectrum of the current / torque curve is preferably determined by comparison with predetermined average values.
  • an output of the setpoint computing unit is connected to a motor controller, and that the motor control is designed as open-loop control, comprising a speed controller, a preferably subordinate torque / current controller and the measuring device, wherein the motor current and / or the engine torque is fed back into the torque / current controller via an adder located between the speed controller and the torque / current controller.
  • the engine control furthermore has a speed estimation element, which derives an actual speed value from the current / torque values determined in the measuring device, which value is linked to the speed reference profile and supplied to the speed controller.
  • the operator signal may be connected via a modifying unit with the setpoint computing unit.
  • the method has the advantage that the drive or swivel motor of the crane is controlled in an optimum manner, wherein the introduced into the structure of energy is not wasted to excite vibrations, but is used to perform a smooth, jerk-free pivoting movements.
  • Fig. 1a shows purely schematically a flexible, mechanical structure of a crane system such as tower cranes 10, comprising a 12 emanating from a base tower 14, on which via a hinge 16, a boom 18 is rotatably mounted.
  • the boom 18 is pivotable by means of an electric motor 20 about a pivot axis 22 in the direction of the arrow 23.
  • the energy stored in the flexible structure of the tower crane 10 causes vibrations in the mechanical structure during an acceleration or deceleration process, indicated by reference numeral 24.
  • the vibrations superimposing a swing speed of the crane boom 18 are perceived by a crane operator, for example, as an unstable speed of the boom end.
  • Fig. 1b shows the profile of a desired target speed V SET according to curve 26 and an actual velocity V in accordance with curve 28th
  • the mechanical structure of the tower crane 10 behaves during the pivoting movement like a spring.
  • the energy delivered by the motor 20 results in a torsion of the tower 14 and the boom 18.
  • the energy stored in the mechanical structure causes variations in the actual speed 28, as shown in FIG Fig. 1b is shown.
  • Fig. 2 shows purely schematically a control device 30 for low-vibration control of the crane jib 18 and tower 14 of the tower crane 10 by means of the motor 20th
  • the control device 30 comprises a motor controller 32 with a speed controller 34, to the input side via an adder 36 a speed setpoint V SOLL and a speed actual value V IST are supplied.
  • the speed controller 34 is connected on the output side via an adder 38 to a current / torque controller 40, which provides on the output current / torque values I / M for driving the motor 20.
  • the current / torque values I / M are detected by means of a measuring device 42 and supplied in the form of a control circuit on the one hand to the adder 38 and on the other hand to a speed estimator 44 which provides the actual speed value V IST for the adder 36.
  • the described speed and current control circuits provide a variable speed variable motor controller 32.
  • corresponding or proportional values such as current values of the motor 20, are detected to a torque M of the motor 20 and supplied to a speed profile generation and identification unit 46.
  • the velocity profile generation and identification unit 46 comprises a spectral analysis unit, such as fast Fourier transformation unit 48, in which the acquired measurement values are subjected to spectral analysis such as fast Fourier transformation.
  • the analyzed values are then fed to a computing unit 50, in which system parameters such as natural frequency f EIG and / or damping rate ⁇ of the crane system 10 are calculated.
  • the calculated system parameters serve as a first input to a speed profile generator 52.
  • a control command S BED of a crane operator or operator is optionally supplied with prior adjustment by a modifier 54 to the speed profile generator 50 as a second input.
  • Fig. 3 shows two speed profiles 56, 58 for the speed setpoint V SOLL , wherein the speed profile 56 represents a linear ramp and the speed profile 58 represents a stepped ramp of equal duration. In the time period from 2 sec to 6 sec, an acceleration and in the time domain 16 sec to 21 sec represents a delay.
  • speed profiles 56, 58 are in Fig. 4 corresponding vibration curves 60, 62 of the speed of one end of the boom 18, wherein the waveform 60 results from the control with the speed ramp 58 and the waveform 62 from the drive with the speed profile 56.
  • the above vibration curves 60, 62 illustrate that the speed ramp 58 generates fewer vibrations in the mechanical structure than, for example, the control with the speed ramp 56.
  • the desired speed reference profile 58 is generated by mathematical convolution of a generated from the control command S BED control signal S STEU with a frequency cancellation signal S FREQ , which oscillations at natural frequency of Crane structure picks up. If the motor 20 is controlled with the speed reference profile 58 as a speed setpoint V SOLL , no vibrations are excited at the natural frequency of the mechanical structure and thus a smooth pivotal movement of the boom 18 is made possible.
  • a simple signal S FREQ comprising two pulses 68, 70 delayed by time t 1 ; 72, 74; 76, 78; 80, 82; 84, 86.
  • the pulses may have different amplitudes A and durations ⁇ t, as in FIG Fig. 6a) - 6d ) is shown.
  • the frequency elimination signal S FREQ consists of two pulses, for example pulses 68, 70.
  • the second pulse 70 is time offset by the time t 1 , which depends on the natural frequency f EIG of the crane structure 10 and its damping rate ⁇ .
  • the damping rate ⁇ defines the rate of damping of a vibration according to Fig. 5 at natural frequency f EIG .
  • the resulting pulse sequence is then convolved with a common control signal.
  • T is the period of an oscillation of the natural frequency f EIG .
  • Simple pulses which are defined in the theory of input shaping, have been extended to variable length in this implementation ( Fig. 6a) - 6d )). It is possible to influence the duration of the acceleration / deceleration phase, the acceleration and the amount of vibrations by modifying the pulse length.
  • the necessity for the amplitudes A1, A2 of both pulses to result in a sum of 1 leads to the necessity that the sum of the areas below the pulses must also be 1.
  • Fig. 6 shows the influence of the shape of calculated pulses 68, 70; 72, 74; 76, 78; 80, 82 on the output speed reference profile 58.
  • the area of the pulses and the time t of the second pulse is dependent on the natural frequency F EIG and damping rate ⁇ of the structure and constant in the four examples.
  • the figures show that pulses of short duration and greater amplitude increase the steepness of the acceleration and also (to some extent) shorten the time of the transition phase.
  • An optimal setting with balanced slope of the ramp and its duration depends on the mechanical properties of the crane 10.
  • velocity reference profiles are suitable to suppress vibrations at defined frequencies.
  • a profile that leads to excessive value of "twitches” can excite higher vibrational modes of the system.
  • Fig. 7 shows the use of a linearly increasing control signal S STEU instead of a steep signal.
  • This control signal S STEU is generated by modifying the operator signal S BED in the unit 52.
  • the algorithm for folding the control signals S STEU 68, 70; 72, 74; 76, 78; 80, 82 and the pulse sequences 66 is implemented in the time domain for practical reasons and uses the discrete form of a convolution integral known per se.
  • the sampling of the torque and / or current values begins with time t A when the acceleration ramp ends, ie the system no longer accelerates and oscillates freely.
  • a possible speed profile 88 of a speed setpoint V SOLL for driving the motor 20 is in Fig. 8a shown purely schematically.
  • the velocity profile 88 is proportional to an angular velocity of a motor shaft when driven with a linear ramp. It should be noted that the true angular velocity of the engine is much higher and reduced in size for purposes of illustration.
  • the curve 90 according to Fig. 8a shows the angular velocity of one end of the crane jib 18 in the form of a decaying vibration.
  • Fig. 8b shows a current-torque curve 92, which is detected by means of the measuring device 42. This too has the course of a decaying vibration.
  • the current or torque values I / M are sampled and subjected to spectral analysis in the arithmetic unit 48 by means of fast Fourier transformation.
  • An energy spectrum 94 of the current or torque curve 92 is in Fig. 9 shown.
  • the energy spectrum has a maximum 96 at a dominant frequency f d .
  • mean value lines 98, 100, 102 are plotted to represent mean values MW1, MW2, MW3, the mean value MW2 corresponding to twice the value of the mean value MW1 and the mean value MW3 to the triple mean value MW1.
  • the mean values MW2, MW3 represented by the mean value lines 100, 102 may be used to determine whether a dominant frequency f d is included in the spectrum 94.
  • the dominant frequency f d must have an amplitude A which corresponds at least to the mean value MW3 and none of the amplitudes of the other frequencies may be equal to or greater than the mean value MW2.
  • the thus determined dominant frequency f d corresponds to the natural frequency f EIG of the mechanical structure of the tower crane 10.
  • the damping rate ⁇ can be determined on the basis of the decaying amplitude values.
  • the damping rate ⁇ can be determined based on the maximum and minimum amplitudes of the decaying amplitude values taking into account mean values of the drive torque.
  • the damping rate ⁇ can be determined by means of Fourier transforms FFT1, FFT2 of two successive time segments with a length of a period P1, P2 of the natural frequency. The process is in Fig. 10a) to 10c ).
  • Fig. 10a shows a waveform 104 of the torque / motor current M, I over the time t.
  • a course 106 of a Fourier transformation FFT1 of a section 108 of the first period P1 is shown in FIG Fig. 10b ) over the frequency f.
  • Fig. 10c shows a profile 110 of a section 112 of the period P2 of the torque / current signal M, I.
  • the frequency- demi-ming signal S FREQ in particular the time shift t between the individual pulses, can be calculated.
  • the velocity profile 58 is subsequently adjusted in the velocity profile generator 52 Fig. 3 or 114 according to Fig. 11a ) calculated according to the input variables.
  • a correspondingly calculated velocity profile 114 is in Fig. 11a ).
  • a resulting velocity profile 116 of the end of the crane jib 18 according to FIG Fig. 11a ) shows that vibrations have been eliminated.
  • the current / torque curve that passes through the curve 118 in FIG Fig. 11b is shown.
  • the curve 118 shows only slight oscillations.
  • Fig. 12 shows a spectrum 120 of the current / torque curve 118 according to Fig. 11d , which indicates that no dominant frequency is included because it has been eliminated by using the modified acceleration ramp 114.
  • the sampling of the current / torque values begins when the acceleration ramp 114 is completed. This condition is used to measure the true natural frequency and to filter out vibrations due to forced frequencies caused by the acceleration ramp.
  • the inventive method allows the automatic configuration of the velocity profile generator 52, which requires the natural frequency f EIG and the damping rate ⁇ of the tower crane 10 as input parameters.
  • the desired functions generate a velocity profile for driving the motor 20.
  • the velocity profile is calculated such that active vibrations at natural frequency of the crane structure are suppressed.
  • the advantage of using this function is that the pivotal movement of the crane structure is performed in an optimal manner, wherein the energy introduced into the structure is not consumed by vibrations, but results in a smooth energy-efficient pivotal movement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control And Safety Of Cranes (AREA)

Claims (15)

  1. Procédé pour une commande à faible oscillation du mouvement d'un élément de grue mobile (14, 16, 18), tel qu'une flèche de grue (18), d'un système de grue (10), au moyen d'un moteur (20), ledit élément pouvant être excité en oscillation à une fréquence propre (fEIG) et présentant un taux d'amortissement (ζ), sachant que l'élément de grue mobile (14, 16, 18) est piloté par un signal de commande (VSOLL) dont le spectre est quasiment exempt de fréquences propres (fEIG) du système de grue (10), et que le signal de commande (VSOLL) est calculé à partir d'un signal d'opérateur (SBED) d'un opérateur en tenant compte de paramètres système du système de grue (10),
    caractérisé en ce
    que lesdits paramètres système sous la forme de la fréquence propre (fEIG) et du taux d'amortissement (ζ) du système de grue (10) sont calculés automatiquement pendant le fonctionnement et que le signal de commande (VSOLL) est calculé en temps réel en tant que profil de référence de vitesse actif (VSOLL) à partir du signal d'opérateur (SBED) de l'opérateur ainsi que de la fréquence propre (fEIG) et du taux d'amortissement (ζ) du système de grue (10) calculés.
  2. Procédé selon la revendication 1,
    caractérisé en ce
    que la fréquence propre (fEIG) et le taux d'amortissement (ζ) du système de grue (10) sont calculés à partir d'un courant (I) et/ou d'un couple de rotation (M) mesuré(s) du moteur (20), et/ou que l'échantillonnage des couples de rotation et/ou des valeurs de courant (M/I) a lieu sur au moins une période après la fin de l'accélération.
  3. Procédé selon la revendication 1 ou 2,
    caractérisé en ce
    que les paramètres système sont déterminés conformément aux étapes suivantes :
    a) exécution d'un premier mouvement de l'élément de grue mobile (18) par accélération du système de grue au moyen d'un profil de vitesse (56, 88) sélectionnable à volonté tel qu'une rampe d'accélération à évolution linéaire dont la pente est assez forte pour provoquer des oscillations du système de grue (10),
    b) échantillonnage des valeurs du couple de rotation et/ou du courant (M/I),
    c) réalisation d'une analyse spectrale de préférence au moyen d'une transformée de Fourier discrète rapide avec les valeurs du couple de rotation et/ou du courant saisies et détermination d'une répartition spectrale (94),
    d) détection d'une fréquence dominante (fd) dans la répartition spectrale (94) en tant que fréquence propre (fEIG) du système de grue et
    e) calcul du taux d'amortissement (ζ) à partir des valeurs du courant et/ou du couple de rotation initialement échantillonnées.
  4. Procédé selon au moins une des revendications précédentes,
    caractérisé en ce
    que le profil de référence de vitesse (VSOLL) est calculé par convolution mathématique du signal d'opérateur (SBED) prédéfini par l'opérateur avec un signal d'élimination de fréquences (SFREQ) éliminant des oscillations à la fréquence propre (fEIG) de la structure du système de grue (10), sachant que ledit signal d'élimination de fréquences (SFREQ) est déduit en temps réel de la fréquence propre (fEIG) et du taux d'amortissement (ζ) déterminés, et/ou qu'en tant que signal d'opérateur (SBED) de l'opérateur est utilisé un signal rectangulaire ou un signal trapézoïdal, et/ou que le signal d'opérateur (SBED) est relié à l'unité de calcul de valeurs théoriques (52) par une unité modificatrice (54).
  5. Procédé selon au moins une des revendications précédentes,
    caractérisé en ce
    que le signal d'élimination de fréquences (SFREQ) présente deux impulsions décalées dans le temps (68, 70 ; 72, 74 ; 76, 78 ; 80, 82 ; 84, 86) avec chacune une amplitude (A1, A2), les impulsions étant décalées entre elles d'un temps t tel que : t = 1 2 f 1 - ζ 2
    Figure imgb0020

    où f est la fréquence propre (fEIG) calculée et ζ le taux d'amortissement calculé.
  6. Procédé selon au moins une des revendications précédentes,
    caractérisé en ce
    que les paramètres système sont calculés en continu pendant le fonctionnement du système de grue (10) sous la forme de la fréquence propre (fEIG) ainsi que du taux d'amortissement (ζ), et qu'en présence d'une modification des propriétés mécaniques de la structure a lieu un ajustement du profil de référence de vitesse (VSOLL) et/ou que le calcul des paramètres système sous la forme de la fréquence propre (fEIG) ainsi que du taux d'amortissement (ζ) est effectué selon un cycle périodique en tranches de temps discrètes, sachant qu'une période d'exécution est utilisée pour le calcul du profil de référence de vitesse (VSOLL).
  7. Procédé selon au moins une des revendications précédentes,
    caractérisé en ce
    que pour détecter la fréquence dominante (fd) de la répartition spectrale (94) est déterminé un maximum (96) de la répartition spectrale (94), sachant que le maximum (96) doit correspondre au moins au triple de la valeur moyenne (MW1) de la répartition spectrale (94), et qu'aucune des autres fréquences ne doit présenter une amplitude supérieure au double de la valeur moyenne (MW1) de la répartition spectrale (94).
  8. Procédé selon au moins une des revendications précédentes,
    caractérisé en ce
    que la fréquence dominante (fd) de la répartition spectrale (94) est déterminée selon les conditions suivantes :
    l'amplitude de la fréquence dominante (fd) doit être supérieure à la valeur moyenne (MW1),
    la fréquence dominante (fd) doit se situer dans une bande de fréquences plausible pour le système de grue (10), de préférence dans la plage telle que 0,03 Hz ≤ fd ≤ 0,25 Hz environ,
    la fréquence dominante (fd) doit remplir les conditions du théorème de Nyquist-Shannon, c'est-à-dire que la fréquence doit être inférieure à ½ x période d'échantillonnage et supérieure à 1/temps d'échantillonnage intégral.
  9. Procédé selon au moins une des revendications précédentes,
    caractérisé en ce
    que le taux d'amortissement (ζ) est calculé selon la formule : ζ = δ 2 π 2 + δ 2
    Figure imgb0021

    δ = ln A 1 A 2
    Figure imgb0022

    sachant que A1, A2 sont les valeurs d'amplitude maximale et minimale (A1, A2) de la courbe décroissante du couple de rotation / du courant et que le calcul a lieu de préférence en tenant compte de valeurs moyennes du couple d'entraînement, le calcul étant effectué dans le domaine temps.
  10. Procédé selon au moins une des revendications précédentes,
    caractérisé en ce
    que le taux d'amortissement (ζ) est déterminé au moyen de la transformation de Fourier (FFT1, FFT2) de deux segments de temps successifs avec une longueur d'une période (P1, P2) de la courbe du courant / du couple de rotation (I, M), sachant qu'à partir de la transformation de Fourier (FFT1) de la première période (P1) est déterminée une répartition spectrale (106) avec un maximum (x1), qu'au moyen de la transformation de Fourier (FFT2) de la deuxième période (P2) est déterminée une répartition spectrale (110) avec un maximum (x2), que les maximums d'amplitude (x1, x2) des répartitions spectrales (106, 110) se situent au niveau de la fréquence dominante (fd), qu'est calculé le décrément logarithmique avec la formule : δ = ln x 1 x 2
    Figure imgb0023

    et est calculé le taux d'amortissement (ζ) avec la formule : ζ = δ 2 π 2 + δ 2
    Figure imgb0024
  11. Dispositif de commande (30) pour une commande à faible oscillation du mouvement d'un élément de grue mobile (14, 16, 18), tel qu'une flèche de grue (18) d'un système de grue (10), ledit élément pouvant être excité en oscillation à une fréquence propre (fEIG) et présentant un taux d'amortissement (ζ), sachant que l'élément de grue mobile (18) peut être piloté par un signal de commande (VSOLL) dont le spectre est quasiment exempt de la fréquence propre (fEIG), que le signal de commande (VSOLL) est calculé dans une unité de calcul de valeurs théoriques (52) à partir d'un signal d'opérateur (SBED) d'un opérateur en tenant compte de paramètres système et que le signal de commande (VSOLL) présent à la sortie de l'unité de calcul de valeurs théoriques (52) est envoyé à une commande de moteur (32) pour piloter le moteur (20),
    caractérisé en ce
    que le dispositif de commande (30) présente un système de mesure (42) pour enregistrer une courbe d'oscillation (62, 92, 90) comprenant implicitement la fréquence propre (fEIG) et le taux d'amortissement (ζ) du système de grue, ainsi qu'une unité de calcul de paramètres (48, 50) reliée audit système de mesure pour le calcul en temps réel des paramètres système sous la forme de la fréquence propre (fEIG) ainsi que du taux d'amortissement (ζ) à partir des valeurs mesurées (I, M), que l'unité de calcul de paramètres (48, 50) est reliée à l'unité de calcul de valeurs théoriques (52) conçue en tant que génératrice de profils de référence de vitesse, dans laquelle le signal de commande en tant que profil de référence de vitesse actif (VSOLL) peut être calculé à partir du signal d'entrée prédéfini par l'opérateur en tenant compte de la fréquence propre (fEIG) et du taux d'amortissement (ζ) du système de grue (10) déterminés en temps réel.
  12. Dispositif de commande selon la revendication 11,
    caractérisé en ce
    que le système de mesure (42) est conçu en tant que système de mesure enregistrant le courant du moteur (I) ou le couple de rotation du moteur (M) et/ou que le système de mesure (42) comprend des capteurs d'oscillation pour enregistrer l'oscillation de la structure mécanique du système de grue (10).
  13. Dispositif de commande selon au moins une des revendications 11 ou 12,
    caractérisé en ce
    que l'unité de calcul de paramètres (48, 50) présente une unité de calcul (48) conçue en tant qu'analyseur de spectre tel qu'une unité à transformée de Fourier rapide, et qu'une sortie de l'unité de calcul (48) est reliée à une unité de calcul (50) pour le calcul des paramètres système fréquence propre (fEIG) et taux d'amortissement (ζ).
  14. Dispositif de commande selon au moins une des revendications 11 à 13,
    caractérisé en ce
    qu'une sortie de l'unité de calcul de valeurs théoriques (52) est reliée à une commande de moteur (32), que la commande de moteur (32) est conçue en tant que commande à boucle ouverte, comprenant un régulateur de vitesse (34), un régulateur de couple de rotation / de courant (40) de préférence sous-jacent, ainsi que le système de mesure (42), sachant que le courant du moteur et/ou le couple de rotation du moteur est/sont réintroduit(s) dans le régulateur de couple de rotation / de courant (40) par l'intermédiaire d'un additionneur (38) placé entre le régulateur de vitesse et le régulateur de couple de rotation / de courant (40).
  15. Dispositif de commande selon au moins une des revendications 11 à 14,
    caractérisé en ce
    que la commande de moteur (32) présente un estimateur de vitesse (44), lequel déduit, à partir des valeurs de courant / de couple de rotation mesurées par le système de mesure (42), une valeur réelle de vitesse (VIST) qui est mise en relation avec le profil de référence de vitesse (VSOLL) et introduite dans le régulateur de vitesse (34), le moteur (20) étant de préférence piloté avec une vitesse variable en mode de commande vectorielle.
EP20120708121 2011-03-04 2012-03-05 Méthode et dispositif de commande pour le déplacement, avec peu de vibrations, d'un élement de grue d'un ensemble de grue. Active EP2681147B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011001112A DE102011001112A1 (de) 2011-03-04 2011-03-04 Verfahren und Steuerungseinrichtung zur schwingungsarmen Bewegung eines bewegbaren Kranelementes eines Kransystems
PCT/EP2012/053753 WO2012119985A1 (fr) 2011-03-04 2012-03-05 Procédé et dispositif de commande pour commander un mouvement à faible oscillation d'un élément de grue d'un ensemble grue

Publications (2)

Publication Number Publication Date
EP2681147A1 EP2681147A1 (fr) 2014-01-08
EP2681147B1 true EP2681147B1 (fr) 2015-05-06

Family

ID=45814495

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20120708121 Active EP2681147B1 (fr) 2011-03-04 2012-03-05 Méthode et dispositif de commande pour le déplacement, avec peu de vibrations, d'un élement de grue d'un ensemble de grue.

Country Status (5)

Country Link
US (1) US20140067111A1 (fr)
EP (1) EP2681147B1 (fr)
CN (1) CN103608282B (fr)
DE (1) DE102011001112A1 (fr)
WO (1) WO2012119985A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103043546B (zh) * 2012-12-26 2014-12-17 苏州汇川技术有限公司 塔式起重机回转控制系统及方法
DE102016004350A1 (de) 2016-04-11 2017-10-12 Liebherr-Components Biberach Gmbh Kran und Verfahren zum Steuern eines solchen Krans
CN109153548B (zh) 2016-04-08 2021-09-07 比伯拉赫利勃海尔零部件有限公司 起重机
DE102017114789A1 (de) * 2017-07-03 2019-01-03 Liebherr-Components Biberach Gmbh Kran und Verfahren zum Steuern eines solchen Krans
JP6834887B2 (ja) * 2017-09-29 2021-02-24 株式会社タダノ クレーン
CN108491661B (zh) * 2018-03-30 2021-08-24 山东建筑大学 自适应调节起重机起重臂动刚度消除振动的方法和系统
DE102018005068A1 (de) 2018-06-26 2020-01-02 Liebherr-Components Biberach Gmbh Kran und Verfahren zum Steuern eines solchen Krans
DE102019217757A1 (de) * 2019-11-18 2021-05-20 Putzmeister Engineering Gmbh Verfahren zum Steuern einer Bewegung eines Masts einer Vorrichtung zum Austragen von Dickstoff und Vorrichtung zum Austragen von Dickstoff
DE102019217674A1 (de) * 2019-11-18 2021-05-20 Putzmeister Engineering Gmbh Verfahren zum Steuern einer Bewegung eines Masts einer Vorrichtung zum Austragen von Dickstoff und Vorrichtung zum Austragen von Dickstoff
CN111458129A (zh) * 2020-04-29 2020-07-28 江苏省特种设备安全监督检验研究院 一种高精度起重机悬臂梁在线检测系统
CN113758556B (zh) * 2020-06-05 2024-04-02 西门子工厂自动化工程有限公司 测量固有频率的方法、固有频率检测装置及大型机械系统

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5053983A (en) * 1971-04-19 1991-10-01 Hyatt Gilbert P Filter system having an adaptive control for updating filter samples
US4078189A (en) * 1976-06-22 1978-03-07 Harnischfeger Corporation Control system for regulating the torque and speed of an electric motor including static frequency detector for speed detection and regulation
WO1987003855A1 (fr) * 1985-12-18 1987-07-02 University Of Southampton Stabilimetre pour objets flottants
DD260052A1 (de) * 1987-04-23 1988-09-14 Wismar Ing Hochschule Steuerung der bewegungsvorgaenge fuer elastische, spielbehaftete fahrwerksantriebe von kranen
US4916635A (en) * 1988-09-12 1990-04-10 Massachusetts Institute Of Technology Shaping command inputs to minimize unwanted dynamics
CA2051523C (fr) * 1990-09-18 1999-02-09 Malcolm Ernest Greenway Systeme de commande pour treuil d'extraction
US5526946A (en) * 1993-06-25 1996-06-18 Daniel H. Wagner Associates, Inc. Anti-sway control system for cantilever cranes
JPH08290892A (ja) * 1995-04-24 1996-11-05 Mitsubishi Heavy Ind Ltd 吊荷の振れ止め装置
DE59505399D1 (de) * 1995-11-30 1999-04-22 Siemag Transplan Gmbh Verfahren zum Regeln eines rechnergesteuerten Regalbediengerätes
US5908122A (en) * 1996-02-29 1999-06-01 Sandia Corporation Sway control method and system for rotary cranes
US5988411A (en) * 1996-04-05 1999-11-23 Convolve, Inc. Method and apparatus for reduced vibration of human operated machines
US5785191A (en) * 1996-05-15 1998-07-28 Sandia Corporation Operator control systems and methods for swing-free gantry-style cranes
US6505085B1 (en) * 1999-03-04 2003-01-07 Massachusetts Institute Of Technology Method and apparatus for creating time-optimal commands for linear systems
US6597943B2 (en) * 2000-12-26 2003-07-22 Ge Medical Systems Information Technologies, Inc. Method of using spectral measures to distinguish among atrialfibrillation, atrial-flutter and other cardiac rhythms
US6588610B2 (en) * 2001-03-05 2003-07-08 National University Of Singapore Anti-sway control of a crane under operator's command
US6807862B2 (en) * 2002-02-21 2004-10-26 Sekos, Inc. Device and method for determining and detecting the onset of structural collapse
FI115133B (fi) * 2003-04-01 2005-03-15 Kci Konecranes Oyj Menetelmä nosturin kuormauselimen hallitsemiseksi
US7190146B1 (en) * 2003-08-18 2007-03-13 Magnetek, Inc. Control system and method for an overhead bridge crane
DE102004052616A1 (de) 2004-10-29 2006-05-04 Siemens Ag Verfahren und Steuerungseinrichtung zur Steuerung der Bewegung eines bewegbaren Kranelements eines Kransystems
WO2006115912A2 (fr) * 2005-04-22 2006-11-02 Georgia Tech Research Corporation Controleur de formation combinee de commandes et de retroaction destine a une commande multi-etats avec l'application visant a ameliorer le positionnement et reduire le balancement des cables dans des grues
WO2007000256A1 (fr) * 2005-06-28 2007-01-04 Abb Ab Dispositif de controle de charge pour une grue
DE102006048988A1 (de) * 2006-10-17 2008-04-24 Liebherr-Werk Nenzing Gmbh, Nenzing Steuerungssystem für einen Auslegerkran
US8352129B2 (en) * 2008-10-16 2013-01-08 Eaton Corporation Motion control of work vehicle
WO2010045602A1 (fr) * 2008-10-16 2010-04-22 Eaton Corporation Commande du déplacement d’un engin de travaux
ITTO20090100A1 (it) * 2009-02-11 2010-08-12 Merlo Project S R L Con Unico Soci O Veicolo comprendente un braccio di sollevamento e relativo metodo di controllo dei sovraccarichi dinamici
DE102009032270A1 (de) * 2009-07-08 2011-01-13 Liebherr-Werk Nenzing Gmbh Verfahren zur Ansteuerung eines Antriebs eines Kranes
JP4924680B2 (ja) * 2009-09-09 2012-04-25 村田機械株式会社 移載装置
CN101659375A (zh) * 2009-09-16 2010-03-03 山东建筑大学 消除塔式起重机载荷摆动plc变频调速控制系统
US8868284B2 (en) * 2009-11-12 2014-10-21 Sikorsky Aircraft Corporation Virtual monitoring of aircraft fleet loads
US9402579B2 (en) * 2010-02-05 2016-08-02 The Research Foundation For The State University Of New York Real-time assessment of absolute muscle effort during open and closed chain activities

Also Published As

Publication number Publication date
CN103608282A (zh) 2014-02-26
CN103608282B (zh) 2016-05-25
US20140067111A1 (en) 2014-03-06
EP2681147A1 (fr) 2014-01-08
DE102011001112A1 (de) 2012-09-06
WO2012119985A1 (fr) 2012-09-13

Similar Documents

Publication Publication Date Title
EP2681147B1 (fr) Méthode et dispositif de commande pour le déplacement, avec peu de vibrations, d'un élement de grue d'un ensemble de grue.
DE102010046849B4 (de) Sensorbasierte Regelung von Schwingungen in schlanken Kontinua,speziell Torsionsschwingungen in Tiefbohsträngen
DE112011104448B4 (de) Motorsteuerungsvorrichtung
DE102005059530B4 (de) Befehlsgenerierungsvorrichtung
DE3722738C2 (fr)
EP2920554B1 (fr) Procédé d'étalonnage d'un résolveur
DE69926643T2 (de) Verfahren und vorrichtung zum bestimmen der steifheit eines bohrstranges
DE112013007130B4 (de) Frequenzgangmessvorrichtung
DE102008021425A1 (de) Verfahren und System zur Ausrichtung eines Resolvers in einem Elektromotorsystem
EP2574819B1 (fr) Amortisseur d'oscillations actif à vitesse proportionnelle
EP3171510A1 (fr) Procédé de fonctionnement d'un moteur électrique
EP2948358A1 (fr) Détection des accélérations de rotation sur des essieux montés d'un véhicule ferroviaire
EP0888922B1 (fr) Réglage pour l'entraínement d'un moteur asynchrone
EP3464862B1 (fr) Procédé et dispositif d'étalonnage d'un système d'actionneur
EP1708058A1 (fr) Procédé pour compenser les suroscillations d'un axe principal
EP4066371B1 (fr) Procédé et dispositif d'étalonnage d'un angle de décalage
EP2769274B1 (fr) Détermination de composantes de friction d'un système d'entraînement
DE3008528A1 (de) Ringlaserkreisel
AT506758B1 (de) Verfahren zur dämpfung von maschinenresonanzen
DE102016201958A1 (de) Ermitteln eines Betriebszustands einer an eine Brennkraftmaschine gekoppelten elektrischen Maschine
EP3228865B1 (fr) Procédé de compensation de perturbations cycliques lors du fonctionnement d'une pompe et unité de régulation
EP3825787B1 (fr) Procédé de régulation rapide de la valeur moyenne d'une grandeur de régulation, support de données avec programme ainsi que régulation de moteur permettant de mettre en oeuvre ledit procédé et moteur d'entraînement doté d'une telle régulation de moteur
DE102004052616A1 (de) Verfahren und Steuerungseinrichtung zur Steuerung der Bewegung eines bewegbaren Kranelements eines Kransystems
EP3296755B1 (fr) Détermination d'ampleurs de charge en cours de fonctionnement
DE102015201313A1 (de) Verfahren zum Betrieb eines Systems umfassend mindestens einen Elektromotor mit nachgeschaltetem Getriebe sowie entsprechendes System

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130919

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: B66C 13/18 20060101ALI20140617BHEP

Ipc: B66C 13/06 20060101AFI20140617BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140806

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHNEIDER ELECTRIC AUTOMATION GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150115

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 725545

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012003067

Country of ref document: DE

Effective date: 20150618

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150506

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150907

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150806

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150806

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150906

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012003067

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150506

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

26N No opposition filed

Effective date: 20160209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160305

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160305

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160305

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160305

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 725545

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120305

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230110

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230213

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231229

Year of fee payment: 13