EP2631317A1 - Alliage en aluminium durcissable ainsi que procédé d'amélioration de la capacité de durcissement par precipitation à chaud - Google Patents
Alliage en aluminium durcissable ainsi que procédé d'amélioration de la capacité de durcissement par precipitation à chaud Download PDFInfo
- Publication number
- EP2631317A1 EP2631317A1 EP12156623.6A EP12156623A EP2631317A1 EP 2631317 A1 EP2631317 A1 EP 2631317A1 EP 12156623 A EP12156623 A EP 12156623A EP 2631317 A1 EP2631317 A1 EP 2631317A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- aluminum alloy
- curing
- vacancies
- uncorrelated
- alloying element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/053—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
- C22C21/04—Modified aluminium-silicon alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
- C22C21/08—Alloys based on aluminium with magnesium as the next major constituent with silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/10—Alloys based on aluminium with zinc as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/047—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/05—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/004—Dispersions; Precipitations
Definitions
- the invention relates to an aluminum alloy and a method for improving the thermosetting ability of a semifinished product or final product comprising a hardenable aluminum alloy based on Al-Mg-Si, Al-Zn, Al-Zn-Mg or Al-Si-Mg the aluminum alloy is quenched into a solid solution state, in particular by solution annealing, and subsequently forms precipitates by cold curing, the process comprising at least one measure for reducing a negative effect of cold curing the aluminum alloy on its thermosetting.
- AA6013 aluminum alloys are known (see Benedikt Klobes: Structural Rearrangements in Aluminum Alloys: A Complementary Approach from the Perspective of Leerstellen und Fremdatomen, Bonn 2010, published in 2010, pages 104 and 105 ), a negative effect of a cold cure on subsequent hot curing is due to the fact that the impurities necessary to form ⁇ "are only provided by dissolution of precipitates These precipitates are all correlated with vacancies or the vacancies are deposited in the region of the precipitates.
- Al-Cu-based aluminum alloys for example for 2xxx alloys (see Benedikt Klobes: Structural Rearrangements in Aluminum Alloys: A Complementary Approach from the Perspective of Voids and Fremdatomen, Bonn 2010, year of publication 2010, pages 79 and 81 )
- Au gold
- tin tin
- the DE69311089T2 discloses a curable Si-containing Al-Cu-Mg-aluminum alloy for press-formable sheets.
- the DE69311089T2 including the use of tin (Sn), indium (In) and cadmium (Cd) alloying elements. These elements namely, to bind to buried vacancies to reduce the number of vacancies serving as GPB zone forming sites of the Al-Cu-Mg compound.
- the addition of silicon is described in order to achieve not only the delay of natural aging but also an improvement in the hardenability of the aluminum alloy.
- DE69311089T2 does not address the adverse effects of cold curing on subsequent hot curing of an aluminum alloy.
- a measure for reducing the negative effect comprises adding at least one aluminum alloy alloying element which can be correlated with buried voids, thereby increasing the number of voids uncorrelated with precipitates at the beginning of a hot curing to reduce the negative effect of cold curing the aluminum alloy on its further thermosetting by mobilizing these uncorrelated voids.
- an aluminum alloy may be created comprising one of Cold precipitation does not, or at least to a lesser extent, enable impaired mobilization of vacancies in the crystal lattice. This can be used according to the invention to reduce the negative effect of cold curing of the aluminum alloy on its further hot curing by these uncorrelated Spaces are mobilized.
- vacancies uncorrelated with excretions can be understood as meaning those vacancies which, for example, are not associated with excretions, taken up and / or influenced by them in other ways substantially in their mobility and / or mobilizability.
- the negative effects of acting as vacancy prone cold excretions can be reduced at least at the beginning of the artificial aging or possibly even completely prevented, which despite interim storage of aluminum alloy with respect to hardenability and curing kinetics unimpaired hot aging can be ensured.
- thermosetting ability known of Al-Mg-Si, Al-Zn, Al-Zn-Mg or Al-Si-Mg based aluminum alloys, especially 6xxx alloys can be achieved even if not immediately after Quenching of the aluminum alloy is started with the aging process.
- the addition of the blank-active alloying element or the blank-active alloying elements is procedurally easy to solve or even manageable by these are added, for example, to the solid solution of the aluminum alloy.
- Complex heat treatment processes, as known from the prior art can thus be dispensed with, which can not least lead to a considerable cost advantage. In general, it should be mentioned that under semifinished product or end product sheets, plates, castings, etc. can be understood.
- this method also provides advantages in terms of reduced quench sensitivity from the solution annealing temperature, an increase in mechanical properties (eg, fracture toughness), improved corrosion resistance, and possible prolongation of storage time at room temperature.
- the content of this blank-active alloying element or of these blank-active alloying elements is preferably to be limited to a small extent so as not to impair the re-mobilizability of the vacancies on account of other possibly forming precipitation structures.
- the cold curing of the aluminum alloy can be hindered, which can be used particularly advantageously with an aluminum alloy of 6xxx Knetleg réelles Herbert or 4xxxx casting alloy series.
- Particularly advantageous process conditions may result if the added alloying element accounts for 500 atomic ppm in the aluminum alloy. For example, an addition of less than 200 atomic ppm has already been found to be sufficient.
- alloying element (s) Sn, Cd, Sb and / or In may be distinguished for the method of improving the thermosetting ability of a semifinished product or final product.
- other alloying elements are quite conceivable, which correlate with voids during the intermediate storage of the semifinished product or end product and release these vacancies in a hot aging or hot curing and contribute to their rapid re-mobilization.
- At least one alloying element in particular Sn, Cd, Sb and / or In, which can be treaded in correlation with buried voids of an aluminum alloy, is added to a curable aluminum alloy, in particular to Al-Mg-Si. , Al-Zn, Al-Zn-Mg or Al-Si-Mg base, is used to increase the number of vacancies uncorrelated at the start of a hot cure with precipitates, to avoid the negative effect of cold curing the aluminum alloy on its further thermosetting Mobilization of these uncorrelated blanks to reduce.
- a use of Sn, Cd, Sb and / or In could be distinguished as an additive.
- the combination of alloying elements achieved by such a use in addition to the effects of reducing the cold curing, for example by intermediate storage, surprisingly shows advantageous properties in terms of hardenability and curing kinetics in the case of thermosetting, in particular if this reduces the mobility of the vacancies in the crystal lattice.
- thermosetting in particular if this reduces the mobility of the vacancies in the crystal lattice.
- At least one alloying element in particular Sn, Cd, Sb and / or In which can be passed in correlation with buried vacancies of an aluminum alloy, in particular reduces its mobility in the crystal lattice, as an additive to a hardenable aluminum alloy for reducing the annihilation of Blank spaces used in a hot curing.
- This may be particularly advantageous for aluminum alloys based on Al-Mg-Si, Al-Zn, Al-Zn-Mg or Al-Si-Mg.
- the residence time of the vacancies in the crystal lattice can be significantly increased and yet such a high degree of mobility can be ensured that rapid hot curing of the aluminum alloy occurs.
- Annihilation of the vacancies by erosion can thus be significantly reduced, even if comparatively high temperatures prevail during hot curing, which may be the case if at least a temporary application of a temperature range of 200 to 300 degrees Celsius.
- the hot curing of the aluminum alloy - even without prior cold curing - shows improved process parameters, for example, showing an advantageous response of the aluminum alloy in the course of hot curing and also increased hardness values.
- the Mg / Si Co Clusters can no longer have a negative impact on the age hardening ability of the aluminum alloy.
- a previous cold-curing can no longer complicate the nucleation of the ⁇ "phase, which can be used in particular for 6xxx wrought alloys, which have a negative effect on cold curing after being cold-cured
- this technical effect can be used, in particular for a 4xxxx cast aluminum alloy.
- the amount of the alloying element used in the aluminum alloy has a content of less than 500 atomic ppm, preferably less than 200 atomic ppm, the structural properties of the aluminum alloy treated therewith can be neglected due to the low concentration, which is almost equivalent to that of a trace element become.
- Known findings - especially with regard to the material properties - to this aluminum alloy are therefore further applicable without restrictions, which may be particularly distinguished by the invention.
- the invention has also set itself the task to improve a hardenable aluminum alloy on Al-Mg-Si, Al-Zn, Al-Zn-Mg or Al-Si-Mg base in such a way that this aluminum alloy before any special handling requires a final hot curing and thus, inter alia, is inexpensive.
- the invention has achieved the stated object with regard to the aluminum alloy in that the aluminum alloy has at least one alloyable element which can be correlated with buried voids of the aluminum alloy, in particular its mobility in the crystal lattice reducible, with an content in atomic ppm such that its main alloying element or its main alloying elements the aluminum alloy forms vacancies that are substantially uncorrelated with precipitates to reduce the negative effect of cold curing the aluminum alloy on its further thermosetting by mobilizing those uncorrelated voids.
- the aluminum alloy to its main alloying element or to its main alloying elements at least one correlated with buried voids of the aluminum alloy, in particular their mobility reducible in the crystal lattice, alloying element having such a content in atomic ppm, That the aluminum alloy forms vacancies that are uncorrelated substantially with precipitates, this aluminum alloy can initially be made more resistant to an undesired cold hardening or can be improved in terms of its positional stability.
- semifinished product or end product of such an aluminum alloy can experience a shelf life extension at room temperature (RT).
- this alloy also reacts well to a hot curing, by mobilizing these uncorrelated voids reducing a negative effect of cold hardening of the aluminum alloy on its further hot curing, the mechanical properties, in particular the hardness, can be improved as well improved corrosion resistance for semi-finished or final product can be created with such an aluminum alloy. Under semifinished product or end product, sheets, plates, castings, etc. can be subsumed.
- the aluminum alloy according to the invention therefore requires no special handling and / or no special process costs before a final hot curing and is still inexpensive to manufacture.
- the alloy may in particular be suitable for hot curing if it has Sn, Cd, Sb and / or In as the alloying element or as alloying elements.
- the concentration of the additional alloying elements is on the order of trace elements, by having the alloying element in which the aluminum alloy has a content below 500 atomic ppm, preferably below 200 atomic ppm, the influence on the crystal lattice of the aluminum alloy can be neglected.
- Such an aluminum alloy can be used in particular for a semifinished product or end product, for example for sheets, plates, profiles, castings, components, structural elements (such as construction profiles), building blocks, etc.
- a conventional thermal treatment method for precipitation formation in an aluminum alloy is shown.
- the aluminum alloy is first brought into a state of solid solution.
- solution heat treatment 1 is carried out at a high temperature in the phase region of the homogeneous mixed crystal.
- a rapid cooling by means of a quenching 2 of the aluminum alloy, whereby the mixed crystal and the thermal voids are frozen or quenched.
- a cold curing 3 for example, a natural aging by cold aging at room temperature
- the precipitation sequence, ie the formation of precipitates in the aluminum alloy begins.
- the aluminum alloy is subjected to a thermosetting 4, for example, an artificial aging by a thermal aging. That after Fig. 1 illustrated thermal treatment method or precipitation hardening does not include measures to reduce a negative effect of cold curing 3 of the aluminum alloy on the thermosetting 4.
- this is generally avoided by adding at least one alloying element in correlation with buried voids to the solid solution.
- This particular alloying element - or combination thereof - increases the number of voids uncorrelated with precipitates at the onset of a hot cure, which rapidly mobilizes in a hot dump, thus reducing the negative effect of cold curing 3 of the aluminum alloy on the thermoset 4.
- the Fig. 2 It can be seen that the AA 6061 alloy 6, which additionally contains Sn, undergoes significantly lower cold curing 3 at room temperature (RT), which is also confirmed here by a hardness test according to Brinell HBW 2.5 / 62.5. As the content of this alloying element, one below 500 atomic ppm has been found sufficient. A content below 200 atomic ppm is quite conceivable.
- the content of the alloying element Sn, Cd, Sb or In or their combination in the aluminum alloy is in the height of the vacancy concentration of the aluminum alloy in its solid solution state.
- cold curing of an aluminum alloy can be understood as meaning at least partial cold curing and thus not exclusively complete cold curing.
- Fig. 4 a further advantage of the addition of the alloying element Sn, Cd, Sb or In or their combination is shown.
- the change in hardness of an AA 6061 Alloy 5 without Sn and an AA 6061 Alloy 6 with Sn (470 ppm) is shown when these alloys are subjected to age hardening by hot aging at 250 degrees Celsius.
- the faster reaction time of the alloy 6 with Sn as well as the higher degree of hardness can be recognized here Fig. 4 a hardness test according to Brinell HBW 2.5 / 62.5 has been carried out.
- the alloy 6 can be justified by the fact that even when using a temperature range of 200 to 300 degrees Celsius annihilation of the vacancies is significantly reduced by a disappearance in depressions and / or phase boundaries. Because of their correlation with the alloying element or alloying elements according to the invention, the vacancies have a reduced mobility in the crystal lattice, as a result of which even higher temperatures can be advantageously used for hot curing. Significant benefits can also be gained by: the aluminum alloy is subjected to a hot curing immediately after quenching, ie without cold curing. Here, for example, a faster response of the aluminum alloy to its hardening together with increased hardness values could be determined.
Landscapes
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Investigating And Analyzing Materials By Characteristic Methods (AREA)
- Continuous Casting (AREA)
- Printing Plates And Materials Therefor (AREA)
- Materials For Medical Uses (AREA)
- Powder Metallurgy (AREA)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12156623.6A EP2631317A1 (fr) | 2012-02-23 | 2012-02-23 | Alliage en aluminium durcissable ainsi que procédé d'amélioration de la capacité de durcissement par precipitation à chaud |
PCT/EP2013/053643 WO2013124472A1 (fr) | 2012-02-23 | 2013-02-22 | Alliage d'aluminium durcissable et procédé permettant d'améliorer la capacité de durcissement thermique d'un produit semi-fini ou d'un produit fini |
CN201380010922.4A CN104254634B (zh) | 2012-02-23 | 2013-02-22 | 可时效硬化的铝合金以及改善半成品或最终产品的人工时效能力的方法 |
EP13708374.7A EP2817429A1 (fr) | 2012-02-23 | 2013-02-22 | Alliage d'aluminium durcissable et procédé permettant d'améliorer la capacité de durcissement thermique d'un produit semi-fini ou d'un produit fini |
US14/380,540 US10214802B2 (en) | 2012-02-23 | 2013-02-22 | Age-hardenable aluminum alloy and method for improving the ability of a semi-finished or finished product to age artificially |
US16/242,204 US10774409B2 (en) | 2012-02-23 | 2019-01-08 | Age-hardenable aluminum alloy and method for improving the ability of a semi-finished or finished product to age artificially |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12156623.6A EP2631317A1 (fr) | 2012-02-23 | 2012-02-23 | Alliage en aluminium durcissable ainsi que procédé d'amélioration de la capacité de durcissement par precipitation à chaud |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2631317A1 true EP2631317A1 (fr) | 2013-08-28 |
Family
ID=47844275
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12156623.6A Withdrawn EP2631317A1 (fr) | 2012-02-23 | 2012-02-23 | Alliage en aluminium durcissable ainsi que procédé d'amélioration de la capacité de durcissement par precipitation à chaud |
EP13708374.7A Ceased EP2817429A1 (fr) | 2012-02-23 | 2013-02-22 | Alliage d'aluminium durcissable et procédé permettant d'améliorer la capacité de durcissement thermique d'un produit semi-fini ou d'un produit fini |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13708374.7A Ceased EP2817429A1 (fr) | 2012-02-23 | 2013-02-22 | Alliage d'aluminium durcissable et procédé permettant d'améliorer la capacité de durcissement thermique d'un produit semi-fini ou d'un produit fini |
Country Status (4)
Country | Link |
---|---|
US (2) | US10214802B2 (fr) |
EP (2) | EP2631317A1 (fr) |
CN (1) | CN104254634B (fr) |
WO (1) | WO2013124472A1 (fr) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104975209A (zh) * | 2015-03-13 | 2015-10-14 | 宝山钢铁股份有限公司 | 一种高自然时效稳定性6000系铝合金材料、铝合金板及其制造方法 |
CN104975208A (zh) * | 2015-03-13 | 2015-10-14 | 宝山钢铁股份有限公司 | 一种6000系高强塑积铝合金材料、铝合金板及其制造方法 |
PL3196324T3 (pl) * | 2016-01-22 | 2019-04-30 | Amag Rolling Gmbh | Utwardzalny wydzieleniowo stop aluminium na bazie al-mg-si |
EP3737565A4 (fr) | 2018-01-12 | 2021-10-20 | Accuride Corporation | Roues en aluminium et procédés de fabrication |
CN108411169A (zh) * | 2018-04-04 | 2018-08-17 | 挪威科技大学 | Al-Mg-Si合金及其制备方法 |
CN110423963B (zh) * | 2019-08-30 | 2021-02-09 | 如东宇航机械制造有限公司 | 一种轻量化铝合金发动机支架热处理工艺及热处理设备 |
CN110629080A (zh) * | 2019-10-30 | 2019-12-31 | 江西江铃集团新能源汽车有限公司 | 一种减震塔的铸造方法 |
CN111663025B (zh) * | 2020-06-09 | 2021-10-22 | 福耀汽车铝件(福建)有限公司 | 铝合金亮饰条的时效处理方法、车身亮饰条以及时效设备 |
CN113846279A (zh) * | 2021-09-26 | 2021-12-28 | 浙江大学 | 一种用于7075铝合金的超快速时效工艺及其应用 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0613959A1 (fr) * | 1993-03-03 | 1994-09-07 | Nkk Corporation | Feuille en alliage d'aluminium pour formage sous pression, présentant une excellente aptitude au durcissement par revenu de courte durée à basse temperature et procédé pour sa fabrication |
JPH10102178A (ja) * | 1996-09-25 | 1998-04-21 | Furukawa Electric Co Ltd:The | Al−Mg−Si系合金の直接鋳造圧延板とその製造方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1351498A (fr) * | 1962-12-20 | 1964-02-07 | Pechiney Prod Chimiques Sa | Procédé pour l'amélioration des alliages d'aluminium contenant du magnésium et du silicium et alliages obtenus |
SU668364A1 (ru) * | 1977-04-04 | 1981-02-28 | Предприятие П/Я Р-6585 | Сплав на основе алюмини |
JPS62270743A (ja) * | 1986-05-20 | 1987-11-25 | Nippon Mining Co Ltd | 流電陽極の電流効率改善方法 |
JPH08176764A (ja) * | 1994-12-27 | 1996-07-09 | Sky Alum Co Ltd | 成形加工用アルミニウム合金板の製造方法 |
JPH09249950A (ja) * | 1996-03-15 | 1997-09-22 | Nippon Steel Corp | 成形性および塗装焼付硬化性に優れたアルミニウム合金板の製造方法 |
JPH11102178A (ja) | 1997-09-29 | 1999-04-13 | Hitachi Ltd | 携帯端末装置 |
US6231809B1 (en) * | 1998-02-20 | 2001-05-15 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Al-Mg-Si aluminum alloy sheet for forming having good surface properties with controlled texture |
CA2454509A1 (fr) * | 2001-07-25 | 2003-02-06 | Showa Denko K.K. | Alliage d'aluminium presentant une excellente usinabilite, et materiau d'alliage d'aluminium et son procede de production |
JP2003301249A (ja) * | 2002-04-12 | 2003-10-24 | Nippon Steel Corp | アルミニウム合金製高強度部材の超塑性成形加工方法 |
JP2004277762A (ja) * | 2003-03-13 | 2004-10-07 | Nippon Light Metal Co Ltd | 冷間加工用熱処理型アルミニウム合金素材の製造方法 |
JP4794862B2 (ja) * | 2004-01-07 | 2011-10-19 | 新日本製鐵株式会社 | 塗装焼付け硬化性に優れた6000系アルミニウム合金板の製造方法 |
JP5278494B2 (ja) * | 2004-01-07 | 2013-09-04 | 新日鐵住金株式会社 | 塗装焼付け硬化性に優れた6000系アルミニウム合金板の製造方法 |
JP4201745B2 (ja) * | 2004-07-23 | 2008-12-24 | 新日本製鐵株式会社 | 塗装焼付け硬化性に優れた超塑性成形用6000系アルミニウム合金板およびその製造方法 |
CN102220586A (zh) * | 2011-05-30 | 2011-10-19 | 天津恒仁石油设备有限公司 | 一种用于深海环境的铝合金牺牲阳极及其制备方法 |
-
2012
- 2012-02-23 EP EP12156623.6A patent/EP2631317A1/fr not_active Withdrawn
-
2013
- 2013-02-22 CN CN201380010922.4A patent/CN104254634B/zh active Active
- 2013-02-22 WO PCT/EP2013/053643 patent/WO2013124472A1/fr active Application Filing
- 2013-02-22 EP EP13708374.7A patent/EP2817429A1/fr not_active Ceased
- 2013-02-22 US US14/380,540 patent/US10214802B2/en active Active
-
2019
- 2019-01-08 US US16/242,204 patent/US10774409B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0613959A1 (fr) * | 1993-03-03 | 1994-09-07 | Nkk Corporation | Feuille en alliage d'aluminium pour formage sous pression, présentant une excellente aptitude au durcissement par revenu de courte durée à basse temperature et procédé pour sa fabrication |
DE69311089T2 (de) | 1993-03-03 | 1998-01-22 | Nippon Kokan Kk | Blech aus einer AL-Legierung für Pressformen, das ausgezeichnete Härtbarkeit aufweist, die beim Anlassen bei relativ niedrigen Temperaturen in kurzer Zeit erhältlich ist, und Verfahren zur Herstellungen desselben |
JPH10102178A (ja) * | 1996-09-25 | 1998-04-21 | Furukawa Electric Co Ltd:The | Al−Mg−Si系合金の直接鋳造圧延板とその製造方法 |
Non-Patent Citations (7)
Title |
---|
BENEDIKT KLOBES: "Strukturelle Umordnungen in Aluminiumlegierungen: Ein komplementärer Ansatz aus der Perspektive von Leerstellen und Fremdatomen", BONN 2010, 2010, pages 104,105 |
BENEDIKT KLOBES: "Strukturelle Umordnungen in Aluminiumlegierungen: Ein komplementärer Ansatz aus der Perspektive von Leerstellen und Fremdatomen", BONN 2010, 2010, pages 79,81 |
DATABASE WPI Week 199826, Derwent World Patents Index; AN 1998-292505, XP002679385 * |
FRIEDRICH OSTERMANN: "Anwendungstechnik Aluminium", SPRINGER, pages: 152 - 153 |
POGATSCHER S ET AL: "Mechanisms controlling the artificial aging of AlMgSi Alloys", ACTA MATERIALIA, ELSEVIER, OXFORD, GB, vol. 59, no. 9, 3 February 2011 (2011-02-03), pages 3352 - 3363, XP028195509, ISSN: 1359-6454, [retrieved on 20110210], DOI: 10.1016/J.ACTAMAT.2011.02.010 * |
STULIKOVA ET AL: "Influence of composition on natural ageing of Al-Mg-S", KOVOVE MATERIALY - METAL MATERIALS, vol. 45, no. 2, 1 January 2007 (2007-01-01), pages 85 - 90, XP008153273, ISSN: 0023-432X * |
WOLVERTON ET AL: "Solute-vacancy binding in aluminum", ACTA MATERIALIA, ELSEVIER, OXFORD, GB, vol. 55, no. 17, 21 September 2007 (2007-09-21), pages 5867 - 5872, XP022264876, ISSN: 1359-6454, DOI: 10.1016/J.ACTAMAT.2007.06.039 * |
Also Published As
Publication number | Publication date |
---|---|
US20190136355A1 (en) | 2019-05-09 |
US10214802B2 (en) | 2019-02-26 |
CN104254634A (zh) | 2014-12-31 |
WO2013124472A1 (fr) | 2013-08-29 |
CN104254634B (zh) | 2017-05-17 |
US20150013857A1 (en) | 2015-01-15 |
US10774409B2 (en) | 2020-09-15 |
EP2817429A1 (fr) | 2014-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2631317A1 (fr) | Alliage en aluminium durcissable ainsi que procédé d'amélioration de la capacité de durcissement par precipitation à chaud | |
DE102016118729B4 (de) | Aluminiumlegierung, geeignet für Hochdruckgießen | |
AT502294B1 (de) | Al-zn-knetlegierung und verwendung einer solchen legierung | |
DE102008033027B4 (de) | Verfahren zur Erhöhung von Festigkeit und Verformbarkeit von ausscheidungshärtbaren Werkstoffen | |
EP3176275B1 (fr) | Alliage de coulée sous pression de silicium/aluminium. procédé de fabrication d'un composant coulé sous pression en alliage et composants de carrosserie comprenant un tel composant coulé sous pression | |
DE102017114162A1 (de) | Hochfeste und hochkriechresistente aluminiumgusslegierungen und hpdc-motorblöcke | |
DE69325804T2 (de) | Hochfeste-al-li-legierung mit niedriger dichte und hoher zähigkeit bei hohen temperaturen | |
EP2888382B1 (fr) | Bande d'alliage en aluminium résistant à la corrosion intercristalline et son procédé de fabrication | |
DE102005045341A1 (de) | Hochfestes, hochzähes Al-Zn-Legierungsprodukt und Verfahren zum Herstellen eines solches Produkts | |
DE102016219711B4 (de) | Aluminiumlegierung zum Druckgießen und Verfahren zu ihrer Hitzebehandlung | |
EP3196324B1 (fr) | Alliage en aluminium durcissable a base de al-mg-si | |
EP2984196B1 (fr) | Alliage de magnésium exempt d'aluminium et son utilisation | |
DE102008056511B4 (de) | Verfahren zur Herstellung dünnwandiger Metallbauteile aus einer AI-SiMg-Legierung, insbesondere von Bauteilen eines Kraftfahrzeugs | |
DE112017001307T5 (de) | Magnesiumlegierung | |
DE102013002632A1 (de) | Aluminium-Silizium-Gusslegierung und Verfahren zur Herstellung eines Gussbauteils | |
DE2500083C3 (de) | Halbzeug aus Aluminium-Knetlegierungen und Verfahren zu dessen Herstellung | |
DE1483228A1 (de) | Aluminiumlegierungen sowie aus diesen gefertigte Artikel | |
DE602004005529T2 (de) | Schmiedealuminiumlegierung | |
DE102012108590A1 (de) | Gussstück | |
EP3072985A1 (fr) | Alliage d' al-cu-mg-li exempt d'ag | |
DE2813810A1 (de) | Aluminiumlegierung von hoher festigkeit | |
EP2088216B1 (fr) | Alliage d'aluminium | |
WO2014033048A1 (fr) | Alliage d'aluminium résistant à la corrosion intercristalline | |
WO2013034134A1 (fr) | Procédé de préparation d'un alliage de magnésium et alliage de magnésium ainsi préparé | |
EP2675620A1 (fr) | Procédé de fabrication d'un palier lisse en aluminium plaqué sans plomb |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20131121 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
17Q | First examination report despatched |
Effective date: 20140221 |
|
APBK | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNE |
|
APBN | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2E |
|
APBR | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3E |
|
APAF | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNE |
|
APBX | Invitation to file observations in appeal sent |
Free format text: ORIGINAL CODE: EPIDOSNOBA2E |
|
APBZ | Receipt of observations in appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNOBA4E |
|
APBT | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9E |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20190117 |