EP2620604A1 - Verfahren zur Steuerung eines Abkühlungsprozesses von Turbinenkomponenten - Google Patents

Verfahren zur Steuerung eines Abkühlungsprozesses von Turbinenkomponenten Download PDF

Info

Publication number
EP2620604A1
EP2620604A1 EP12152446.6A EP12152446A EP2620604A1 EP 2620604 A1 EP2620604 A1 EP 2620604A1 EP 12152446 A EP12152446 A EP 12152446A EP 2620604 A1 EP2620604 A1 EP 2620604A1
Authority
EP
European Patent Office
Prior art keywords
cooling
mist
cooling phase
air
during
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12152446.6A
Other languages
German (de)
English (en)
French (fr)
Inventor
Stefan Riemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP12152446.6A priority Critical patent/EP2620604A1/de
Priority to KR1020147020559A priority patent/KR101615469B1/ko
Priority to PL12788486T priority patent/PL2776684T3/pl
Priority to BR112014017896A priority patent/BR112014017896A8/pt
Priority to JP2014553635A priority patent/JP5911973B2/ja
Priority to RU2014134325/06A priority patent/RU2589419C2/ru
Priority to PCT/EP2012/071982 priority patent/WO2013110365A1/de
Priority to CN201280068157.7A priority patent/CN104081008B/zh
Priority to US14/372,014 priority patent/US9422832B2/en
Priority to EP12788486.4A priority patent/EP2776684B1/de
Publication of EP2620604A1 publication Critical patent/EP2620604A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • F01K13/025Cooling the interior by injection during idling or stand-by
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B23/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/30Application in turbines
    • F05B2220/301Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/211Heat transfer, e.g. cooling by intercooling, e.g. during a compression cycle
    • F05B2260/212Heat transfer, e.g. cooling by intercooling, e.g. during a compression cycle by water injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/212Heat transfer, e.g. cooling by water injection

Definitions

  • the invention relates to a method for controlling a cooling process of turbine components, in particular a steam turbine shaft.
  • Maintenance is associated with turbines and in particular with steam turbines with a high expenditure of time, since the turbine components of the turbine or the steam turbine must first be cooled down before the turbine can be stopped and before the maintenance can be performed.
  • a corresponding cooling of the turbine components is usually accelerated by means of an air flow in order to reduce the time required for the maintenance work to the lowest possible level.
  • the temperature limits the cooling effect of the air flow in such a forced cooling.
  • the object of the invention is to provide an improved method for forced cooling of turbine components.
  • the method is used to control a cooling process of turbine components, in particular a steam turbine shaft, wherein during a mist cooling phase, an air stream offset with a water mist is used to cool the turbine components.
  • a mist cooling phase an air stream offset with a water mist is used to cool the turbine components.
  • water vapor which is used in the operation of the steam turbine as a working medium
  • it is in the water mist to an aerosol, so a Mixture of air and water droplets, which can absorb and remove heat energy to a particularly high degree by a phase transition of the water contained by the liquid in the gaseous phase.
  • the staggered with the water mist airflow is therefore not the working medium. It is passed as a further medium for cooling purposes through the turbine.
  • a simple cooling by a forced convection so for example an air cooling, supplemented by an additional boiling or evaporative cooling, whereby the effectiveness of cooling is increased significantly with relatively simple means.
  • a cooling system for a simple air cooling is already given, since in this case can be done without great technical effort retrofitting, with only a device is to install, with the help of which generates a water mist and in the Air flow of the air cooling is introduced.
  • the cooling process can be controlled by a temperature range which is larger than that of a simple air cooling, such that a desired time-dependent temperature gradient is set.
  • the cooling process is designed in several stages, wherein preferably the mist cooling phase precedes an air-cooling phase, during which only an air flow without water mist is used for cooling the turbine components. Accordingly, as required, the cooling of the turbine components is forced either by means of the air flow or by means of the offset with the water mist air flow.
  • the cooling of the turbine components is forced either by means of the air flow or by means of the offset with the water mist air flow.
  • a process variant in which a uniform and constant temporal temperature gradient occurs during the air-cooling phase and during the mist-cooling phase is specified for the cooling process is specified for the cooling process.
  • the cooling process is preferably controlled in accordance with the method presented here so that the predetermined maximum temperature gradient is achieved as accurately as possible and maintained over the entire cooling process.
  • the previously mentioned value for the temperature gradient of about 10 K / h represents a typical value for steam turbines.
  • Such a maximum temporal temperature gradient is generally predetermined for a limited temperature range, which is why a plurality of different values can certainly be provided during a cooling process over a very wide temperature range.
  • the cooling process is controlled such that in each respective temperature range of the predetermined temperature gradient is achieved and maintained over the entire temperature range.
  • only the current density of the air flow and, during the mist cooling phase, the amount of the water mist added to the air flow is regulated to specify the temperature gradient during the air-cooling phase.
  • a suitable cooling system for the turbine and in particular a control system for the cooling system can be realized in a particularly technically simple manner.
  • a corresponding Control relatively insensitive to errors, since always only one variable is changed within the control.
  • a vacuum is often generated in the steam turbine via a corresponding evacuation device, wherein a pressure gradient between the turbine inlet and the turbine outlet is predetermined.
  • an inlet valve positioned at the turbine inlet with constant operation of the evacuation device with the aid of the ambient air, an air flow can be generated with which the turbine components of the steam turbine can be cooled.
  • the valve position can then be used to regulate the current density of the air flow, ie the amount of air per unit of time.
  • the air-cooling phase it is advantageous to change from the air-cooling phase to the mist-cooling phase when the maximum airflow density is reached and in particular when the inlet valve is fully open.
  • the effectiveness of the cooling depends on the temperature difference between the temperature of the turbine components and the temperature the ambient air used for the airflow. This temperature difference is completely sufficient at the beginning of the cooling process to reach the predetermined maximum temperature gradient and to keep it over a certain temperature range.
  • the efficiency of the simple air cooling decreases and the inlet valve must be opened more and more to maintain the temperature gradient, thereby increasing the current density of the airflow. If the cooling process has progressed further, then at some point the time is reached at which the valve is fully open and the maximum current density of the air flow is reached. In order to be able to continue to hold the desired and predetermined temperature gradient, from this point on water mist is added to the air stream, wherein subsequently the amount of water mist is regulated to control the cooling process and in particular to specify the temperature gradient.
  • a variant of the method is expedient in which the mist cooling phase precedes a heat equilibration phase in the cooling process, in which a temperature equalization of the turbine components takes place, in particular, by heat conduction. This reduces local temperature differences within the turbine, further reducing the risk of damaging the turbine.
  • a variant of the method is also preferred in which at the beginning of the cooling process a steam-cooling phase is provided, during which the working medium, that is, for example, the water vapor, is used for cooling the turbine components.
  • the working medium that is, for example, the water vapor
  • the temperature of the working medium is gradually reduced, typically during this cooling phase, the turbine is still in operation, ie in particular generated electrical energy.
  • a constant temporal temperature gradient for the cooling process is predetermined during the steam-cooling phase, which deviates from the temperature gradient during the air-cooling phase and during the mist-cooling phase, in particular is greater.
  • the water mist is sprayed with demineralised water. This avoids that minerals settle on the turbine components in the evaporation of water droplets from the water mist.
  • demineralized water is used both to produce the water mist and as a working medium. Since demineralized water must be produced with a certain technical effort, the use of demineralized water is especially advantageous if, in any case, corresponding demineralized water is provided as the working medium for the turbine and, accordingly, is available anyway.
  • the method described below is used to control a forced cooling process of turbine components of a steam turbine 2, wherein the control takes place such that as in FIG. 1 represented over a wide temperature range a temporally constant temperature gradient for the cooling process is specified.
  • the specification of the temperature gradient in this case takes place with the aid of a cooling control unit 4 which evaluates sensor data of temperature sensors 6 arranged in the steam turbine 2 and, based thereon, activates a cooling system.
  • the cooling process is subdivided in the exemplary embodiment into four successive phases P1... P4.
  • the temperature of the working medium here water vapor
  • the turbine components of the steam turbine 2 are cooled down with a temperature gradient of about 30 K / h down.
  • the steam turbine 2 continues to generate electrical energy, although the generated electrical energy per unit time is steadily decreasing.
  • the transition from the steam-cooling phase in a heat balance phase P2 occurs.
  • the cooling of the turbine components is interrupted by convection, so that a temperature equalization of the turbine components with each other can be carried out by heat conduction. As a result, larger temperature differences within the steam turbine 2 are to be reduced.
  • Air cooling phase P3 an air flow is generated, which is passed through the turbine components.
  • a cooling of the turbine components is again forced by cooling by means of convection, the cooling medium is now no water vapor, but an air flow, to generate ambient air is used.
  • the current density of the air flow is steadily increased, so as to specify a temperature gradient of about 10 K / h for the cooling process of the turbine components.
  • the increase in the current density of the air flow in this case the decreasing difference between the temperature of the turbine components and the temperature of the ambient air used for cooling is compensated, so that in the sum of a uniform cooling is enforced.
  • mist cooling phase P4 the fourth and last phase of the cooling process, which is referred to below as the mist cooling phase P4.
  • the air flow for which the maximum possible current density is still maintained, is additionally supplemented with ultrapure-atomized demineralized water.
  • the convection cooling is supplemented by evaporative cooling, which allows maintenance of the desired temperature gradient for the cooling process.
  • the controlled cooling process ends and it typically follows the opening of the steam turbine 2 and in particular the opening of a usually provided Housing. Subsequently, the upcoming maintenance work, for which a shutdown and cooling of the steam turbine 2 is typically carried out, can be made.
  • a deviating temperature profile is shown in dashed lines. This deviating temperature profile of the turbine components is characteristic of a cooling process, in which the cooling is enforced exclusively by means of an air flow without additionally introducing a water mist in the air flow.
  • FIG. 2 A possible embodiment of a system in which the steam turbine 2 and a cooling device are used to implement the method presented here is in FIG. 2 shown schematically.
  • the system comprises the steam turbine 2 with a high-pressure stage 8, with a medium-pressure stage 10 and with a low-pressure stage 12, a superheater unit 14 interposed between the high-pressure stage 8 and the medium-pressure stage 10, a steam generator 16, a condenser 18 and a line system 20 for the working medium , here demineralized water and corresponding water vapor.
  • Part of the system is also a reservoir 22, with the help of a loss of demineralized water, if necessary, can be compensated.
  • the system has the cooling control unit 4, which preferably part of a central control unit of the system is.
  • the cooling control unit 4 first controls the steam generator 16 and the superheater unit 14, so that the temperature of the evaporated demineralized water, which is passed through the pressure stages 8, 10, 12, gradually decreases , In this way, the steam-cooling phase P1 is implemented.
  • the control valves 26 are gradually opened so that ambient air can flow in each case via an opening 28 into the supply lines of the line system 20 to the pressure stages 8,10,12.
  • a negative pressure is predetermined in the condenser 18 by means of a corresponding, but not explicitly shown, evacuation device, so that in this way ambient air flows in at the openings 28 and flows through the pressure stages 8, 10, 12.
  • the current density of the air flow is set by the respective pressure stage 8,10,12 on the valve position of the control valves 26.
  • P4 demineralized water is additionally mixed from the reservoir 22 by means of spraying devices 30 in the used for cooling air flow, so that in the sequence with a fine atomized demineralized water staggered air flow through the pressure stages 8,10,12 for cooling the same is conducted.
  • the current density of the air flow is kept constant and only the amount of demineralized water which is added to the air flow, varies until the pressure stages 8,10,12 are cooled down to the desired temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Control Of Turbines (AREA)
EP12152446.6A 2012-01-25 2012-01-25 Verfahren zur Steuerung eines Abkühlungsprozesses von Turbinenkomponenten Withdrawn EP2620604A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP12152446.6A EP2620604A1 (de) 2012-01-25 2012-01-25 Verfahren zur Steuerung eines Abkühlungsprozesses von Turbinenkomponenten
KR1020147020559A KR101615469B1 (ko) 2012-01-25 2012-11-07 터빈 부품의 냉각 프로세스를 제어하기 위한 방법
PL12788486T PL2776684T3 (pl) 2012-01-25 2012-11-07 Sposób sterowania procesem chłodzenia elementów turbiny
BR112014017896A BR112014017896A8 (pt) 2012-01-25 2012-11-07 Método para controlar um processo de resfriamento de componentes de turbina
JP2014553635A JP5911973B2 (ja) 2012-01-25 2012-11-07 タービンコンポーネントの冷却プロセスの制御方法
RU2014134325/06A RU2589419C2 (ru) 2012-01-25 2012-11-07 Способ управления процессом охлаждения компонентов турбины
PCT/EP2012/071982 WO2013110365A1 (de) 2012-01-25 2012-11-07 Verfahren zur steuerung eines abkühlungsprozesses von turbinenkomponenten
CN201280068157.7A CN104081008B (zh) 2012-01-25 2012-11-07 用于控制涡轮机部件的冷却过程的方法
US14/372,014 US9422832B2 (en) 2012-01-25 2012-11-07 Method for controlling a cooling process of turbine components
EP12788486.4A EP2776684B1 (de) 2012-01-25 2012-11-07 Verfahren zur steuerung eines abkühlungsprozesses von turbinenkomponenten

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12152446.6A EP2620604A1 (de) 2012-01-25 2012-01-25 Verfahren zur Steuerung eines Abkühlungsprozesses von Turbinenkomponenten

Publications (1)

Publication Number Publication Date
EP2620604A1 true EP2620604A1 (de) 2013-07-31

Family

ID=47216232

Family Applications (2)

Application Number Title Priority Date Filing Date
EP12152446.6A Withdrawn EP2620604A1 (de) 2012-01-25 2012-01-25 Verfahren zur Steuerung eines Abkühlungsprozesses von Turbinenkomponenten
EP12788486.4A Not-in-force EP2776684B1 (de) 2012-01-25 2012-11-07 Verfahren zur steuerung eines abkühlungsprozesses von turbinenkomponenten

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP12788486.4A Not-in-force EP2776684B1 (de) 2012-01-25 2012-11-07 Verfahren zur steuerung eines abkühlungsprozesses von turbinenkomponenten

Country Status (9)

Country Link
US (1) US9422832B2 (ko)
EP (2) EP2620604A1 (ko)
JP (1) JP5911973B2 (ko)
KR (1) KR101615469B1 (ko)
CN (1) CN104081008B (ko)
BR (1) BR112014017896A8 (ko)
PL (1) PL2776684T3 (ko)
RU (1) RU2589419C2 (ko)
WO (1) WO2013110365A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3109419A1 (de) * 2015-06-25 2016-12-28 Siemens Aktiengesellschaft Verfahren zum abkühlen einer strömungsmaschine
EP3109418A1 (de) * 2015-06-24 2016-12-28 Siemens Aktiengesellschaft Verfahren zum abkühlen einer dampfturbine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101907741B1 (ko) * 2016-06-27 2018-10-12 두산중공업 주식회사 스팀터빈의 윈디지 로스 방지 장치

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2307887A1 (de) * 1973-01-29 1974-08-08 Bbc Brown Boveri & Cie Stroemungsmaschine
SU580336A1 (ru) * 1973-07-26 1977-11-15 Всесоюзный Дважды Ордена Трудового Красного Знамени Теплотехнический Научноисследовательский Институт Им. Ф.Э. Дзержинского Способ расхолаживани энергоблока
JPH06159008A (ja) * 1992-11-26 1994-06-07 Hitachi Ltd 蒸気タービン強制冷却装置の監視・保護および性能管理装置
WO1994019584A1 (de) * 1993-02-25 1994-09-01 Siemens Aktiengesellschaft Kühlung einer turbine mit kleinem druckverhältnis im ventilationsbetrieb
US5388960A (en) * 1992-10-05 1995-02-14 Kabushiki Kaisha Toshiba Forced-air cooling apparatus of steam turbine
EP1500792A2 (en) * 2003-07-25 2005-01-26 Bj Services Company System and method of cooling steam turbines
EP1630356A1 (de) * 2004-08-25 2006-03-01 Siemens Aktiengesellschaft Flüssigkeitseinspritzung in einer Gasturbine während einer Abkühlphase
EP2365197A1 (de) * 2010-03-02 2011-09-14 Alstom Technology Ltd Beschleunigte Kühlung einer Gasturbine

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3173654A (en) * 1962-03-14 1965-03-16 Burns & Roe Inc Temperature control of turbine blades on spinning reserve turbines
SU769035A1 (ru) * 1978-07-07 1980-10-07 Всесоюзный Дважды Ордена Трудового Красного Знамени Теплотехнический Научно-Исследовательский Институт Им.Ф.Э.Дзержинского Способ охлаждени выхлопного патрубка паровой турбины
SU931916A1 (ru) * 1980-08-27 1982-05-30 Лукомльская Государственная Районная Электростанция Им.50-Летия Ссср Способ расхолаживани паровой турбины
SU941636A1 (ru) * 1980-10-02 1982-07-07 За витель А. И. Тугое Способ расхолаживани энергоблока
JPH03294605A (ja) * 1990-04-12 1991-12-25 Touden Sekkei Kk 蒸気タービンの急速冷却装置
JPH0559904A (ja) * 1991-09-03 1993-03-09 Touden Sekkei Kk 蒸気タービンの冷却方法および装置
JPH08218811A (ja) * 1995-02-16 1996-08-27 Hitachi Ltd 蒸気タービンの冷却方法及びその装置
CN1136131A (zh) 1995-05-12 1996-11-20 吴义松 一种汽轮机停机以后快速冷却的方法
WO1997008431A1 (de) 1995-08-31 1997-03-06 Siemens Aktiengesellschaft Verfahren und vorrichtung zur kühlung einer niederdruck-teilturbine
JPH09177505A (ja) * 1995-12-22 1997-07-08 Toshiba Corp 蒸気タービンのウオーミング並びにクーリング蒸気制御装置及び制御方法
US5953900A (en) * 1996-09-19 1999-09-21 Siemens Westinghouse Power Corporation Closed loop steam cooled steam turbine
WO1998013588A1 (de) * 1996-09-26 1998-04-02 Siemens Aktiengesellschaft Dampfturbine, dampfturbinenanlage sowie verfahren zur abkühlung einer dampfturbine
DE19640298A1 (de) 1996-09-30 1998-04-09 Siemens Ag Dampfturbine, Verfahren zur Kühlung einer Dampfturbine im Ventilationsbetrieb sowie Verfahren zur Kondensationsminderung bei einer Dampfturbine im Leistungsbetrieb
JPH11270306A (ja) * 1998-03-20 1999-10-05 Toshiba Corp 蒸気タービンの強制冷却装置
DE19823251C1 (de) 1998-05-26 1999-07-08 Siemens Ag Verfahren und Vorrichtung zur Kühlung einer Niederdruckstufe einer Dampfturbine
US6443690B1 (en) 1999-05-05 2002-09-03 Siemens Westinghouse Power Corporation Steam cooling system for balance piston of a steam turbine and associated methods
RU2379524C1 (ru) * 2008-05-28 2010-01-20 Открытое акционерное общество "Авиадвигатель" Газовая силовая турбина
JP2010019190A (ja) * 2008-07-11 2010-01-28 Toshiba Corp 蒸気タービンおよび蒸気タービンの冷却方法
US8376687B2 (en) * 2009-10-13 2013-02-19 General Electric Company System and method for cooling steam turbine rotors

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2307887A1 (de) * 1973-01-29 1974-08-08 Bbc Brown Boveri & Cie Stroemungsmaschine
SU580336A1 (ru) * 1973-07-26 1977-11-15 Всесоюзный Дважды Ордена Трудового Красного Знамени Теплотехнический Научноисследовательский Институт Им. Ф.Э. Дзержинского Способ расхолаживани энергоблока
US5388960A (en) * 1992-10-05 1995-02-14 Kabushiki Kaisha Toshiba Forced-air cooling apparatus of steam turbine
JPH06159008A (ja) * 1992-11-26 1994-06-07 Hitachi Ltd 蒸気タービン強制冷却装置の監視・保護および性能管理装置
WO1994019584A1 (de) * 1993-02-25 1994-09-01 Siemens Aktiengesellschaft Kühlung einer turbine mit kleinem druckverhältnis im ventilationsbetrieb
EP1500792A2 (en) * 2003-07-25 2005-01-26 Bj Services Company System and method of cooling steam turbines
EP1630356A1 (de) * 2004-08-25 2006-03-01 Siemens Aktiengesellschaft Flüssigkeitseinspritzung in einer Gasturbine während einer Abkühlphase
EP2365197A1 (de) * 2010-03-02 2011-09-14 Alstom Technology Ltd Beschleunigte Kühlung einer Gasturbine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3109418A1 (de) * 2015-06-24 2016-12-28 Siemens Aktiengesellschaft Verfahren zum abkühlen einer dampfturbine
WO2016206972A1 (de) * 2015-06-24 2016-12-29 Siemens Aktiengesellschaft Verfahren zum abkühlen einer dampfturbine
CN107889514A (zh) * 2015-06-24 2018-04-06 西门子公司 用于冷却蒸汽轮机的方法
US10422251B2 (en) 2015-06-24 2019-09-24 Siemens Aktiengesellschaft Method for cooling a steam turbine
CN107889514B (zh) * 2015-06-24 2020-02-21 西门子公司 用于冷却蒸汽轮机的方法
EP3109419A1 (de) * 2015-06-25 2016-12-28 Siemens Aktiengesellschaft Verfahren zum abkühlen einer strömungsmaschine
WO2016206974A1 (de) * 2015-06-25 2016-12-29 Siemens Aktiengesellschaft Verfahren zum abkühlen einer strömungsmaschine

Also Published As

Publication number Publication date
BR112014017896A2 (ko) 2017-06-20
BR112014017896A8 (pt) 2017-07-11
US9422832B2 (en) 2016-08-23
PL2776684T3 (pl) 2016-07-29
EP2776684A1 (de) 2014-09-17
US20150047353A1 (en) 2015-02-19
WO2013110365A1 (de) 2013-08-01
RU2014134325A (ru) 2016-03-20
RU2589419C2 (ru) 2016-07-10
KR101615469B1 (ko) 2016-04-25
JP5911973B2 (ja) 2016-04-27
CN104081008B (zh) 2015-11-25
KR20140099554A (ko) 2014-08-12
JP2015508472A (ja) 2015-03-19
EP2776684B1 (de) 2016-01-20
CN104081008A (zh) 2014-10-01

Similar Documents

Publication Publication Date Title
DE68926220T2 (de) Verfahren und Vorrichtung zur Dampfkrafterzeugung
WO2004051062A1 (de) Verfahren zur steuerung der flüssigkeitseinspritzung in einen zuströmkanal einer kraft- oder arbeitsmaschine
EP1592870A1 (de) Verfahren zum betrieb einer gasturbogruppe
EP2776684B1 (de) Verfahren zur steuerung eines abkühlungsprozesses von turbinenkomponenten
WO2005073538A1 (de) Fördervorrichtung
CH705323A1 (de) Verfahren zum Einspritzen von Wasser in einen mehrstufigen Axialverdichter einer Gasturbine.
EP2432973A2 (de) Dampfkreisprozessvorrichtung und verfahren zur steuerung derselben
EP2616643B1 (de) Verfahren zur regelung einer kurzfristigen leistungserhöhung einer dampfturbine
EP0597325B1 (de) Verfahren zur Zwischenkühlung eines Turboverdichter
EP2628520A1 (de) Verfahren und Vorrichtung zur zyklischen Adsorption einer Komponente aus einem Ausgangsgas mit einem Verdichter mit variabler Leistung
DE102013102879A1 (de) Kompressor und Verfahren zum Betreiben eines Kompressors
DE102016218763A1 (de) Verfahren zur kurzfristigen Leistungsanpassung einer Dampfturbine eines Gas-und Dampfkraftwerks für die Primärregelung
EP2964910B1 (de) Verfahren zum flexiblen betrieb einer kraftwerksanlage
DE102012224009A1 (de) Verfahren zum Betreiben einer Gasturbine
EP2486984A2 (de) Verfahren zur Aufbereitung von Druckluft sowie Vorrichtung zur Aufbereitung von Druckluft
WO2012163610A1 (de) System zur gewinnung und weiterverarbeitung von erdgas
EP3111059B1 (de) Wasserdampfkreislauf sowie ein verfahren zum betreiben eines wasserdampfkreislaufes
DE102011018345B4 (de) Vorrichtung und Verfahren zum Regeln der Temperatur eines fluiden Mediums
DE2719625B2 (de) Gichtgasreinigungsanlage
EP3219939A1 (de) Verfahren zum betreiben einer dampfturbine
DE102013001454A1 (de) Dampfturbine und Verfahren zum Betreiben derselben
DE925025C (de) Regelverfahren fuer Gleichdruck-Verbrennungs-Turbinenanlagen
WO2023147918A1 (de) Pelton turbine und betriebsverfahren
EP4442342A1 (de) Verfahren zur und thermokompressionsanlage mit gegensolevorwärmung
EP1245795A2 (de) Verfahren zur Verhinderung von Ablagerungen in Dampfsystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140201