EP2776684A1 - Verfahren zur steuerung eines abkühlungsprozesses von turbinenkomponenten - Google Patents

Verfahren zur steuerung eines abkühlungsprozesses von turbinenkomponenten

Info

Publication number
EP2776684A1
EP2776684A1 EP12788486.4A EP12788486A EP2776684A1 EP 2776684 A1 EP2776684 A1 EP 2776684A1 EP 12788486 A EP12788486 A EP 12788486A EP 2776684 A1 EP2776684 A1 EP 2776684A1
Authority
EP
European Patent Office
Prior art keywords
cooling
air
phase
mist
during
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12788486.4A
Other languages
English (en)
French (fr)
Other versions
EP2776684B1 (de
Inventor
Stefan Riemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP12788486.4A priority Critical patent/EP2776684B1/de
Priority to PL12788486T priority patent/PL2776684T3/pl
Publication of EP2776684A1 publication Critical patent/EP2776684A1/de
Application granted granted Critical
Publication of EP2776684B1 publication Critical patent/EP2776684B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • F01K13/025Cooling the interior by injection during idling or stand-by
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B23/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/30Application in turbines
    • F05B2220/301Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/211Heat transfer, e.g. cooling by intercooling, e.g. during a compression cycle
    • F05B2260/212Heat transfer, e.g. cooling by intercooling, e.g. during a compression cycle by water injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/212Heat transfer, e.g. cooling by water injection

Definitions

  • the invention relates to a method for controlling a cooling process of turbine components, in particular
  • a corresponding cooling of the turbine components is in this case with the help of an air stream accel ⁇ nigt usually to reduce the time required for maintenance work on ei less as possible.
  • the tempera ture limited the cooling effect of the air flow in such a forced cooling.
  • the object of the invention is to provide an improved method for forced cooling of turbine components.
  • the method is used to control a cooling process of turbine components, in particular a steam turbine shaft, wherein during a mist cooling phase, an air stream offset with a water mist is used to cool the turbine components.
  • an air stream offset with a water mist is used to cool the turbine components.
  • water vapor which is used in the operation of the steam turbine as a working medium
  • it is in the water mist to an aerosol, so a Mixture of air and water droplets, which can absorb and remove heat energy to a particularly high degree by a phase transition of the water contained by the liquid in the gaseous phase.
  • the air flow offset with the water mist is therefore not the working medium. It is passed as a further medium for cooling purposes through the turbine.
  • a simple cooling by a forced convection so for example an air cooling, supplemented by an additional boiling or evaporative cooling, whereby the effectiveness of cooling is increased significantly with relatively simple means.
  • a cooling system for a simple air cooling is already given, since in this case can be retrofitted without great technical effort, with only a device is to install, with the help of which generates a water mist and is introduced into the air flow of the air cooling.
  • the cooling process can be controlled by a temperature range which is larger than that of a simple air cooling in such a way that a desired time-dependent temperature gradient is predetermined.
  • the cooling process is designed in several stages, wherein the mist cooling phase a
  • Air cooling phase precedes, during which only an air flow without water mist for cooling the
  • Turbine components is used. Accordingly, as needed, the cooling of the turbine components either by means of the air flow or with the help of the
  • a temporal temperature gradient of about 5 to 15 K / h, in particular of about 10 K / h, is preferred.
  • the cooling process is preferably controlled in accordance with the method presented here so that the predetermined maximum temperature gradient is achieved as accurately as possible and maintained over the entire cooling process.
  • the previously mentioned value for the temperature gradient of about 10 K / h represents a typical value for steam turbines.
  • Such a maximum temporal temperature gradient is generally predetermined for a limited temperature range, which is why a plurality of different values can certainly be provided during a cooling process over a very wide temperature range.
  • the cooling process is controlled such that in each ⁇ the corresponding temperature range of the predetermined temperature gradient is achieved and maintained over the entire temperature ⁇ range.
  • only the current density of the air stream and currency ⁇ rend the mist cooling phase is for setting the temperature gradient during the cooling phase at the air added to the air stream of water mist regulates the amount alone.
  • This makes it possible particularly simple to realize an appropriate cooling system for the turbine and in particular ⁇ sondere a control system for the cooling system.
  • a corresponding Control relatively insensitive to errors, since always only one variable is changed within the control.
  • Vacuum generated in the steam turbine wherein a Druckge ⁇ cases between the turbine inlet and the turbine outlet is specified.
  • an inlet valve positioned at the turbine inlet with constant operation of the evacuation device with the aid of the ambient air, an air flow can be generated with which the turbine components of the steam turbine can be cooled.
  • the valve position can then be used to regulate the current density of the air flow, ie the amount of air per unit of time.
  • the efficiency of cooling depends on the temperature difference between the temperature of Turbine components and the temperature of the ambient air used for the air flow from. This temperature difference is completely sufficient at the beginning of the cooling process to reach the predetermined maximum temperature gradient and to keep it over a certain temperature range.
  • this Lei ⁇ processing system can provide depending on the operating mode, either to direct the working medium, or for conducting the cooling medium, that is the air or mixed with the water mist air nut ⁇ zen.
  • a variant of the method is expedient in which the mist cooling phase precedes a heat equalization phase in the cooling process, in which a temperature equalization of the turbine components takes place, in particular, by heat conduction. This reduces local temperature differences within the turbine, further reducing the risk of damaging the turbine.
  • the temperature of the working medium is gradually reduced, wherein typically during this cooling ⁇ phase, the turbine is still in operation, ie in particular generates electrical energy.
  • a constant temporal temperature gradient in the cooling process is set during the steam-cooling phase, served from Temperaturgra ⁇ during the air-cooling phase and during the cooling phase deviates fog, in particular greater.
  • demineralized water is used both to produce the water mist and as a working medium. Since demine ⁇ ralformates water must be made with a certain technical complexity, the use of demineralisier- tem water is particularly advantageous if appropriate demineralized water is provided as the working fluid for the turbine anyway and, accordingly, has become available ⁇ supply anyway.
  • 1 shows a diagram of a time course of a local temperature in a steam turbine and 2 shows a block diagram of a steam turbine with a controllable cooling device.
  • the method described below is used to control a forced cooling process of turbine components of a steam turbine 2, wherein the control is performed such that as shown in FIG 1 for an extended Tempe ⁇ ratur Scheme a temperature gradient is constant over time for the cooling process is set.
  • the specification of Tempe ⁇ gradients takes place here by means of a cooling-control-unit 4 which evaluates sensor data arranged in the steam turbine 2 temperature sensors 6 and based thereon, controls a cooling system.
  • the cooling process is subdivided in the exemplary embodiment into four successive phases P1... P4.
  • the temperature of the first phase PI of the cooling process the temperature of the first phase PI
  • Working medium here water vapor, down regulated, whereby the turbine components of the steam turbine 2 are cooled down with a temperature gradient of about 30 K / h down.
  • the steam turbine 2 continues to generate electrical energy, although the generated electrical energy per unit time is steadily decreasing.
  • the transition from the steam-cooling phase to a heat compensation phase P2 takes place.
  • the cooling of the turbine components is interrupted by convection, so that a temperature equalization of the turbine components with each other can be carried out by heat conduction. As a result, larger temperature differences within the steam turbine 2 are to be reduced.
  • the heat balance phase P2 is terminated and an air-cooling phase P3 is started.
  • an air flow is generated, which is passed through the turbine components. It is therefore ne ⁇ neut a cooling of the turbine components forced by cooling by means of convection, the cooling medium is now no water vapor, but an air flow, for the generation of ambient air is used.
  • the fourth and last phase of the cooling process which is referred to below as the mist cooling phase P4, starts.
  • the air stream, for which the maximum possible current density is maintained further is zusharm ⁇ Lich feinstvernebeltes demineralized water were added.
  • convection cooling is supplemented by evaporative cooling, which allows maintenance of the desired temperature gradient for the cooling process.
  • the amount of demineralized water which is added to the air stream as finely atomised water is regulated.
  • the controlled cooling process ends and it typically follows the opening of the steam turbine 2 and in particular the opening of a usually provided Housing. Subsequently, the upcoming Wartungsarbei ⁇ th, for which a shutdown and cooling of the steam turbine 2 typically takes place, be made.
  • This deviating temperature curve of the turbine components is characteristic of a cooling process in which the cooling is forced exclusively by means of an air flow without additionally introducing a water mist into the air flow.
  • FIG. 1 A possible embodiment of a system in which the steam turbine 2 and a cooling device are used to implement the method presented here is shown schematically in FIG.
  • the plant comprises the steam turbine 2 with a high-pressure stage 8, with a With ⁇ tel horren 10 as well as with a low pressure stage 12, between the high-pressure stage 8 and the medium-pressure stage 10 intermediate superheating unit 14, a steam generator 16, a condenser 18 and a pipe system 20 for the
  • Working medium here demineralized water and corresponding water vapor.
  • Part of the system is also a reservoir 22, with the help of a loss of demineralized water, if necessary, can be compensated.
  • the installation has the cooling control unit 4, which preferably forms part of a central control unit the plant is.
  • the cooling control unit 4 14 Now, a cooling process initiated for example by a user-, controls to ⁇ nearest the steam generator 16 and the superheater unit, so that the temperature of the vaporized demineralized water which is passed through the pressure stages 8,10,12 is gradually sinking. In this way, the steam-cooling ⁇ phase PI is implemented.
  • the control valves 26 are gradually opened so that ambient air can flow in each case via an opening 28 into the supply lines of the line system 20 to the pressure stages 8,10,12.
  • a negative pressure is predetermined in the condenser 18 by means of a corresponding, but not explicitly shown, evacuation device, so that in this way ambient air flows in at the openings 28 and flows through the pressure stages 8, 10, 12.
  • the current density of the air stream ⁇ is inserted over the valve position of the control valves 26 through the respective pressure stage 8,10,12.
  • additionally demineralized water from the reservoir 22 is mixed with the aid of spraying devices 30 into the air stream used for cooling, so that subsequently an air stream offset with ultrapure demineralized water flows through the air
  • Pressure stages 8,10,12 is headed for cooling selbiger.
  • the current density of the air flow is kept constant and only the amount of demineralized water which is added to the air flow, varies until the pressure ⁇ stages 8,10,12 are cooled down to the desired temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Control Of Turbines (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Steuerung eines Abkühlungsprozesses von Turbinenkomponenten (8,10,12) einer Dampfturbinenwelle, wobei während einer Nebel-Kühlungsphase (P4) ein mit einem Wassernebel versetzter Luftstrom zur Kühlung der Turbinenkomponenten (8,10,12) genutzt wird. Insbesondere geht der Nebel-Kühlungsphase (P4) eine Luft-Kühlungsphase (P3) voraus, während derer ein Luftstrom zur Kühlung der Turbinenkomponenten genutzt wird. Dabei wird ein gleichbleibender zeitlicher Temperaturgradient für den Abkühlungsprozess vorgegeben, wobei die Luftstromdichte über die Ventilstellung eines steuerbaren Regelventils (26) eingestellt wird und von der Luft-Kühlungsphase (P3) in die Nebel-Kühlungsphase (P4) gewechselt wird, wenn die maximale Luftstromdichte erreicht ist und insbesondere, wenn das Regelventil (26) voll geöffnet ist.

Description

Beschreibung
VERFAHREN ZUR STEUERUNG EINES ABKÜHLUNGSPROZESSES VON TURBINENKOMPONENTEN
Die Erfindung betrifft ein Verfahren zur Steuerung eines kühlungsprozesses von Turbinenkomponenten, insbesondere
Dampfturbinenwelle .
Wartungsarbeiten sind bei Turbinen und insbesondere bei
Dampfturbinen mit einem hohen Zeitaufwand verbunden, da die Turbinenkomponenten der Turbine bzw. der Dampfturbine zunächst herunter gekühlt werden müssen, bevor die Turbine angehalten werden kann und bevor die Wartungsarbeiten durchgeführt werden können.
Eine entsprechende Abkühlung der Turbinenkomponenten wird hierbei üblicherweise mit Hilfe eines Luftstromes beschleu¬ nigt, um die benötigte Zeit für die Wartungsarbeiten auf ei möglichst geringes Maß zu reduzieren. Zur Generierung des Luftstromes wird dabei Umgebungsluft genutzt, deren Tempera tur die Kühlwirkung des Luftstromes bei einer derartigen Zwangskühlung beschränkt.
Ausgehend hiervon liegt der Erfindung die Aufgabe zugrunde, ein verbessertes Verfahren zur Zwangskühlung von Turbinenkomponenten anzugeben.
Diese Aufgabe wird erfindungsgemäß durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst.
Das Verfahren dient zur Steuerung eines Abkühlungsprozesses von Turbinenkomponenten, insbesondere einer Dampfturbinenwelle, wobei während einer Nebel-Kühlungsphase ein mit einem Wassernebel versetzter Luftstrom zur Kühlung der Turbinenkomponenten genutzt wird. Im Gegensatz zu Wasserdampf, der im Betrieb der Dampfturbine als Arbeitsmedium eingesetzt wird, handelt es sich bei dem Wassernebel um ein Aerosol, also ein Gemisch aus Luft und Wassertröpfchen, welches durch einen Phasenübergang des enthaltenen Wassers von der flüssigen in die gasförmige Phase Wärmeenergie in besonders hohem Maße aufnehmen und abtransportieren kann. Bei dem mit dem Wasser- nebel versetzten Luftstrom handelt es sich daher nicht um das Arbeitsmedium. Es wird als weiteres Medium zu Kühl-Zwecken durch die Turbine geführt. Auf diese Weise wird eine einfache Kühlung durch eine erzwungene Konvektion, also beispielsweise eine Luftkühlung, ergänzt durch eine zusätzliche Siede- oder Verdampfungskühlung, wodurch die Effektivität der Kühlung mit relativ einfachen Mitteln signifikant erhöht wird. Eine derartige Ergänzung ist insbesondere dann von Vorteil, wenn ein Kühlsystem für eine einfache Luftkühlung bereits gegeben ist, da in diesem Fall ohne großen technischen Aufwand eine Nach- rüstung erfolgen kann, wobei lediglich eine Vorrichtung zu installieren ist, mit deren Hilfe ein Wassernebel generiert und in den Luftstrom der Luftkühlung eingebracht wird. Durch die Kombination einer einfachen Luftkühlung mit einer Siedekühlung lässt sich der Abkühlungsprozess über einen im Ver- gleich zu einer einfachen Luftkühlung vergrößerten Temperaturbereich derart steuern, dass ein gewünschter zeitabhängiger Temperaturgradient vorgeben wird.
Gemäß einer Verfahrensvariante ist der Abkühlungsprozess mehrstufig gestaltet, wobei der Nebel-Kühlungsphase eine
Luft-Kühlungsphase vorausgeht, während derer lediglich ein Luftstrom ohne Wassernebel zur Kühlung der
Turbinenkomponenten genutzt wird. Dementsprechend wird je nach Bedarf die Kühlung der Turbinenkomponenten entweder mit Hilfe des Luftstromes oder aber mit Hilfe des mit dem
Wassernebel versetzten Luftstromes erzwungen. Somit lassen sich durch verschiedene Betriebsmodi eines Kühlsystems sehr unterschiedliche Wärmemengen pro Zeiteinheit aus der Turbine auskoppeln und abtransportieren.
Gemäß einer Verfahrensvariante, wird während der Luft- Kühlungsphase und während der Nebel-Kühlungsphase ein
einheitlicher und gleichbleibender zeitlicher Temperatur- gradient für den Abkühlungsprozess vorgegeben. Dabei wird insbesondere ein zeitlicher Temperaturgradient von etwa 5 - 15 K/h, insbesondere von etwa 10 K/h, bevorzugt. Für einen möglichst wirtschaftlichen Betrieb einer Turbine ist es zweckmäßig, den Zeitbedarf für notwendige Wartungsarbeiten möglichst gering zu halten. Dementsprechend ist es wünschens¬ wert, die Turbinenkomponenten für eine entsprechende Wartung möglichst zügig herunterzukühlen. Eine zu intensive Zwangs¬ kühlung jedoch birgt das Risiko, dass sich beispielsweise in den Turbinenkomponenten Spannungen aufbauen, die zur Beschädigung der Turbinenkomponenten führen können. Daher wird bei der Auslegung der Turbinenkomponenten im Rahmen der Planung der Turbine ein maximaler zeitlicher Temperaturgradient fest¬ gelegt. Infolgedessen wird der Abkühlungsprozess gemäß dem hier vorgestellten Verfahren bevorzugt derart gesteuert, dass der vorgegebene maximale Temperaturgradient möglichst genau erreicht und über den gesamten Abkühlungsprozess gehalten wird. Der zuvor angeführte Wert für den Temperaturgradienten von etwa 10 K/h repräsentiert hierbei einen typischen Wert für Dampfturbinen. Ein solcher maximaler zeitlicher Temperaturgradient ist dabei in der Regel für einen begrenzten Temperaturbereich vorgegeben, weswegen bei einem Abkühlungsprozess über einen sehr großen Temperaturbereich durchaus mehrere verschiedene Werte vorgegeben sein können. In diesem Fall wird der Abkühlungsprozess derart gesteuert, dass in je¬ dem entsprechenden Temperaturbereich der dafür vorgegebene Temperaturgradient erreicht und über den gesamten Temperatur¬ bereich gehalten wird. Entsprechend einer sehr zweckmäßigen Variante des Verfahrens wird zur Vorgabe des Temperaturgradienten während der Luft- Kühlungsphase allein die Stromdichte des Luftstroms und wäh¬ rend der Nebel-Kühlungsphase allein die Menge an dem dem Luftstrom zugesetzten Wassernebel reguliert. Hierdurch lässt sich ein geeignetes Kühlungssystem für die Turbine und insbe¬ sondere ein Steuerungssystem für das Kühlungssystem technisch besonders einfach realisieren. Zudem ist eine entsprechende Steuerung relativ unanfällig für Fehler, da stets lediglich eine Variable im Rahmen der Steuerung verändert wird.
Des Weiteren ist es zweckmäßig, die Stromdichte des Luft- Stroms über die Ventilstellung eines steuerbaren Einlassventils einzustellen. Bei Dampfturbinen beispielsweise wird häu¬ fig über eine entsprechende Evakuierungseinrichtung ein
Unterdruck in der Dampfturbine erzeugt, wobei ein Druckge¬ fälle zwischen dem Turbineneinlass und dem Turbinenauslass vorgegeben wird. Somit lässt sich durch ein am Turbineneinlass positioniertes Einlassventil bei konstantem Betrieb der Evakuierungseinrichtung mit Hilfe der Umgebungsluft ein Luftstrom generieren, mit dem die Turbinenkomponenten der Dampfturbine gekühlt werden können. Über die Ventilstellung lässt sich dann die Stromdichte des Luftstromes, also die Menge an Luft pro Zeiteinheit regulieren.
Zudem ist es von Vorteil, von der Luft-Kühlungsphase in die Nebel-Kühlungsphase zu wechseln, wenn die maximale Luftstrom- dichte erreicht ist und insbesondere, wenn das Einlassventil voll geöffnet ist. Im Falle des zuvor beschriebenen Kühlungs¬ systems für die Dampfturbine, bei der die Evakuierungsein¬ richtung und das Einlassventil im Einlassbereich der Dampfturbine genutzt werden, um einen Luftstrom zur Kühlung der Turbinenkomponenten zu generieren, hängt die Effektivität der Kühlung von der Temperaturdifferenz zwischen der Temperatur der Turbinenkomponenten und der Temperatur der für den Luftstrom genutzten Umgebungsluft ab. Diese Temperaturdifferenz ist zu Beginn des Abkühlungsprozesses völlig ausreichend, um den vorgegebenen maximalen Temperaturgradienten zu erreichen und über einen gewissen Temperaturbereich zu halten. Mit sinkender Temperatur der Turbinenkomponenten sinkt jedoch die Effektivität der einfachen Luftkühlung und das Einlassventil muss, um den Temperaturgradienten zu halten, immer weiter ge- öffnet werden, wodurch die Stromdichte des Luftstromes an¬ steigt. Ist der Abkühlungsprozess weiter fortgeschritten, dann ist irgendwann der Zeitpunkt erreicht, an dem das Ventil voll geöffnet und die maximale Stromdichte des Luftstromes erreicht ist. Um den gewünschten und vorgegebenen Temperaturgradienten weiterhin halten zu können, wird ab diesem Zeitpunkt Wassernebel dem Luftstrom beigemischt, wobei nachfol¬ gend die Menge an Wassernebel zur Steuerung des Abkühlungs- prozesses und insbesondere zur Vorgabe des Temperaturgradien¬ ten reguliert wird.
Weiter bevorzugt ist eine Verfahrensvariante, bei der der Luftstrom oder der mit dem Wassernebel versetzte Luftstrom bei Bedarf in ein Leitungssystem für Dampf eingeleitet wird. Damit ist insbesondere dann ein Vorteil verbunden, wenn Dampf als Arbeitsmedium für die Turbine eingesetzt wird und ein entsprechendes Leitungssystem für den Dampf ohnehin gegeben ist, welches eine Durchleitung des Arbeitsmediums durch die Turbine gestattet. In diesem Fall lässt sich eben dieses Lei¬ tungssystem je nach Betriebsmodus entweder zur Leitung des Arbeitsmediums oder aber zur Leitung des Kühlmediums, also der Luft oder der mit dem Wassernebel versetzten Luft, nut¬ zen .
Darüber hinaus ist es von Vorteil, wenn der Luftstrom oder der mit dem Wassernebel versetzte Luftstrom an mehreren Posi¬ tionen, insbesondere vor jeder Druckstufe der Dampfturbine, in das Leitungssystem eingeleitet wird. Auf diese Weise lässt sich eine besonders gleichmäßige Zwangskühlung aller Turbi¬ nenkomponenten unabhängig von ihrer Position innerhalb der Turbine erreichen.
Weiter ist eine Verfahrensvariante zweckmäßig, bei der der Nebel-Kühlungsphase eine Wärmeausgleichsphase im Abkühlungs- prozess vorausgeht, in der eine Temperaturangleichung der Turbinenkomponenten untereinander vor allem durch Wärmeleitung erfolgt. Hierdurch werden lokale Temperaturunterschiede innerhalb der Turbine reduziert, wodurch das Risiko einer Be- Schädigung der Turbine weiter reduziert wird.
Insbesondere im Falle der Dampfturbine wird zudem eine Vari¬ ante des Verfahrens bevorzugt, bei der zu Beginn des Abküh- lungsprozesses eine Dampf-Kühlungsphase vorgesehen ist, wäh¬ rend derer das Arbeitsmedium, also beispielsweise der Wasserdampf, zur Kühlung der Turbinenkomponenten genutzt wird.
Hierbei wird die Temperatur des Arbeitsmediums allmählich zu- rückgefahren, wobei typischerweise während dieser Abkühlungs¬ phase die Turbine weiterhin in Betrieb ist, also insbesondere elektrische Energie generiert.
In vorteilhafter Weiterbildung wird während der Dampf-Küh- lungsphase ein gleichbleibender zeitlicher Temperaturgradient für den Abkühlungsprozess vorgegeben, der vom Temperaturgra¬ dienten während der Luft-Kühlungsphase und während der Nebel- Kühlungsphase abweicht, insbesondere größer ist.
Zudem ist es von Vorteil, wenn als Wassernebel feinstver- nebeltes demineralisiertes Wasser verwendet wird. Hierdurch wird vermieden, dass sich Mineralien bei der Verdunstung der Wassertröpfchen aus dem Wassernebel an den Turbinenkomponenten absetzen.
Zweckmäßig ist schließlich eine Verfahrensvariante, bei der demineralisiertes Wasser sowohl zur Erzeugung des Wassernebels als auch als Arbeitsmedium eingesetzt wird. Da demine¬ ralisiertes Wasser mit einem gewissen technischen Aufwand hergestellt werden muss, ist der Einsatz von demineralisier- tem Wasser vor allem dann von Vorteil, wenn ohnehin entsprechendes demineralisiertes Wasser als Arbeitsmedium für die Turbine vorgesehen ist und dementsprechend ohnehin zur Verfü¬ gung steht.
Ausführungsbeispiele der Erfindung werden nachfolgend anhand einer schematischen Zeichnung näher erläutert.
Darin zeigen:
FIG 1 in einem Diagramm einen zeitlichen Verlauf einer lokalen Temperatur in einer Dampfturbine und FIG 2 in einer Blockschaltbilddarstellung eine Dampfturbine mit einer steuerbaren Kühleinrichtung.
Einander entsprechende Teile sind in allen Figuren jeweils mit den gleichen Bezugszeichen versehen.
Das nachfolgend beschriebene Verfahren dient zur Steuerung eines erzwungenen Abkühlungsprozesses von Turbinenkomponenten einer Dampfturbine 2, wobei die Steuerung derart erfolgt, dass wie in FIG 1 dargestellt über einen ausgedehnten Tempe¬ raturbereich ein zeitlich konstanter Temperaturgradient für den Abkühlungsprozess vorgegeben wird. Die Vorgabe des Tempe¬ raturgradienten erfolgt hierbei mit Hilfe einer Kühl-Steue- rungseinheit 4, welche Sensordaten von in der Dampfturbine 2 angeordneten Temperatursensoren 6 auswertet und basierend hierauf ein Kühlungssystem ansteuert.
Der Abkühlungsprozess ist im Ausführungsbeispiel in vier auf¬ einander folgende Phasen P1...P4 unterteilt. In der ersten Phase PI des Abkühlungsprozesses wird die Temperatur des
Arbeitsmediums, hier Wasserdampf, herunter geregelt, wodurch die Turbinenkomponenten der Dampfturbine 2 mit einem Temperaturgradienten von etwa 30 K/h herunter gekühlt werden. Während der Dampf-Kühlungsphase PI generiert die Dampfturbine 2 weiterhin elektrische Energie, wenngleich die generierte elektrische Energie pro Zeiteinheit stetig sinkt.
Bei einer Temperatur der Turbinenkomponenten von etwa 390 °C erfolgt der Übergang von der Dampf-Kühlungsphase in eine Wär- meausgleichsphase P2. In dieser Phase des Abkühlungsprozesses wird die Kühlung der Turbinenkomponenten mittels Konvektion unterbrochen, damit eine Temperaturangleichung der Turbinenkomponenten untereinander durch Wärmeleitung erfolgen kann. Hierdurch sollen größere Temperaturdifferenzen innerhalb der Dampfturbine 2 abgebaut werden.
Nach etwa 6 Stunden wird die Wärmeausgleichsphase P2 beendet und eine Luft-Kühlungsphase P3 wird gestartet. Während dieser Luft-Kühlungsphase P3 wird ein Luftstrom generiert, welcher über die Turbinenkomponenten geleitet wird. Es wird also er¬ neut eine Abkühlung der Turbinenkomponenten durch Kühlung mittels Konvektion erzwungen, wobei das Kühlmedium nunmehr kein Wasserdampf ist, sondern ein Luftstrom, zu dessen Generierung Umgebungsluft herangezogen wird. Dabei wird die
Stromdichte des Luftstromes stetig gesteigert, um so einen Temperaturgradienten von etwa 10 K/h für den Abkühlungsprozess der Turbinenkomponenten vorzugeben. Mit der Steigerung der Stromdichte des Luftstromes wird hierbei die geringer werdende Differenz zwischen der Temperatur der Turbinenkomponenten und der Temperatur der zur Kühlung herangezogenen Umgebungsluft ausgeglichen, so dass in der Summe eine gleich¬ mäßige Abkühlung erzwungen wird.
Ist die mit der Kühlvorrichtung erreichbare maximale Luft¬ stromdichte erreicht, so genügt eine einfache Kühlung mittels Luftstrom nicht mehr aus, um den gewünschten Temperaturgradienten für den Abkühlungsprozess weiter aufrecht zu erhal- ten. Dies ist je nach Temperatur der Umgebungsluft typischerweise bei einer Temperatur der Turbinenkomponenten von etwa 200°C der Fall. Ab diesem Zeitpunkt startet die vierte und letzte Phase des Abkühlungsprozesses, welche nachfolgend als Nebel-Kühlungsphase P4 bezeichnet wird. Während dieser Nebel- Kühlungsphase P4 wird dem Luftstrom, für den weiterhin die maximal mögliche Stromdichte aufrechterhalten wird, zusätz¬ lich feinstvernebeltes demineralisiertes Wasser zugesetzt. Hierdurch wird die Kühlung durch Konvektion ergänzt durch eine Verdampfungskühlung, was die Aufrechterhaltung des ge- wünschten Temperaturgradienten für den Abkühlungsprozess erlaubt. Zur Regulierung des Temperaturgradienten wird dabei die Menge an demineralisiertem Wasser, welches als feinstver- nebeltes Wasser dem Luftstrom zugesetzt wird, reguliert. Bei einer Temperatur der Turbinenkomponenten zwischen 100 °C und 150°C endet schließlich der gesteuerte Abkühlungsprozess und es folgt typischerweise die Öffnung der Dampfturbine 2 und insbesondere die Öffnung eines in der Regel vorgesehenen Gehäuses. Nachfolgend können die anstehenden Wartungsarbei¬ ten, derentwegen eine Stilllegung und eine Abkühlung der Dampfturbine 2 typischerweise erfolgt, vorgenommen werden. Neben der in FIG 1 dargestellten durchgezogenen Kurve, die den Temperaturverlauf der Turbinenkomponenten bei einer
Zwangskühlung gemäß dem hier vorgestellten Verfahren wiedergibt, ist zusätzlich ein davon abweichender Temperaturverlauf gestrichelt eingezeichnet. Dieser abweichende Temperaturver- lauf der Turbinenkomponenten ist charakteristisch für einen Abkühlungsprozess , bei dem die Kühlung ausschließlich mit Hilfe eines Luftstromes erzwungen wird ohne zusätzlich einen Wassernebel in den Luftstrom einzubringen. Bei diesem Temperaturverlauf ist der Temperaturbereich von 100°C bis 150°C, in dem typischerweise mit den Wartungsarbeiten begonnen wird, sehr viel später erreicht. Dementsprechend werden die Be¬ triebsausfall-Zeiten der Dampfturbine 2 bei Wartungsarbeiten durch Anwendung des hier vorgestellten Verfahrens wesentlich verkürzt, was eine wirtschaftlichere Nutzung der Dampfturbine 2 erlaubt.
Eine mögliche Ausgestaltung einer Anlage, in welcher die Dampfturbine 2 und eine Kühlvorrichtung zur Umsetzung des hier vorgestellten Verfahrens eingesetzt werden, ist in FIG 2 schematisch abgebildet. Exemplarisch umfasst dabei die Anlage die Dampfturbine 2 mit einer Hochdruckstufe 8, mit einer Mit¬ teldruckstufe 10 sowie mit einer Niederdruckstufe 12, eine zwischen der Hochdruckstufe 8 und der Mitteldruckstufe 10 zwischengeschaltete Überhitzereinheit 14, einen Dampferzeuger 16, einen Kondensator 18 und ein Leitungssystem 20 für das
Arbeitsmedium, hier demineralisiertes Wasser und entsprechender Wasserdampf.
Teil der Anlage ist weiter ein Reservoir 22, mit dessen Hilfe ein Verlust an demineralisiertem Wasser, sofern notwendig, ausgeglichen werden kann. Um bei Bedarf eine Abkühlung insbesondere der Druckstufen 8 und 10 gemäß dem hier vorgestellten Verfahren erzwingen zu können und um bei einem entsprechend erzwungenen Abkühlungs- prozess die Abkühlung steuern zu können, weist die Anlage die Kühl-Steuerungseinheit 4 auf, welche bevorzugt Teil einer zentralen Steuerungseinheit der Anlage ist.
Wird nun ein Abkühlungsprozess beispielsweise durch einen Be- diener initiiert, so steuert die Kühl-Steuerungseinheit 4 zu¬ nächst den Dampferzeuger 16 und die Überhitzereinheit 14 an, so dass die Temperatur des verdampften demineralisierten Wassers, welches durch die Druckstufen 8,10,12 geleitet wird, allmählich absinkt. Auf diese Weise wird die Dampf-Kühlungs¬ phase PI umgesetzt.
Beim Übergang zur Wärmeausgleichsphase P2 werden zwei Sperrventile 24 und zwei Regelventile 26, von jedem eines in einer Zuleitung des Leitungssystems 20 zur Hochdruckstufe 8 und von jedem eines in einer Zuleitung des Leitungssystems 20 zur Mitteldruckstufe 10, geschlossen, wodurch in der Folge eine Kühlung durch Konvektion unterbunden wird. Stattdessen findet ein Temperaturausgleich durch Wärmeleitung innerhalb der Druckstufen 8,10,12 statt. Währenddessen werden die beiden Zuleitungen jeweils über einen Flansch F zur Umgebung hin geöffnet .
Zu Beginn der sich daran anschließenden Luft-Kühlungsphase P3 werden die Regelventile 26 nach und nach geöffnet, so dass Umgebungsluft jeweils über eine Öffnung 28 in die Zuleitungen des Leitungssystems 20 hin zu den Druckstufen 8,10,12 einströmen kann. Gleichzeitig ist im Kondensator 18 mittels einer entsprechenden, jedoch nicht explizit dargestellten, Evakuierungsvorrichtung ein Unterdruck vorgegeben, so dass hierdurch Umgebungsluft an den Öffnungen 28 einströmt und durch die Druckstufen 8,10,12 hindurch strömt. Dabei wird über die Ventilstellung der Regelventile 26 die Stromdichte des Luftstroms durch die jeweilige Druckstufe 8,10,12 einge¬ stellt . Zum Start der Nebel-Kühlungsphase P4 wird zusätzlich demine- ralisiertes Wasser aus dem Reservoir 22 mit Hilfe von Sprühvorrichtungen 30 in den zur Kühlung genutzten Luftstrom ein- gemischt, so dass in der Folge ein mit feinstvernebeltem demineralisiertem Wasser versetzter Luftstrom durch die
Druckstufen 8,10,12 zur Kühlung selbiger geleitet wird. In der Folge wird die Stromdichte des Luftstromes konstant gehalten und lediglich die Menge an demineralisiertem Wasser welches dem Luftstrom zugesetzt wird, variiert bis die Druck¬ stufen 8,10,12 auf die gewünschte Temperatur heruntergekühlt sind .
Die Erfindung ist nicht auf das vorstehend beschriebene Aus- führungsbeispiel beschränkt. Vielmehr können auch andere Va¬ rianten der Erfindung von dem Fachmann hieraus abgeleitet werden, ohne den Gegenstand der Erfindung zu verlassen. Insbesondere sind ferner alle im Zusammenhang mit dem Ausführungsbeispiel beschriebenen Einzelmerkmale auch auf andere Weise miteinander kombinierbar, ohne den Gegenstand der Erfindung zu verlassen.

Claims

Patentansprüche
1. Verfahren zur Steuerung eines Abkühlungsprozesses von Turbinenkomponenten (8,10,12), insbesondere einer Dampfturbinenwelle,
wobei während einer Nebel-Kühlungsphase (P4) ein mit einem Wassernebel versetzter Luftstrom zur Kühlung der Turbinenkomponenten (8,10,12) genutzt wird,
wobei der Nebel-Kühlungsphase (P4) eine Luft-Kühlungsphase
(P3) vorausgeht, während derer ein Luftstrom zur Kühlung der Turbinenkomponenten (8,10,12) genutzt wird,
wobei während der Luft-Kühlungsphase (P3) und während der Nebel-Kühlungsphase (P4) ein gleichbleibender zeitlicher Temperaturgradient für den Abkühlungsprozess vorgegeben wird,
wobei ein zeitlicher Temperaturgradient von etwa 10 K/h vorgegeben wird,
wobei zur Vorgabe des Temperaturgradienten während der Luft-Kühlungsphase (P3) die Luftstromdichte und während der
Nebel-Kühlungsphase (P4) die Menge an dem dem Luftstrom zu¬ gesetzten Wassernebel reguliert wird,
wobei die Luftstromdichte über die Ventilstellung eines steuerbaren Regelventils (26) eingestellt wird,
wobei von der Luft-Kühlungsphase (P3) in die Nebel-Küh¬ lungsphase (P4) gewechselt wird, wenn die maximale Luft¬ stromdichte erreicht ist und insbesondere, wenn das Regel¬ ventil (26) voll geöffnet ist,
wobei der Nebel-Kühlungsphase (P4) eine Wärmeausgleichs- phase (P2) im Abkühlungsprozess vorausgeht, in der eine
Temperaturangleichung der Turbinenkomponenten (8,10,12) untereinander erfolgt,
wobei zu Beginn des Abkühlungsprozesses eine Dampf-Küh¬ lungsphase (PI) vorgesehen ist, während derer Wasserdampf zur Kühlung der Turbinenkomponenten (8,10,12) genutzt wird, wobei während der Dampf-Kühlungsphase (PI) ein gleichblei¬ bender zeitlicher Temperaturgradient für den Abkühlungspro¬ zess vorgegeben wird, der vom Temperaturgradienten während der Luft-Kühlungsphase (P3) und während der Nebel-Kühlungs¬ phase (P4) abweicht, insbesondere größer ist.
2. Verfahren nach Anspruch 1,
wobei der Luftstrom oder der mit dem Wassernebel versetzte Luftstrom bei Bedarf in ein Leitungssystem (20) für Dampf eingeleitet wird.
3. Verfahren nach Anspruch 2,
wobei der Luftstrom oder der mit dem Wassernebel versetzte Luftstrom an mehreren Positionen,
insbesondere vor jeder Druckstufe (8,10,12) einer Dampfturbine 2,
in das Leitungssystem (20) eingeleitet wird.
4. Verfahren nach einem der Ansprüche 1 bis 3,
wobei als Wassernebel vernebeltes demineralisiertes Wasser genutzt wird.
5. Verfahren nach Anspruch 4,
wobei demineralisiertes Wasser sowohl zur Erzeugung des Wassernebels als auch als Arbeitsmedium eingesetzt wird.
EP12788486.4A 2012-01-25 2012-11-07 Verfahren zur steuerung eines abkühlungsprozesses von turbinenkomponenten Not-in-force EP2776684B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12788486.4A EP2776684B1 (de) 2012-01-25 2012-11-07 Verfahren zur steuerung eines abkühlungsprozesses von turbinenkomponenten
PL12788486T PL2776684T3 (pl) 2012-01-25 2012-11-07 Sposób sterowania procesem chłodzenia elementów turbiny

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP12152446.6A EP2620604A1 (de) 2012-01-25 2012-01-25 Verfahren zur Steuerung eines Abkühlungsprozesses von Turbinenkomponenten
EP12788486.4A EP2776684B1 (de) 2012-01-25 2012-11-07 Verfahren zur steuerung eines abkühlungsprozesses von turbinenkomponenten
PCT/EP2012/071982 WO2013110365A1 (de) 2012-01-25 2012-11-07 Verfahren zur steuerung eines abkühlungsprozesses von turbinenkomponenten

Publications (2)

Publication Number Publication Date
EP2776684A1 true EP2776684A1 (de) 2014-09-17
EP2776684B1 EP2776684B1 (de) 2016-01-20

Family

ID=47216232

Family Applications (2)

Application Number Title Priority Date Filing Date
EP12152446.6A Withdrawn EP2620604A1 (de) 2012-01-25 2012-01-25 Verfahren zur Steuerung eines Abkühlungsprozesses von Turbinenkomponenten
EP12788486.4A Not-in-force EP2776684B1 (de) 2012-01-25 2012-11-07 Verfahren zur steuerung eines abkühlungsprozesses von turbinenkomponenten

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP12152446.6A Withdrawn EP2620604A1 (de) 2012-01-25 2012-01-25 Verfahren zur Steuerung eines Abkühlungsprozesses von Turbinenkomponenten

Country Status (9)

Country Link
US (1) US9422832B2 (de)
EP (2) EP2620604A1 (de)
JP (1) JP5911973B2 (de)
KR (1) KR101615469B1 (de)
CN (1) CN104081008B (de)
BR (1) BR112014017896A8 (de)
PL (1) PL2776684T3 (de)
RU (1) RU2589419C2 (de)
WO (1) WO2013110365A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3109418A1 (de) 2015-06-24 2016-12-28 Siemens Aktiengesellschaft Verfahren zum abkühlen einer dampfturbine
EP3109419A1 (de) * 2015-06-25 2016-12-28 Siemens Aktiengesellschaft Verfahren zum abkühlen einer strömungsmaschine
KR101907741B1 (ko) * 2016-06-27 2018-10-12 두산중공업 주식회사 스팀터빈의 윈디지 로스 방지 장치

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3173654A (en) * 1962-03-14 1965-03-16 Burns & Roe Inc Temperature control of turbine blades on spinning reserve turbines
CH554486A (de) * 1973-01-29 1974-09-30 Bbc Brown Boveri & Cie Verfahren zum kuehlen einer stroemungsmaschine.
SU580336A1 (ru) * 1973-07-26 1977-11-15 Всесоюзный Дважды Ордена Трудового Красного Знамени Теплотехнический Научноисследовательский Институт Им. Ф.Э. Дзержинского Способ расхолаживани энергоблока
SU769035A1 (ru) 1978-07-07 1980-10-07 Всесоюзный Дважды Ордена Трудового Красного Знамени Теплотехнический Научно-Исследовательский Институт Им.Ф.Э.Дзержинского Способ охлаждени выхлопного патрубка паровой турбины
SU931916A1 (ru) 1980-08-27 1982-05-30 Лукомльская Государственная Районная Электростанция Им.50-Летия Ссср Способ расхолаживани паровой турбины
SU941636A1 (ru) 1980-10-02 1982-07-07 За витель А. И. Тугое Способ расхолаживани энергоблока
JPH03294605A (ja) * 1990-04-12 1991-12-25 Touden Sekkei Kk 蒸気タービンの急速冷却装置
JPH0559904A (ja) * 1991-09-03 1993-03-09 Touden Sekkei Kk 蒸気タービンの冷却方法および装置
JP2954797B2 (ja) * 1992-10-05 1999-09-27 株式会社東芝 蒸気タ−ビンの強制冷却装置
JP2960826B2 (ja) * 1992-11-26 1999-10-12 株式会社日立製作所 蒸気タービン強制冷却装置
WO1994019584A1 (de) * 1993-02-25 1994-09-01 Siemens Aktiengesellschaft Kühlung einer turbine mit kleinem druckverhältnis im ventilationsbetrieb
JPH08218811A (ja) * 1995-02-16 1996-08-27 Hitachi Ltd 蒸気タービンの冷却方法及びその装置
CN1136131A (zh) 1995-05-12 1996-11-20 吴义松 一种汽轮机停机以后快速冷却的方法
KR100437922B1 (ko) 1995-08-31 2004-08-16 지멘스 악티엔게젤샤프트 증기터빈의저압단을냉각시키기위한방법및장치
JPH09177505A (ja) * 1995-12-22 1997-07-08 Toshiba Corp 蒸気タービンのウオーミング並びにクーリング蒸気制御装置及び制御方法
US5953900A (en) * 1996-09-19 1999-09-21 Siemens Westinghouse Power Corporation Closed loop steam cooled steam turbine
WO1998013588A1 (de) * 1996-09-26 1998-04-02 Siemens Aktiengesellschaft Dampfturbine, dampfturbinenanlage sowie verfahren zur abkühlung einer dampfturbine
DE19640298A1 (de) 1996-09-30 1998-04-09 Siemens Ag Dampfturbine, Verfahren zur Kühlung einer Dampfturbine im Ventilationsbetrieb sowie Verfahren zur Kondensationsminderung bei einer Dampfturbine im Leistungsbetrieb
JPH11270306A (ja) * 1998-03-20 1999-10-05 Toshiba Corp 蒸気タービンの強制冷却装置
DE19823251C1 (de) 1998-05-26 1999-07-08 Siemens Ag Verfahren und Vorrichtung zur Kühlung einer Niederdruckstufe einer Dampfturbine
US6443690B1 (en) 1999-05-05 2002-09-03 Siemens Westinghouse Power Corporation Steam cooling system for balance piston of a steam turbine and associated methods
US6898935B2 (en) * 2003-07-25 2005-05-31 Bj Services Company System and method of cooling steam turbines
EP1630356A1 (de) * 2004-08-25 2006-03-01 Siemens Aktiengesellschaft Flüssigkeitseinspritzung in einer Gasturbine während einer Abkühlphase
RU2379524C1 (ru) 2008-05-28 2010-01-20 Открытое акционерное общество "Авиадвигатель" Газовая силовая турбина
JP2010019190A (ja) * 2008-07-11 2010-01-28 Toshiba Corp 蒸気タービンおよび蒸気タービンの冷却方法
US8376687B2 (en) * 2009-10-13 2013-02-19 General Electric Company System and method for cooling steam turbine rotors
CH702827A1 (de) * 2010-03-02 2011-09-15 Alstom Technology Ltd Verfahren zum Abkühlen einer Gasturbine.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2013110365A1 *

Also Published As

Publication number Publication date
RU2014134325A (ru) 2016-03-20
US20150047353A1 (en) 2015-02-19
BR112014017896A8 (pt) 2017-07-11
EP2776684B1 (de) 2016-01-20
KR20140099554A (ko) 2014-08-12
PL2776684T3 (pl) 2016-07-29
CN104081008A (zh) 2014-10-01
RU2589419C2 (ru) 2016-07-10
CN104081008B (zh) 2015-11-25
JP5911973B2 (ja) 2016-04-27
BR112014017896A2 (de) 2017-06-20
US9422832B2 (en) 2016-08-23
EP2620604A1 (de) 2013-07-31
KR101615469B1 (ko) 2016-04-25
JP2015508472A (ja) 2015-03-19
WO2013110365A1 (de) 2013-08-01

Similar Documents

Publication Publication Date Title
DE10258594A1 (de) Stromerzeugungsanlage mit Druckluftenergiesystem
EP1716327B1 (de) Fördervorrichtung
EP2889479B1 (de) Geothermiekraftwerksanlage, Verfahren zum Betrieb einer Geothermiekraftwerksanlage und Verfahren zum Erhöhen der Effizienz einer Geothermiekraftwerksanlage
EP3240945B1 (de) Druckluftspeicherkraftwerk sowie verfahren zum betreiben eines druckluftspeicherkraftwerks
EP2458180A1 (de) Verfahren zum Betreiben einer Gasturbine bei Lastabwurf, Vorrichtung zum Regeln des Betriebs einer Gasturbine sowie Kraftwerk
DE102008029941A1 (de) Dampfkraftanlage und Verfahren zur Regelung der Leistung einer Dampfkraftanlage
EP2776684A1 (de) Verfahren zur steuerung eines abkühlungsprozesses von turbinenkomponenten
EP2616643B1 (de) Verfahren zur regelung einer kurzfristigen leistungserhöhung einer dampfturbine
EP2432973A2 (de) Dampfkreisprozessvorrichtung und verfahren zur steuerung derselben
WO2018059840A1 (de) Verfahren zur kurzfristigen leistungsanpassung einer dampfturbine eines gas-und dampfkraftwerks für die primärregelung
EP0597325B1 (de) Verfahren zur Zwischenkühlung eines Turboverdichter
DE102013102879A1 (de) Kompressor und Verfahren zum Betreiben eines Kompressors
DE102012224009A1 (de) Verfahren zum Betreiben einer Gasturbine
EP2964910B1 (de) Verfahren zum flexiblen betrieb einer kraftwerksanlage
WO2012163610A1 (de) System zur gewinnung und weiterverarbeitung von erdgas
EP3788246A1 (de) Verfahren zum betreiben einer gasturbinenanlage mit gasförmigem brennstoff
EP3111059B1 (de) Wasserdampfkreislauf sowie ein verfahren zum betreiben eines wasserdampfkreislaufes
DE2719625B2 (de) Gichtgasreinigungsanlage
DE4314390C2 (de) Verfahren zum Betreiben eines hydraulischen Systems
DE925025C (de) Regelverfahren fuer Gleichdruck-Verbrennungs-Turbinenanlagen
DE102013114265B4 (de) ORC-Anlage mit Rezirkulationskreislauf und Verfahren zum Betreiben einer derartigen ORC-Anlage
WO2014146845A2 (de) Verfahren zum anfahren eines solarthermischen kraftwerks
EP2515057A1 (de) Verfahren und Vorrichtung zur Regelung der Temperatur eines fluiden Mediums
WO2013037655A1 (de) Luftturbinenanlage und zugehöriges verfahren
DE2820728B2 (de) Gichtgasreinigungsanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140610

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150612

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 771828

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160215

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012005823

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Ref country code: NL

Ref legal event code: MP

Effective date: 20160120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160421

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160520

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160520

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012005823

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

26N No opposition filed

Effective date: 20161021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161107

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20180208

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 771828

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171107

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20181120

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20181127

Year of fee payment: 7

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191107

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191107

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012005823

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20201112

Year of fee payment: 9

Ref country code: CZ

Payment date: 20201109

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210119

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191107

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012005823

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130