RU2379524C1 - Газовая силовая турбина - Google Patents

Газовая силовая турбина Download PDF

Info

Publication number
RU2379524C1
RU2379524C1 RU2008121668/06A RU2008121668A RU2379524C1 RU 2379524 C1 RU2379524 C1 RU 2379524C1 RU 2008121668/06 A RU2008121668/06 A RU 2008121668/06A RU 2008121668 A RU2008121668 A RU 2008121668A RU 2379524 C1 RU2379524 C1 RU 2379524C1
Authority
RU
Russia
Prior art keywords
shaft
turbine
bearings
air
outer shaft
Prior art date
Application number
RU2008121668/06A
Other languages
English (en)
Other versions
RU2008121668A (ru
Inventor
Александр Александрович Иноземцев (RU)
Александр Александрович Иноземцев
Владимир Октябринович Рубинов (RU)
Владимир Октябринович Рубинов
Сергей Иванович Фадеев (RU)
Сергей Иванович Фадеев
Валерий Алексеевич Кузнецов (RU)
Валерий Алексеевич Кузнецов
Александр Сергеевич Мелехин (RU)
Александр Сергеевич Мелехин
Владимир Константинович Сычев (RU)
Владимир Константинович Сычев
Original Assignee
Открытое акционерное общество "Авиадвигатель"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Авиадвигатель" filed Critical Открытое акционерное общество "Авиадвигатель"
Priority to RU2008121668/06A priority Critical patent/RU2379524C1/ru
Publication of RU2008121668A publication Critical patent/RU2008121668A/ru
Application granted granted Critical
Publication of RU2379524C1 publication Critical patent/RU2379524C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/23Gas turbine engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0442Active magnetic bearings with devices affected by abnormal, undesired or non-standard conditions such as shock-load, power outage, start-up or touchdown

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

Газовая силовая турбина с магнитной опорой включает вал, электромагнитные подшипники и страховочные подшипники качения. Вал силовой турбины выполнен двойным, состоящим из внешнего и внутреннего валов с воздушной межвальной полостью между ними. На переднем хвостовике внутреннего вала установлены диски турбины, а на заднем хвостовике - упругая муфта передачи полезной мощности. На наружной поверхности внешнего вала установлены роторные элементы электромагнитных подшипников, а страховочные подшипники качения установлены на переднем и заднем хвостовиках внешнего вала. Внешний вал зафиксирован относительно внутреннего вала в окружном направлении шлицами на заднем хвостовике, в радиальном направлении - радиальными ребрами, расположенными в межвальной воздушной полости, а в осевом направлении - опорными буртами, расположенными в межвальной воздушной полости, а также фланцем упругой муфты. Межвальная воздушная полость на входе через отверстия в заднем хвостовике внешнего вала соединена со станционной системой подачи холодного воздуха, а на выходе через каналы в стойках газовой турбины - с газовым трактом на выходе из турбины газотурбинного двигателя. Изобретение позволяет повысить надежность газовой силовой турбины, а также ее эксплуатационную технологичность. 5 ил.

Description

Изобретение относится к газовым силовым турбинам газотурбинных двигателей установок наземного применения.
Известна многоступенчатая газовая силовая турбина, ротор которой установлен консольно на подшипниках качения (патент RU №2263790).
Недостатком известной конструкции является низкая надежность подшипников качения, которые требуют для обеспечения заданного ресурса сложной маслосистемы с насосами подачи и откачки масла, а также высокой чистоты подаваемого масла.
Наиболее близкой к заявляемой конструкции является газовая силовая турбина с магнитной опорой, в которой электромагнитные подшипники выполнены бесконтактными и поэтому имеют повышенный ресурс (патент RU №2129228).
Недостатком известной конструкции, принятой за прототип, является ее низкая надежность из-за высокой температуры вала газовой турбины, что может привести к перегреву электромагнитных подшипников и к их поломке. Кроме того, страховочные подшипники качения, которые устанавливаются в магнитных опорах для выбега ротора турбины при отказе магнитной опоры, также имеют пониженный ресурс из-за отсутствия эффективной системы их смазки, что существенно снижает эксплуатационную технологичность газовой силовой турбины на электромагнитных подшипниках, так как в случае поломки страховочного подшипника необходим ремонт газовой турбины в заводских условиях.
Техническая задача, на решение которой направлено заявляемое изобретение, заключается в повышении надежности газовой силовой турбины с магнитной опорой путем снижения температуры вала, контактирующего с электромагнитными подшипниками, а также в повышении эксплуатационной технологичности турбины путем замены страховочных подшипников или магнитной опоры единым модулем в станционных условиях.
Сущность технического решения заключается в том, что в газовой силовой турбине с магнитной опорой, имеющей вал, электромагнитные подшипники и страховочные подшипники качения, согласно изобретению вал силовой турбины выполнен двойным, состоящим из внешнего и внутреннего валов с воздушной межвальной полостью между ними, причем на переднем хвостовике внутреннего вала установлены диски турбины, а на заднем хвостовике - упругая муфта передачи полезной мощности, при этом на наружной поверхности внешнего вала установлены роторные элементы электромагнитных подшипников, а страховочные подшипники качения установлены на переднем и заднем хвостовиках внешнего вала, причем внешний вал зафиксирован относительно внутреннего вала в окружном направлении шлицами на заднем хвостовике, в радиальном направлении - радиальными ребрами, расположенными в межвальной воздушной полости, а в осевом направлении - опорными буртами, расположенными в межвальной воздушной полости, а также фланцем упругой муфты, при этом межвальная воздушная полость на входе через отверстия в заднем хвостовике внешнего вала соединена со станционной системой подачи холодного воздуха, а на выходе через каналы в стойках газовой турбины - с газовым трактом на выходе из турбины газотурбинного двигателя.
Выполнение вала силовой турбины двойным, состоящим из внешнего и внутреннего валов с воздушной межвальной полостью между ними, с установкой на переднем хвостовике внутреннего вала дисков турбины, а на заднем хвостовике - упругой муфты подачи полезной мощности позволяет передавать мощность от дисков силовой турбины к потребителю (например, на нагнетатель газа или электрогенератор) с минимальным подводом тепла на внешний вал и, соответственно, на магнитную опору газовой силовой турбины, что повышает надежность электромагнитных подшипников и турбины в целом.
Установка роторных элементов электромагнитных подшипников на наружной поверхности внешнего вала позволяет снизить подвод тепла по валу в магнитную опору, а также обеспечить замену вышедшей из строя магнитной опоры совместно с внешним валом как единого модуля в станционных условиях, без разборки ротора силовой турбины, диски которой установлены на внутреннем валу.
Установка страховочных подшипников на переднем и на заднем хвостовиках внешнего вала позволяет производить замену вышедших из строя страховочных подшипников из модуля магнитной опоры в станционных условиях без разборки магнитных подшипников.
Фиксация внешнего вала относительно внутреннего вала в окружном направлении шлицами на заднем хвостовике внешнего вала позволяет обеспечить окружную фиксацию внешнего вала при минимальном подводе тепла через тепловой мост, который образует шлицевое соединение валов, так как шлицы расположены на максимальном удалении от дисков силовой турбины.
Фиксация в радиальном направлении внешнего вала относительно внутреннего радиальными ребрами, расположенными в воздушной полости, также значительно снижает подвод тепла во внешний вал, так как тепловой поток, проходящий по радиальным ребрам, снимается охлаждающим воздухом, протекающим по межвальной полости.
Фиксация внешнего вала на внутреннем в осевом направлении, которая необходима для передачи осевого усилия от дисков турбины через внутренний и внешний валы на упорный электромагнитный подшипник, производится опорными буртами, расположенными в воздушной полости, что снижает тепловой поток во внешний вал, а также с помощью фланца упругой муфты, которая расположена на максимальном удалении от дисков турбины, что также снижает тепловой поток во внешний вал.
Соединение межвальной воздушной полости на входе через отверстия в заднем хвостовике внешнего вала со станционной системой подачи холодного воздуха, а на выходе, через каналы в стойках опоры газовой турбины - с газовым трактом на выходе из турбины, позволяет организовать в межвальной полости интенсивную прокачку охлаждающего воздуха, что также повышает надежность магнитной опоры газовой силовой турбины за счет снижения температуры внешнего вала.
Отверстия в заднем хвостовике внешнего вала служат также для установки съемника при демонтаже внутреннего вала с дисками силовой турбины из магнитной опоры с внешним валом.
На фиг.1 изображен продольный разрез газовой силовой турбины с магнитной опорой.
На фиг.2 - задний страховочный подшипник качения.
На фиг.3 - передний страховочный подшипник качения.
На фиг.4 - ротор газовой силовой турбины с внутренним валом в демонтированном виде.
На фиг.5 - отдельный модуль магнитной опоры с внешним валом.
Газовая силовая турбина 1 состоит из ротора 2 с дисками первой и второй ступеней 3 и 4, соответственно, установленных на двойном валу 5, а также из статора 6 с наружным корпусом 7, стойками опоры 8 и магнитной опорой 9 с передним и задним радиальными электромагнитными подшипниками 10 и 11, соответственно, и упорным электромагнитным подшипником 12. Вал 5 выполнен двойным, состоящим из внешнего вала 13 и внутреннего вала 14 с воздушной межвальной полостью 15, соединенной на входе через отверстия 16 в заднем хвостовике 17 внешнего вала 13 через промежуточную полость 18 со станционной системой 19 подачи холодного воздуха, а на выходе через каналы 20 в стойках опоры 8 турбины 1 - с газовым трактом 21 на выходе из турбины 1. На переднем хвостовике 22 внутреннего вала 14 с помощью болтового соединения 23 установлены диски турбины 3 и 4, а на заднем хвостовике 24 - упругая муфта 25 передачи полезной мощности. Внешний вал 13 зафиксирован относительно внутреннего вала 14 в радиальном направлении с помощью радиальных ребер 26, расположенных в межвальной воздушной полости 15, в осевом направлении - опорными буртами 27, расположенными также в полости 15, и фланцем 28 упругой муфты 25, а в окружном направлении - шлицами 29 на заднем хвостовике 30. На наружной поверхности 31 внешнего вала 13 установлены роторные элементы 32 электромагнитных подшипников 10, 11 и 12, а также расположено радиальное ребро 33, с помощью которого на электромагнитный упорный подшипник 12 передается осевое усилие от дисков 3 и 4 турбины 1. На переднем 34 и заднем 35 хвостовиках внешнего вала 13 с радиальными зазорами δ относительно вала 13 установлены передний 36 и задний 37 страховочные подшипники качения, которые установлены в турбине 1 для выбега ротора 2 в случае отказа электромагнитных подшипников 10, 11 и 12. Для поддержания необходимого уровня температур полость 38 с электромагнитными подшипниками 10, 11, 12 и страховочными подшипниками 36 и 37 продувается холодным воздухом от станционной системы 19 через промежуточную полость на входе со сбросом охлаждающего воздуха в газовый тракт 21 турбины 1 через отверстия 20 стоек опоры 8. Для защиты магнитной опоры 9 от теплового потока, поступающего при работе турбины 1 и после ее остановки от дисков 3 и 4, разгрузочная полость 39 между опорой 9 и дисками 3 и 4 отделена тремя теплоизолированными крышками 40, 41 и 42 с продувками радиальных полостей между ними холодным воздухом. Магнитная опора 9 совместно с внешним валом 13 образуют единый модуль 43, пригодный для замены в станционных условиях. Работает устройство следующим образом.
При работе газовой силовой турбины 1 на магнитной опоре 9 охлаждающий атмосферный воздух от станционной системы 19 прокачивается через внутреннюю полость 38 опоры 9, а также через межвальную полость 15, обеспечивая тем самым необходимый температурный режим работы электромагнитных подшипников 10, 11 и 12, что повышает надежность магнитной опоры 9. Кроме того, в случае возникновения изгибных колебаний внутреннего вала 14 турбины 1 происходит их быстрое затухание за счет значительного демпфирования в системе двойного вала 5, что также повышает надежность магнитной опоры 9 и турбины 1. В случае выхода из строя магнитной опоры 9 со страховочными подшипниками 36 и 37, опора 9 в виде отдельного модуля совместно с внешним валом 13 демонтируется в станционных условиях с ротора 2 турбины 1 с внутренним валом 14, после чего возможна замена, например, страховочных подшипников 36 и 37 или других элементов опоры 9, что повышает эксплуатационную технологичность турбины 1 с магнитной опорой.

Claims (1)

  1. Газовая силовая турбина с магнитной опорой, имеющая вал, электромагнитные подшипники и страховочные подшипники качения, отличающаяся тем, что вал силовой турбины выполнен двойным, состоящим из внешнего и внутреннего валов с воздушной межвальной полостью между ними, причем на переднем хвостовике внутреннего вала установлены диски турбины, а на заднем хвостовике - упругая муфта передачи полезной мощности, при этом на наружной поверхности внешнего вала установлены роторные элементы электромагнитных подшипников, а страховочные подшипники качения установлены на переднем и заднем хвостовиках внешнего вала, причем внешний вал зафиксирован относительно внутреннего вала в окружном направлении шлицами на заднем хвостовике, в радиальном направлении - радиальными ребрами, расположенными в межвальной воздушной полости, а в осевом направлении - опорными буртами, расположенными в межвальной воздушной полости, а также фланцем упругой муфты, при этом межвальная воздушная полость на входе через отверстия в заднем хвостовике внешнего вала соединена со станционной системой подачи холодного воздуха, а на выходе через каналы в стойках газовой турбины - с газовым трактом на выходе из турбины газотурбинного двигателя.
RU2008121668/06A 2008-05-28 2008-05-28 Газовая силовая турбина RU2379524C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008121668/06A RU2379524C1 (ru) 2008-05-28 2008-05-28 Газовая силовая турбина

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008121668/06A RU2379524C1 (ru) 2008-05-28 2008-05-28 Газовая силовая турбина

Publications (2)

Publication Number Publication Date
RU2008121668A RU2008121668A (ru) 2009-12-10
RU2379524C1 true RU2379524C1 (ru) 2010-01-20

Family

ID=41489002

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008121668/06A RU2379524C1 (ru) 2008-05-28 2008-05-28 Газовая силовая турбина

Country Status (1)

Country Link
RU (1) RU2379524C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2589419C2 (ru) * 2012-01-25 2016-07-10 Сименс Акциенгезелльшафт Способ управления процессом охлаждения компонентов турбины

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2115835C1 (ru) * 1997-04-11 1998-07-20 Научно-производственное предприятие "Всероссийский научно-исследовательский институт электромеханики с заводом" Магнитная опора
RU2129228C1 (ru) * 1997-03-19 1999-04-20 Фирма ПП "ГХТ" Магнитная опора для агрегата
EP0816654B1 (en) * 1996-06-26 2004-09-22 Rolls-Royce Corporation Bearing combination for gas turbine engine
RU2317430C1 (ru) * 2006-06-09 2008-02-20 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Турбодетандерная установка

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0816654B1 (en) * 1996-06-26 2004-09-22 Rolls-Royce Corporation Bearing combination for gas turbine engine
RU2129228C1 (ru) * 1997-03-19 1999-04-20 Фирма ПП "ГХТ" Магнитная опора для агрегата
RU2115835C1 (ru) * 1997-04-11 1998-07-20 Научно-производственное предприятие "Всероссийский научно-исследовательский институт электромеханики с заводом" Магнитная опора
RU2317430C1 (ru) * 2006-06-09 2008-02-20 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Турбодетандерная установка

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2589419C2 (ru) * 2012-01-25 2016-07-10 Сименс Акциенгезелльшафт Способ управления процессом охлаждения компонентов турбины
US9422832B2 (en) 2012-01-25 2016-08-23 Siemens Aktiengesellschaft Method for controlling a cooling process of turbine components

Also Published As

Publication number Publication date
RU2008121668A (ru) 2009-12-10

Similar Documents

Publication Publication Date Title
US10233762B2 (en) Cooled seal assembly for arranging between a stator and a rotor
KR101720476B1 (ko) 가스 터빈
US10865658B2 (en) Gas turbine exhaust member, and exhaust chamber maintenance method
US9683451B2 (en) Seal assembly for arranging between a stator and a rotor
US10309256B2 (en) Non-linear bumper bearings
US6900553B2 (en) Gas turbomachinery generator
EP3705703B1 (en) Shield for arranging between a bearing and a rotating seal element
JP6193559B2 (ja) ガスタービンのロードカップリングのための冷却システム
EP2574732A2 (en) Gas turbine
WO2005046021A2 (en) Rotor and bearing system for a turbomachine
US10590806B2 (en) Exhaust system and gas turbine
JP2017048781A (ja) ガスタービンエンジンのベアリングコンパートメントにおけるハイドロダイナミックシール
US20100092293A1 (en) Rotor for a gas turbine
CN111801487B (zh) 涡轮机的组件
EP2378088A2 (en) Turbine with a double casing
RU2379524C1 (ru) Газовая силовая турбина
JP6088643B2 (ja) 中空の冷却されたタービン翼内に挿入可能とされる、ガスタービンのための冷媒ブリッジ配管
GB2586108A (en) Assembly for an engine which can define a blade break-off test device
RU2566869C2 (ru) Турбомашина с вертикальным валом
EP2514928B1 (en) Compressor inlet casing with integral bearing housing
KR102499042B1 (ko) 냉각 핀들을 갖도록 제공되는 케이스를 구비하는 가스 터빈 기관
JP2005264788A (ja) ガスタービン及びその遮熱管の外れ防止方法
RU2179647C2 (ru) Одновальная газотурбинная установка

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140529