EP2611946B1 - Procédé de revêtement par immersion à chaud d'un produit plat en acier - Google Patents

Procédé de revêtement par immersion à chaud d'un produit plat en acier Download PDF

Info

Publication number
EP2611946B1
EP2611946B1 EP11745783.8A EP11745783A EP2611946B1 EP 2611946 B1 EP2611946 B1 EP 2611946B1 EP 11745783 A EP11745783 A EP 11745783A EP 2611946 B1 EP2611946 B1 EP 2611946B1
Authority
EP
European Patent Office
Prior art keywords
temperature
flat steel
steel product
atmosphere
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11745783.8A
Other languages
German (de)
English (en)
Other versions
EP2611946A1 (fr
Inventor
Marc Blumenau
Hans-Joachim Heiler
Fred Jindra
Rudolf Schönenberg
Hans-Joachim Krautschick
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Steel Europe AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Steel Europe AG filed Critical ThyssenKrupp Steel Europe AG
Publication of EP2611946A1 publication Critical patent/EP2611946A1/fr
Application granted granted Critical
Publication of EP2611946B1 publication Critical patent/EP2611946B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • C23C2/004Snouts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0222Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips

Definitions

  • the invention relates to a process for hot dip coating a steel flat product made of a stainless steel containing more than 5% by weight and up to 30% by weight of Cr, with a metallic, corrosion protective protective coating.
  • a steel flat product made of a stainless steel containing more than 5% by weight and up to 30% by weight of Cr, with a metallic, corrosion protective protective coating.
  • flat steel products it means steel bands or sheets.
  • Steels of the type in question here with a clear, more than 5 wt .-% lying and typically up to 30 wt .-% reaching chromium content are characterized by a particularly good chemical resistance and high corrosion resistance.
  • This product property is based on the formation of a stable chromium oxide layer, which passivates the steel surface effectively against external influences even at higher temperatures. Therefore, steel grades with a Cr content> 10.5 wt .-% are also referred to as rust, heat and acid resistant (RHS) steels or short as stainless steels.
  • RHS heat and acid resistant
  • Other alloying elements such as nickel or molybdenum can support this passivation.
  • the chemical passivity of the opaque chromium oxide layer proves to be problematic. This layer impedes both wetting and adhesion reactions when coated with a metallic coating. Therefore, the coating of steels with at least 5.0 wt .-% Cr is a special challenge.
  • a more cost-effective alternative to electrolytic coating is the continuous hot dipping of steel strips.
  • a steel strip after it has been recrystallized in a continuous furnace, is immersed briefly in a molten metal bath, which is typically based on zinc, aluminum or their alloys.
  • the thus pretreated flat steel product can then be hot-dip-coated in the heated state in a melt bath containing at least 85% by weight of zinc and / or aluminum with the metallic coating.
  • the hot-dip finishing of steels with more than 5% by weight Cr, in particular more than 10% by weight Cr basically two types of processes are known, each of which assumes that the steel strip to be coated can be prepared by an annealing treatment in such a way that an optimal coating result is achieved.
  • the first type of process involves annealing under a strongly reducing atmosphere.
  • a variant of this type of process is in each case in US 4,675,214 ( EP 0 246 418 B1 ) US 5,066,549 and US 4,883,723 described.
  • This variant assumes that the flat steel product to be coated is heated in a non-oxidative atmosphere and then maintained at more than 677 ° C in a highly reductive atmosphere, the more than 95 vol .-% H2 / N2 for 6 steel , 0 - 14.5 wt .-% Cr.
  • the coating then takes place in an aluminum or aluminum / silicon melt bath.
  • a third variant of the first type of method is known from US 5,591,531 known. According to this variant, steel strips of up to 30% by weight Cr are subjected to bell annealing, in which an iron-rich surface layer is produced. The actual annealing should then take place according to one of the two variants of the first type of method explained above.
  • the second known type of process is based on the application of the oxidation / reduction technique ("pre-oxidation").
  • a first variant of this second type of process is in the JP 3111546 A described.
  • a steel strip alloyed with 10.0-25.0% by weight Cr is oxidized in a direct-fired preheater at temperatures of 400-600 ° C.
  • the resulting FeO layer is then reduced during a holding phase at 700-950 ° C under a reducing atmosphere.
  • the treated steel strip is then subjected to a fire aluminizing.
  • a steel strip containing 10.0-25.0% by weight of Cr is similarly flame-treated.
  • the pre-oxidation also takes place during a direct heating up to a temperature between 550 - 750 ° C by regulating the ⁇ value to 0.9 - 1.5.
  • the reduction of the FeO layer then takes place under a reducing atmosphere at a holding temperature which is about 800 ° C or up to max. 1050 ° C is enough.
  • the first type of process can only be implemented with great effort in everyday operations at a hot-dip coating plant designed for conventionally alloyed steel.
  • the necessary high annealing temperatures and the high H2 consumption cause significantly higher operating costs.
  • the large-scale practice shows that a dew point ⁇ -40 ° C in the holding zone of the continuous furnace is not to comply with process reliability.
  • the object of the invention to provide a method which allows it in a cost-effective and environmentally friendly manner, provided for particularly corrosive applications claimed steel flat products containing more than 5.0 wt .-% and up to 30 wt .-% chromium to be provided with a hot-dip coating.
  • a supplied high-alloy steel flat product is first heat-treated in a continuous furnace in a process completed in a continuous successive sequence of operations and then immediately surface-finished in-line.
  • a zinc, zinc / aluminum, zinc / magnesium, aluminum or aluminum / silicon hot-dip coating can be applied according to the invention.
  • the process according to the invention for hot dip coating a flat steel product made of a stainless steel containing more than 5% by weight and up to 30% by weight of Cr, with a metallic, corrosion protective protective coating comprises for this purpose the steps specified in claim 1.
  • a particularly good wetting and good adhesion of the hot-dip coating are thus reliably achieved even at high degrees of deformation by a targeted temperature and atmosphere control in the continuous furnace that a two-stage heating as a combination of rapid heating (first heating step - step a)) and a conventional heat-up (second heating stage - step b)) up to the holding temperature is performed.
  • This procedure allows a particularly homogeneous and thus particularly effective pre-oxidation during the second heating stage, which is easy to control.
  • a uniform on the flat steel product to be coated produces opaque FeO layer, which acts as a diffusion barrier of Cr oxidation.
  • Optimum work results are obtained when the temperature of the flat steel product at the end of the heating phase (step a)) is in the range of 200-500 ° C.
  • the heating phase (step a)) should preferably take only 1 to 5 seconds.
  • the inventive rapid heating (step a)) with the help of a so-called "booster heater” perform, as they are for example in the DE 10 2006 005 063 A1 is described.
  • the burner is operated with a fuel, in particular a fuel gas, and an oxygen-containing gas.
  • the flat steel product to be heated is brought into direct contact with the flame generated by the burner, wherein the air ratio ⁇ is set within the flame as a function of the starting temperature and / or the target temperature.
  • the temperature, atmosphere and ⁇ value of the booster flames are adjusted so that non-reactive or reducing thermodynamic conditions prevail over the metal / metal oxide equilibria of the alloying elements. Oxidation of the steel surface during the operation a) is mandatory to avoid.
  • the heating atmosphere during step a) contains, in addition to N 2 and technically unavoidable impurities, optionally 1 to 50% by volume of H 2 .
  • Both the heating atmosphere and the pre-oxidation atmosphere may contain, for example, H 2 O, CO or CO 2 as inevitable impurities due to production.
  • the heating atmosphere maintained in operation a) should be free of oxygen, ie in its O 2 possibly present in technically unavoidable, ineffective amounts, the Voroxidationsatmospotrore in addition to N 2 and technically unavoidable impurities 0.1 - 3.0 vol .-% O 2 at a dew point of -20 ° C to +25 ° C to achieve the desired oxidation result.
  • RTF Radiant Tube Furnace
  • the steel flat product is thereby oxidized to avoid an external chromium oxide layer on the steel surface in an oxidation temperature range of 550 - 800 ° C, ideally at an oxidation temperature of 600 - 700 ° C, over a period which is typically 1-15 s.
  • the predetermined N 2 / H 2 -Glühatmosphotre additionally be charged with 0.1 to 3.0 vol .-% O 2 , while in front of and behind the furnace area in each case a largely oxygen-free atmosphere is maintained.
  • This oxidizing atmosphere can be specifically adjusted in a DFF system by setting a ⁇ -value> 1 in the respective furnace section.
  • a furnace zone which is sealed off from the preceding and the subsequently passed through region can be formed, in which the oxygen-containing atmosphere exists.
  • the pre-oxidation can also take place via an additional intermediate booster device.
  • the thickness of this optimally opaque layer should be formed as homogeneously as possible over the surface of the flat steel product considered in each case in order to produce an effective Diffusion barrier to effect the external selective Cr oxidation.
  • the dew point of the atmosphere maintained in the oxidation section of the furnace point may be between -20 to +25 ° C.
  • step b) the steel flat product is further heated to the desired holding temperature of 750-950 ° C., starting from the heating temperature reached after step a), 100-600 ° C.
  • the holding temperature can be limited to 750-850 ° C.
  • step c) Upon reaching a holding temperature that is heated in two stages according to the invention and thereby preoxidized steel flat product maintained at the respective holding temperature for a sufficient duration (step c)).
  • step c) the previously produced FeO layer is again reduced to metallic iron under a correspondingly adjusted holding atmosphere.
  • the recent formation of external Cr oxides can be effectively avoided by promoting internal Cr oxidation.
  • This can be achieved by keeping the dew point of the holding atmosphere at -30 to +25 ° C, in particular at more than -25 ° C.
  • Such a dew point ensures such a high H 2 O / H 2 ratio that a sufficient amount of oxygen is available. Accordingly, optimum holding performance at the hold temperature results when the hold atmosphere during holding contains N 2 and technically unavoidable impurities 1.0-50.0 vol% H 2 and a dew point of -30 ° C to + 25 ° C has.
  • the dew point of the holding atmosphere is at least -30 ° C, in particular in the range of -25 to 0 ° C, as mentioned, the external Cr oxidation is additionally inhibited.
  • the duration of the holding phase will typically be 10-120 s in practice, with a holding time of 30-60 s having been found to be optimal in systems available today.
  • the flat steel product is cooled to the respective melt bath temperature and over a per se known trunk structure in the respective melt bath passed (step e)). It has proved to be particularly advantageous for the wetting result when the trunk atmosphere has a dew point of -80 to -25 ° C, in particular less than -40 ° C, has.
  • Such a deep dew point can be realized in practice by an additional N 2 - or H 2 feed directly into the trunk zone.
  • the melt bath filled in a suitable melt bath vessel of a type known per se is subsequently passed through the steel flat product prepared in the manner according to the invention in a continuous pass, whereby in practice a immersion time of 0.5-10 s, in particular 1-3 s, has proved successful.
  • the molten bath wets the steel surface and a chemical reaction between the metallic iron of the steel strip and the molten bath results in an intermetallic boundary layer, which ensures the good coating adhesion.
  • the tape immersion and melt bath temperatures result depending on the Schmelzenbadzusammen arrangement.
  • Table 1 shows typical temperature ranges for coatings on Zn (eg Zn, ZnAl, ZnMg or ZnMgAl coatings) and Al based (eg AlZn, AlSi coatings) the immersed the flat steel product in the respective melt bath, as well as the appropriate range of the temperature of the respective melt bath specified.
  • Table 1 melting bath Strip immersion temperature melt temperature Zn-based 430-650 ° C 420-600 ° C Al-based 650-800 ° C 650-780 ° C
  • the aging temperature can be set to 650 - 780 ° C to obtain further optimized adhesion of the coating.
  • the coating thickness is adjusted by means of wiping nozzles and the resulting hot-dip-coated Cr-alloyed flat steel product is cooled.
  • post-forming skin pass rolling
  • passivation passivation
  • lubrication lubrication and coiling of the flat steel product into a coil can be connected to the cooling.
  • the flat steel product coated according to the invention is suitable for one-, two- or multi-stage cold or hot forming into one component.
  • Advantages compared to conventional flat steel products and non-hot-dip coated Cr-alloyed flat steel products result in particular in the significantly improved corrosion resistance of components that are used in an environment with high corrosion potential. This proves to be particularly advantageous if there are elevated temperatures at the site in question.
  • the stainless steel from which the flat steel product of the present invention is produced contains, in addition to iron and unavoidable impurities (in% by weight) Cr: 5.0-30.0%, Mn: less than 6.0%, Mo: less than 5.0%, Ni: up to 30.0%, Si: less than 2.0%, Cu: less than 2.0%, Ti: less than 1.0%, Nb: less than 1.0% , V: less than 0.5%, N: less than 0.2%, Al: less than 0.2%, C: less than 0.1%.
  • Cr iron and unavoidable impurities
  • Particularly suitable for the process according to the invention are steel sheets or strips which are produced from a steel based on the abovementioned alloy specification which contains (in% by weight) Cr: 10.0-13.0%, Ni: less than 3, 0%, Mn: less than 1.0%, Ti: less than 1.0%, C: less than 0.03%.
  • melt baths suitable for this in addition to zinc and unavoidable optionally Contains traces of Si and Pb impurities (in wt.) 0.1 - 60.0% Al and up to 0.5% Fe.
  • a galvanizing bath may be used, which in the manner of the prior art, in the EP 1 857 566 A1 , of the EP 2 055 799 A1 and the EP 1 693 477 A1 is respectively documented, the contents of which are included in the content of the present application.
  • the melt bath may contain 0.1-8.0% Al, 0.2-8.0% Mg, ⁇ 2.0% Si, ⁇ 0.1% Pb, ⁇ 0.2% Ti, ⁇ 1% Ni, ⁇ 1% Cu, ⁇ 0.3% Co, ⁇ 0.5% Mn, ⁇ 0.1% Cr, ⁇ 0.5% Sr, ⁇ 3.0% Fe, ⁇ 0.1% B, ⁇ 0.1% Bi with the proviso that for the Al Al content% Al and the Mg content% Mg of the melt formed ratio% Al /% Mg applies:% Al /% Mg ⁇ 1. Regardless of the composition of the melt bath, optimum hot dip galvanizing results will be obtained when the melt bath temperature is 420-600 ° C.
  • melt baths which, in addition to aluminum and unavoidable impurities (if present) containing traces of Zn, have up to 15% Si and up to 5% Fe.
  • Optimum coating results are obtained when the melt bath temperature is 660 - 680 ° C.
  • the immersion time during hot aluminizing is typically 0.5 to 10 s, in particular 1 to 3 s. The invention will be explained in more detail with reference to an embodiment.
  • the FIGURE schematically shows a hot-dip coating plant 1 intended for the coating of a steel strip S according to the invention.
  • the hot-dip finishing plant 1 comprises a booster zone 2, in which the steel strip S is heated rapidly from room temperature to a temperature of 100-600 ° C.
  • the steel strip is kept under an oxygen-free atmosphere which, in addition to nitrogen, optionally contains up to 5% by volume of H 2 and whose dew point is kept at -20 ° C. to + 25 ° C. Heated rapidly to a strip temperature of 100-950 ° C. for 1 to 30 seconds (step a)).
  • the steel strip S runs without interruption and without coming into contact with the ambient atmosphere U into a pre-oxidation zone 3.
  • the steel strip is heated to a strip temperature of up to 950 ° C. under an atmosphere which is formed from nitrogen and up to 50% by volume of H 2 and 0.1-3% by volume of O 2 and whose dew point is. 15 ° C to +25 ° C is maintained.
  • DFF firing devices are used as the heating means, their ⁇ value being set here> 1 in order to specifically oxidize the surface of the steel strip S.
  • the steel strip S passes through a likewise shielded from the environment holding zone 4, in which the steel strip S is maintained at the previously achieved, lying in the range of 750 - 950 ° C belt temperature.
  • the atmosphere in the holding zone 4 is next to nitrogen and unavoidable impurities from 1 to 50% by volume of H 2 in order to achieve a reduction of the steel strip S in addition to the recrystallization.
  • the dew point of the holding zone atmosphere is kept between -30 ° C and +25 ° C.
  • a cooling zone 5 Connected to the holding zone 4 is a cooling zone 5, in which the steel strip S is cooled under the unchanged holding zone atmosphere to the respective inlet temperature, with which it passes into the melt bath 5.
  • a proboscis atmosphere is maintained, which consists either of nitrogen or of hydrogen or a mixture of these two gases.
  • the dew point of the trunk atmosphere is kept at -80 ° C to -25 ° C.
  • Table 2 shows the composition of a steel used for the production of the steel strip S (data in% by weight, remainder iron and unavoidable impurities).
  • Table 2 Cr C Si Mn Not a word Ni Ti Nb Cu al 11.52 0,015 0.55 0.39 0.01 0.12 0.212 0.01 0.03 0.02
  • Table 4 The assessments of the coating results for the six experiments V1-V6 are summarized in Table 4. It turns out that the samples coated according to the invention have optimum coating results coupled with an equally optimal behavior of the coating during the deformation of the respective sample into a component, whereas the samples not processed according to the invention do not achieve this property combination.
  • Table 3 attempt initial state TB a) [° C] TB b) [° C] Atm b) [Vol .-%] TB c) [° C] Atm c) [Vol.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Coating With Molten Metal (AREA)

Claims (10)

  1. Procédé de revêtement par immersion à chaud d'un produit plat en acier, lequel est fabriqué à partir d'un acier inoxydable qui contient (en % massiques) du Cr : 5,0 à 30,0 %, du Mn : < 6,0 %, du Mo : < 5,0 %, du Ni : < 30,0 %, du Si : < 2,0 %, du Cu : < 2,0 %, du Ti : < 1,0 %, du Nb : < 1,0 %, du V : < 0,5 %, du N : < 0,2 %, de l'Al : < 0,2 %, du C : < 0,1 %, le reste étant du fer et d'inévitables impuretés, avec un revêtement protecteur métallique protégeant contre la corrosion, comprenant les étapes de travail suivantes, exécutées en un déroulement séquentiel continu :
    a) réchauffage, effectué en 1 à 30 s, du produit plat en acier à une température d'échauffement de 100 à 600 °C sous une atmosphère d'échauffement exempte d'oxygène, à l'exception des impuretés opérationnelles, excluant une oxydation de la surface du produit plat en acier, l'atmosphère d'échauffement contenant, en option, de 1 à 50 % volumiques de H2 en plus du N2 et des impuretés techniquement inévitables ;
    b) poursuite du réchauffage du produit plat en acier jusqu'à une température de maintien de 750 à 950 °C, le réchauffage étant effectué
    - jusqu'à une fenêtre de température de pré-oxydation de 550 à 800 °C sous une atmosphère de réchauffage inerte ou réductrice,
    - à l'intérieur de la fenêtre de température de pré-oxydation, pendant 1 à 15 s sous une atmosphère de pré-oxydation afin de provoquer une pré-oxydation de la surface du produit plat en acier, l'atmosphère de pré-oxydation contenant, en plus du N2 et des impuretés techniquement inévitables, de 0,1 à 3,0 % vol. d'O2 et, en option, de 1 à 50 % vol. de H2 et possédant un point de condensation de -20 °C à +25 °C, et
    - après être sortie de la fenêtre de température de pré-oxydation, de nouveau sous une atmosphère de réchauffage inerte ou réductrice jusqu'à ce que la température de maintien soit atteinte ;
    c) maintien du produit plat en acier pré-oxydé à la température de maintien pendant 10 à 120 s sous une atmosphère de maintien réduite ;
    d) en option : survieillissement du produit plat en acier pendant 1 à 30 s sous une atmosphère de survieillissement inerte ou à effet réducteur à une température de survieillissement de 430 à 780 °C ; l'atmosphère de maintien pendant le maintien ou l'atmosphère de survieillissement pendant le survieillissement effectué en option contenant respectivement, en plus du N2 et des impuretés techniquement inévitables, de 1,0 à 50 % vol. de H2 et possédant un point de condensation de -30 °C à +25 °C ;
    e) passage guidé du produit plat en acier à travers une zone de tuyau ascendant et ensuite à travers un bain de matière fondue dans lequel le produit plat en acier est revêtu de la couche métallique par immersion à chaud, le produit plat en acier étant maintenu dans la zone de tuyau ascendant sous une atmosphère de tuyau ascendant inerte ou réductrice jusqu'à l'entrée dans le bain de matière fondue, laquelle possède un point de condensation de -80 °C à -25 °C et, soit contient, en plus du N2 et des impuretés techniquement inévitables, de 1,0 à 50 % vol. de H2, soit se compose entièrement de H2 en plus des impuretés techniquement inévitables, et la température du produit plat en acier pendant le passage à travers la zone du tuyau ascendant étant de 430 à 780 °C.
  2. Procédé selon la revendication 1, caractérisé en ce que l'étape de travail a) est terminée en 1 à 5 s.
  3. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    la température d'échauffement à l'étape de travail a) est de 200 à 500 °C.
  4. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    le produit plat en acier a été soumis à un recuit de recristallisation avant l'étape de travail a) et la température de maintien est de 750 à 850 °C.
  5. Procédé selon l'une des revendications 1 à 3,
    caractérisé en ce que
    le produit plat en acier pénètre à l'état laminé dur dans l'étape de travail a) et la température de maintien est de 800 à 850 °C.
  6. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    le revêtement par immersion à chaud est réalisé sous la forme d'une galvanisation à chaud et la température de survieillissement réglée pendant le survieillissement effectué en option est de 430 à 650 °C.
  7. Procédé selon l'une des revendications 1 à 5,
    caractérisé en ce que
    le revêtement par immersion à chaud est réalisé sous la forme d'un aluminiage à chaud et la température de survieillissement réglée pendant le survieillissement effectué en option est de 650 à 780 °C.
  8. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    le revêtement par immersion à chaud du produit plat en acier est réalisé sous la forme d'une galvanisation à chaud et la température du bain de matière fondue est de 420 à 600 °C.
  9. Procédé selon l'une des revendications 1 à 7,
    caractérisé en ce que
    le revêtement par immersion à chaud du produit plat en acier est réalisé sous la forme d'un aluminiage à chaud et la température du bain de matière fondue est de 650 à 780 °C.
  10. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    l'acier contient (en % massiques) du Cr : 10,0 à 13,0 %, du Ni : < 3,0 %, du Mn : < 1,0 %, du Ti : < 1,0 %, du C : < 0,03 %.
EP11745783.8A 2010-08-31 2011-08-18 Procédé de revêtement par immersion à chaud d'un produit plat en acier Not-in-force EP2611946B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010037254A DE102010037254B4 (de) 2010-08-31 2010-08-31 Verfahren zum Schmelztauchbeschichten eines Stahlflachprodukts
PCT/EP2011/064222 WO2012028465A1 (fr) 2010-08-31 2011-08-18 Procédé de revêtement par immersion à chaud d'un produit plat en acier

Publications (2)

Publication Number Publication Date
EP2611946A1 EP2611946A1 (fr) 2013-07-10
EP2611946B1 true EP2611946B1 (fr) 2018-10-03

Family

ID=44515132

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11745783.8A Not-in-force EP2611946B1 (fr) 2010-08-31 2011-08-18 Procédé de revêtement par immersion à chaud d'un produit plat en acier

Country Status (6)

Country Link
US (1) US9279175B2 (fr)
EP (1) EP2611946B1 (fr)
CN (1) CN103080363B (fr)
DE (1) DE102010037254B4 (fr)
ES (1) ES2701756T3 (fr)
WO (1) WO2012028465A1 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011051731B4 (de) * 2011-07-11 2013-01-24 Thyssenkrupp Steel Europe Ag Verfahren zur Herstellung eines durch Schmelztauchbeschichten mit einer metallischen Schutzschicht versehenen Stahlflachprodukts
DE102012101018B3 (de) * 2012-02-08 2013-03-14 Thyssenkrupp Nirosta Gmbh Verfahren zum Schmelztauchbeschichten eines Stahlflachprodukts
EP2687611A1 (fr) * 2012-07-17 2014-01-22 Linde Aktiengesellschaft Procédé et appareil de commande de porosité de surface de matériaux métalliques
DE102013105378B3 (de) * 2013-05-24 2014-08-28 Thyssenkrupp Steel Europe Ag Verfahren zur Herstellung eines durch Schmelztauchbeschichten mit einer metallischen Schutzschicht versehenen Stahlflachprodukts und Durchlaufofen für eine Schmelztauchbeschichtungsanlage
DE102015101312A1 (de) * 2015-01-29 2016-08-04 Thyssenkrupp Steel Europe Ag Verfahren zum Aufbringen eines metallischen Schutzüberzugs auf eine Oberfläche eines Stahlprodukts
JP2018535313A (ja) * 2015-09-30 2018-11-29 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG Znガルバニール処理保護コーティングを有する平鋼製品およびその製造方法
CN109196131B (zh) * 2016-05-30 2021-06-01 杰富意钢铁株式会社 铁素体系不锈钢板
EP3305941B1 (fr) * 2016-10-07 2019-07-03 SEPIES GmbH Procédé de fabrication d'une couche sol-gel adhérente sur une surface métallique
DE102018102624A1 (de) 2018-02-06 2019-08-08 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines Stahlbandes mit verbesserter Haftung metallischer Schmelztauchüberzüge
BE1026986B1 (fr) 2019-01-23 2020-08-25 Drever Int S A Procédé et four pour le traitement thermique d’une bande d’acier de haute résistance comprenant une chambre d’homogénéisation en température
DE102019108457B4 (de) 2019-04-01 2021-02-04 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines Stahlbandes mit verbesserter Haftung metallischer Schmelztauchüberzüge
DE102019108459B4 (de) 2019-04-01 2021-02-18 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines Stahlbandes mit verbesserter Haftung metallischer Schmelztauchüberzüge
KR20220016491A (ko) * 2019-06-03 2022-02-09 티센크루프 스틸 유럽 악티엔게젤샤프트 부식방지 코팅이 구비된 강판 제품으로부터 판금 부품을 제조하는 방법
EP4108793A4 (fr) * 2020-02-21 2023-08-09 JFE Steel Corporation Procédé pour la production de tôle d'acier galvanisée par immersion à chaud à haute résistance
CN111485188A (zh) * 2020-04-02 2020-08-04 鞍钢股份有限公司 一种采用预氧化技术提升高强钢板表面可镀性的方法
CN112030091A (zh) * 2020-09-11 2020-12-04 霸州市青朗环保科技有限公司 一种在金属制品表面制备复合镀层的方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US583723A (en) 1897-06-01 Overshoe for horses
US3925579A (en) * 1974-05-24 1975-12-09 Armco Steel Corp Method of coating low alloy steels
US5066549A (en) 1986-05-20 1991-11-19 Armco Inc. Hot dip aluminum coated chromium alloy steel
US4883723A (en) 1986-05-20 1989-11-28 Armco Inc. Hot dip aluminum coated chromium alloy steel
US4675214A (en) 1986-05-20 1987-06-23 Kilbane Farrell M Hot dip aluminum coated chromium alloy steel
US5023113A (en) * 1988-08-29 1991-06-11 Armco Steel Company, L.P. Hot dip aluminum coated chromium alloy steel
US5116645A (en) 1988-08-29 1992-05-26 Armco Steel Company, L.P. Hot dip aluminum coated chromium alloy steel
AT392089B (de) 1988-09-14 1991-01-25 Andritz Ag Maschf Verfahren zum ein- und beidseitigen elektrolytischen verzinken von edelstahl
JP2727529B2 (ja) 1989-09-27 1998-03-11 新日本製鐵株式会社 メッキ密着性に優れた高耐蝕性アルミメッキCr含有鋼板の製造方法
FR2664617B1 (fr) 1990-07-16 1993-08-06 Lorraine Laminage Procede de revetement d'aluminium par trempe a chaud d'une bande d'acier et bande d'acier obtenue par ce procede.
JP2743228B2 (ja) 1992-05-11 1998-04-22 新日本製鐵株式会社 加工性とめっき密着性に優れた溶融アルミめっきCr含有鋼板の製造方法
JP3277063B2 (ja) * 1994-01-25 2002-04-22 日新製鋼株式会社 高張力熱延鋼板の溶融めっき方法
JPH07252624A (ja) * 1994-03-11 1995-10-03 Kawasaki Steel Corp 溶融亜鉛めっき鋼板の製造方法
US5447754A (en) 1994-04-19 1995-09-05 Armco Inc. Aluminized steel alloys containing chromium and method for producing same
FR2828888B1 (fr) * 2001-08-21 2003-12-12 Stein Heurtey Procede de galvanisation a chaud de bandes metalliques d'aciers a haute resistance
DE102004059566B3 (de) 2004-12-09 2006-08-03 Thyssenkrupp Steel Ag Verfahren zum Schmelztauchbeschichten eines Bandes aus höherfestem Stahl
EP1829983B1 (fr) * 2004-12-21 2016-04-13 Kabushiki Kaisha Kobe Seiko Sho Procédé et installation pour zingage par trempage à chaud
EP1693477A1 (fr) 2005-02-22 2006-08-23 ThyssenKrupp Steel AG Bande d'acier revêtu
DE102006005063A1 (de) 2006-02-03 2007-08-09 Linde Ag Verfahren zur Wärmebehandlung von Stahlbändern
BRPI0621610A2 (pt) 2006-04-26 2011-12-13 Thyssenkrupp Steel Ag método para revestimento por imersão em fundição de um produto de aço plano feito de aço de maior resistência
EP1857566B1 (fr) 2006-05-15 2017-05-03 ThyssenKrupp Steel Europe AG Produit d'acier plat revêtu avec une revêtement de protection contre la corrosion et procédé de son fabrication
JP2009035756A (ja) 2007-07-31 2009-02-19 Nisshin Steel Co Ltd 高温強度に優れた二輪車排ガス経路部材用Al系めっき鋼板および部材
EP2055799A1 (fr) 2007-11-05 2009-05-06 ThyssenKrupp Steel AG Produit en tôle d'acier doté d'une coiffe métallique anti-corrosion et procédé de production d'une coiffe Zn-Mg métallique anti-corrosion sur un produit en tôle d'acier

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102010037254A1 (de) 2012-03-01
CN103080363B (zh) 2015-11-25
DE102010037254B4 (de) 2012-05-24
EP2611946A1 (fr) 2013-07-10
US20140144550A1 (en) 2014-05-29
ES2701756T3 (es) 2019-02-25
WO2012028465A1 (fr) 2012-03-08
US9279175B2 (en) 2016-03-08
CN103080363A (zh) 2013-05-01

Similar Documents

Publication Publication Date Title
EP2611946B1 (fr) Procédé de revêtement par immersion à chaud d&#39;un produit plat en acier
EP2010690B1 (fr) Procédé de revêtement par immersion en fusion d&#39;un produit plat en acier hyperrésistant
DE102006039307B3 (de) Verfahren zum Beschichten eines 6-30 Gew.% Mn enthaltenden warm- oder kaltgewalzten Stahlbands mit einer metallischen Schutzschicht
EP2732062B1 (fr) Procédé de fabrication d&#39;un produit plat en acier muni par immersion à chaud d&#39;une couche de protection métallique
EP2049699B1 (fr) Procede pour revetir des rubans d&#39;acier, et ruban d&#39;acier pourvu d&#39;un revetement
EP2432910B2 (fr) Procédé de revêtement par immersion à chaud d&#39;un produit plat en acier contenant de 2 à 35 % en masse de mn, ainsi que produit plat en acier
DE102014109943B3 (de) Stahlprodukt mit einer Korrosionsschutzbeschichtung aus einer Aluminiumlegierung sowie Verfahren zu dessen Herstellung
DE69930291T2 (de) Hochfestes feuerverzinktes Stahlblech mit ausgezeichneter Plattierungshaftung und Preßformbarkeit sowie Verfahren zu seiner Herstellung
DE102012101018B3 (de) Verfahren zum Schmelztauchbeschichten eines Stahlflachprodukts
EP2513346B1 (fr) Procédé de fabrication d&#39;un produit en acier plat facilement formable
DE102007061489A1 (de) Verfahren zum Herstellen von gehärteten Bauteilen aus härtbarem Stahl und härtbares Stahlband hierfür
EP2855717A1 (fr) Acier, produit en acier plat et procédé de fabrication d&#39;un produit en acier plat
DE102008005605A1 (de) Verfahren zum Beschichten eines 6 - 30 Gew. % Mn enthaltenden warm- oder kaltgewalzten Stahlflachprodukts mit einer metallischen Schutzschicht
WO2019121793A1 (fr) Produit en acier plat laminé à froid présentant une couche métallique de protection contre la corrosion et procédé pour la fabrication d&#39;un tel acier
DE19543804B4 (de) Verfahren zur Herstellung von feuerverzinktem Stahlband und damit hergestelltes feuerverzinktes Blech oder Band aus Stahl
DE102021128327A1 (de) Kaltgewalztes stahlflachprodukt mit metallischer korrosionsschutzschicht und verfahren zur herstellung eines solchen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130312

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170717

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: C23C0002020000

Ipc: C23C0002060000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 2/40 20060101ALI20180213BHEP

Ipc: C23C 2/06 20060101AFI20180213BHEP

Ipc: C23C 2/12 20060101ALI20180213BHEP

Ipc: C23C 2/02 20060101ALI20180213BHEP

INTG Intention to grant announced

Effective date: 20180227

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1048685

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181003

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2701756

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190225

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190103

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190103

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190203

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190203

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190104

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

26N No opposition filed

Effective date: 20190704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190818

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190818

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1048685

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190818

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20200820

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190818

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200826

Year of fee payment: 10

Ref country code: BE

Payment date: 20200826

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20201023

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110818

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210818

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20221102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210819