EP2732062B1 - Procédé de fabrication d'un produit plat en acier muni par immersion à chaud d'une couche de protection métallique - Google Patents

Procédé de fabrication d'un produit plat en acier muni par immersion à chaud d'une couche de protection métallique Download PDF

Info

Publication number
EP2732062B1
EP2732062B1 EP12735114.6A EP12735114A EP2732062B1 EP 2732062 B1 EP2732062 B1 EP 2732062B1 EP 12735114 A EP12735114 A EP 12735114A EP 2732062 B1 EP2732062 B1 EP 2732062B1
Authority
EP
European Patent Office
Prior art keywords
flat steel
steel product
atmosphere
annealing
vol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP12735114.6A
Other languages
German (de)
English (en)
Other versions
EP2732062A2 (fr
Inventor
Marc Blumenau
Oliver Brehm
Michael Peters
Rudolf Schönenberg
Andreas WESTERFELD
Martin Norden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Steel Europe AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Steel Europe AG filed Critical ThyssenKrupp Steel Europe AG
Publication of EP2732062A2 publication Critical patent/EP2732062A2/fr
Application granted granted Critical
Publication of EP2732062B1 publication Critical patent/EP2732062B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0222Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling

Definitions

  • the invention relates to a process for producing a flat steel product provided by hot dip coating with a metallic protective layer, in particular a high-strength steel flat product having a tensile strength of at least 500 MPa or a high-strength steel flat product having a tensile strength of at least 1000 MPa.
  • High- and high-strength flat steel products are in demand due to their advantageous combination of strength and formability in increasing quantities. This applies in particular to sheet metal applications in automotive body construction.
  • the outstanding mechanical properties of such flat steel products are based on a multiphase microstructure of the material. supported by induced plasticity of austenitic phase components (TRIP, TWIP or SIP effect).
  • TRIP austenitic phase components
  • the flat steel products in question usually have appreciable contents of certain alloying elements, which typically include manganese (Mn), aluminum (Al), silicon (Si) or chromium (Cr).
  • a surface finish in the form of a metallic protective layer not only increases the resistance of the steel flat products to corrosion and, consequently, their product lifetime, but also improves their visual appearance.
  • Various methods of applying a metallic protective layer are known. These include electrolytic deposition and hot dip coating. In addition to an electrolytically produced processing, the hot dipping refinement has established itself as an economically and ecologically particularly favorable process. In hot-dip coating, the flat steel product to be coated is immersed in a molten metal bath.
  • Hot dipping finishing is particularly cost-effective when a flat-rolled steel semi-finished product, delivered in the hard-rolled state, is subjected to the steps purification, recrystallization annealing, hot dip coating, cooling, optional thermal, mechanical or chemical aftertreatment and coiling.
  • the annealing treatment carried out in this way can be used to activate the steel surface.
  • an N 2 -H 2 -Glühgasatmospreheat typically with unavoidable traces of H 2 O and O 2 is usually maintained in the continuous flow in the annealing furnace.
  • a first method of this kind is from the DE 10 2006 039 307 B3 known.
  • the hot-dip coated steel flat product is bright annealed under particularly reductive atmosphere conditions (low H 2 O / H 2 ratio of the annealing atmosphere and high annealing temperature).
  • a glow annealing furnace within a direct fired furnace ("DFF") pre-heating zone.
  • DFF furnace flames emitted by gas burners act directly on the flat steel product to be treated.
  • O 2 -super titanium oxide
  • the oxidation potential of the atmosphere surrounding the steel flat product is adjusted in such a way that a covering FeO layer is deliberately formed on the surfaces of the flat steel product. This FeO layer inhibits the selective oxidation of the oxygen-affine alloying elements of the flat steel product.
  • a second annealing step which is subsequently carried out in a holding zone, the FeO layer is again completely reduced back to metallic iron.
  • a method approach of this kind has long been from the DE 25 22 485 A1 known.
  • the advantage of preheating the flat steel product in a preheating furnace designed in DFF design consists in addition to the above-mentioned effects that can be achieved particularly high heating rates of the steel strip, which significantly reduces the duration of the annealing cycle and thus coupled with the output of a corresponding continuous furnace Can significantly increase hot dip coating plant.
  • the setting of an optimal FeO layer thickness of 20-200 nm in a homogeneous, uniform distribution over the bandwidth is difficult to control only by trimming the DFF burner flames. Both too low and too thick a FeO layer can lead to wetting and adhesion defects.
  • the respectively provided flat steel product is heat-treated in a continuous processing process on a hot-dip coating installation with DFF preheater and a holding zone, immediately afterwards cooled and surface-finished in-line.
  • a zinc, zinc / aluminum, zinc / magnesium, aluminum or Aluminum / silicon hot dip coating can be applied. Coatings of this type are also referred to in the art as, for example, the abbreviations "Z”, “ZF”, “ZM”, "ZA”, “AZ”, "AS”.
  • a particular combination of particularly homogeneous pre-oxidation in the DFF preheater and targeted humidification of the annealing atmosphere in the holding zone prepares the respective flat steel product in a manner such that the surface of the flat steel product is largely free of interfering oxides when it enters the respective hot-dip bath.
  • the flat steel product thus provided is, if necessary, subjected to a conventionally performed cleaning.
  • the steel flat product is heated within a heating time of 5 - 60 s, in particular 5 - 30 s, in a preheating furnace of the DFF type to a 600 - 1100 ° C, in particular 750 - 850 ° C, holding temperature.
  • a heating time of at least 5 s is required to heat the flat steel product to the required minimum temperature of 600 ° C.
  • a heating time of max. 60 s should not be exceeded in order to set an optimum starting structure for the annealing process. Further heating-up times carry the risk and the necessary mechanical properties of the final product can not be achieved.
  • a shortening of the heating time to a maximum of 30 s contributes to the improvement of the plant output and the economic efficiency of the process.
  • a reducing or neutral atmosphere which consists essentially of N 2 and additionally 5 to 15% by volume CO 2 , 0.1 to 2.0% by volume CO, and in total, is maintained relative to the steel surface at most 10 vol .-% H 2 , O 2 and H 2 O consists. Even with a total of up to 10 vol .-% of H 2 + O 2 + H 2 O, the proportion of oxygen in the atmosphere is so low that the atmosphere is neutral or reducing compared to the iron of the steel substrate.
  • the flat steel product is exposed to a preoxidation atmosphere during the heating phase for 1-15 s, which amounts to 0.01-3.0% by volume. Contains O 2 .
  • the pre-oxidation should be carried out at temperatures of at least 550 ° C, because only from this temperature begins to prevent the pre-oxidation to prevent selective oxidation of the alloying elements.
  • the pre-oxidation is carried out at temperatures up to 850 ° C, because at higher temperatures, the oxide layer is too thick. Experiments have shown that a pre-oxidation in the temperature range of 600 - 700 ° C provides optimal coating results.
  • a 20-300 nm forms on each processed flat steel product, optimally 20 to 200 nm thick FeO layer, which covers the steel surface covering.
  • Temperatures of at least 600 ° C are required to achieve sufficient recrystallization of the base material.
  • temperatures of a maximum of 1100 ° C should not be exceeded in order to avoid coarse grain formation.
  • the holding temperature is preferably 750-850 ° C, because this represents the optimum production range in terms of plant utilization and cost-effectiveness of the process.
  • the relevant process window within the heating phase can be realized by operating at least one of the burners associated with the pre-oxidation zone with O 2 excess ( ⁇ > 1).
  • the aim is to produce a very homogeneous FeO layer of uniform thickness on the flat steel product.
  • a significant O 2 - or air stream can be injected separately by means of a so-called "jet pipe" in the combustion flame.
  • Jet pipes allow a highly concentrated gas flow with high flow velocity and correspondingly high kinetic energy.
  • the inventively directed into the burner flame, discharged from the jet pipe gas flow causes a strong turbulence of the burner flame.
  • the distribution of the gas components, in particular in the Vormérmöfen blown in oxygen over the furnace cross-section substantially uniformed. This results in an optimal effect when the injection rate of the gas flow is set to 60-180 m / s.
  • the temperature of the injected gas can be up to 100 ° C above the pre-oxidation temperature.
  • At least two burners are used in the preheating furnace, one of which is assigned to one of the upper side and the other of the lower side of the respectively processed flat steel product.
  • the DFF preheating oven can be preceded by an additional DFI booster, which heats the steel strip evenly and quickly without pre-oxidizing and improves belt cleaning. This can additionally increase plant output.
  • the inventively preoxidized flat steel product passes through 30-120 s, in particular 30-60 s, an annealing furnace connected to the preheating furnace, in which it is subjected to a recrystallizing annealing at the respective holding temperature.
  • the annealing furnace in which holding at the holding temperature is carried out, is typically designed in RTF-type.
  • the minimum throughput time of 30 s is required to fully recrystallize the material.
  • the maximum cycle time of 120 s should not be exceeded in order to prevent coarse grain formation.
  • a turnaround time of 30-60 seconds proves to be advantageous not only in terms of optimum furnace throughput and equally optimal plant application for economic reasons, but also after dissolution of the FeO layer to which it acts due to the reducing Fe Atmosphere comes to avoid external oxidation of the alloying elements (Mn, Si, Al, Cr, ...) of the steel substrate.
  • the annealing gas atmosphere prevailing in the annealing furnace consists of 0.01-85.0% by volume of H 2 , up to 5% by volume of H 2 O, less than 0.01% by volume of O 2 and the remainder N 2 .
  • the preferred range for the hydrogen content is 3.0-10.0 vol%. From 3 vol .-% hydrogen in the atmosphere, it is possible to set a sufficient reduction potential compared to FeO even with short annealing times. It is preferable to set levels of less than or equal to 10.0% by volume of hydrogen for resource saving and to reduce H 2 consumption.
  • the dew point "TP" of the annealing atmosphere is kept at -40 ° C to +25 ° C.
  • the dew point is -40 ° C. or more in order to minimize the driving force of the external oxidation of the alloying elements (eg, Mn, Al, Si, Cr).
  • a dew point of at most +25 ° C avoids unwanted oxidation of iron. It could be shown experimentally that at a dew point of at least -30 ° C particularly good surface results are obtained.
  • the dew point is preferably at most 0 ° C in order to minimize the risk of surface decarburization.
  • the annealing parameters of the recrystallizing annealing are to be adjusted overall so that during the annealing a reduction of the FeO is produced, which has been formed on the surfaces of the flat steel product in the course of the preceding preoxidation (step c).
  • the flat steel product annealed according to the invention has a surface consisting essentially of metallic iron.
  • this effect is prevented by the reduction, carried out according to the invention, of the FeO present on the pre-oxidized flat steel product in combination with a targeted moistening of the annealing furnace section.
  • the FeO layer which is still present completely on the pre-oxidized flat steel product as it enters the annealing furnace is converted to metallic iron by the onset of reduction by the H 2 contained in the annealing atmosphere to form gaseous H 2 O.
  • At least one moistening device is provided, with which the annealing atmosphere can be selectively supplied with moisture to compensate for moisture loss or irregularities.
  • annealing furnaces used for the recrystallizing annealing of a flat steel product are flowed through by a gas flow directed from its exit in the direction of its entrance against the conveying direction of the steel flat product to be treated. It is therefore particularly appropriate for the targeted Moisture supply provided to arrange at least one humidifier adjacent to the output of the annealing furnace.
  • This arrangement not only results in a uniform distribution of moisture supported by the gas flow, but also takes into account the fact that the amount of water vapor resulting from the reduction of the FeO deposit of the flat steel product steadily decreases in the direction of the exit of the annealing furnace and, accordingly, without the supply of additional moisture the dew point could fall below the critical value.
  • an atmosphere is thus ensured by the targeted introduction of moisture into the annealing atmosphere over the entire length of the conveying path through the annealing furnace, whose dew point is always above the critical threshold value.
  • the inventively provided moistening device may consist of a slotted or perforated tube, wherein optimally each such tube is arranged transversely to the conveying direction of the flat steel product above and below the conveying path.
  • the individual design of the system may require the installation of additional humidifiers distributed over the holding zone length in order to ensure the desired homogeneity of the annealing atmosphere with respect to the dew point.
  • Regulation of the dew point as well as the dew point distribution in the annealing furnace can additionally be effected by regulating the respectively injected carrier gas volume flow or the velocity of the gas flow within the annealing furnace.
  • the speed of the gas flow flowing through the annealing furnace can be manipulated by changing the pressure gradient between the exit region of the annealing furnace and an exhaust, which is typically positioned at the beginning of the preheating furnace. This change can be done by controlling the suction or the injected Glühgasmenge in the oven room.
  • the pressure gradient is usually set to values of 2 - 10 mmWs.
  • the preheating furnace should be removed from the Annealing furnace are divided so that the possibly discharged from the annealing furnace, flowing in the direction of the preheating H 2 volume fractions are set before reaching the pre-oxidation zone.
  • an O 2 -containing, for example, pure O 2 gas flow or air flow present gas flow are introduced to vent from the annealing furnace in this area penetrating H 2 to H 2 O.
  • the amount of O 2 injected in each case is regulated in such a way that it is usually tunnel-like formed transition region between preheating and annealing furnace metrologically largely H 2 is not detectable.
  • the targeted Abresure of reaching into the preheating furnace hydrogen can also be done by at least one arranged in the vicinity of the output of the preheating furnace last burner of the preheating furnace is operated with such a high excess of O 2 , that in consequence of this excess of there excess O 2 content of the pre-oxidation atmosphere, in turn, sets the hydrogen, which may enter the preheating furnace, into water vapor.
  • the flat steel product which now has an active surface consisting essentially of metallic iron, is cooled to the required bath inlet temperature.
  • the bath inlet temperature is varied between 430 and 800 ° C.
  • the bath inlet temperature is typically 430-650 ° C and the temperature of the molten bath is in the range of 420-600 ° C.
  • bath inlet temperatures will typically occur of the flat steel product of 650 - 800 ° C at melt bath temperatures of 650 - 780 ° C chosen.
  • an overaging treatment extending for 5 to 60 seconds may be added at the bath inlet temperature.
  • Such overaging treatment is useful in some steels to adjust the microstructures necessary to achieve the required material properties. This is z. This is the case, for example, with TRIP steels in which the time and temperature for the diffusion of the carbon are made available by the overaging treatment.
  • the cooled to the Badein SharePointstemperatur steel flat product is passed while avoiding contact with an oxygen-containing atmosphere, in particular with the ambient atmosphere, in the metallic molten bath.
  • a so-called proboscis is usually used, which is connected to the end of the cooling zone or the optional existing overaging zone of the annealing furnace and dipped with its free end in the melt bath.
  • the optionally existing overaging zone and in the trunk there is a protective gas atmosphere of 100% N 2 , N 2 with up to 50.0% by volume, in particular up to 10.0% by volume H 2 , or 100 % H 2 which is non-reactive or reducing in relation to the steel strip.
  • An addition of hydrogen to the inert gas atmosphere in the trunk is not required in principle. However, it turns out to be advantageous depending on tape speed and tape dimensions to coating errors To avoid upper slag. A hydrogen addition of up to 10 vol .-% has proven to be particularly favorable in this context.
  • the dew point should be between -80 - -25 ° C, especially -50 ° C to -25 ° C.
  • the dew point of the inert gas atmosphere in the trunk should not be below -80 ° C, because the atmosphere is too dry underneath. This could lead to the formation of dust, which in turn would negatively affect the coating result.
  • the dew point of the inert gas atmosphere in the trunk should not be above -25 ° C, because otherwise the atmosphere would be too wet, which in turn would bring an increased slag formation with it.
  • a minimized risk of dust formation and simultaneously high process stability arise when the dew point in the trunk is between -50 ° C to -25 ° C.
  • the steel flat product thus conducted into the melt bath passes through the melt bath within a residence time of 1 to 10 s, in particular 2 to 5 s.
  • the passage time is at least 1 s, it is ensured that in the molten bath, a reactive wetting between the steel surface and the coating bath takes place.
  • the cycle time should not exceed 10 s to avoid unwanted coating sagging.
  • the time span of 2 to 5 s for the throughput time has proven to be particularly suitable in order to ensure a surface texture optimized with regard to the coating and adhesion results.
  • the thickness of the metallic protective layer present on the steel flat product exiting the melt bath is adjusted in a conventional manner.
  • known devices such as wiping nozzles or the like can be used.
  • the hot dip coated steel flat product may be thermally post-treated inline on the hot dip coating to produce a Fe-Zn alloy coating ("ZF coating").
  • ZF coating Fe-Zn alloy coating
  • a molten bath has been found to contain, in addition to zinc and unavoidable impurities including traces of Si, Mn and Pb, 0.1-0.15 wt% Al and up to 0.5 wt% Fe.
  • the hot-dip coating installation A has, in a horizontally oriented conveying direction F of the steel flat product S to be coated, to be coated, a DFI booster 1 optionally provided for preheating the flat steel product S, a preheating furnace 3 connected to its input 2 to the DFI booster, in which a Voroxidationsabites 4 is formed, an annealing furnace 6, which is connected to a transition region 7 to the output 8 of the preheating furnace 3, connected to the output 9 of the annealing furnace 6 cooling zone 10, connected to the cooling zone 10 proboscis 11, the the outlet 12 of the cooling zone 10 is connected and immersed with its free end in a melt bath 13, a arranged in the melt bath 13 first deflecting means 14, a means 15 for adjusting the thickness of the applied on the Stahlflach GmbH S in the melt bath 13 metallic coating and a second deflection 16 on.
  • a DFI booster 1 optionally provided for preheating the flat steel product S
  • a preheating furnace 3 connected to its input 2 to the DFI
  • the preheating furnace 3 is of the DFF type. In it are distributed over the conveyor line of the preheating furnace 3 in Fig. 1 arranged for the sake of clarity not shown burner. One group of these burners is assigned to the underside and another group of the upper side of the flat steel product S to be coated. Outside the pre-oxidation section 4, the burners are designed in a conventional manner and are supplied in a known manner with the required fuel gas and oxygen.
  • the burners each form a jet / jet-tube combination 17 of the in Fig. 2
  • the burners 18 of the burner / jet-tube combinations 17 are each connected via a fuel gas line 19 to a fuel gas supply, not shown here, and via an oxygen supply line 20 to an oxygen supply, also not shown here.
  • a respective oxygen branch line 22 is connected to the oxygen supply line 20 via a control valve 21.
  • the oxygen branch line 22 leads to each one of the type in the DE 10 2004 047 985 A1 explained prior art jet pipe 23, which directs the emerging from it with high flow energy and concentration of oxygen gas jet in the burner flame. In this way, a strong turbulence of the burner flame and thus an intense Contact the burner flame and prevailing in the pre-oxidation zone Voroxidationsatmospreheat with the coated steel flat product S causes.
  • a device for selectively feeding oxygen or air into the transition region 7.
  • the purpose of this feed is the setting of hydrogen, which possibly passes in the transition region 7 as a result of flowing in the annealing furnace 6 from the outlet 9 in the direction of its inlet gas flow G.
  • a suction device 24 is arranged in the region of the entrance of the annealing furnace 6, which sucks the reaching to the entrance of the annealing gas flow G.
  • two humidifiers 25,26 Adjacent to the outlet 9 of the annealing furnace 6 two humidifiers 25,26 are arranged, one of which is assigned to the top and the other of the underside of the flat steel product S to be coated.
  • the moistening devices 25, 26 are designed as slotted or perforated tubes oriented transversely to the conveying direction F of the flat steel product S and connected to a supply line 27, via which the moistening devices 25, 26 are supplied with steam or a moistened carrier gas, such as N 2 or N 2 /. H 2 , to be supplied.
  • the cooling zone 10 can be designed so that the cooled to the respective bath inlet temperature flat steel product S before it enters the trunk 11 still in the cooling zone 10 undergoes an overaging treatment at the bath inlet temperature.
  • the flat steel product S is deflected at the first deflection device 14 in the vertical direction and passes through the device 15 for adjusting the thickness of the metallic protective layer. Subsequently, the steel flat product S provided with the metallic protective layer is deflected again in the horizontal conveying direction F at the second deflection device 16 and, if appropriate, subjected to further treatment steps in plant parts not shown here.
  • the hot-dip coated samples each consisted of one of the high / high strength steels S1-S7, whose composition is given in Table 1.
  • Table 1 stolen C Mn Si Cr al Not a word S1 0.23 1.60 0.12 0.05 1.00 0,004 S2 0.07 1.45 0.11 0.49 0.03 ⁇ 0.002 S3 0.12 1.75 0.10 0.50 1.30 0,100 S4 0.22 1.75 0.10 0.10 1.55 0,100 S5 0.16 1.60 1.60 0.06 0.05 0,010 S6 0.15 1.85 0.25 0.70 0.70 ⁇ 0.002 S7 0.24 1.22 0.25 0.13 0.03 ⁇ 0.002 All data in% by weight, balance iron and unavoidable impurities
  • a hot-dip coated flat steel product according to the invention is excellently suited, due to its mechanical properties and surface properties, to be further processed by means of one-, two- or multi-stage cold or hot forming to form a high-strength / high-strength sheet metal component.
  • a sheet metal component continues to be distinguished by its particular resistance to environmental influences.
  • the use of a hot-dip coated steel flat product according to the invention thus not only raises lightweight potential, but also prolongs the product life.
  • the process according to the invention achieves optimum wetting and adherence of the hot-dip coating by a pre-oxidation in a DFF preheating furnace and a humidification of the annealing atmosphere in a holding zone in a hot-dip coated flat steel product.
  • a pre-oxidation in a DFF preheating furnace and a humidification of the annealing atmosphere in a holding zone in a hot-dip coated flat steel product.
  • the steel flat product is recrystallized in such a manner heated to a holding temperature of 600 - 1100 ° C steel flat product under a FeO reducing atmosphere whose dew point is maintained by moisture addition at -40 ° C to +25 ° C, below a ⁇ 100% N2 and a dew point cooled from -80 ° C to -25 ° C atmosphere to a bath inlet temperature of 420 - 780 ° C and passed through a melt bath.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Claims (15)

  1. Procédé de fabrication d'un produit plat en acier muni par immersion à chaud d'une couche de protection métallique, comprenant les étapes de travail suivantes :
    a) Préparation d'un produit plat en acier laminé à chaud ou à froid constitué par, outre du fer et des impuretés inévitables, (en % en masse), jusqu'à 35,0 % de Mn, jusqu'à 10,0 % de Al, jusqu'à 10,0 % de Si, jusqu'à 5,0 % de Cr, jusqu'à 2,0 % de Ni, respectivement jusqu'à 0,5 % de Ti, V, Nb, Mo, respectivement jusqu'à 0,1% de S, P et N, jusqu'à 1,0 % de C et, au choix, 0,0005 - 0,01 % de B ;
    b) Nettoyage au choix du produit plat en acier ;
    c) Réchauffement du produit plat en acier à une température de maintien allant de 600 à 1100 °C, auquel cas
    c.1) le réchauffement a lieu pendant une durée de réchauffement allant de 5 à 60 secondes,
    c.2) le réchauffement a lieu dans un four de préchauffage du type DFF (« DFF » = « Direct Fired Furnace »),
    c.3) dans lequel est formée une section de préoxydation, dans lequel le produit plat en acier présente une température de préoxydation de 550 à 850 °C et dans lequel est tout d'abord exposé, pendant 1 à 15 secondes, à une atmosphère oxydante avec une teneur en oxygène de 0,01 - 3,0 % en volume qui est introduite dans une atmosphère de préoxydation par soufflage d'un flux gazeux contenant de l'oxygène dans la flamme d'au moins un brûleur associé à la section de préoxydation afin de former sur la surface du produit plat en acier une couche de recouvrement de FeO,
    c.4) tandis qu'il règne hors de la section de préoxydation dans le four de préchauffage une atmosphère réductrice ou neutre par rapport à la surface de l'acier qui se compose de N2 et, en outre, de 5 - 15 % en volume de CO2, 0,1 - 2,0 % en volume de CO et au total au maximum 10 % en volume de H2, O2 et H2O ;
    d) Recuit de recristallisation du produit plat en acier en maintenant le produit plat en acier pendant une durée de maintien de 30 - 120 secondes à une température de maintien dans un four de recuit qui est situé à la suite du four de préchauffage, afin d'entraîner une recristallisation du produit plat en acier, auquel cas
    d.1) il règne dans le four de recuit une atmosphère de recuit agissant de manière réductrice par rapport au FeO et étant constituée par 0,01 - 85,0 % en volume de H2, au total jusqu'à 5 % en volume de H2O, moins de 0,01 % en volume de O2, le reste étant de N2 et
    d.2) le point de rosée de l'atmosphère de recuit sur l'ensemble du parcours du produit plat en acier à travers le four de recuit est maintenu entre -40 °C et +25 °C par l'apport d'humidité à l'aide d'au moins d'un dispositif d'humidification servant à compenser les pertes ou irrégularités de la répartition de l'humidification de l'atmosphère ;
    e) Refroidissement du produit plat en acier à une température d'entrée dans le bain qui se monte à 430 - 800 °C, auquel cas le refroidissement a lieu sous une atmosphère de refroidissement étant constituée de 100 % en volume de N2, et de N2 avec jusqu'à 50,0 % en volume de H2 ou 100 % de H2, ainsi que des impuretés inévitables ;
    f) Au choix, maintien du produit plat en acier pendant 5 - 60 secondes à la température d'entrée dans le bain et sous l'atmosphère de refroidissement ;
    g) Introduction du produit plat en acier dans un bain de fusion dont la température est de 420 - 780 °C, auquel cas dans la zone de transition vers le bain de fusion l'atmosphère de refroidissement est maintenue et le point de rosée de l'atmosphère de refroidissement est réglé entre -80°C et -25°C ;
    h) Passage du produit plat en acier à travers le bain de fusion et réglage de l'épaisseur de la couche de protection métallique disponible sur le produit plat en acier sortant du bain de fusion ;
    i) Au choix, traitement à chaud du produit plat en acier pourvu de la couche de protection métallique.
  2. Procédé selon la revendication 1, caractérisé en ce que la durée de réchauffement est de 5 - 30 secondes.
  3. Procédé selon une des revendications précédentes, caractérisé en ce que la température de préoxydation est de 600 - 700 °C.
  4. Procédé selon une des revendications précédentes, caractérisé en ce que le au moins un brûleur associé à la section de préoxydation est exploité avec un excédent de O2 (facteur d'air λ > 1).
  5. Procédé selon une des revendications précédentes, caractérisé en ce que le courant de gaz contenant de l'oxygène est introduit dans la flamme du brûleur associé à la section de préoxydation par l'intermédiaire d'une buse jet qui dirige un jet gazeux concentré dirigé en direction de la flamme.
  6. Procédé selon une des revendications précédentes, caractérisé en ce qu'au moins deux brûleurs sont associés à la section de préoxydation.
  7. Procédé selon une des revendications de 1 à 4, caractérisé en ce que l'on utilise en tant que brûleur un booster DFI, lors duquel une rampe de brûleur est à chaque fois associée à la partie supérieure et partie inférieure du produit plat en acier.
  8. Procédé selon une des revendications précédentes, caractérisé en ce que la température de maintien se monte à 750 - 850 °C.
  9. Procédé selon une des revendications précédentes, caractérisé en ce que le four de recuit est du type RTF (« RTF » = « Radiant Tube Furnace »).
  10. Procédé selon une des revendications précédentes, caractérisé en ce que l'atmosphère de recuit contient, pendant la phase de maintien, 3,0 - 10,0 % en volume de H2, au total jusqu'à 5 % en volume de H2O, moins de 0,01 % en volume de O2, le reste étant de N2.
  11. Procédé selon une des revendications précédentes, caractérisé en ce que le point de rosée de l'atmosphère de recuit est maintenu sur l'ensemble du trajet du produit plat en acier à travers le four de recuit entre - 30 °C et 0 °C.
  12. Procédé selon une des revendications précédentes, caractérisé en ce que le au moins un dispositif d'humidification est agencé adjacent à la sortie du four de recuit et le four de recuit est traversé par un écoulement gazeux qui est dirigé en direction de l'entrée de celui-ci.
  13. Procédé selon une des revendications précédentes, caractérisé en ce que l'on utilise de la vapeur d'eau ou un gaz N2 humidifié avec au choix une teneur en H2 en tant qu'agent de support pour l'introduction d'humidité à l'aide du dispositif d'humidification.
  14. Procédé selon une des revendications précédentes, caractérisé en ce qu'un écoulement gazeux contenant du O2 est introduit dans la zone de transition allant du four de préchauffage au four de recuit afin de faire réagir le H2 entrant dans cette zone par le four de recuit en H2O.
  15. Procédé selon une des revendications précédentes, caractérisé en ce que l'atmosphère de refroidissement comporte au maximum 10,0 % en volume de H2.
EP12735114.6A 2011-07-11 2012-07-05 Procédé de fabrication d'un produit plat en acier muni par immersion à chaud d'une couche de protection métallique Not-in-force EP2732062B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011051731A DE102011051731B4 (de) 2011-07-11 2011-07-11 Verfahren zur Herstellung eines durch Schmelztauchbeschichten mit einer metallischen Schutzschicht versehenen Stahlflachprodukts
PCT/EP2012/063069 WO2013007578A2 (fr) 2011-07-11 2012-07-05 Procédé de fabrication d'un produit plat en acier muni par immersion à chaud d'une couche de protection métallique

Publications (2)

Publication Number Publication Date
EP2732062A2 EP2732062A2 (fr) 2014-05-21
EP2732062B1 true EP2732062B1 (fr) 2016-06-29

Family

ID=46508328

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12735114.6A Not-in-force EP2732062B1 (fr) 2011-07-11 2012-07-05 Procédé de fabrication d'un produit plat en acier muni par immersion à chaud d'une couche de protection métallique

Country Status (9)

Country Link
US (1) US9096919B2 (fr)
EP (1) EP2732062B1 (fr)
JP (1) JP5753319B2 (fr)
KR (1) KR101940250B1 (fr)
CA (1) CA2839183C (fr)
DE (1) DE102011051731B4 (fr)
ES (1) ES2593490T3 (fr)
RU (1) RU2573843C2 (fr)
WO (1) WO2013007578A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3511430A1 (fr) 2018-01-12 2019-07-17 SMS Group GmbH Procédé de traitement thermique en continu d'une bande en acier et installation de revêtement par immersion en bain fondu d'une bande en acier
EP3686534A1 (fr) 2019-01-23 2020-07-29 Drever International Procédé et four pour le traitement thermique d'une bande d acier de haute résistance comprenant une chambre d homogénéisation en température

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101624810B1 (ko) * 2011-09-30 2016-05-26 신닛테츠스미킨 카부시키카이샤 도금 습윤성 및 도금 밀착성이 우수한 용융 아연 도금층을 구비한 강판과 그 제조 방법
DE102013105378B3 (de) 2013-05-24 2014-08-28 Thyssenkrupp Steel Europe Ag Verfahren zur Herstellung eines durch Schmelztauchbeschichten mit einer metallischen Schutzschicht versehenen Stahlflachprodukts und Durchlaufofen für eine Schmelztauchbeschichtungsanlage
JP5799996B2 (ja) * 2013-09-12 2015-10-28 Jfeスチール株式会社 外観性とめっき密着性に優れる溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板ならびにそれらの製造方法
DE102013114378A1 (de) * 2013-12-18 2015-06-18 Peter Kordt Schmelzofen
WO2015144318A1 (fr) * 2014-03-28 2015-10-01 Tata Steel Ijmuiden B.V. Procédé de formage à chaud d'une pièce brute d'acier enduit
MX2016016129A (es) * 2014-06-06 2017-03-28 Arcelormittal Hoja de acero galvanizada multifasica de alta resistencia, metodo de produccion y uso.
DE102014112448B4 (de) * 2014-06-13 2016-11-24 Benteler Automobiltechnik Gmbh Herstellverfahren für Al-Si-beschichtete Stahlblechteile und Al-Si-beschichtetes Stahlblechband
DE102014109943B3 (de) 2014-07-16 2015-11-05 Thyssenkrupp Ag Stahlprodukt mit einer Korrosionsschutzbeschichtung aus einer Aluminiumlegierung sowie Verfahren zu dessen Herstellung
EP3159420B1 (fr) * 2014-09-08 2020-09-16 JFE Steel Corporation Procédé de fabrication de tôle d'acier haute résistance galvanisée à chaud au trempé
BR112017027680B1 (pt) 2015-06-24 2022-01-25 Novelis Inc Sistema e método para tratamento de metal
JP6439654B2 (ja) * 2015-10-27 2018-12-19 Jfeスチール株式会社 溶融亜鉛めっき鋼板の製造方法
RU2615738C1 (ru) * 2016-02-08 2017-04-10 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Высокопрочная сталь системы Fe-Mn-Al-C, обладающая эффектом TWIP и TRIP
WO2017145322A1 (fr) * 2016-02-25 2017-08-31 新日鐵住金株式会社 Procédé de production de tôle d'acier et dispositif de recuit continu de tôle d'acier
CN105886750A (zh) * 2016-04-18 2016-08-24 河北钢铁股份有限公司 1180MPa级Q&P钢的连续热镀锌方法
WO2017203310A1 (fr) 2016-05-24 2017-11-30 Arcelormittal Procédé de fabrication d'une tôle d'acier twip à microstructure austénitique
WO2017203314A1 (fr) * 2016-05-24 2017-11-30 Arcelormittal Tôle d'acier twip ayant une matrice austénitique
WO2017203315A1 (fr) 2016-05-24 2017-11-30 Arcelormittal Tôle mince en acier laminée à froid et recuite, son procédé de production et utilisation d'un tel acier pour produire des pièces de véhicule
WO2017203341A1 (fr) * 2016-05-24 2017-11-30 Arcelormittal Procédé de fabrication d'une tôle d'acier twip ayant une matrice austénitique
CN105908089B (zh) * 2016-06-28 2019-11-22 宝山钢铁股份有限公司 一种热浸镀低密度钢及其制造方法
KR101836714B1 (ko) * 2016-10-12 2018-03-09 현대자동차주식회사 고망간강
JP6323628B1 (ja) 2016-10-25 2018-05-16 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板の製造方法
JP6455544B2 (ja) * 2017-05-11 2019-01-23 Jfeスチール株式会社 溶融亜鉛めっき鋼板の製造方法
CN107267868A (zh) * 2017-05-26 2017-10-20 太仓源壬金属科技有限公司 一种高性能耐高温金属材料
CN107245659A (zh) * 2017-05-27 2017-10-13 太仓源壬金属科技有限公司 一种耐磨金属钢材
WO2019092467A1 (fr) * 2017-11-08 2019-05-16 Arcelormittal Tôle d'acier recuite après galvanisation
DE102018107435A1 (de) * 2017-11-17 2019-05-23 Sms Group Gmbh Verfahren zur Voroxidation von Bandstahl in einer in einem Ofenraum angeordneten Reaktionskammer
KR102109238B1 (ko) * 2017-12-20 2020-05-11 주식회사 포스코 고강도강 표면 산화물 환원을 위한 연속 소둔 설비
DE102018102624A1 (de) 2018-02-06 2019-08-08 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines Stahlbandes mit verbesserter Haftung metallischer Schmelztauchüberzüge
RU196347U1 (ru) * 2019-03-18 2020-02-26 Сергей Львович Балдаев Стальная нефтепромысловая труба
DE102019108457B4 (de) 2019-04-01 2021-02-04 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines Stahlbandes mit verbesserter Haftung metallischer Schmelztauchüberzüge
DE102019108459B4 (de) 2019-04-01 2021-02-18 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines Stahlbandes mit verbesserter Haftung metallischer Schmelztauchüberzüge
EP3816319B1 (fr) 2019-10-29 2022-09-14 Salzgitter Flachstahl GmbH Procédé de fabrication d'une bande en acier haute résistance à adhésion améliorée des enrobages par galvanisation à chaud à base de zinc
CN110983194B (zh) * 2019-12-25 2020-09-22 燕山大学 一种超级韧性钢铁材料及其制造方法
WO2021224662A1 (fr) * 2020-05-07 2021-11-11 Arcelormittal Procédé de recuit d'acier
DE102020120580A1 (de) * 2020-08-04 2022-02-10 Muhr Und Bender Kg Verfahren zum herstellen von beschichtetem stahlband, und verfahren zum herstellen eines gehärteten stahlprodukts
CN114686651B (zh) * 2020-12-31 2024-08-13 通用汽车环球科技运作有限责任公司 具有降低的液态金属致脆(lme)敏感性的锌涂覆的钢
DE102021133090A1 (de) * 2021-12-14 2023-06-15 Thyssenkrupp Steel Europe Ag Verfahren zur Herstellung eines Stahlflachprodukts mit einem kathodischen Korrosionsschutz, Anlage zur Herstellung eines mit einem kathodischen Korrosionsschutz versehenen Stahlflachprodukts und Verwendung
JP7468823B2 (ja) 2022-03-25 2024-04-16 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板の製造方法
CN115058675A (zh) * 2022-07-15 2022-09-16 攀钢集团攀枝花钢铁研究院有限公司 一种改善热浸镀高强钢镀层质量的方法
JP7477065B1 (ja) 2023-03-31 2024-05-01 Jfeスチール株式会社 めっき鋼板の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3925579A (en) 1974-05-24 1975-12-09 Armco Steel Corp Method of coating low alloy steels
US6811624B2 (en) * 2002-11-26 2004-11-02 United States Steel Corporation Method for production of dual phase sheet steel
JP4718782B2 (ja) 2003-02-06 2011-07-06 新日本製鐵株式会社 合金化溶融亜鉛めっき鋼板、およびその製造方法
DE102004047985A1 (de) 2004-10-01 2006-04-06 Linde Ag Verfahren zur Atmosphärengestaltung bei Wärmebehandlungen
DE102004059566B3 (de) * 2004-12-09 2006-08-03 Thyssenkrupp Steel Ag Verfahren zum Schmelztauchbeschichten eines Bandes aus höherfestem Stahl
EP1693477A1 (fr) 2005-02-22 2006-08-23 ThyssenKrupp Steel AG Bande d'acier revêtu
US20090123651A1 (en) * 2005-10-14 2009-05-14 Nobuyoshi Okada Continuous Annealing and Hot Dip Plating Method and Continuous Annealing and Hot Dip Plating System of Steel sheet Containing Si
DE102006005063A1 (de) * 2006-02-03 2007-08-09 Linde Ag Verfahren zur Wärmebehandlung von Stahlbändern
BE1017086A3 (fr) * 2006-03-29 2008-02-05 Ct Rech Metallurgiques Asbl Procede de recuit et preparation en continu d'une bande en acier a haute resistance en vue de sa galvanisation au trempe.
ATE458838T1 (de) 2006-04-26 2010-03-15 Thyssenkrupp Steel Europe Ag Verfahren zum schmelztauchbeschichten eines stahlflachproduktes aus höherfestem stahl
ES2636442T3 (es) 2006-05-15 2017-10-05 Thyssenkrupp Steel Europe Ag Producto de acero plano provisto con un revestimiento anticorrosivo y procedimiento para su fabricación
DE102006039307B3 (de) * 2006-08-22 2008-02-21 Thyssenkrupp Steel Ag Verfahren zum Beschichten eines 6-30 Gew.% Mn enthaltenden warm- oder kaltgewalzten Stahlbands mit einer metallischen Schutzschicht
FR2920439B1 (fr) 2007-09-03 2009-11-13 Siemens Vai Metals Tech Sas Procede et dispositif d'oxydation/reduction controlee de la surface d'une bande d'acier en defilement continu dans un four a tubes radiants en vue de sa galvanisation
EP2055799A1 (fr) 2007-11-05 2009-05-06 ThyssenKrupp Steel AG Produit en tôle d'acier doté d'une coiffe métallique anti-corrosion et procédé de production d'une coiffe Zn-Mg métallique anti-corrosion sur un produit en tôle d'acier
DE102009018577B3 (de) 2009-04-23 2010-07-29 Thyssenkrupp Steel Europe Ag Verfahren zum Schmelztauchbeschichten eines 2-35 Gew.-% Mn enthaltenden Stahlflachprodukts und Stahlflachprodukt
DE102010037254B4 (de) 2010-08-31 2012-05-24 Thyssenkrupp Steel Europe Ag Verfahren zum Schmelztauchbeschichten eines Stahlflachprodukts

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3511430A1 (fr) 2018-01-12 2019-07-17 SMS Group GmbH Procédé de traitement thermique en continu d'une bande en acier et installation de revêtement par immersion en bain fondu d'une bande en acier
EP3686534A1 (fr) 2019-01-23 2020-07-29 Drever International Procédé et four pour le traitement thermique d'une bande d acier de haute résistance comprenant une chambre d homogénéisation en température
BE1026986A1 (fr) 2019-01-23 2020-08-17 Drever Int Sa Procédé et four pour le traitement thermique d’une bande d’acier de haute résistance comprenant une chambre d’homogénéisation en température

Also Published As

Publication number Publication date
WO2013007578A3 (fr) 2013-05-02
US9096919B2 (en) 2015-08-04
DE102011051731B4 (de) 2013-01-24
DE102011051731A1 (de) 2013-01-17
WO2013007578A2 (fr) 2013-01-17
KR20140059777A (ko) 2014-05-16
RU2573843C2 (ru) 2016-01-27
CA2839183C (fr) 2018-12-11
KR101940250B1 (ko) 2019-01-18
EP2732062A2 (fr) 2014-05-21
US20140251505A1 (en) 2014-09-11
CA2839183A1 (fr) 2013-01-17
ES2593490T3 (es) 2016-12-09
JP2014525986A (ja) 2014-10-02
RU2014104593A (ru) 2015-08-20
JP5753319B2 (ja) 2015-07-22

Similar Documents

Publication Publication Date Title
EP2732062B1 (fr) Procédé de fabrication d'un produit plat en acier muni par immersion à chaud d'une couche de protection métallique
WO2021166350A1 (fr) Procédé pour la production de tôle d'acier galvanisée par immersion à chaud à haute résistance
EP2010690B1 (fr) Procédé de revêtement par immersion en fusion d'un produit plat en acier hyperrésistant
DE102013105378B3 (de) Verfahren zur Herstellung eines durch Schmelztauchbeschichten mit einer metallischen Schutzschicht versehenen Stahlflachprodukts und Durchlaufofen für eine Schmelztauchbeschichtungsanlage
KR101889795B1 (ko) 고강도 용융 아연 도금 강판의 제조 방법 및 제조 설비
EP1819840B1 (fr) Procede de galvanisation a chaud d'une bande d'acier de resistance superieure
DE102012101018B3 (de) Verfahren zum Schmelztauchbeschichten eines Stahlflachprodukts
EP2611946B1 (fr) Procédé de revêtement par immersion à chaud d'un produit plat en acier
EP3320120A1 (fr) Acier multiphase à haute résistance et procédé de fabrication d'une bande d'acier laminée à froid composée dudit acier
DE102012013113A1 (de) Hochfester Mehrphasenstahl und Verfahren zur Herstellung eines Bandes aus diesem Stahl mit einer Mindestzugfestigkleit von 580MPa
WO2009021898A1 (fr) Acier biphasé, produit plat constitué d'un tel acier biphasé et procédé de fabrication d'un produit plat
DE69014532T2 (de) Verfahren zur Herstellung eines Stahlbleches.
EP2513346B1 (fr) Procédé de fabrication d'un produit en acier plat facilement formable
EP3736348B1 (fr) Procédé de fabrication d'un acier d'emballage brodé
WO2019068560A1 (fr) Acier multiphase à haute résistance et procédé de fabrication d'une bande d'acier composée de cet acier multiphase
WO2015125421A1 (fr) Tôle en acier galvanisé à chaud hautement résistante, et procédé de fabrication de celle-ci
WO2017157770A1 (fr) Procédé de fabrication d'une pièce en acier façonnée à chaud et pièce en acier façonnée à chaud
EP0959145B1 (fr) Procédé et installation pour effectuer le chauffage d'un procédé de recuit après galvanisation
DE102018217835A1 (de) Verfahren zum Herstellen eines warmumformbaren Stahlflachprodukts

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131218

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: C23C0002020000

Ipc: C22C0038020000

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/22 20060101ALI20151118BHEP

Ipc: C22C 38/04 20060101ALI20151118BHEP

Ipc: C23C 2/02 20060101ALI20151118BHEP

Ipc: C22C 38/06 20060101ALI20151118BHEP

Ipc: C22C 38/02 20060101AFI20151118BHEP

Ipc: C22C 38/38 20060101ALI20151118BHEP

Ipc: C22C 38/18 20060101ALI20151118BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160107

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PETERS, MICHAEL

Inventor name: BLUMENAU, MARC

Inventor name: BREHM, OLIVER

Inventor name: WESTERFELD, ANDREAS

Inventor name: NORDEN, MARTIN

Inventor name: SCHOENENBERG, RUDOLF

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 809176

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160929

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160930

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2593490

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20161209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161031

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

26N No opposition filed

Effective date: 20170330

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160929

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200922

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20210721

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210729

Year of fee payment: 10

Ref country code: IT

Payment date: 20210727

Year of fee payment: 10

Ref country code: AT

Payment date: 20210722

Year of fee payment: 10

Ref country code: LU

Payment date: 20210726

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20210721

Year of fee payment: 10

Ref country code: GB

Payment date: 20210722

Year of fee payment: 10

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210706

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20220801

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 809176

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220705

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220705

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220705

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220705

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220705